1
|
Pomianowski K, Kulczykowska E, Burzyński A. Genome guided, organ-specific transcriptome assembly of the European flounder (P. flesus) from the Baltic Sea. Sci Data 2024; 11:1184. [PMID: 39477936 PMCID: PMC11525550 DOI: 10.1038/s41597-024-04004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Although the European flounder is frequently used in research and has economic importance, there is still lack of comprehensive transcriptome data for this species. In the present research we show RNA-Seq data from ten selected organs of P. flesus female inhabiting brackish waters of the Gulf of Gdańsk (southern Baltic Sea). High throughput Next Generation Sequencing technology NovaSeq 6000 was used to generate 500 M sequencing reads. These were mapped against European flounder reference genome and reads extracted from the mapping were assembled producing 61k reliable contigs. Gene ontology (GO) terms were assigned to the majority of annotated contigs/unigenes based on the results of PFAM, PANTHER, UniProt and InterPro protein databases searches. BUSCOs statistics for eukaryota, metazoa, vertebrata and actinopterygii databases showed that the reported transcriptome represents a high level of completeness. The data set can be successfully used as a tool in design of experiments from various research fields including biology, aquaculture and toxicology.
Collapse
Affiliation(s)
- Konrad Pomianowski
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712, Sopot, Poland.
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712, Sopot, Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712, Sopot, Poland
| |
Collapse
|
2
|
Shi M, Rupia EJ, Jiang P, Lu W. Switch from fight-flight to freeze-hide: The impacts of severe stress and brain serotonin on behavioral adaptations in flatfish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:891-909. [PMID: 38308734 DOI: 10.1007/s10695-024-01298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/01/2024] [Indexed: 02/05/2024]
Abstract
Animals often experience changes in their environment that can be perceived as stressful. Previous evidence indicates that different individuals may have distinct stress responses. The role of serotonin (5-HT) in stress adaptation is well established, but its relationship with different defense strategies and the persistence of physiological and behavioral responses in different individuals during repeated acute stress remain unclear. In this study, using olive flounder (Paralichthys olivaceus) as a model, we analyzed the relationship between boldness and neurotransmitter 5-HT activity. We found that 5-HT suppression with 5-HT synthesis inhibitor p-chlorophenylalanine (pCPA) and 5-HT receptor subtype 1A (5-HT1A) antagonist WAY-100635 increased their oxygen consumption rates and the boldness of shy individuals. We determined the metabolic and behavioral changes in bold and shy individuals to repeated acute stress. The results suggest that bold individuals switch on passive "energy-saving" personality by changing their defense behavior from "fight-flight" to "freeze-hide" during a threat encounter, which manifests high behavioral plasticity. Both behavioral types decreased their spontaneous activity levels, which were also strengthened by limiting metabolic rate. Interestingly, treatment with pCPA and WAY-100635 before stress procedure attenuated stress and increased the boldness across diverse behavioral types. This study provides the initial empirical evidence of how perception of stress impacts both individual defense behavior and personality in this species. These findings can enhance our comprehension of individual variability and behavioral plasticity in animals, thereby improving our ability to develop effective adaptive management strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
| | - Emmanuel J Rupia
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
- School of Biological Science, The University of Dodoma, Dodoma, Tanzania
| | - Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China.
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China.
| |
Collapse
|
3
|
Shi M, Liu C, Qin Y, Yv L, Lu W. α1 and β3 adrenergic receptor-mediated excitatory effects of adrenaline on the caudal neurosecretory system (CNSS) in olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2024; 349:114468. [PMID: 38325527 DOI: 10.1016/j.ygcen.2024.114468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Adrenaline is one of the most important neurotransmitters in the central nervous system and is produced during stress. In this study, we investigated the modulatory role of adrenaline and adrenergic receptors on the neuroendocrine Dahlgren cells in the caudal neurosecretory system (CNSS) of olive flounder. Ex vivo electrophysiological recordings revealed that adrenaline significantly increased the firing frequency and altered the firing pattern of Dahlgren cells. Moreover, treatment with adrenaline led to a significant upregulation of ion channels and major hormone secretion genes in CNSS at the mRNA levels. Additionally, treatment with adrenaline resulted in a significantly elevation in the expression levels of α1- and β3-adrenergic receptors. Furthermore, the β3-adrenergic receptor antagonist exerts a significant inhibitory effect on adrenaline-induced enhancement firing activities of Dahlgren cells, whereas the α1-adrenergic receptor antagonist displays a comparatively weaker inhibitory effect. Additionally, the enhanced firing activity induced by adrenaline could be effectively suppressed by both α1- and β3-adrenergic receptor antagonists. Taken together, these findings provide strong evidence in favor of the excitatory effects of adrenaline through α1 and β3 adrenergic receptors in CNSS to stimulate the secretion of stress-related hormones, β3-adrenergic receptor plays a more dominant role in the modulation of firing activities of Dahlgren cells by adrenaline and thereby regulates the stress response in olive flounder.
