1
|
Shi Y, Nachman RJ, Gui SH, Piot N, Kaczmarek K, Zabrocki J, Dow JAT, Davies SA, Smagghe G. Efficacy and biosafety assessment of neuropeptide CAPA analogues against the peach-potato aphid (Myzus persicae). INSECT SCIENCE 2022; 29:521-530. [PMID: 34263534 DOI: 10.1111/1744-7917.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Insect CAPA neuropeptidesare considered to affect water and ion balance by mediating the physiological metabolism activities of the Malpighian tubules. In previous studies, the CAPA-PK analogue 1895 (2Abf-Suc-FGPRLamide) was reported to decrease aphid fitness when administered through microinjection or via topical application. However, a further statistically significant decrease in the fitness of aphids and an increased mortality could not be established with pairwise combinations of 1895 with other CAPA analogue. In this study, we assessed the topical application of new combinations of 1895 with five CAPA-PVK analogues on the fitness of aphids. We found that 1895 and CAPA-PVK analogue 2315 (ASG-[β3 L]-VAFPRVamide) was statistically the most effective combination to control the peach potato aphid Myzus persicae nymphs via topical application, leading to 72% mortality. Additionally, the combination (1895+2315) was evaluated against a selection of beneficial insects, that is, a pollinator (Bombus terrestris) and three natural enemies (Chrysoperla carnea, Nasonia vitripennis, and Adalia bipunctata). We found no significant influence on food intake, weight increase, and survival for the pollinator and the three representative natural enemies. These results could facilitate to further establish and generate CAPA analogues as alternatives to broad spectrum and less friendly insecticides.
Collapse
Affiliation(s)
- Yan Shi
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ronald J Nachman
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
| | - Shun-Hua Gui
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Krzysztof Kaczmarek
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, 90-924, Poland
| | - Janusz Zabrocki
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, 90-924, Poland
| | - Julian A T Dow
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Shireen-A Davies
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Hull JJ, Gross RJ, Brent CS, Christie AE. Filling in the gaps: A reevaluation of the Lygus hesperus peptidome using an expanded de novo assembled transcriptome and molecular cloning. Gen Comp Endocrinol 2021; 303:113708. [PMID: 33388363 DOI: 10.1016/j.ygcen.2020.113708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/01/2023]
Abstract
Peptides are the largest and most diverse class of molecules modulating physiology and behavior. Previously, we predicted a peptidome for the western tarnished plant bug, Lygus hesperus, using transcriptomic data produced from whole individuals. A potential limitation of that analysis was the masking of underrepresented genes, in particular tissue-specific transcripts. Here, we reassessed the L. hesperus peptidome using a more comprehensive dataset comprised of the previous transcriptomic data as well as tissue-specific reads produced from heads and accessory glands. This augmented assembly significantly improves coverage depth providing confirmatory transcripts for essentially all of the previously identified families and new transcripts encoding a number of new peptide precursors corresponding to 14 peptide families. Several families not targeted in our initial study were identified in the expanded assembly, including agatoxin-like peptide, CNMamide, neuropeptide-like precursor 1, and periviscerokinin. To increase confidence in the in silico data, open reading frames of a subset of the newly identified transcripts were amplified using RT-PCR and sequence validated. Further PCR-based profiling of the putative L. hesperus agatoxin-like peptide precursor revealed evidence of alternative splicing with near ubiquitous expression across L. hesperus development, suggesting the peptide serves functional roles beyond that of a toxin. The peptides predicted here, in combination with those identified in our earlier study, expand the L. hesperus peptidome to 42 family members and provide an improved platform for initiating molecular and physiological investigations into peptidergic functionality in this non-model agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| | - Roni J Gross
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Colin S Brent
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Guschinskaya N, Ressnikoff D, Arafah K, Voisin S, Bulet P, Uzest M, Rahbé Y. Insect Mouthpart Transcriptome Unveils Extension of Cuticular Protein Repertoire and Complex Organization. iScience 2020; 23:100828. [PMID: 32000126 PMCID: PMC7033635 DOI: 10.1016/j.isci.2020.100828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/03/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
Insects have developed intriguing cuticles with very specific structures and functions, including microstructures governing their interactions with transmitted microbes, such as in aphid mouthparts harboring virus receptors within such microstructures. Here, we provide the first transcriptome analysis of an insect mouthpart cuticle (“retort organs” [ROs], the stylets' precursors). This analysis defined stylets as a complex composite material. The retort transcriptome also allowed us to propose an algorithmic definition of a new cuticular protein (CP) family with low complexity and biased amino acid composition. Finally, we identified a differentially expressed gene encoding a pyrokinin (PK) neuropeptide precursor and characterizing the mandibular glands. Injection of three predicted synthetic peptides PK1/2/3 into aphids prior to ecdysis caused a molt-specific phenotype with altered head formation. Our study provides the most complete description to date of the potential protein composition of aphid stylets, which should improve the understanding of the transmission of stylet-borne viruses. First transcriptome of aphid retort glands and stylet cuticular protein composition A pyrokinin transcript is mandibular gland specific at the onset of adult moult Stylet cuticle is of higher protein complexity than other insect cuticles A new class of low-complexity cuticular proteins is predicted
Collapse
Affiliation(s)
- Natalia Guschinskaya
- Insa de Lyon, UMR5240 MAP CNRS-UCBL, 69622 Villeurbanne, France; Université de Lyon
| | - Denis Ressnikoff
- CIQLE, Centre d'imagerie Quantitative Lyon-Est, UCB Lyon 1, Lyon, France; Université de Lyon
| | | | | | - Philippe Bulet
- Platform BioPark Archamps, Archamps, France; CR University of Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, La Tronche, France
| | - Marilyne Uzest
- BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Yvan Rahbé
- Insa de Lyon, UMR5240 MAP CNRS-UCBL, 69622 Villeurbanne, France; BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France; Université de Lyon.
| |
Collapse
|
4
|
Li X, Du L, Jiang XJ, Ju Q, Qu CJ, Qu MJ, Liu TX. Identification and Characterization of Neuropeptides and Their G Protein-Coupled Receptors (GPCRs) in the Cowpea Aphid Aphis craccivora. Front Endocrinol (Lausanne) 2020; 11:640. [PMID: 33042012 PMCID: PMC7527416 DOI: 10.3389/fendo.2020.00640] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Neuropeptides are the most abundant and diverse signal molecules in insects. They act as neurohormones and neuromodulators to regulate the physiology and behavior of insects. The majority of neuropeptides initiate downstream signaling pathways through binding to G protein-coupled receptors (GPCRs) on the cell surface. In this study, RNA-seq technology and bioinformatics were used to search for genes encoding neuropeptides and their GPCRs in the cowpea aphid Aphis craccivora. And the expression of these genes at different developmental stages of A. craccivora was analyzed by quantitative real-time PCR (qRT-PCR). A total of 40 candidate genes encoding neuropeptide precursors were identified from the transcriptome data, which is roughly equivalent to the number of neuropeptide genes that have been reported in other insects. On this basis, software analysis combined with homologous prediction estimated that there could be more than 60 mature neuropeptides with biological activity. In addition, 46 neuropeptide GPCRs were obtained, of which 40 belong to rhodopsin-like receptors (A-family GPCRs), including 21 families of neuropeptide receptors and 7 orphan receptors, and 6 belong to secretin-like receptors (B-family GPCRs), including receptors for diuretic hormone 31, diuretic hormone 44 and pigment-dispersing factor (PDF). Compared with holometabolous insects such as Drosophila melanogaster, the coding genes for sulfakinin, corazonin, arginine vasopressin-like peptide (AVLP), and trissin and the corresponding receptors were not found in A. craccivora. It is speculated that A. craccivora likely lacks the above neuropeptide signaling pathways, which is consistent with Acyrthosiphon pisum and that the loss of these pathways may be a common feature of aphids. In addition, expression profiling revealed neuropeptide genes and their GPCR genes that are differentially expressed at different developmental stages and in different wing morphs. This study will help to deepen our understanding of the neuropeptide signaling systems in aphids, thus laying the foundation for the development of new methods for aphid control targeting these signaling systems.
Collapse
Affiliation(s)
- Xiao Li
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Long Du
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Xiao-Jing Jiang
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Qian Ju
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Chun-Juan Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Ming-Jing Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- *Correspondence: Ming-Jing Qu
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- Tong-Xian Liu
| |
Collapse
|
5
|
Alford L, Marley R, Dornan A, Pierre J, Dow JAT, Nachman RJ, Davies SA. Assessment of neuropeptide binding sites and the impact of biostable kinin and CAP2b analogue treatment on aphid (Myzus persicae and Macrosiphum rosae) stress tolerance. PEST MANAGEMENT SCIENCE 2019; 75:1750-1759. [PMID: 30734498 PMCID: PMC6593983 DOI: 10.1002/ps.5372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Neuropeptides are regulators of critical life processes in insects and, due to their high specificity, represent potential targets in the development of greener insecticidal agents. Fundamental to this drive is understanding neuroendocrine pathways that control key physiological processes in pest insects and the screening of potential analogues. The current study investigated neuropeptide binding sites of kinin and CAPA (CAPA-1) in the aphids Myzus persicae and Macrosiphum rosae and the effect of biostable analogues on aphid fitness under conditions of desiccation, starvation and thermal (cold) stress. RESULTS M. persicae and M. rosae displayed identical patterns of neuropeptide receptor mapping along the gut, with the gut musculature representing the main target for kinin and CAPA-1 action. While kinin receptor binding was observed in the brain and VNC of M. persicae, this was not observed in M. rosae. Furthermore, no CAPA-1 receptor binding was observed in the brain and VNC of either species. CAP2b/PK analogues (with CAPA receptor cross-activity) were most effective in reducing aphid fitness under conditions of desiccation and starvation stress, particularly analogues 1895 (2Abf-Suc-FGPRLa) and 2129 (2Abf-Suc-ATPRIa), which expedited aphid mortality. All analogues, with the exception of 2139-Ac, were efficient at reducing aphid survival under cold stress, although were equivalent in the strength of their effect. CONCLUSION In demonstrating the effects of analogues belonging to the CAP2b neuropeptide family and key analogue structures that reduce aphid fitness under stress conditions, this research will feed into the development of second generation analogues and ultimately the development of neuropeptidomimetic-based insecticidal agents. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lucy Alford
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Anthony Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Jean‐Sébastien Pierre
- UMR 6553 ECOBIO, Centre National de la Recherche ScientifiqueUniversité de Rennes IRennes CedexFrance
| | - Julian AT Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research CenterU.S. Department of AgricultureCollege StationTexasUSA
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
6
|
Christie AE, Pascual MG, Yu A. Peptidergic signaling in the tadpole shrimp Triops newberryi: A potential model for investigating the roles played by peptide paracrines/hormones in adaptation to environmental change. Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Lismont E, Mortelmans N, Verlinden H, Vanden Broeck J. Molecular cloning and characterization of the SIFamide precursor and receptor in a hymenopteran insect, Bombus terrestris. Gen Comp Endocrinol 2018; 258:39-52. [PMID: 29127004 DOI: 10.1016/j.ygcen.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 01/09/2023]
Abstract
SIFamides (SIFa) are a family of neuropeptides that are highly conserved among arthropods. In insects, this peptide is mainly expressed in four medial interneurons in the pars intercerebralis and affects sexual behavior, sleep regulation and pupal mortality. Furthermore, an influence on the hatching rate has been observed. The first SIFa receptor (SIFR) was pharmacologically characterized in Drosophila melanogaster and is homologous to the vertebrate gonadotropin-inhibitory hormone (GnIH) receptor (NPFFR). In this study, we pharmacologically characterized the SIFR of the buff-tailed bumblebee Bombus terrestris. We demonstrated an intracellular increase in calcium ions and cyclic AMP (cAMP) upon ligand binding with an EC50 value in the picomolar and nanomolar range, respectively. In addition, we studied the agonistic properties of a range of related and modified peptides. By means of quantitative real time PCR (qPCR), we examined the relative transcript levels of Bomte-SIFa and Bomte-SIFR in a variety of tissues.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Nele Mortelmans
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
8
|
Christie AE, Cieslak MC, Roncalli V, Lenz PH, Major KM, Poynton HC. Prediction of a peptidome for the ecotoxicological model Hyalella azteca (Crustacea; Amphipoda) using a de novo assembled transcriptome. Mar Genomics 2018; 38:67-88. [PMID: 29395622 DOI: 10.1016/j.margen.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023]
Abstract
Due to its sensitivity to many environmental and anthropogenic stressors, including a wide range of chemical compounds, Hyalella azteca, a freshwater amphipod, has emerged as one of the most commonly used invertebrates for ecotoxicological assessment.Peptidergic signaling systems are key components in the control of organism-environment interactions, and there is a growing literature suggesting that they are targets of a number of aquatic toxicants.Interestingly, and despite its model species status in the field of ecotoxicology, little is known about the peptide hormones of H. azteca.Here, a transcriptome was produced for this species using the de novo assembler Trinity and mined for sequences encoding putative peptide precursors; the transcriptome was assembled from 460,291,636 raw reads and consists of 133,486 unique transcripts.Seventy-six sequences encoding peptide pre/preprohormones were identified from this transcriptome, allowing for the prediction of 202 distinct peptides, which included members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, ecdysis-triggering hormone, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone, GSEFLamide, inotocin, leucokinin, myosuppressin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, sulfakinin, tachykinin-related peptide and trissin families.These peptides expand the known peptidome for H. azteca approximately nine-fold, forming a strong foundation for future studies of peptidergic control, including disruption by aquatic toxicants, in this important ecotoxicological model.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Matthew C Cieslak
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Petra H Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Kaley M Major
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA.