Collapse
Affiliation(s)
- Mengmeng Shi
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Cheng Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Yeyang Qin
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Lin Yv
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
4
|
Jiang P, Fang S, Huang N, Lu W. The excitatory effect of 5-HT 1A and 5-HT 2B receptors on the caudal neurosecretory system Dahlgren cells in olive flounder, Paralichthys olivaceus. Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111457. [PMID: 37269940 DOI: 10.1016/j.cbpa.2023.111457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
The neurotransmitter 5-hydroxytryptamine (5-HT, serotonin) plays an essential role in the regulation of neural activity via multiple receptors. Here, we investigated the functional role of serotoninergic input on the Dahlgren cell population in the caudal neurosecretory system (CNSS) of olive flounder. In this study, the effect of 5-HT on the firing activity of Dahlgren cells was explored in terms of changes in firing frequency and firing pattern using multicellular recording electrophysiology ex vivo, and the role of several 5-HT receptor subtypes in the regulation was determined. The results revealed that 5-HT increased the firing frequency in a concentration-dependent manner and altered the firing pattern of Dahlgren cells. The effect of 5-HT on the firing activity of Dahlgren cells was mediated through the 5-HT1A and 5-HT2B receptors, selective agonists of both receptors effectively increased the firing frequency of Dahlgren cells, and selective receptor antagonists could also effectively inhibit the increase in firing frequency caused by 5-HT. In addition, the mRNA levels of major signaling pathway-related genes, ion channels, and major secretion hormone genes were significantly upregulated in CNSS after treatment with 5-HT. These findings demonstrate that 5-HT acts as an excitatory neuromodulator on Dahlgren cells and enhances neuroendocrine activity in CNSS.
Collapse
Affiliation(s)
- Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Shilin Fang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Nini Huang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
5
|
Tostivint H, Girardot F, Parmentier C, Pézeron G. [The caudal neurosecretory system, the other "neurohypophysial" system in fish]. Biol Aujourdhui 2023; 216:89-103. [PMID: 36744974 DOI: 10.1051/jbio/2022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 02/07/2023]
Abstract
The caudal neurosecretory system (CNSS) is a neuroendocrine complex whose existence is specific to fishes. Structurally, it has many similarities with the hypothalamic-neurohypophyseal complex of other vertebrates. However, it differs regarding its position at the caudal end of the spinal cord and the nature of the hormones it secretes, the most important being urotensins. The CNSS was first described more than 60 years ago, but its embryological origin is totally unknown and its role is still poorly understood. Paradoxically, it is almost no longer studied today. Recent developments in imaging and genome editing could make it possible to resume investigations on CNSS in order to solve the mysteries that still surround it.
Collapse
Affiliation(s)
- Hervé Tostivint
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| | - Fabrice Girardot
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, IBPS, Neurosciences Paris Seine, Neuroplasticité des comportements de reproduction, 75005 Paris, France
| | - Guillaume Pézeron
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| |
Collapse
|
6
|
Jiang P, Pan X, Zhang W, Dai Z, Lu W. Neuromodulatory effects of GnRH on the caudal neurosecretory Dahlgren cells in female olive flounder. Gen Comp Endocrinol 2021; 307:113754. [PMID: 33711313 DOI: 10.1016/j.ygcen.2021.113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 01/28/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is considered a key player in reproduction. The caudal neurosecretory system (CNSS) is a unique neurosecretory structure of fish that may be involved in osmoregulation, nutrition, reproduction, and stress-related responses. However, a direct effect of GnRH on Dahlgren cells remains underexplored. Here, we examined the electrophysiological response of Dahlgren cell population of the CNSS to GnRH analog LHRH-A2 and the transcription of related key genes of CNSS. We found that GnRH increased overall firing frequency and may be changed the firing pattern from silent to burst or phasic firing in a subpopulation of Dahlgren cells. The effect of GnRH on a subpopulation of Dahlgren cells firing activity was blocked by the GnRH receptor (GnRH-R) antagonist cetrorelix. A positive correlation was observed between the UII and GnRH-R mRNA levels in CNSS or gonadosomatic index (GSI) during the breeding season. These findings are the first demonstration of the ability of GnRH acts as a modulator within the CNSS and add to our understanding of the physiological role of the CNSS in reproduction and seasonal adaptation.
Collapse
Affiliation(s)
- Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Xinbei Pan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Zhiqi Dai
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
7
|
Grone BP, Butler JM, Wayne CR, Maruska KP. Expression patterns and evolution of urocortin and corticotropin‐releasing hormone genes in a cichlid fish. J Comp Neurol 2021; 529:2596-2619. [DOI: 10.1002/cne.25113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Julie M. Butler
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
- Department of Biology Stanford University Stanford California USA
| | - Christy R. Wayne
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Karen P. Maruska
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| |
Collapse
|
8
|
Zou H, Shi M, He F, Guan C, Lu W. Expression of corticotropin releasing hormone in olive flounder (Paralichthys olivaceus) and its transcriptional regulation by c-Fos and the methylation of promoter. Comp Biochem Physiol B Biochem Mol Biol 2021; 251:110523. [DOI: 10.1016/j.cbpb.2020.110523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
|
9
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
10
|
Zhang W, Lan Z, Li K, Liu C, Jiang P, Lu W. Inhibitory role of taurine in the caudal neurosecretory Dahlgren cells of the olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2020; 299:113613. [PMID: 32950586 DOI: 10.1016/j.ygcen.2020.113613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 01/19/2023]
Abstract
Taurine plays role in neural development and physiological functions such as endocrine regulation in the central nervous system (CNS), and it is one of the most abundant free amino acid there. We investigated its potential effect as a neurotransmitter in the group of neuroendocrine Dahlgren cells at flounder Paralichthys olivaceus caudal neurosecretory system (CNSS). The application of taurine in vitro led to a reduction in electrical activity of Dahlgren cells, followed by a rise in the number of silent cells, at the same time the frequency of all three activity patterns (tonic, phasic, bursting) in Dahlgren cells was reduced. Both strychnine (a glycine receptor antagonist) and bicuculline (a GABAA receptor antagonist) can block the response to taurine separately. Transcriptome sequencing analysis showed the existence of glycine receptor (GlyR) and GABAA receptor (GABAAR) in the flounder CNSS, and the GlyR, GABAAR, and Cl- channel mRNA expression were significantly raised after taurine superfusion according to quantitative RT-PCR results. These data indicate that taurine may mediate Dahlgren cell population of CNSS activity in vivo through GlyR and GABAAR, thereby, regulating stress-response.