| |
Collapse
|
9
|
Christie AE. Neuropeptide discovery in Proasellus cavaticus: Prediction of the first large-scale peptidome for a member of the Isopoda using a publicly accessible transcriptome. Peptides 2017; 97:29-45. [PMID: 28893643 DOI: 10.1016/j.peptides.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/29/2022]
Abstract
In silico transcriptome mining is one of the most effective methods for neuropeptide discovery in crustaceans, particularly for species that are small, rare or from geographically inaccessible habitats that make obtaining the large pools of tissue needed for other peptide discovery platforms impractical. Via this approach, large peptidomes have recently been described for members of many of the higher crustacean taxa, one notable exception being the Isopoda; no peptidome has been predicted for any member of this malacostracan order. Using a publicly accessible transcriptome for the isopod Proasellus cavaticus, a subcentimeter subterranean ground water dweller, the first in silico-predicted peptidome for a member of the Isopoda is presented here. BLAST searches employing known arthropod neuropeptide pre/preprohormone queries identified 49 transcripts as encoding putative homologs within the P. cavaticus transcriptome. The proteins deduced from these transcripts allowed for the prediction of 171 distinct mature neuropeptides. The P. cavaticus peptidome includes members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone α2, leucokinin, myosuppressin, neuroparsin, neuropeptide F, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, sulfakinin, tachykinin-related peptide and trissin families, as well as many linker/precursor-related sequences that may or may not represent additional bioactive molecules. Interestingly, many of the predicted P. cavaticus neuropeptides possess structures identical (or nearly so) to those previously described from members of several other malacostracan orders, i.e., the Decapoda, Amphipoda and Euphausiacea, a finding that suggests broad phylogenetic conservation of bioactive peptide structures, and possibly functions, may exist within the Malacostraca.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA, USA.
| |
Collapse
|
10
|
Christie AE, Roncalli V, Cieslak MC, Pascual MG, Yu A, Lameyer TJ, Stanhope ME, Dickinson PS. Prediction of a neuropeptidome for the eyestalk ganglia of the lobster Homarus americanus using a tissue-specific de novo assembled transcriptome. Gen Comp Endocrinol 2017; 243:96-119. [PMID: 27823957 PMCID: PMC5796769 DOI: 10.1016/j.ygcen.2016.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022]
Abstract
In silico transcriptome mining is a powerful tool for crustacean peptidome prediction. Using homology-based BLAST searches and a simple bioinformatics workflow, large peptidomes have recently been predicted for a variety of crustaceans, including the lobster, Homarus americanus. Interestingly, no in silico studies have been conducted on the eyestalk ganglia (lamina ganglionaris, medulla externa, medulla interna and medulla terminalis) of the lobster, although the eyestalk is the location of a major neuroendocrine complex, i.e., the X-organ-sinus gland system. Here, an H. americanus eyestalk ganglia-specific transcriptome was produced using the de novo assembler Trinity. This transcriptome was generated from 130,973,220 Illumina reads and consists of 147,542 unique contigs. Eighty-nine neuropeptide-encoding transcripts were identified from this dataset, allowing for the deduction of 62 distinct pre/preprohormones. Two hundred sixty-two neuropeptides were predicted from this set of precursors; the peptides include members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon α, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone α2, glycoprotein hormone β5, GSEFLamide, intocin, leucokinin, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, sulfakinin, tachykinin-related peptide and trissin families. The predicted peptides expand the H. americanus eyestalk ganglia neuropeptidome approximately 7-fold, and include 78 peptides new to the lobster. The transcriptome and predicted neuropeptidome described here provide new resources for investigating peptidergic signaling within/from the lobster eyestalk ganglia.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Matthew C Cieslak
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Micah G Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Andy Yu
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Tess J Lameyer
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04672, USA
| | - Meredith E Stanhope
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04672, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04672, USA
| |
Collapse
|
11
|
Christie AE, Hull JJ, Richer JA, Geib SM, Tassone EE. Prediction of a peptidome for the western tarnished plant bug Lygus hesperus. Gen Comp Endocrinol 2017; 243:22-38. [PMID: 27789347 DOI: 10.1016/j.ygcen.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/08/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
Many strategies for controlling insect pests require an understanding of their hormonal signaling agents, peptides being the largest and most diverse single class of these molecules. Lygus hesperus is a pest species of particular concern, as it is responsible for significant damage to a wide variety of commercially important plant crops. At present, little is known about the peptide hormones of L. hesperus. Here, transcriptomic data were used to predict a peptidome for L. hesperus. Fifty-three L. hesperus transcripts encoding peptide precursors were identified, with a subset amplified by PCR for sequence verification. The proteins deduced from these transcripts allowed for the prediction of a 119-sequence peptidome for L. hesperus. The predicted peptides include isoforms of allatostatin A, allatostatin B (AST-B), allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, GSEFLamide, insulin-like peptide, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pyrokinin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide. Of note were several isoforms of AST-B that possess -WX7Wamide carboxyl-termini rather than the stereotypical -WX6Wamide (e.g., KWQDMQNPGWamide), an allatotropin ending in -SARGFamide rather than -TARGFamide (GLKNGPLNSARGFamide), a GSEFLamide ending in -GTEFLamide (TVGTEFLamide), several orcokinins with PMDEIDR- rather than NFDEIDR- amino-termini (e.g., PMDEIDRAGFTHFV), and an eight rather than 12 amino acid long isoform of SIFamide (PPFNGSIFamide). Collectively, the L. hesperus peptidome predicted here provides a resource for initiating physiological investigations of peptidergic signaling in this species, including studies directed at the biological control of this agricultural pest.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Josh A Richer
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, Daniel K. Inouye Pacific Basin Agricultural Research Center, USDA Agricultural Research Services, Hilo, HI 96720, USA
| | - Erica E Tassone
- Plant Physiology and Genetics Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| |
Collapse
|
12
|
Christie AE, Pascual MG. Peptidergic signaling in the crab Cancer borealis: Tapping the power of transcriptomics for neuropeptidome expansion. Gen Comp Endocrinol 2016; 237:53-67. [PMID: 27497705 DOI: 10.1016/j.ygcen.2016.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022]
Abstract
The crab Cancer borealis has long been used as a model for understanding neural control of rhythmic behavior. One significant discovery made through its use is that even numerically simple neural circuits are capable of producing an essentially infinite array of distinct motor outputs via the actions of locally released and circulating neuromodulators, the largest class being peptides. While much work has focused on elucidating the peptidome of C. borealis, no investigation has used in silico transcriptome mining for peptide discovery in this species, a strategy proven highly effective for identifying neuropeptides in other crustaceans. Here, we mined a C. borealis neural transcriptome for putative peptide-encoding transcripts, and predicted 200 distinct mature neuropeptides from the proteins deduced from these sequences. The identified peptides include isoforms of allatostatin A, allatostatin B, allatostatin C, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31 (DH31), diuretic hormone 44 (DH44), FMRFamide-like peptide, GSEFLamide, HIGSLYRamide, insulin-like peptide (ILP), intocin, leucokinin, neuroparsin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, short neuropeptide F and SIFamide. While some of the predicted peptides were known previously from C. borealis, most (159) are new discoveries for the species, e.g., the isoforms of CCHamide, DH31, DH44, GSEFLamide, ILP, intocin and neuroparsin, which are the first members of these peptide families identified from C. borealis. Collectively, the peptides predicted here approximately double the peptidome known for C. borealis, and in so doing provide an expanded platform from which to launch new investigations of peptidergic neuromodulation in this species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA.