Collapse
Affiliation(s)
- Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Kunyu Li
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Cheng Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| |
Collapse
|
11
|
Lu W, Zhu G, Chen A, Li X, McCrohan CR, Balment R. Gene expression and hormone secretion profile of urotensin I associated with osmotic challenge in caudal neurosecretory system of the euryhaline flounder, Platichthys flesus. Gen Comp Endocrinol 2019; 277:49-55. [PMID: 30633873 DOI: 10.1016/j.ygcen.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 11/17/2022]
Abstract
The caudal neurosecretory system (CNSS) is a part of stress response system, a neuroendocrine structure unique to fish. To gain a better understanding of the physiological roles of CNSS in fluid homeostasis, we characterized the tissue distribution of urotensin I (UI) expression in European flounder (Platichthys flesus), analyzed the effect chronic exposure to seawater (SW) or freshwater (FW), transfer from SW to FW, and reverse transfer on mRNA levels of UI, L-type Ca2+ channels and Ca-activated K+ channels transcripts in CNSS. The tissue distribution demonstrated that the CNSS is dominant sites of UI expression, and UI mRNA level in fore brain appeared greater than other non-CNSS tissues. There were no consistent differences in CNSS UI expression or urophysis UI content between SW- and FW-adapted fish in July and September. After transfer from SW to FW, at 8 h CNSS UI expression was significantly increased, but urophysis UI content was no significantly changes. At 24 h transfer from SW to FW, expression of CNSS UI was no apparent change and urophysis UI content was reduced. At 8 h and 24 h after transfer from FW to SW UI expression and urophysis UI content was no significantly effect. The expression of bursting dependent L-type Ca2+ channels and Ca-activated K+ channels in SW-adapted fish significantly decreased compared to those in FW-adapted. However, there were no differences in transfer from SW to FW or from FW to SW at 8 h and 24 h. Thus, these results suggest CNSS UI acts as a modulator in response to osmotic stress and plays important roles in the body fluid homeostasis.
Collapse
Affiliation(s)
- Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| | - Gege Zhu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Aqin Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Xiaoxue Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Catherine R McCrohan
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PT, UK
| | - Richard Balment
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PT, UK
| |
Collapse
|
12
|
Nitric Oxide and the Neuroendocrine Control of the Osmotic Stress Response in Teleosts. Int J Mol Sci 2019; 20:ijms20030489. [PMID: 30678131 PMCID: PMC6386840 DOI: 10.3390/ijms20030489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/17/2022] Open
Abstract
The involvement of nitric oxide (NO) in the modulation of teleost osmoresponsive circuits is suggested by the facts that NO synthase enzymes are expressed in the neurosecretory systems and may be regulated by osmotic stimuli. The present paper is an overview on the research suggesting a role for NO in the central modulation of hormone release in the hypothalamo-neurohypophysial and the caudal neurosecretory systems of teleosts during the osmotic stress response. Active NOS enzymes are constitutively expressed by the magnocellular and parvocellular hypophysiotropic neurons and the caudal neurosecretory neurons of teleosts. Moreover, their expression may be regulated in response to the osmotic challenge. Available data suggests that the regulatory role of NO appeared early during vertebrate phylogeny and the neuroendocrine modulation by NO is conservative. Nonetheless, NO seems to have opposite effects in fish compared to mammals. Indeed, NO exerts excitatory effects on the electrical activity of the caudal neurosecretory neurons, influencing the amount of peptides released from the urophysis, while it inhibits hormone release from the magnocellular neurons in mammals.
Collapse
|
13
|
Lan Z, Zhang W, Xu J, Zhou M, Chen Y, Zou H, Lu W. Modulatory effect of dopamine receptor 5 on the neurosecretory Dahlgren cells of the olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2018; 266:67-77. [PMID: 29678723 DOI: 10.1016/j.ygcen.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
A neuromodulatory role for dopamine has been reported for magnocellular neuroendocrine cells in the mammalian hypothalamus. We examined its potential role as a local intercellular messenger in the neuroendocrine Dahlgren cell population of the caudal neurosecretory system (CNSS) of the euryhaline flounder Paralichthys olivaceus. In vitro application of dopamine (DA) caused an increase in electrical activity (firing frequency, recorded extracellularly) of Dahlgren cells, recruitment of previously silent cells, together with a greater proportion of cells showing phasic (irregular) activity. The dopamine precursor, levodopa (L-DOPA), also increased firing frequency, cell recruitment and enhanced bursting and tonic activity. The effect of dopamine was blocked by the D1, D5 receptor antagonist SCH23390, but not by the D2, D3, D4 receptor antagonist amisulpride. Transcriptome sequencing revealed that all DA receptors (D1, D2, D3, D4, and D5) were present in the flounder CNSS. However, quantitative RT-PCR revealed that D5 receptor mRNA expression was significantly increased in the CNSS following dopamine superfusion. These findings suggest that dopamine may modulate CNSS activity in vivo, and therefore neurosecretory output, through D5 receptors.