| | - Micah G Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA
| |
Collapse
|
13
|
Christie AE, Roncalli V, Lenz PH. Diversity of insulin-like peptide signaling system proteins in Calanus finmarchicus (Crustacea; Copepoda) - Possible contributors to seasonal pre-adult diapause. Gen Comp Endocrinol 2016; 236:157-173. [PMID: 27432815 DOI: 10.1016/j.ygcen.2016.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
Calanus finmarchicus, an abundant calanoid copepod in the North Atlantic Ocean, is both a major grazer on phytoplankton and an important forage species for invertebrate and vertebrate predators. One component of the life history of C. finmarchicus is the overwintering dormancy of sub-adults, a feature key for the annual recruitment of this species in early spring. While little is known about the control of dormancy in C. finmarchicus, one hypothesis is that it is an insect-like diapause, where the endocrine system is a key regulator. One group of hormones implicated in the control of insect diapause is the insulin-like peptides (ILPs). Here, C. finmarchicus transcriptomic data were used to predict ILP signaling pathway proteins. Four ILP precursors were identified, each possessing a distinct A- and B-chain peptide; these peptides are predicted to form bioactive heterodimers via inter-chain disulfide bridging. Two ILP receptors, which likely represent splice variants of a common gene, were identified. Three insulin-degrading enzymes were also discovered, as were proteins encoding the transcription factor FOXO, a downstream target of ILP that has been implicated in the regulation of insect diapause, and insulin receptor substrate, a protein putatively linking the ILP receptor and FOXO. RNA-Seq data suggest that some C. finmarchicus insulin pathway transcripts are differentially expressed across development. As in insects, the ILP signaling system may be involved in controlling C. finmarchicus' organism-environment interactions (e.g., regulation of seasonal sub-adult diapause), a hypothesis that can now be investigated using these data.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Petra H Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
14
|
Christie AE. Expansion of the neuropeptidome of the globally invasive marine crab Carcinus maenas. Gen Comp Endocrinol 2016; 235:150-169. [PMID: 27179880 DOI: 10.1016/j.ygcen.2016.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
Carcinus maenas is widely recognized as one of the world's most successful marine invasive species; its success as an invader is due largely to its ability to thrive under varied environmental conditions. The physiological/behavioral control systems that allow C. maenas to adapt to new environments are undoubtedly under hormonal control, the largest single class of hormones being peptides. While numerous studies have focused on identifying native C. maenas peptides, none has taken advantage of mining transcriptome shotgun assembly (TSA) sequence data, a strategy proven highly successful for peptide discovery in other crustaceans. Here, a C. maenas peptidome was predicted via in silico transcriptome mining. Thirty-seven peptide families were searched for in the extant TSA database, with transcripts encoding precursors for 29 groups identified. The pre/preprohormones deduced from the identified sequences allowed for the prediction of 263 distinct mature peptides, 193 of which are new discoveries for C. maenas. The predicted peptides include isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FMRFamide-like peptide, HIGSLYRamide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, and tachykinin-related peptide. This peptidome is the largest predicted from any single crustacean using the in silico approach, and provides a platform for investigating peptidergic signaling in C. maenas, including control of the processes that allow for its success as a global marine invader.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
15
|
Christie AE. Prediction of Scylla olivacea (Crustacea; Brachyura) peptide hormones using publicly accessible transcriptome shotgun assembly (TSA) sequences. Gen Comp Endocrinol 2016; 230-231:1-16. [PMID: 26965954 DOI: 10.1016/j.ygcen.2016.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
The aquaculture of crabs from the genus Scylla is of increasing economic importance for many Southeast Asian countries. Expansion of Scylla farming has led to increased efforts to understand the physiology and behavior of these crabs, and as such, there are growing molecular resources for them. Here, publicly accessible Scylla olivacea transcriptomic data were mined for putative peptide-encoding transcripts; the proteins deduced from the identified sequences were then used to predict the structures of mature peptide hormones. Forty-nine pre/preprohormone-encoding transcripts were identified, allowing for the prediction of 187 distinct mature peptides. The identified peptides included isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, FMRFamide-like peptide, HIGSLYRamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide and tachykinin-related peptide, all well-known neuropeptide families. Surprisingly, the tissue used to generate the transcriptome mined here is reported to be testis. Whether or not the testis samples had neural contamination is unknown. However, if the peptides are truly produced by this reproductive organ, it could have far reaching consequences for the study of crustacean endocrinology, particularly in the area of reproductive control. Regardless, this peptidome is the largest thus far predicted for any brachyuran (true crab) species, and will serve as a foundation for future studies of peptidergic control in members of the commercially important genus Scylla.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
16
|
Christie AE, Chi M, Lameyer TJ, Pascual MG, Shea DN, Stanhope ME, Schulz DJ, Dickinson PS. Neuropeptidergic Signaling in the American Lobster Homarus americanus: New Insights from High-Throughput Nucleotide Sequencing. PLoS One 2015; 10:e0145964. [PMID: 26716450 PMCID: PMC4696782 DOI: 10.1371/journal.pone.0145964] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
Peptides are the largest and most diverse class of molecules used for neurochemical communication, playing key roles in the control of essentially all aspects of physiology and behavior. The American lobster, Homarus americanus, is a crustacean of commercial and biomedical importance; lobster growth and reproduction are under neuropeptidergic control, and portions of the lobster nervous system serve as models for understanding the general principles underlying rhythmic motor behavior (including peptidergic neuromodulation). While a number of neuropeptides have been identified from H. americanus, and the effects of some have been investigated at the cellular/systems levels, little is currently known about the molecular components of neuropeptidergic signaling in the lobster. Here, a H. americanus neural transcriptome was generated and mined for sequences encoding putative peptide precursors and receptors; 35 precursor- and 41 receptor-encoding transcripts were identified. We predicted 194 distinct neuropeptides from the deduced precursor proteins, including members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FLRFamide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, SIFamide, sulfakinin and tachykinin-related peptide families. While some of the predicted peptides are known H. americanus isoforms, most are novel identifications, more than doubling the extant lobster neuropeptidome. The deduced receptor proteins are the first descriptions of H. americanus neuropeptide receptors, and include ones for most of the peptide groups mentioned earlier, as well as those for ecdysis-triggering hormone, red pigment concentrating hormone and short neuropeptide F. Multiple receptors were identified for most peptide families. These data represent the most complete description of the molecular underpinnings of peptidergic signaling in H. americanus, and will serve as a foundation for future gene-based studies of neuropeptidergic control in the lobster.
Collapse
Affiliation(s)
- Andrew E. Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center and Technology, 6500 College Station, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii, 96822, United States of America
- * E-mail:
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center and Technology, 6500 College Station, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii, 96822, United States of America
| | - Tess J. Lameyer
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| | - Micah G. Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center and Technology, 6500 College Station, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii, 96822, United States of America
| | - Devlin N. Shea
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| | - Meredith E. Stanhope
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| | - David J. Schulz
- Division of Biological Sciences, University of Missouri, 218A LeFevre Hall, Columbia, Missouri, 65211, United States of America
| | - Patsy S. Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| |
Collapse
|
17
|
Christie AE, Chi M. Identification of the first neuropeptides from the enigmatic hexapod order Protura. Gen Comp Endocrinol 2015; 224:18-37. [PMID: 26055220 DOI: 10.1016/j.ygcen.2015.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
The Hexapoda consists of two classes, the Entognatha and the Insecta, with the former group considered basal to the latter. The Protura is a basal order within the Entognatha, the members of which are minute soil dwellers first identified in the early 20th century. Recently, a transcriptome shotgun assembly (TSA) was generated for the proturan Acerentomon sp., providing the first significant molecular resource for this enigmatic hexapod order. As part of an ongoing effort to predict peptidomes for little studied members of the Arthropoda, we have mined this TSA dataset for transcripts encoding putative neuropeptide precursors and predicted the structures of mature peptides from the deduced proteins. Forty-seven peptide-encoding transcripts were mined from the Acerentomon TSA dataset, with 202 distinct peptides predicted from them. The peptides identified included isoforms of adipokinetic hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, ecdysis-triggering hormone, eclosion hormone, FMRFamide-like peptide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuropeptide F, orcokinin, proctolin, pyrokinin, RYamide, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide; these are the first neuropeptides described from any proturan. Comparison of the Acerentomon precursors and mature peptides with those from other arthropods revealed features characteristic of both the insects and the crustaceans, which is consistent with the hypothesized phylogenetic position of the Protura within the Pancrustacea, i.e. at or near the point of divergence of the hexapods from the crustaceans.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
18
|
Audsley N, Down RE. G protein coupled receptors as targets for next generation pesticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:27-37. [PMID: 26226649 DOI: 10.1016/j.ibmb.2015.07.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
There is an on-going need for the discovery and development of new pesticides due to the loss of existing products through the continuing development of resistance, the desire for products with more favourable environmental and toxicological profiles and the need to implement the principles of integrated pest management. Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behaviour, including reproduction, osmoregulation, growth and development. Modifying normal receptor function by blocking or over stimulating its actions may either result in the death of a pest or disrupt its normal fitness or reproductive capacity to reduce pest populations. Hence GPCRs offer potential targets for the development of next generation pesticides providing opportunities to discover new chemistries for invertebrate pest control. Such receptors are important targets for pharmaceutical drugs, but are under-exploited by the agro-chemical industry. The octopamine receptor agonists are the only pesticides with a recognized mode of action, as described in the classification scheme developed by the Insecticide Resistance Action Committee, that act via a GPCR. The availability of sequenced insect genomes has facilitated the characterization of insect GPCRs, but the development and utilization of screening assays to identify lead compounds has been slow. Various studies using knock-down technologies or applying the native ligands and/or neuropeptide analogues to pest insects in vivo, have however demonstrated that modifying normal receptor function can have an insecticidal effect. This review presents examples of potential insect neuropeptide receptors that are potential targets for lead compound development, using case studies from three representative pest species, Tribolium castaneum, Acyrthosiphon pisum, and Drosophila suzukii. Functional analysis studies on T. castaneum suggest that GPCRs involved in growth and development (eclosion hormone, ecdysis triggering hormone and crustacean cardioacceleratory peptide receptors) as well as the dopamine-2 like, latrophilin-like, starry night, frizzled-like, methuselah-like and the smoothened receptors may be suitable pesticide targets. From in vivo studies using native ligands and peptide analogues, receptors which appear to have a role in the regulation of feeding in the pea aphid, such as the PISCF-allatostatin and the various "kinin" receptors, are also potential targets. In Drosophila melanogaster various neuropeptides and their signalling pathways have been studied extensively. This may provide insights into potential pesticide targets that could be exploited in D. suzukii. Examples include the sex peptide receptor, which is involved in reproduction and host seeking behaviours, and those responsible for osmoregulation such as the diuretic hormone receptors. However the neuropeptides and their receptors in insects are often poorly characterized, especially in pest species. Although data from closely related species may be transferable (e.g. D. melanogaster to D. suzukii), peptides and receptors may have different roles in different insects, and hence a target in one insect may not be appropriate in another. Hence fundamental knowledge of the roles and functions of receptors is vital for development to proceed.
Collapse
|
19
|
Christie AE, Chi M. Prediction of the neuropeptidomes of members of the Astacidea (Crustacea, Decapoda) using publicly accessible transcriptome shotgun assembly (TSA) sequence data. Gen Comp Endocrinol 2015; 224:38-60. [PMID: 26070255 DOI: 10.1016/j.ygcen.2015.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/30/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022]
Abstract
The decapod infraorder Astacidea is comprised of clawed lobsters and freshwater crayfish. Due to their economic importance and their use as models for investigating neurochemical signaling, much work has focused on elucidating their neurochemistry, particularly their peptidergic systems. Interestingly, no astacidean has been the subject of large-scale peptidomic analysis via in silico transcriptome mining, this despite growing transcriptomic resources for members of this taxon. Here, the publicly accessible astacidean transcriptome shotgun assembly data were mined for putative peptide-encoding transcripts; these sequences were used to predict the structures of mature neuropeptides. One hundred seventy-six distinct peptides were predicted for Procambarus clarkii, including isoforms of adipokinetic hormone-corazonin-like peptide (ACP), allatostatin A (AST-A), allatostatin B, allatostatin C (AST-C) bursicon α, bursicon β, CCHamide, crustacean hyperglycemic hormone (CHH)/ion transport peptide (ITP), diuretic hormone 31 (DH31), eclosion hormone (EH), FMRFamide-like peptide, GSEFLamide, intocin, leucokinin, neuroparsin, neuropeptide F, pigment dispersing hormone, pyrokinin, RYamide, short neuropeptide F (sNPF), SIFamide, sulfakinin and tachykinin-related peptide (TRP). Forty-six distinct peptides, including isoforms of AST-A, AST-C, bursicon α, CCHamide, CHH/ITP, DH31, EH, intocin, myosuppressin, neuroparsin, red pigment concentrating hormone, sNPF and TRP, were predicted for Pontastacus leptodactylus, with a bursicon β and a neuroparsin predicted for Cherax quadricarinatus. The identification of ACP is the first from a decapod, while the predictions of CCHamide, EH, GSEFLamide, intocin, neuroparsin and RYamide are firsts for the Astacidea. Collectively, these data greatly expand the catalog of known astacidean neuropeptides and provide a foundation for functional studies of peptidergic signaling in members of this decapod infraorder.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
20
|
Christie AE. In silico prediction of a neuropeptidome for the eusocial insect Mastotermes darwiniensis. Gen Comp Endocrinol 2015; 224:69-83. [PMID: 26095226 DOI: 10.1016/j.ygcen.2015.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
Mastotermes darwiniensis is the most basal living member of the Isoptera (termites), yet it exhibits an extremely advanced level of eusocial organization. Given the interest in, and the high levels of differential developmental and behavioral control needed for, eusociality, it is surprising that essentially nothing is known about the native peptides of M. darwiniensis, which undoubtedly represent the largest and most diverse class of hormones present in this species. The recent public deposition of a 100,000(+)-sequence transcriptome for M. darwiniensis provides a means for peptide discovery in this termite. Here, this resource was mined for putative peptide-encoding transcripts via the BLAST algorithm tblastn and known arthropod neuropeptide precursor queries; mature peptide structures were predicted from the deduced pre/preprohormones using a well-vetted bioinformatics workflow. Thirty-four M. darwiniensis peptide-encoding transcripts were identified, with 163 distinct mature peptides predicted from these sequences. These peptides included members of the adipokinetic hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C, allatotropin, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, FMRFamide-like peptide, insulin-like peptide, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, pyrokinin, RYamide, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide families. This peptidome is the largest thus far predicted for any member of the Isoptera, and provides a foundation for initiating studies of peptidergic signaling in this and other termites, including ones directed at understanding the roles peptide hormones play in the developmental and behavioral control required for eusociality.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
21
|
Arendt A, Neupert S, Schendzielorz J, Predel R, Stengl M. The neuropeptide SIFamide in the brain of three cockroach species. J Comp Neurol 2015; 524:1337-60. [DOI: 10.1002/cne.23910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Andreas Arendt
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Susanne Neupert
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Julia Schendzielorz
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Reinhard Predel
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Monika Stengl
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| |
Collapse
|
22
|
Christie AE. Neuropeptide discovery in Symphylella vulgaris (Myriapoda, Symphyla): In silico prediction of the first myriapod peptidome. Gen Comp Endocrinol 2015; 223:73-86. [PMID: 26407502 DOI: 10.1016/j.ygcen.2015.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
Arthropods have contributed greatly to our understanding of peptidergic control of physiology and behavior, and being the largest and most diverse animal phylum, represent a model for investigating peptide hormone evolution. Surprisingly, one arthropod subphylum, the Myriapoda, is uninvestigated in terms of its peptide hormones. The public deposition of a transcriptome for Symphylella vulgaris, a pseudocentipede, provides a means for peptide discovery in myriapods. Here, in silico transcriptome mining was used to identify 47 S. vulgaris neuropeptide-encoding transcripts within this dataset. The identified transcripts allowed for the deduction of 31 unique pre/preprohormone sequences, with 97 distinct mature peptides predicted from the deduced proteins. The predicted S. vulgaris peptidome includes members of the adipokinetic hormone/red pigment concentrating hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C (AST-C), allatotropin, CCHamide, crustacean cardioactive peptide, GSEFLamide, insulin-like peptide, intocin, proctolin, pyrokinin, short neuropeptide F, SIFamide and sulfakinin families. This is the first, and thus far only, peptidome predicted for a myriapod. Of particular note were a modified AST-C, TYWKQCAFNAVSRFamide, that lacks one of two cysteine residues (i.e. one at position 13) stereotypically present in members of this peptide family (and hence is missing the disulfide bridge that spans these residues) and a SIFamide, PPFNGSIFamide, that is truncated due to a lysine for arginine substitution in the dibasic residue pair commonly located at positions 3 and 4 of stereotypical full-length isoforms (e.g. the crustacean peptide GYRKPPFNGSIFamide). The peptides predicted here represent the only extant resource for initiating investigations of native peptidergic signaling in the Myriapoda.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
23
|
Ke T, Cao H, Huang J, Hu F, Huang J, Dong C, Ma X, Yu J, Mao H, Wang X, Niu Q, Hui F, Liu S. EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus. BMC Genomics 2015; 16:653. [PMID: 26330304 PMCID: PMC4557752 DOI: 10.1186/s12864-015-1849-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brassica napus is the third leading source of vegetable oil in the world after soybean and oil palm. The accumulation of gene sequences, especially expressed sequence tags (ESTs) from plant cDNA libraries, has provided a rich resource for genes discovery including potential antimicrobial peptides (AMPs). In this study, we used ESTs including those generated from B. napus cDNA libraries of seeds, pathogen-challenged leaves and deposited in the public databases, as a model, to perform in silico identification and consequently in vitro confirmation of putative AMP activities through a highly efficient system of recombinant AMP prokaryotic expression. RESULTS In total, 35,788 were generated from cDNA libraries of pathogen-challenged leaves and 187,272 ESTs from seeds of B. napus, and the 644,998 ESTs of B. napus were downloaded from the EST database of PlantGDB. They formed 201,200 unigenes. First, all the known AMPs from the AMP databank (APD2 database) were individually queried against all the unigenes using the BLASTX program. A total of 972 unigenes that matched the 27 known AMP sequences in APD2 database were extracted and annotated using Blast2GO program. Among these unigenes, 237 unigenes from B. napus pathogen-challenged leaves had the highest ratio (1.15 %) in this unigene dataset, which is 13 times that of the unigene datasets of B. napus seeds (0.09 %) and 2.3 times that of the public EST dataset. About 87 % of each EST library was lipid-transfer protein (LTP) (32 % of total unigenes), defensin, histone, endochitinase, and gibberellin-regulated proteins. The most abundant unigenes in the leaf library were endochitinase and defensin, and LTP and histone in the pub EST library. After masking of the repeat sequence, 606 peptides that were orthologous matched to different AMP families were found. The phylogeny and conserved structural motifs of seven AMPs families were also analysed. To investigate the antimicrobial activities of the predicted peptides, 31 potential AMP genes belonging to different AMP families were selected to test their antimicrobial activities after bioinformatics identification. The AMP genes were all optimized according to Escherichia coli codon usage and synthetized through one-step polymerase chain reaction method. The results showed that 28 recombinant AMPs displayed expected antimicrobial activities against E. coli and Micrococcus luteus and Sclerotinia sclerotiorum strains. CONCLUSION The study not only significantly expanded the number of known/predicted peptides, but also contributed to long-term plant genetic improvement for increased resistance to diverse pathogens of B.napus. These results proved that the high-throughput method developed that combined an in silico procedure with a recombinant AMP prokaryotic expression system is considerably efficient for identification of new AMPs from genome or EST sequence databases.
Collapse
Affiliation(s)
- Tao Ke
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062, P. R. China. .,College of Life Science and Technology, Nanyang Normal University, Nanyang, 473061, China.
| | - Huihui Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062, P. R. China.
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062, P. R. China. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, 430062, P. R. China.
| | - Fan Hu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, 430062, P. R. China.
| | - Jin Huang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, 430062, P. R. China.
| | - Caihua Dong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062, P. R. China. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, 430062, P. R. China.
| | - Xiangdong Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, 430062, P. R. China.
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062, P. R. China.
| | - Han Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062, P. R. China.
| | - Xi Wang
- College of Life Science and Technology, Nanyang Normal University, Nanyang, 473061, China.
| | - Qiuhong Niu
- College of Life Science and Technology, Nanyang Normal University, Nanyang, 473061, China.
| | - Fengli Hui
- College of Life Science and Technology, Nanyang Normal University, Nanyang, 473061, China.
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062, P. R. China. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, 430062, P. R. China.
| |
Collapse
|
24
|
Verlinden H, Gijbels M, Lismont E, Lenaerts C, Vanden Broeck J, Marchal E. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:2-14. [PMID: 25982521 DOI: 10.1016/j.jinsphys.2015.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormones (JH) are highly pleiotropic insect hormones essential for post-embryonic development. The circulating JH titer in the hemolymph of insects is influenced by enzymatic degradation, binding to JH carrier proteins, uptake and storage in target organs, but evidently also by rates of production at its site of synthesis, the corpora allata (CA). The multiple processes in which JH is involved alongside the critical significance of JH in insect development emphasize the importance for elucidating the control of JH production. Production of JH in CA cells is regulated by different factors: by neurotransmitters, such as dopamine and glutamate, but also by allatoregulatory neuropeptides originating from the brain and axonally transported to the CA where they bind to their G protein-coupled receptors (GPCRs). Different classes of allatoregulatory peptides exist which have other functions aside from acting as influencers of JH production. These pleiotropic neuropeptides regulate different processes in different insect orders. In this mini-review, we will give an overview of allatotropins and allatostatins, and their recently characterized GPCRs with a view to better understand their modes of action and different action sites.