Collapse
Affiliation(s)
- Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jinling Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mo Zhou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China
| | - Yingxin Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China
| | - Huafeng Zou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| |
Collapse
|
14
|
Zou H, Lan Z, Zhou M, Lu W. Promoter methylation and Hoxd4 regulate UII mRNA tissue-specific expression in olive flounder (paralichthys olivaceus). Gen Comp Endocrinol 2018. [PMID: 29522756 DOI: 10.1016/j.ygcen.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The peptide urotensin II (UII) mediates multiple physiology effects in mammals and fishes, and UII expression shows a tissue-specific pattern. However the mechanism is still unknown. In the present study high level of UII mRNA was detected in the caudal neurosecretory system (CNSS) of the olive flounder when compared to other tissues. We examined whether epigenetic mechanisms of DNA methylation are involved in UII gene expression. Methylation DNA immune precipitation (MeDIP) assay showed low methylation of UII promoter in CNSS tissue compared with muscle and spinal cord. Methylation of UII promoter was further assessed through bisulphate sequencing analysis. Low level methylation (31%) in CpG island of UII promoter was detected in CNSS tissue, while methylation status in muscle and spinal cord was 89% and 91%, respectively. In addition, high conserved sites of Hoxd4 in UII promoter were found. Activation of Hoxd4 mRNA using transretinoic acid (RA) resulted in 18-fold increase of UII mRNA expression in CNSS and high locomotor activity in medaka, confirming that Hoxd4 is also involved in UII gene transcriptional regulation. Taken together, our data provide the first evidence of the epigenetic mechanism of promoter methylation in transcriptional regulation of UII expression in a tissue-specific manner, and Hoxd4 may also participate in UII gene transcription in flounder.
Collapse
Affiliation(s)
- Huafeng Zou
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Mo Zhou
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
15
|
Lan Z, Xu J, Wang Y, Lu W. Modulatory effect of glutamate GluR2 receptor on the caudal neurosecretory Dahlgren cells of the olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2018; 261:9-22. [PMID: 29355533 DOI: 10.1016/j.ygcen.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 11/26/2022]
Abstract
A neuromodulatory role for glutamate has been reported for magnocellular neuroendocrine cells in mammalian hypothalamus. We examined the potential role of glutamate as a local intercellular messenger in the neuroendocrine Dahlgren cell population of the caudal neurosecretory system (CNSS) in the euryhaline flounder Paralichthys olivaceus. In pharmacological experiments in vitro, glutamate (Glu) caused an increase in electrical activity of Dahlgren cells, recruitment of previously silent cells, together with a greater proportion of cells showing phasic (irregular) activity. The glutamate substrate, glutamine (Gln), led to increased firing frequency, cell recruitment and enhanced bursting activity. The glutamate effect was not blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801, or the GluR1/GluR3 (AMPA) receptor antagonist IEm1795-2HBr, but was blocked by the broad-spectrum α-amino-3-hydroxy- 5- methyl-4-isoxazo-lepropionic acid (AMPA) receptor antagonist ZK200775. Our transcriptome sequencing study revealed three AMPA receptor (GluR1, GluR2 and GluR3) in the olive flounder CNSS. Quantitative RT-PCR revealed that GluR2 receptor mRNA expression was significant increased following dose-dependent superfusion with glutamate in the CNSS. GluR1 and GluR3 receptor mRNA expression were decreased following superfusion with glutamate. L-type Ca2+ channel mRNA expression had a significant dose-dependent decrease following superfusion with glutamate, compared to the control. In the salinity challenge experiment, acute transfer from SW to FW, GluR2 receptor mRNA expression was significantly higher than the control at 2 h. These findings suggest that GluR2 is one of the mechanisms which can medicate glutamate action within the CNSS, enhancing electrical activity and hence secretory output.
Collapse
Affiliation(s)
- Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jinling Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| |
Collapse
|
16
|
Vaudry H, Leprince J, Chatenet D, Fournier A, Lambert DG, Le Mével JC, Ohlstein EH, Schwertani A, Tostivint H, Vaudry D. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function. Pharmacol Rev 2015; 67:214-58. [PMID: 25535277 DOI: 10.1124/pr.114.009480] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications.
Collapse
Affiliation(s)
- Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Chatenet
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Alain Fournier
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David G Lambert
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Eliot H Ohlstein
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Adel Schwertani
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Hervé Tostivint
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| |
Collapse
|
17
|
Tostivint H, Ocampo Daza D, Bergqvist CA, Quan FB, Bougerol M, Lihrmann I, Larhammar D. Molecular evolution of GPCRs: Somatostatin/urotensin II receptors. J Mol Endocrinol 2014; 52:T61-86. [PMID: 24740737 DOI: 10.1530/jme-13-0274] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatostatin (SS) and urotensin II (UII) are members of two families of structurally related neuropeptides present in all vertebrates. They exert a large array of biological activities that are mediated by two families of G-protein-coupled receptors called SSTR and UTS2R respectively. It is proposed that the two families of peptides as well as those of their receptors probably derive from a single ancestral ligand-receptor pair. This pair had already been duplicated before the emergence of vertebrates to generate one SS peptide with two receptors and one UII peptide with one receptor. Thereafter, each family expanded in the three whole-genome duplications (1R, 2R, and 3R) that occurred during the evolution of vertebrates, whereupon some local duplications and gene losses occurred. Following the 2R event, the vertebrate ancestor is deduced to have possessed three SS (SS1, SS2, and SS5) and six SSTR (SSTR1-6) genes, on the one hand, and four UII (UII, URP, URP1, and URP2) and five UTS2R (UTS2R1-5) genes, on the other hand. In the teleost lineage, all these have been preserved with the exception of SSTR4. Moreover, several additional genes have been gained through the 3R event, such as SS4 and a second copy of the UII, SSTR2, SSTR3, and SSTR5 genes, and through local duplications, such as SS3. In mammals, all the genes of the SSTR family have been preserved, with the exception of SSTR6. In contrast, for the other families, extensive gene losses occurred, as only the SS1, SS2, UII, and URP genes and one UTS2R gene are still present.
Collapse
Affiliation(s)
- Hervé Tostivint
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Daniel Ocampo Daza
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Christina A Bergqvist
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Feng B Quan
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Marion Bougerol
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Isabelle Lihrmann
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| | - Dan Larhammar
- Evolution des Régulations EndocriniennesUMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, FranceDepartment of NeuroscienceScience for Life Laboratory, Uppsala University, Uppsala, SwedenInserm U982Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation (IRIB), Rouen University, Mont-Saint-Aignan, France
| |
Collapse
|
18
|
Knobloch HS, Grinevich V. Evolution of oxytocin pathways in the brain of vertebrates. Front Behav Neurosci 2014; 8:31. [PMID: 24592219 PMCID: PMC3924577 DOI: 10.3389/fnbeh.2014.00031] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/21/2014] [Indexed: 01/08/2023] Open
Abstract
The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians), magnocellular neurosecretory neurons producing homologs of oxytocin reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds, and mammals) into the paraventricular and supraoptic nuclei with accessory nuclei (AN) between them. The individual magnocellular neurons underwent a process of transformation from primitive uni- or bipolar neurons into highly differentiated neurons. Due to these microanatomical and cytological changes, the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by vascular release. However, the most fascinating feature of the progressive transformations of the oxytocin system has been the expansion of oxytocin axonal projections to forebrain regions. In the present review we provide a background on these evolutionary advancements. Furthermore, we draw attention to the non-synaptic axonal release in small and defined brain regions with the aim to clearly distinguish this way of oxytocin action from the classical synaptic transmission on one side and from dendritic release followed by a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and its homologs on pro-social reproductive behaviors in representatives of the phylogenetic tree and will propose anatomically plausible pathways of oxytocin release contributing to these behaviors in basal vertebrates and amniots.
Collapse
Affiliation(s)
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Max Planck Institute for Medical Research, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
19
|
Gozdowska M, Ślebioda M, Kulczykowska E. Neuropeptides isotocin and arginine vasotocin in urophysis of three fish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:863-869. [PMID: 23142930 PMCID: PMC3701135 DOI: 10.1007/s10695-012-9746-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/29/2012] [Indexed: 06/01/2023]
Abstract
In this study, for the first time, both neuropeptides isotocin (IT) and arginine vasotocin (AVT) have been identified and measured in urophysis, the neurohaemal organ of the caudal neurosecretory system of teleost fish. So far, AVT, but not IT, was quantified by radioimmunoassay (RIA) in urophysis of several fish species. We have used high-performance liquid chromatographic assay with fluorescence detection (HPLC-FL) preceded by solid-phase extraction (SPE) and liquid chromatography-electrospray ionization triple-quadrupole tandem mass spectrometry (LC-ESI MS/MS) technique to determine both neuropeptides in urophysis of three fish species. The efficiency of peptide's SPE extraction was 79-85%. In HPLC-FL method, the limits of detection (LOD) and quantification (LOQ) were estimated as 1.0 and 3.4 pmol/mL for IT and 0.25 and 2.20 pmol/mL for AVT. In LC-MS/MS method, LOD and LOQ were estimated as 0.4 and 1.2 pmol/mL for IT and 0.06 and 0.2 pmol/mL for AVT. The chromatographic methods are good alternative for RIA, because enable to measure both nonapeptides simultaneously in one sample. In round goby (Neogobius melanostomus), three-spined stickleback (Gasterosteus aculeatus) and sea bream (Sparus aurata), urophysial IT concentrations ranged between 0.056 and 0.678 pmol/mg tissue and AVT concentrations ranged between 0.0008 (or even below detection threshold) and 0.084 pmol/mg tissue.