Collapse
Affiliation(s)
- Heleen Verlinden
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Marijke Gijbels
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Els Lismont
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Cynthia Lenaerts
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Elisabeth Marchal
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
25
|
Gellerer A, Franke A, Neupert S, Predel R, Zhou X, Liu S, Reiher W, Wegener C, Homberg U. Identification and distribution of SIFamide in the nervous system of the desert locust Schistocerca gregaria. J Comp Neurol 2015; 523:108-25. [PMID: 25185792 DOI: 10.1002/cne.23671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/18/2014] [Accepted: 08/29/2014] [Indexed: 11/06/2022]
Abstract
SIFamides are a family of highly conserved arthropod neuropeptides. To date, nine orthocopies from different arthropods, most of them insects, have been identified, all consisting of 11-12 amino acid residues. The striking conservation in sequence is mirrored by highly similar morphologies of SIFamide-immunoreactive neurons: immunolabeling in various insect species revealed four immunopositive neurons with somata in the pars intercerebralis and arborizations extending throughout the brain and ventral nervous system. In contrast, the functional role of these neurons and their neuropeptide SIFamide is largely obscure. To provide an additional basis for functional analysis, we identified, by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, a SIFamide peptide in the desert locust Schistocerca gregaria and studied its distribution throughout the nervous system. Identification was supported by analysis of transcriptomic data obtained from another grasshopper, Stenobothrus lineatus. Scg-SIFamide, unlike all SIFamides identified so far, is a pentadecapeptide with an extended and highly modified N-terminus (AAATFRRPPFNGSIFamide). As in other insects, pairs of descending neurons with somata in the pars intercerebralis and ramifications in most areas of the nervous system are SIFamide-immunoreactive. In addition, a small number of local interneurons in the brain and ventral ganglia were immunostained. Double-label experiments showed that the SIFamide-immunoreactive descending neurons are identical to previously characterized primary commissure pioneer (PNP) neurons of the locust brain that pioneer the first commissure in the brain. The data suggest that the descending SIFamide-immunoreactive neurons play a developmental role in organizing the insect central nervous system. J. Comp. Neurol. 523:108-125, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alina Gellerer
- Faculty of Biology, Animal Physiology, Philipps-University Marburg, 35032, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Audsley N, Down RE, Isaac RE. Genomic and peptidomic analyses of the neuropeptides from the emerging pest, Drosophila suzukii. Peptides 2015; 68:33-42. [PMID: 25158078 DOI: 10.1016/j.peptides.2014.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 01/09/2023]
Abstract
Drosophila suzukii is a highly polyphagous invasive pest which has been recently introduced into Europe and North America, where it is causing severe economic losses through larval infestations of stone and berry fruits. The peptidome of the selected nervous tissues of adult D. suzukii was investigated as a first step in identifying potential targets for the development of novel insecticides. Through in silico analyses of the D. suzukii genome databases 28 neuropeptide families, comprising more than 70 predicted peptides were identified. Using a combination of liquid chromatography and mass spectrometry of tissue extracts, 33 predicted peptides, representing 15 different peptide families were identified by their molecular masses and a total of 17 peptide sequences were confirmed by ion fragmentation. A comparison between the peptides and precursors of D. suzukii and D. melanogaster shows they are highly conserved, with differences only identified in the amino acid sequences of the peptides encoded in the FMRFamide, hugin and ecydysis triggering hormone precursors. All other peptides predicted and identified from D. suzukii appear to be identical to those previously characterized from D. melanogaster. Adipokinetic hormone was only identified in the corpus cardiacum, other peptides present included short neuropeptide F, a pyrokinin and myosuppressin, the latter of which was the only peptide identified from the crop nerve bundle. Peptides present in extracts of the brain and/or thoracico-abdominal ganglion included allatostatins, cardioacceleratory peptide 2b, corazonin, extended FMRFamides, pyrokinins, myoinihibitory peptides, neuropeptide-like precursor 1, SIFamide, short neuropeptide F, kinin, sulfakinins and tachykinin related peptides.
Collapse
Affiliation(s)
- Neil Audsley
- The Food and Environmental Research Agency, Sand Hutton, York YO41 1LZ, UK.
| | - Rachel E Down
- The Food and Environmental Research Agency, Sand Hutton, York YO41 1LZ, UK
| | - R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
27
|
Chen J, Choi MS, Mizoguchi A, Veenstra JA, Kang K, Kim YJ, Kwon JY. Isoform-specific expression of the neuropeptide orcokinin in Drosophila melanogaster. Peptides 2015; 68:50-7. [PMID: 25600008 DOI: 10.1016/j.peptides.2015.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/04/2015] [Accepted: 01/07/2015] [Indexed: 01/24/2023]
Abstract
Orcokinins are neuropeptides that have been identified in diverse arthropods. In some species, an orcokinin gene encodes two isoforms of mature orcokinin peptide through alternative mRNA splicing. The existence of two orcokinin isoforms was predicted in Drosophila melanogaster as well, but the expression pattern of both isoforms has not been characterized. Here, we use in situ hybridization, antibody staining, and enhancer fusion GAL4 transgenic flies to examine the expression patterns of the A and B forms of orcokinin, and provide evidence that they are expressed differentially in the central nervous system (CNS) and the intestinal enteroendocrine system. The orcokinin A isoform is mainly expressed in the CNS of both larvae and adults. The A form is expressed in 5 pairs of neurons in abdominal neuromeres 1-5 of the larval CNS. In the adult brain, the A form is expressed in one pair of neurons in the posteriorlateral protocerebrum, and an additional four pairs of neurons located near the basement of the accessory medulla. Orcokinin A expression is also observed in two pairs of neurons in the ventral nerve cord (VNC). The orcokinin B form is mainly expressed in intestinal enteroendocrine cells in the larva and adult, with additional expression in one unpaired neuron in the adult abdominal ganglion. Together, our results provide elucidation of the existence and differential expression of the two orcokinin isoforms in the Drosophila brain and gut, setting the stage for future functional studies of orcokinins utilizing the genetically amenable fly model.
Collapse
Affiliation(s)
- Ji Chen
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Akira Mizoguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Jan A Veenstra
- Université de Bordeaux, INCIA UMR 5287 CNRS, 33405 Talence, France
| | - KyeongJin Kang
- Samsung Biomedical Research Institute, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
28
|
Christie AE, Chi M. Neuropeptide discovery in the Araneae (Arthropoda, Chelicerata, Arachnida): elucidation of true spider peptidomes using that of the Western black widow as a reference. Gen Comp Endocrinol 2015; 213:90-109. [PMID: 25687740 DOI: 10.1016/j.ygcen.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/24/2015] [Accepted: 02/06/2015] [Indexed: 01/24/2023]
Abstract
The public deposition of large transcriptome shotgun assembly (TSA) datasets for the Araneae (true spiders) provides a resource for determining the structures of the native neuropeptides present in members of this chelicerate order. Here, the Araneae TSA data were mined for putative peptide-encoding transcripts using the recently deduced neuropeptide precursors from the Western black widow Latrodectus hesperus as query templates. Neuropeptide-encoding transcripts from five spiders, Latrodectus tredecimguttatus, Stegodyphus mimosarum, Stegodyphus lineatus, Stegodyphus tentoriicola and Acanthoscurria geniculata, were identified, including ones encoding members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, CAPA/periviscerokinin/pyrokinin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FMRFamide-like peptide (FLP), GSEFLamide, insulin-like peptide, orcokinin, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide (TRP) families. A total of 156 distinct peptides were predicted from the precursor proteins deduced from the S. mimosarum transcripts, with 65, 26, 21 and 12 peptides predicted from those deduced from the A. geniculata, L. tredecimguttatus, S. lineatus and S. tentoriicola sequences, respectively. Among the peptides identified were variant isoforms of FLP, orcokinin and TRP, peptides whose structures are similar to ones previously identified from L. hesperus. The prediction of these atypical peptides from multiple spiders suggests that they may be broadly conserved within the Araneae rather than being species-specific variants. Taken collectively, the data described here greatly expand the number of known Araneae neuropeptides, providing a foundation for future functional studies of peptidergic signaling in this important Chelicerate order.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
29
|
Christie AE. Neuropeptide discovery in Eucyclops serrulatus (Crustacea, Copepoda): in silico prediction of the first peptidome for a member of the Cyclopoida. Gen Comp Endocrinol 2015; 211:92-105. [PMID: 25448253 DOI: 10.1016/j.ygcen.2014.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/21/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022]
Abstract
Crustaceans of the subclass Copepoda are key components of essentially all aquatic ecosystems as they serve both as the primary consumers of phytoplankton and/or as major food sources for a wide variety of higher-level consumers. The dominant group of copepods in most freshwater ecosystems is the Cyclopoida; members of this order are routinely used as environmental indicators, and some predatory species are used for the biological control of disease-causing mosquitoes. Given their ecological and disease control importance, it is surprising that little is known about endocrine control in cyclopoids. Here, as part of an ongoing effort to identify and characterize the neurochemical signaling systems of members of the Copepoda, the extant transcriptome shotgun assembly for Eucyclops serrulatus, a member of the Cyclopoida, was mined for transcripts encoding putative peptide hormone-encoding transcripts. Via queries using known arthropod pre/preprohormone sequences, primarily ones from other copepod species, 36 E. serrulatus peptide-encoding transcripts were identified. The proteins deduced from these sequences allowed for the prediction of 160 unique mature neuropeptides, including the first copepod isoform of pigment dispersing hormone, as well as isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, crustacean hyperglycemic hormone, diuretic hormone 31, DXXRLamide, FLRFamide, FXGGXamide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F and tachykinin-related peptide. These peptides are currently the only ones known from any member of the Cyclopoida, and as such, provide a new resource for investigating peptidergic signaling in this important copepod order.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
30
|
Christie AE. In silico characterization of the neuropeptidome of the Western black widow spider Latrodectus hesperus. Gen Comp Endocrinol 2015; 210:63-80. [PMID: 25449184 DOI: 10.1016/j.ygcen.2014.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Technological advancements in high-throughput sequencing have resulted in the production/public deposition of an ever-growing number of arthropod transcriptomes. While most sequencing projects have focused on hexapods, transcriptomes have also been generated for members of the Chelicerata. One chelicerate for which a large transcriptome has recently been released is the Western black widow Latrodectus hesperus, a member of the Araneae (true spiders). Here, a neuropeptidome for L. hesperus was predicted using this resource. Thirty-eight peptide-encoding transcripts were mined from the L. hesperus transcriptome, with 216 distinct peptides predicted from the deduced pre/preprohormones. The identified peptides included members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CAPA/periviscerokinin/pyrokinin, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, FMRFamide-like peptide (FLP), GSEFLamide, insulin-like peptide, neuropeptide F (NPF), orcokinin, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide (TRP) families. Of particular note were the identifications of a carboxyl (C)-terminally extended corazonin, FLPs possessing -IMRFamide, -MMYFamide, and -MIHFamide C-termini, a NPF and a sulfakinin each ending in -RYamide rather than -RFamide, a precursor whose orcokinins include C-terminally amidated isoforms, and a collection of TRPs possessing -FXPXLamide rather than the stereotypical -FXGXLamide C-termini. The L. hesperus peptidome is by far the largest thus far published for any member of the Chelicerata. Taken collectively, these data serve as a reference for future neuropeptide discovery in the Araneae and provide a foundation for future studies of peptidergic control in L. hesperus and other spiders.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
31
|
Yu N, Smagghe G. CCK(-like) and receptors: structure and phylogeny in a comparative perspective. Gen Comp Endocrinol 2014; 209:74-81. [PMID: 24842717 DOI: 10.1016/j.ygcen.2014.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 02/07/2023]
Abstract
Cholecystokinin (CCK) and gastrin are regulatory peptides in vertebrates. Their homologues are widely present in metazoan animals, in form of cionin in tunicates, neuropeptide-like protein 12 in nematodes and sulfakinin (SK) in arthropods. CCK(-like) peptides exert diverse physiological effects through binding their corresponding receptors, which are important members of the hormone-binding G-protein-coupled receptors. In this paper, CCK(-like) peptides and receptors are reviewed in a comparative way at levels of molecular structure, physiological functions and phylogeny. CCK signalling system is widely involved in the regulation of satiety, gastric acid secretion, pancreatic secretion, anxiety and memory processes in vertebrates. Its counterpart SK in arthropods is also found with similar functions on regulation of satiety and gastrointestinal motility. Co-evolution of peptide and receptor has been recognized through metazoans. The CCK(-like) receptors seem to be evolved from a common ancestor based on the phylogenetic analysis, with species-specific events in arthropods. In addition, tetraploidization has been brought up to study the evolution of receptors. There are 2 receptors in chordates and nematodes, whereas, the number of sulfakinin receptor varies in arthropods from 0 to 2. We discussed here that the presence or absence of the SK signalling system is likely to be related to feeding behaviour.
Collapse
Affiliation(s)
- Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
32
|
Christie AE. Expansion of the Litopenaeus vannamei and Penaeus monodon peptidomes using transcriptome shotgun assembly sequence data. Gen Comp Endocrinol 2014; 206:235-54. [PMID: 24787055 DOI: 10.1016/j.ygcen.2014.04.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 11/21/2022]
Abstract
The shrimp Litopenaeus vannamei and Penaeus monodon are arguably the most important commercially farmed crustaceans. While expansion of their aquaculture has classically relied on improvements to rearing facilities, these options have largely been exhausted, and today a shift in focus is occurring, with increased investment in manipulating the shrimp themselves. Hormonal control is one strategy for increasing aquaculture output. However, to use it, one must first understand an animal's native hormonal systems. Here, transcriptome shotgun assembly (TSA) data were used to expand the peptidomes for L. vannamei and P. monodon. Via an established bioinformatics workflow, 41 L. vannamei and 25 P. monodon pre/preprohormone-encoding transcripts were identified, allowing for the prediction of 158 and 106 distinct peptide structures for these species, respectively. The identified peptides included isoforms of allatostatin A, B and C, as well as members the bursicon, CAPA, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31, eclosion hormone, FLRFamide, GSEFLamide, intocin, leucokinin, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, red pigment concentrating hormone, RYamide, SIFamide, short neuropeptide F and tachykinin-related peptide families. While some of the predicted peptides are known L. vannamei and/or P. monodon isoforms (which vet the structures of many peptides identified previously via mass spectrometry and other means), most are described here for the first time. These data more than double the extant catalogs of L. vannamei and P. monodon peptides and provide platforms from which to launch future physiological studies of peptidergic signaling in these two commercially important species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
33
|
Christie AE. Identification of the first neuropeptides from the Amphipoda (Arthropoda, Crustacea). Gen Comp Endocrinol 2014; 206:96-110. [PMID: 25058365 DOI: 10.1016/j.ygcen.2014.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/22/2022]
Abstract
Despite being used as models in the field of ecotoxicology, including use in studies of endocrine disruption, little is known about the hormonal systems of amphipods, particularly their peptidergic signaling systems. Here, transcriptome shotgun assembly (TSA) sequences were used to predict the structures of the first neuropeptides from members of this crustacean order. Using a well-established workflow, BLAST searches of the extant amphipod TSA data were conducted for putative peptide-encoding transcripts. The pre/preprohormones deduced from the identified TSA sequences were then used to predict the mature structures of amphipod neuropeptides. In total, 43 putative peptide-encoding transcripts were identified from three amphipods, Echinogammarus veneris, Hyalella azteca and Melita plumulosa. Collectively, 139 distinct mature peptides (110 from E. veneris alone) were predicted from these TSA sequences. The identified peptides included members of the adipokinetic hormone/red pigment concentrating hormone, allatostatin A, allatostatin B, allatostatin C, bursicon α, bursicon β, crustacean hyperglycemic hormone, diuretic hormone 31, FLRFamide, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone (PDH), proctolin, RYamide, SIFamide, sulfakinin and tachykinin-related peptide families. Of particular note were the identifications of orcokinins possessing SFDEIDR- rather than the typical NFDEIDR- amino-termini, e.g. SFDEINRSNFGFN, a carboxyl-terminally amidated orcokinin, i.e. SFDEINRSNFGFSamide, PDHs longer than the stereotypical 18 amino acids, e.g. NSELLNTLLGSKSLAALRAAamide, and a 13 rather than 12 amino acid long SIFamide, i.e. GPYRKPPFNGSIFamide. These data not only provide the first descriptions of native amphipod neuropeptides, but also represent a new resource for initiating investigations of peptidergic signaling in the Amphipoda.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
34
|
Christie AE. In silico characterization of the peptidome of the sea louse Caligus rogercresseyi (Crustacea, Copepoda). Gen Comp Endocrinol 2014; 204:248-60. [PMID: 24914818 DOI: 10.1016/j.ygcen.2014.05.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/24/2014] [Accepted: 05/30/2014] [Indexed: 02/01/2023]
Abstract
Copepods of the order Siphonostomatoida are a major concern for commercial aquaculture as many farmed fish serve as hosts for these parasitic crustaceans. Caligus rogercresseyi, a member of the Siphonostomatoida, is a significant problem for salmonid aquaculture in the Southern Hemisphere, and as such, a search for methods for controlling infestations of it is ongoing. One possibility for biological control of this and other copepod ectoparasites is endocrine manipulation. However, little is known about the native endocrine signaling systems in these animals. As part of an ongoing effort to characterize crustacean ectoparasite peptidergic systems, the publicly accessible C. rogercresseyi transcriptome shotgun assembly (TSA) was mined for peptide-encoding transcripts. Using the identified TSA sequences, precursor proteins were deduced and their mature peptides predicted. Thirty-three peptide-encoding transcripts were identified within the Caligus TSA dataset, with the structures of 131 distinct peptides characterized from the deduced pre/preprohormones. The predicted peptides included isoforms of allatostatin A, allatostatin B, bursicon α, bursicon β, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31, DXXRLamide, FLRFamide, FXGGXamide, GSEFLamide, insulin-like peptide (ILP), intocin, leucokinin, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F (NPF), orcokinin and tachykinin-related peptide. The predicted ILPs are of particular note as they are the first members of this peptide family identified from a copepod. Similarly, the predicted complement of four distinct NPFs is larger than that known from other crustaceans. Taken collectively, these data greatly expand the known C. rogercresseyi peptidome and provide a foundation for initiating studies of peptidergic control in this species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
35
|
Christie AE. Peptide discovery in the ectoparasitic crustacean Argulus siamensis: identification of the first neuropeptides from a member of the Branchiura. Gen Comp Endocrinol 2014; 204:114-25. [PMID: 24842716 DOI: 10.1016/j.ygcen.2014.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/04/2014] [Accepted: 05/08/2014] [Indexed: 01/15/2023]
Abstract
Recent advances in high-throughput sequencing have facilitated the generation of large transcriptomic datasets for an ever-growing number of crustaceans, one being the carp louse Argulus siamensis. This and other members of the subclass Branchiura are obligate fish ectoparasites, and as such, are a major concern for commercial aquaculture. Using the extant transcriptome shotgun assembly (TSA) sequences for A. siamensis, 27 transcripts encoding putative neuropeptide precursors were identified, and their pre/preprohormones deduced and characterized using a well-established bioinformatics workflow. The structures of 105 distinct peptides were predicted from the deduced proteins, including isoforms of adipokinetic hormone (AKH), allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, crustacean cardioactive peptide (CCAP), diuretic hormone 31, diuretic hormone 44, eclosion hormone, myosuppressin, neuroparsin, neuropeptide Y, orcokinin, pigment dispersing hormone, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide. While several of the predicted peptides are known from other crustacean and/or insect species, e.g. RYLPT, a broadly conserved arthropod proctolin isoform, and PFCNAFTGCamide (disulfide bridging between the two cysteines), the stereotypical crustacean CCAP, the vast majority of them are described here for the first time, e.g. pQVNFSTKWamide, a new AKH/red pigment concentrating hormone superfamily member, pQEGLDHMFMRFamide, a novel myosuppressin, and SYKSKPPFNGSIFamide, a new member of the SIFamide family. As the peptides presented here are the only ones thus far described from A. siamensis, or for that matter, any branchiuran, they represent a new resource to begin investigations of peptidergic control of physiology and behavior in this and other related aquacultural pests.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
36
|
Hull JJ, Brent CS. Identification and characterization of a sex peptide receptor-like transcript from the western tarnished plant bug Lygus hesperus. INSECT MOLECULAR BIOLOGY 2014; 23:301-319. [PMID: 24467643 DOI: 10.1111/imb.12082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lygus hesperus females exhibit a post-mating behavioural switch that triggers increased egg laying and decreased sexual interest. In Drosophila melanogaster, these changes are controlled by sex peptide (SP) and the sex peptide receptor (DmSPR). In Helicoverpa armigera, SPR (HaSPR) also regulates some post-mating behaviour; however, myoinhibiting peptides (MIPs) have been identified as the SPR ancestral ligand, indicating that SPR is a pleiotropic receptor. In the present study, we identified a transcript, designated L. hesperus SPR (LhSPR), that is homologous to known SPRs and which is expressed throughout development and in most adult tissues. LhSPR was most abundant in female seminal depositories and heads as well as the hindgut/midgut of both sexes. In vitro analyses revealed that fluorescent chimeras of LhSPR, DmSPR and HaSPR localized to the cell surface of cultured insect cells, but only DmSPR and HaSPR bound carboxytetramethylrhodamine-labelled analogues of DmSP21-36 and DmMIP4. Injected DmSP21-36 also failed to have an effect on L. hesperus mating receptivity. Potential divergence in the LhSPR binding pocket may be linked to receptor-ligand co-evolution as 9 of 13 MIPs encoded by a putative L. hesperus MIP precursor exhibit an atypical W-X7 -Wamide motif vs the W-X6 -Wamide and W-X8 -Wamide motifs of Drosophila MIPs and SP.