Collapse
Affiliation(s)
- Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, Powstańców Warszawy 55 St., 81-712 Sopot, Poland
| | - Marek Ślebioda
- Perlan Technologies Sp. z.o.o, Puławska 303 St., 02-785 Warszawa, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, Powstańców Warszawy 55 St., 81-712 Sopot, Poland
| |
Collapse
|
20
|
Lu W, Zhang Y, Xiong J, Balment R. Daily rhythms of urotensin I and II gene expression and hormone secretion in the caudal neurosecretory system of the euryhaline flounder (Platichthys flesus). Gen Comp Endocrinol 2013; 188:189-95. [PMID: 23557644 DOI: 10.1016/j.ygcen.2013.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/10/2023]
Abstract
The caudal neurosecretory system (CNSS) is a unique neuroendocrine structure for environmental adaptation in fish, and is the major site of expression and secretion of urotensin I (UI) and II (UII). This study examined daily changes in mRNA expression and the secretion profile of UI and UII in the CNSS. Daily rhythms were observed in mRNA level of CNSS UI, urophysis UI, plasma UII, glucose, potassium and sodium. No statistically significant (Cosinor, P>0.05) diel rhythmicity in mRNA level of CNSS UII, urophysis UII, cortisol, lactate, osmolality and chloride were detected. The calculated acrophase of sodium, cortisol, plasma UII, urophysis UII, urophysis UI and mRNA level of CNSS UI rhythms were recorded at 13:04 h, 13:39 h, 14:45 h, 15:27 h, 14:41 h and 14:39 h, respectively and a positive relationship was evident among them. The acrophase of glucose and potassium rhythms were recorded at 18:57 h and 22:35 h, respectively. The glucose levels increased progressively at the onset of the UII surge at 15:00 h and reached peak values at dusk. The results support the hypothesis that the CNSS may play a role in the control of co-ordinated daily changes in energy mobilization, nutritional behavior and osmoregulatory systems in euryhaline flounder. Our findings described for the first time the existence of daily rhythms of CNSS hormone expression and secretion in Platichthys flesus. These results reveal the importance of taking into account the time of day when assessing stress responses and evaluating UI and UII as physiological indicators of stress in this species.
Collapse
Affiliation(s)
- Weiqun Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | | | | | | |
Collapse
|
21
|
Hostetler CM, Ryabinin AE. The CRF system and social behavior: a review. Front Neurosci 2013; 7:92. [PMID: 23754975 PMCID: PMC3668170 DOI: 10.3389/fnins.2013.00092] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/14/2013] [Indexed: 01/10/2023] Open
Abstract
The corticotropin-releasing factor (CRF) system plays a key role in a diversity of behaviors accompanying stress, anxiety and depression. There is also substantial research on relationships between social behaviors and the CRF system in a variety of taxa including fish, birds, rodents, and primates. Some of these relationships are due to the broad role of CRF and urocortins in stress and anxiety, but these peptides also modulate social behavior specifically. For example, the social interaction (SI) test is often used to measure anxiety-like behavior. Many components of the CRF system including CRF, urocortin1, and the R1 receptor have been implicated in SI, via general effects on anxiety as well as specific effects depending on the brain region. The CRF system is also highly responsive to chronic social stressors such as social defeat and isolation. Animals exposed to these stressors display a number of anxiety- and stress-related behaviors, accompanied by changes in specific components the CRF system. Although the primary focus of CRF research on social behavior has been on the deleterious effects of social stress, there are also insights on a role for CRF and urocortins in prosocial and affiliative behaviors. The CRF system has been implicated in parental care, maternal defense, sexual behavior, and pair bonding. Species differences in the ligands and CRF receptors have been observed in vole and bird species differing in social behavior. Exogenous administration of CRF facilitates partner preference formation in monogamous male prairie voles, and these effects are dependent on both the CRF R1 and R2 receptors. These findings are particularly interesting as studies have also implicated the CRF and urocortins in social memory. With the rapid progress of social neuroscience and in understanding the complex structure of the CRF system, the next challenge is in parsing the exact contribution of individual components of this system to specific social behaviors.