Collapse
Affiliation(s)
- J J Hull
- USDA-ARS Arid Land Agricultural Center, Maricopa, AZ, USA
| | | |
Collapse
|
37
|
Christie AE. Prediction of the first neuropeptides from a member of the Remipedia (Arthropoda, Crustacea). Gen Comp Endocrinol 2014; 201:74-86. [PMID: 24530630 DOI: 10.1016/j.ygcen.2014.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/10/2014] [Accepted: 01/28/2014] [Indexed: 11/16/2022]
Abstract
The Remipedia is a small, recently described crustacean class that inhabits submerged marine/anchialine cave systems. Phylogenetic and morphological investigations support a sister group relationship between these animals and the hexapods. The recent deposition of numerous (>100,000) transcriptome shotgun assembly sequences for Speleonectes cf. tulumensis provides a unique resource to identify proteins of interest from a member of the Remipedia. Here, this dataset was mined for sequences encoding putative neuropeptide pre/preprohormones, with the mature peptides predicted from the deduced precursors using an established workflow. The structures of 40 mature peptides were obtained via this strategy, including members of 11 well-known arthropod peptide families (adipokinetic hormone/corazonin-like peptide [ACP], allatostatin A, allatostatin C, diuretic hormone 31, eclosion hormone, ion transport peptide/crustacean hyperglycemic hormone, neuropeptide F, proctolin, SIFamide, sulfakinin and tachykinin-related peptide); these are the only peptides thus far described from any member of the Remipedia. Comparison of the Speleonectes isoforms with those from other crustaceans and hexapods revealed the peptidome of this species to have characteristics of both subphyla (e.g. it possesses the stereotypical decapod crustacean SIFamide and tachykinin-related peptide isoforms, while simultaneously being the only crustacean with an insect AKC). Moreover, BLAST searches in which the deduced Speleonectes precursors were compared to the pancrustacean protein database most frequently returned insect homologs as the closest matches. The peptidomic analyses presented here are consistent with the hypothesized phylogenetic position of the Remipedia within the Pancrustacea, and serve as a foundation from which to launch future investigations of peptidergic signaling in remipedes.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
38
|
Christie AE. Prediction of the peptidomes of Tigriopus californicus and Lepeophtheirus salmonis (Copepoda, Crustacea). Gen Comp Endocrinol 2014; 201:87-106. [PMID: 24613138 DOI: 10.1016/j.ygcen.2014.02.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 11/23/2022]
Abstract
Transcriptome mining is a powerful method for crustacean peptide discovery, especially when large sequence datasets are available and an appropriate reference is extant. Recently, a 206,041-sequence transcriptome for the copepod Calanus finmarchicus was mined for peptide-encoding transcripts, with ones for 17 families/subfamilies identified. Here, the deduced Calanus pre/preprohormones were used as templates for peptide discovery in the copepods Tigriopus californicus and Lepeophtheirus salmonis; large transcriptome shotgun assembly datasets are publicly accessible for both species. Sixty-five Tigriopus and 17 Lepeophtheirus transcripts, encompassing 22 and 13 distinct peptide families/subfamilies, respectively, were identified, with the structures of 161 and 70 unique mature peptides predicted from the deduced precursors. The identified peptides included members of the allatostatin A, allatostatin C, bursicon α, bursicon β, CAPA/periviscerokinin/pyrokinin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, FLRFamide, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, and tachykinin-related peptide families, most of which possess novel structures, though isoforms from other copepods are known. Of particular note was the discovery of novel isoforms of adipokinetic hormone-corazonin-like peptide, allatotropin, corazonin, eclosion hormone and intocin, peptide families previously unidentified in copepods. In addition, Tigriopus precursors for two previously unknown peptide groups were discovered, one encoding GSEFLamides and the other DXXRLamides; precursors for the novel FXGGXamide family were identified from both Tigriopus and Lepeophtheirus. These data not only greatly expand the catalog of known copepod peptides, but also provide strong foundations for future functional studies of peptidergic signaling in members of this ecologically important crustacean subclass.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
39
|
Bhatt G, da Silva R, Nachman RJ, Orchard I. The molecular characterization of the kinin transcript and the physiological effects of kinins in the blood-gorging insect, Rhodnius prolixus. Peptides 2014; 53:148-58. [PMID: 23624318 DOI: 10.1016/j.peptides.2013.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/24/2022]
Abstract
The dramatic feeding-related activities of the Chagas' disease vector, Rhodnius prolixus are under the neurohormonal regulation of serotonin and various neuropeptides. One such family of neuropeptides, the insect kinins, possess diuretic, digestive and myotropic activities in many insects. In this study, we have cloned and examined the spatial expression of the R. prolixus kinin (Rhopr-kinin) transcript. In addition, in situ hybridization has been used to map the distribution of neurons expressing the kinin transcript. Physiological bioassays demonstrate the myostimulatory effects of selected Rhopr-kinin peptides and also illustrate the augmented responses of hindgut contractions to co-application of Rhopr-kinin and a R. prolixus diuretic hormone. Two synthetic kinin analogs have also been examined on the hindgut. These reveal interesting properties including a relatively irreversible effect on hindgut contractions and activity at very low concentrations.
Collapse
Affiliation(s)
- Garima Bhatt
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Rosa da Silva
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Ronald J Nachman
- Areawide Pest Management Research, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX 77845, USA.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
40
|
Liu X, Zhang Y, Zhou Z, Zhao Z, Liu X. Cloning and sequence analysis of neuropeptide F from the oriental tobacco budworm Helicoverpa assulta (Guenée). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:115-129. [PMID: 24105726 DOI: 10.1002/arch.21119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neuropeptide F (NPF), the invertebrate homolog of neuropeptide Y (NPY) in vertebrates, shares similarity of structure and function with NPY. However, a few NPYs were also found in some insect species. In this paper, two neuropeptide genes encoding a NPF and a NPY were cloned from a tobacco budworm Helicoverpa assulta cDNA library. The npf1 gene further produces two splicing variants of rnRNAs, i.e. npf1a (lacks the 120 bp segment) and npf1b (includes a 120 bp segment). These two splicing variants form two mature peptides, NPF1a and NPF1b by modification of transcripts. NPF and NPY co-exist in H. assulta.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
41
|
Toullec JY, Corre E, Bernay B, Thorne MAS, Cascella K, Ollivaux C, Henry J, Clark MS. Transcriptome and peptidome characterisation of the main neuropeptides and peptidic hormones of a euphausiid: the Ice Krill, Euphausia crystallorophias. PLoS One 2013; 8:e71609. [PMID: 23990964 PMCID: PMC3749230 DOI: 10.1371/journal.pone.0071609] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
Background The Ice krill, Euphausia crystallorophias is one of the species at the base of the Southern Ocean food chain. Given their significant contribution to the biomass of the Southern Ocean, it is vitally important to gain a better understanding of their physiology and, in particular, anticipate their responses to climate change effects in the warming seas around Antarctica. Methodology/Principal Findings Illumina sequencing was used to produce a transcriptome of the ice krill. Analysis of the assembled contigs via two different methods, produced 36 new pre-pro-peptides, coding for 61 neuropeptides or peptide hormones belonging to the following families: Allatostatins (A, B et C), Bursicon (α and β), Crustacean Hyperglycemic Hormones (CHH and MIH/VIHs), Crustacean Cardioactive Peptide (CCAP), Corazonin, Diuretic Hormones (DH), the Eclosion Hormone (EH), Neuroparsin, Neuropeptide F (NPF), small Neuropeptide F (sNPF), Pigment Dispersing Hormone (PDH), Red Pigment Concentrating Hormone (RPCH) and finally Tachykinin. LC/MS/MS proteomics was also carried out on eyestalk extracts, which are the major site of neuropeptide synthesis in decapod crustaceans. Results confirmed the presence of six neuropeptides and six precursor-related peptides previously identified in the transcriptome analyses. Conclusions This study represents the first comprehensive analysis of neuropeptide hormones in a Eucarida non-decapod Malacostraca, several of which are described for the first time in a non-decapod crustacean. Additionally, there is a potential expansion of PDH and Neuropeptide F family members, which may reflect certain life history traits such as circadian rhythms associated with diurnal migrations and also the confirmation via mass spectrometry of several novel pre-pro-peptides, of unknown function. Knowledge of these essential hormones provides a vital framework for understanding the physiological response of this key Southern Ocean species to climate change and provides a valuable resource for studies into the molecular phylogeny of these organisms and the evolution of neuropeptide hormones.
Collapse
Affiliation(s)
- Jean-Yves Toullec
- UPMC University of Paris 06, UMR 7144 CNRS, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7144, Station Biologique de Roscoff, Roscoff, France
- * E-mail:
| | - Erwan Corre
- UPMC University of Paris 06, FR 2424 CNRS, ABiMS, Analysis and Bioinformatics for Marine Science, Station Biologique de Roscoff, Roscoff, France
| | - Benoît Bernay
- University of Caen Basse Normandie, FRE 3484 CNRS, Biologie des Mollusques Marins et des Ecosystèmes Associés, Caen, France
- University of Caen Basse Normandie, Plateforme PROTEOGEN, Caen, France, SF ICORE 4206
| | - Michael A. S. Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| | - Kévin Cascella
- UPMC University of Paris 06, UMR 7144 CNRS, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Céline Ollivaux
- UPMC University of Paris 06, UMR 7150 CNRS, Mer et Santé, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7150, Station Biologique de Roscoff, Roscoff, France
- Université Européenne de Bretagne, UEB, France
| | - Joël Henry
- University of Caen Basse Normandie, FRE 3484 CNRS, Biologie des Mollusques Marins et des Ecosystèmes Associés, Caen, France
- University of Caen Basse Normandie, Plateforme PROTEOGEN, Caen, France, SF ICORE 4206
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| |
Collapse
|
42
|
Vandersmissen HP, Nachman RJ, Vanden Broeck J. Sex peptides and MIPs can activate the same G protein-coupled receptor. Gen Comp Endocrinol 2013; 188:137-43. [PMID: 23453963 DOI: 10.1016/j.ygcen.2013.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/27/2013] [Accepted: 02/10/2013] [Indexed: 11/30/2022]
Abstract
In many animal species, copulation elicits a number of physiological and behavioral changes in the female partner. In Drosophila melanogaster, the main molecular effector of these physiological responses has been identified as sex peptide (SP). The sex peptide receptor (SPR) has been characterized and recently, its activation by Drosophila myoinhibiting peptides (MIPs)-in addition to SP-has been demonstrated. The myoinhibiting peptides are members of a conserved peptide family, also known as B-type allatostatins, which generally feature the C-terminal motif -WX6Wamide.