Collapse
Affiliation(s)
- Caroline M Hostetler
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, OR, USA
| | | |
Collapse
|
22
|
|
23
|
Singh R, Rai U. Immunomodulatory role of urotensins in teleost Channa punctatus. Gen Comp Endocrinol 2011; 170:613-21. [PMID: 21130092 DOI: 10.1016/j.ygcen.2010.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 11/07/2010] [Accepted: 11/25/2010] [Indexed: 12/14/2022]
Abstract
The present study, for the first time in ectothermic vertebrates, reports the immunoregulatory role of urotensins I and II (UI and UII). Urotensins decreased the phagocytosis and nitrite production by splenic phagocytes. On superoxide production, UI had stimulatory while UII showed inhibitory effect. UI exerted its effect on phagocytes through corticotrophin-releasing factor (CRF) receptor as its non-specific antagonist astressin completely blocked the effect of UI on phagocytosis, nitrite release and superoxide production. Among the antagonists for specific CRF receptor 1 and 2, only CRF receptor 1 antagonist NBI 27914 abolished the effect of urotensin I. On the other hand, UII mediated its effect through urotensin receptor (UT receptor) since its antagonist urantide antagonized the effect of UII on phagocytosis, superoxide and nitrite release. These findings provide the direct evidence on physiological role of UI and UII through CRF receptor 1 and UT receptor, respectively in control of fish immune responses.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
24
|
Abstract
From the individual perspective of the two authors who were long-time colleagues of Karl Lederis at the University of Calgary, the events and personal interactions are described, that are relevant to the discovery of Urotensin I (UI) in the Lederis laboratory, along with the concurrent discovery of Urotensin II (UII) in the Bern laboratory and corticotropin-releasing factor (CRF/CRH) in the Vale laboratory. The fortuitous sabbatical experiences that put Professors Lederis and Bern on the track of the Urotensins, along with the essential isolation paradigm that resulted in the complete sequencing and synthesis of UI and UII are summarized. The chance interaction between Drs. Vale and Lederis who, prior to the publications of the sequences of UI and CRF, realized the sequence commonalities of these peptides with the vasoactive frog peptide, sauvagine, is outlined. Further, the relationship between the pharmacological studies done with UI in the Calgary laboratory and the more recent understanding of the biology and receptor pharmacology for the entire Urotensin I-CRF-Urocortin peptide family is dealt with. The value of a comparative endocrinology approach to understanding hormone action is emphasized, along with a projection to the future, based on new hypotheses that can be generated by unexplained data already in the literature. Based on the previously described pharmacology of the UI-CRF-Urocortin peptides in a number of target tissues, it is suggested that the use of current molecular approaches can be integrated with a 'classical' pharmacological approach to generate new insights about the UI-CRF-Urocortin hormone family.
Collapse
Affiliation(s)
- Quentin J. Pittman
- Hotchkiss Brain Institute, University of Calgary Faculty of Medicine, Calgary, AB, Canada T2N 4N1
- Department of Physiology & Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada T2N 4N1
| | - Morley D. Hollenberg
- Hotchkiss Brain Institute, University of Calgary Faculty of Medicine, Calgary, AB, Canada T2N 4N1
- Snyder Institute of Infection Immunity and Inflammation, University of Calgary Faculty of Medicine, Calgary, AB, Canada T2N 4N1
- Department of Physiology & Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada T2N 4N1
- Department of Medicine, University of Calgary Faculty of Medicine, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
25
|
Takei Y, Balment RJ. Chapter 8 The Neuroendocrine Regulation of Fluid Intake and Fluid Balance. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28008-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
26
|
Chapter 6 Regulation And Contribution Of The Corticotropic, Melanotropic And Thyrotropic Axes To The Stress Response In Fishes. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28006-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Marley R, Lu W, Balment RJ, McCrohan CR. Cortisol and prolactin modulation of caudal neurosecretory system activity in the euryhaline flounder Platichthys flesus. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:71-7. [DOI: 10.1016/j.cbpa.2008.05.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 11/27/2022]
|
28
|
Lu W, Abdel-Razik AES, Ashton N, Balment RJ. Urotensin II: lessons from comparative studies for general endocrinology. Gen Comp Endocrinol 2008; 157:14-20. [PMID: 18440535 DOI: 10.1016/j.ygcen.2008.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/08/2008] [Accepted: 03/12/2008] [Indexed: 11/24/2022]
Abstract
The importance of combining studies across vertebrates to provide insights into the functionality of hormone systems is considered, using recent advances in Urotensin II (UII) biology to illustrate this. The impact of genome analyses on understanding ligand and UII receptor (UT) structures is reviewed, noting their high conservation from fish to mammals. The early linkage of UII with fish osmoregulatory physiology drove our investigation of possible renal actions of UII in mammals. The kidney is a potential major source of UII in mammals and endogenous peptide appears to have tonal influence over renal excretion of water and electrolytes. Blockade of UII actions by administration of UT receptor antagonist, urantide, in anaesthetised rats, indicates that endogenous UII lowers renal filtration rates and excretion of water and ions. These effects are considered in relation to apparent association of UII with a number of human cardiovascular and renal disorders. Following up the sequencing of UT in mammals here we contrast the first fish UT sequences with those in other species. It is now evident that UT expression in fish osmoregulatory tissues, such as the gill and kidney, exhibits considerable plasticity in response to physiological challenge, providing an important component of the adaptive organismal responses. A number of areas of UII research, which will continue to benefit from moving questions between appropriate vertebrate groups, have been highlighted. These comparative approaches will yield improved understanding and further novel actions of this intriguing endocrine and paracrine system, so highly conserved across the vertebrate series.
Collapse
Affiliation(s)
- W Lu
- Integrative Biology Division, Faculty of Life Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
29
|
Parmentier C, Hameury E, Lihrmann I, Taxi J, Hardin-Pouzet H, Vaudry H, Calas A, Tostivint H. Comparative distribution of the mRNAs encoding urotensin I and urotensin II in zebrafish. Peptides 2008; 29:820-9. [PMID: 18403048 DOI: 10.1016/j.peptides.2008.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/18/2008] [Accepted: 01/25/2008] [Indexed: 12/12/2022]
Abstract
The neural neurosecretory system of fishes produces two biologically active neuropeptides, i.e. the corticotropin-releasing hormone paralog urotensin I (UI) and the somatostatin-related peptide urotensin II (UII). In zebrafish, we have recently characterized two UII variants termed UIIalpha and UIIbeta. In the present study, we have investigated the distribution of UI, UIIalpha and UIIbeta mRNAs in different organs by quantitative RT-PCR analysis and the cellular localization of the three mRNAs in the spinal cord by in situ hybridization (ISH) histochemistry. The data show that the UI gene is mainly expressed in the caudal portion of the spinal cord and, to a lesser extent, in the brain, while the UIIalpha and the UIIbeta genes are exclusively expressed throughout the spinal cord. Single-ISH labeling revealed that UI, UIIalpha and UIIbeta mRNAs occur in large cells, called Dahlgren cells, located in the ventral part of the caudal spinal cord. Double-ISH staining showed that UI, UIIalpha and UIIbeta mRNAs occur mainly in distinct cells, even though a few cells were found to co-express the UI and UII genes. The differential expression of UI, UIIalpha and UIIbeta genes may contribute to the adaptation of Dahlgren cell activity during development and/or in various physiological conditions.
Collapse
Affiliation(s)
- Caroline Parmentier
- Laboratoire de Neurobiologie des Signaux Intercellulaires, UMR 7101, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75252 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lu W, Worthington J, Riccardi D, Balment RJ, McCrohan CR. Seasonal changes in peptide, receptor and ion channel mRNA expression in the caudal neurosecretory system of the European flounder (Platichthys flesus). Gen Comp Endocrinol 2007; 153:262-72. [PMID: 17562341 DOI: 10.1016/j.ygcen.2007.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 04/26/2007] [Accepted: 05/01/2007] [Indexed: 11/24/2022]
Abstract
The caudal neurosecretory system (CNSS) of the euryhaline flounder Platichthys flesus has suggested roles in osmoregulatory, reproductive and nutritional adaptation, as fish migrate between seawater (winter) and brackish/freshwater (summer) environments. This study examined seasonal changes in mRNA expression profile of functionally important genes in the CNSS. cDNAs encoding neuropeptides, receptors and ion channels were cloned by reverse transcriptase polymerase chain reaction (RT-PCR) and screening of a flounder CNSS cDNA library. The expression profile of cloned genes was determined by real-time RT-PCR at 2-month intervals throughout the year in CNSS from seawater-adapted fish. Plasma cortisol (measured by radioimmunoassay) showed a peak in April, the time of spawning. Expression levels of mRNA for peptides urotensins I and II (UI, UII) and corticotropin releasing factor (CRF) all showed a seasonal cycle, with lowest expression in April and highest in August-October. The expression of CRF2(UI), UT(UII) and CRF1 receptors was not correlated with corresponding peptide expression. Receptors for potential neuromodulators of CNSS activity also displayed a seasonal mRNA expression profile. Glucocorticoid, 5-hydroxytryptamine, kappa-opioid and glutamate receptor expression peaked around April, suggesting that modulation of electrical activity of the neurosecretory Dahlgren cells is of particular importance at this time. Expression of mRNA for L-type Ca(2+) and Ca-activated K(+) channels was lower during the summer months. These channels underlie electrical bursting activity in Dahlgren cells. Ion channel mRNA expression was also lower in CNSS from flounder fully adapted to freshwater as opposed to seawater, consistent with previously reported observations of reduced bursting activity in Dahlgren cells from freshwater-adapted CNSS. These findings support the hypothesis that the CNSS is functionally reprogrammed to cope with changes in physiological challenge as fish migrate between sea and estuaries in winter and spring.
Collapse
Affiliation(s)
- Weiqun Lu
- Faculty of Life Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
31
|
Marley R, Lu W, Balment RJ, McCrohan CR. Evidence for nitric oxide role in the caudal neurosecretory system of the European flounder, Platichthys flesus. Gen Comp Endocrinol 2007; 153:251-61. [PMID: 17362951 DOI: 10.1016/j.ygcen.2007.01.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 01/26/2007] [Accepted: 01/28/2007] [Indexed: 11/19/2022]
Abstract
A neuromodulatory role for nitric oxide has been reported for magnocellular neuroendocrine cells in mammalian hypothalamus. We examined its potential as a local intercellular messenger in the neuroendocrine Dahlgren cell population of the caudal neurosecretory system (CNSS) of the euryhaline flounder. Immunocytochemistry using an antibody raised against human neuronal nitric oxide synthase (NOS) indicated the presence of NOS in the Dahlgren cells. Quantitative RT-PCR, using a flounder-specific probe, revealed NOS mRNA expression in the CNSS. In July, though not in September, NOS mRNA expression was significantly higher in fish fully adapted to seawater, compared to freshwater-adapted fish. Following acute transfer of fish from freshwater to seawater, NOS mRNA expression was elevated at 8h and then recovered by 24h. In pharmacological experiments in vitro, application of NO donors (SNAP, SNP) caused an increase in electrical activity (firing frequency) of Dahlgren cells, recruitment of previously silent cells, together with a greater proportion of cells showing phasic (irregular) activity. The NOS substrate, l-arginine, led to increased firing frequency, cell recruitment and enhanced bursting activity. However, this effect was not blocked by the NOS inhibitor L-NAME. These findings suggest that NO acts as a modulator within the CNSS, potentially enhancing electrical activity and hence secretory output. A role in supporting adaptation to hyperosmotic conditions is also indicated.
Collapse
Affiliation(s)
- Richard Marley
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|