Collapse
|
43
|
Christie AE, Roncalli V, Wu LS, Ganote CL, Doak T, Lenz PH. Peptidergic signaling in Calanus finmarchicus (Crustacea, Copepoda): in silico identification of putative peptide hormones and their receptors using a de novo assembled transcriptome. Gen Comp Endocrinol 2013; 187:117-35. [PMID: 23578900 DOI: 10.1016/j.ygcen.2013.03.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 02/05/2023]
Abstract
The copepod Calanus finmarchicus is the most abundant zooplankton species in the North Atlantic. While the life history of this crustacean is well studied, little is known about its peptidergic signaling systems despite the fact that these pathways are undoubtedly important components of its physiological/behavioral control systems. Here we have generated and used a de novo assembled transcriptome for C. finmarchicus (206,041 sequences in total) to identify peptide precursor proteins and receptors. Using known protein queries, 34 transcripts encoding peptide preprohormones and 18 encoding peptide receptors were identified. Using a combination of online software programs and homology to known arthropod isoforms, 148 mature peptides were predicted from the deduced precursors, including members of the allatostatin-A, allatostatin-B, allatostatin-C, bursicon, crustacean cardioactive peptide (CCAP), crustacean hyperglycemic hormone, diuretic hormone 31 (DH31), diuretic hormone 44 (DH44), FMRFamide-like peptide (myosuppressin, neuropeptide F [NPF] and extended FL/IRFamide subfamilies), leucokinin, neuroparsin, orcokinin, orcomyotropin, periviscerokinin, RYamide and tachykinin-related peptide (TRP) families. The identified receptors included ones for allatostatin-A, allatostatin-C, bursicon, CCAP, DH31, DH44, ecdysis-triggering hormone, NPF, short NPF, FMRFamide, insulin-like peptide, leucokinin, periviscerokinin, pigment dispersing hormone, and TRP. Developmental profiling of the identified transcripts in embryos, early nauplii, late nauplii, early copepodites, late copepodites, and adult females was also undertaken, with all showing the highest expression levels in the naupliar and copepodite stages. Collectively, these data radically expand the catalog of known C. finmarchicus peptidergic signaling proteins and provide a foundation for experiments directed at understanding the physiological roles served by them in this species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | |
Collapse
|
44
|
In silico characterization of the insect diapause-associated protein couch potato (CPO) in Calanus finmarchicus (Crustacea: Copepoda). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:45-57. [DOI: 10.1016/j.cbd.2012.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/19/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022]
|
45
|
Jedlička P, Steinbauerová V, Simek P, Zahradníčková H. Functional characterization of the adipokinetic hormone in the pea aphid, Acyrthosiphon pisum. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:51-8. [PMID: 22357169 DOI: 10.1016/j.cbpa.2012.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 12/22/2022]
Abstract
Aphids are important plant phloem-sucking pests and detailed knowledge about the hormonal control of their metabolism can potentially contribute to the development of methods for their management. The insect metabolism is predominantly controlled by neuropeptides belonging to the adipokinetic hormone/red pigment-concentrating hormone family (AKH/RPCH). The main goal of this study was to obtain the sequence of AKH transcripts and analyze its expression in all polyphenic female forms of the pea aphid, Acyrthosiphon pisum. The neuropeptide is expressed in the brain of all female forms and in the ovaries of the both (wingless and winged) parthenogenetic forms. The form of active Acypi-AKH decapeptide was confirmed by the LC/MS and +ESI tandem mass spectrometry. The highest relative amount of Acypi-AKH was recorded in winged virginoparae. Furthermore, a potential role of this hormone when directly applied to the aphid was studied as well. Interestingly, no significant increase of trehalose in the wingless virginoparae after application of synthetic Acypi-AKH was detected. Yet this treatment did affect the level of protective polyol (mannitol) and furthermore led to increased activity of the detoxification enzyme glutathione S-transferase. The possible physiological function of AKH in A. pisum under the stress conditions is discussed.
Collapse
Affiliation(s)
- P Jedlička
- Institute of Entomology, Biology Centre AS CR, University of South Bohemia, Republic.
| | | | | | | |
Collapse
|
46
|
Tanaka Y. Recent topics on the regulatory mechanism of ecdysteroidogenesis by the prothoracic glands in insects. Front Endocrinol (Lausanne) 2011; 2:107. [PMID: 22645515 PMCID: PMC3355830 DOI: 10.3389/fendo.2011.00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/06/2011] [Indexed: 11/30/2022] Open
Abstract
Molting and metamorphosis are strictly regulated by steroid hormones known as ecdysteroids. It is now widely recognized that ecdysteroid biosynthesis (ecdysteroidogenesis) in the prothoracic gland (PG) is regulated by the tropic factor prothoracicotropic hormone (PTTH). However, the importance of PTTH in the induction of molting and metamorphosis remains unclear, and other mechanisms are thought to be involved in the regulation of ecdysteroidogenesis by the PG. Recently, new regulatory mechanisms, prothoracicostatic factors, and neural regulation have been explored using the silkworm, Bombyx mori, and two circulating prothoracicostatic factors, prothoracicostatic peptide (PTSP) and Bommo-myosuppressin (BMS), have been identified. Whereas PTTH and BMS are secreted from the brain, PTSP is secreted from the peripheral neurosecretory system - the epiproctodeal gland - during the molting stage. The molecular basis of neural regulation of ecdysteroidogenesis has been revealed for the first time in B. mori. The innervating neurons supply both Bommo-FMRF related peptide (BRFa) and orcokinin to maintain low levels of ecdysteroids during the feeding stage. These complex regulatory mechanisms - involving tropic and static factors, peripheral neurosecretory cells as well as the central neuroendocrine system, and neural regulation in addition to circulating factors collaborate to regulate ecdysteroidogenesis. Thus, together they create the finely tuned fluctuations in ecdysteroid titers needed in the hemolymph during insect development.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Insect Growth Regulation Research Unit, Division of Insect Science, National Institute of Agrobiological SciencesTsukuba, Japan
| |
Collapse
|
47
|
Christie AE, Chapline MC, Jackson JM, Dowda JK, Hartline N, Malecha SR, Lenz PH. Identification, tissue distribution and orexigenic activity of neuropeptide F (NPF) in penaeid shrimp. ACTA ACUST UNITED AC 2011; 214:1386-96. [PMID: 21430216 DOI: 10.1242/jeb.053173] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The neuropeptide Fs (NPFs) are an invertebrate subgroup of the FMRFamide-like peptides, and are proposed by some to be the homologs of vertebrate neuropeptide Y. Although there is some information about the identity, tissue distribution and function of NPFs in insects, essentially nothing is known about them in crustaceans. We have identified and characterized NPF-encoding transcripts from the penaeid shrimp Litopenaeus vannamei and Melicertus marginatus. Two transcripts were identified from each species. For each shrimp species, the two transcripts differed from one another by the presence or absence of an insert in the portion of the open reading frame that encodes the NPF peptide. The two NPF isoforms are identical in L. vannamei and M. marginatus, with their predicted structures being KPDPSQLANMAEALKYLQELDKYYSQVSRPRFamide and KPDPSQLANMAEALKYLQELDKYYSQVSRPSPRSAPGPASQIQALENTLKFLQLQELGKLYSLRARPRFamide. RT-PCR tissue profiling showed both transcripts are broadly distributed within the nervous system of each species. The transcript encoding the shorter NPF was detected in some, but not all, midgut samples. The transcript encoding the longer NPF was absent in the midgut of both species, and neither transcript was detected in their skeletal muscle. Juvenile L. vannamei fed on a diet supplemented with the shorter NPF exhibited a marked increase in food intake relative to control individuals that did not receive the supplement; the NPF-fed shrimp also showed a significant increase in growth relative to the control group. Our data suggest that NPF is present in both the nervous system and midgut of penaeid shrimp, functioning, at least in part, as a powerful orexigenic agent.
Collapse
Affiliation(s)
- Andrew E Christie
- Neuroscience Program, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, PO Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Down RE, Matthews HJ, Audsley N. Oral activity of FMRFamide-related peptides on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut. ACTA ACUST UNITED AC 2011; 171:11-8. [PMID: 21704083 DOI: 10.1016/j.regpep.2011.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/25/2011] [Accepted: 05/30/2011] [Indexed: 11/25/2022]
Abstract
Insect myosuppressins and myosuppressin analogues were tested for oral toxicity against the pea aphid Acyrthosiphon pisum (Harris) by incorporation into an artificial diet. Acyrthosiphon pisum myosuppressin (Acypi-MS) and leucomyosuppressin (LMS) had significant dose-dependent effects (0.1-0.5μg peptide/μl diet) on feeding suppression, mortality, reduced growth and fecundity compared with control insects, but Acypi-MS was more potent than LMS. One hundred percent of aphids had died after 10days of feeding on 0.5μg Acypi-MS/μl diet whereas 40% of aphids feeding on 0.5μg LMS/μl diet were still alive after 13days. Myosuppressins were degraded by aphid gut enzymes; degradation was most likely due to a carboxypeptidase-like protease, an aminopeptidase and a cathepsin L cysteine protease. The estimated half-life of Acypi-MS in a gut extract was 30min, whereas LMS was degraded more slowly (t½=54min). No toxicity was observed when the analogues δR(9) LMS and citrolline(9) Acypi-MS or FMRFamide were fed to the pea aphid. These findings not only help to better understand the biological effects of myosuppressins in aphids but also demonstrate the potential use of myosuppressins in a strategy to control aphid pests.
Collapse
Affiliation(s)
- Rachel E Down
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK.
| | | | | |
Collapse
|
49
|
Christie AE. Crustacean neuroendocrine systems and their signaling agents. Cell Tissue Res 2011; 345:41-67. [PMID: 21597913 DOI: 10.1007/s00441-011-1183-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/20/2011] [Indexed: 11/24/2022]
Abstract
Decapod crustaceans have long served as important models for the study of neuroendocrine signaling. For example, the process of neurosecretion was first formally demonstrated by using a member of this order. In this review, the major decapod neuroendocrine organs are described, as are their phylogenetic conservation and neurochemistry. In addition, recent advances in crustacean neurohormone discovery and tissue mapping are discussed, as are several recent advances in our understanding of hormonal control in this group of animals.
Collapse
Affiliation(s)
- Andrew E Christie
- Neuroscience Program, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| |
Collapse
|
50
|
Christie AE, McCoole MD, Harmon SM, Baer KN, Lenz PH. Genomic analyses of the Daphnia pulex peptidome. Gen Comp Endocrinol 2011; 171:131-50. [PMID: 21216245 DOI: 10.1016/j.ygcen.2011.01.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/23/2010] [Accepted: 01/01/2011] [Indexed: 11/22/2022]
Abstract
Genome mining has provided a valuable tool for peptide discovery in many species, yet no crustacean has undergone this analysis. Currently, the only crustacean with a sequenced genome is the cladoceran Daphnia pulex, a model organism in many fields of biology. Here, we have mined the D. pulex genome for peptide-encoding genes. For each gene identified, the encoded precursor protein was deduced, and its mature peptides predicted. Twenty-four peptide-encoding genes were identified, including ones predicted to produce members of the A-type allatostatin, B-type allatostatin, C-type allatostatin, allatotropin (ATR), bursicon α, bursicon β, calcitonin-like diuretic hormone, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone, ecdysis-triggering hormone, eclosion hormone (EH), insulin-like peptide (ILP), molt-inhibiting hormone, neuropeptide F, orcokinin (two genes), pigment-dispersing hormone, proctolin, red pigment concentrating hormone/adipokinetic hormone (RPCH/AKH), short neuropeptide F, SIFamide, sulfakinin, and tachykinin-related peptide (TRP) families/subfamilies. In total, 96 peptides were predicted from these genes. Our identification of isoforms of corazonin, EH, ILP, proctolin, RPCH/AKH, sulfakinin and TRP are the first for D. pulex, while our prediction of ATR from this species is the first from any crustacean. The number of peptides predicted in our study shows the power of genome mining for peptide discovery, and provides a model for future genomic analyses of the peptidomes of other crustaceans. In addition, the data presented in our study provide foundations for future molecular, biochemical, anatomical, and physiological investigation of peptidergic signaling in D. pulex and other cladoceran species.
Collapse
Affiliation(s)
- Andrew E Christie
- Neuroscience Program, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| | | | | | | | | |
Collapse
|