1
|
Klak K, Maciuszek M, Pijanowski L, Marcinkowska M, Homa J, Verburg-van Kemenade BML, Rakus K, Chadzinska M. Evolutionarily conserved mechanisms regulating stress-induced neutrophil redistribution in fish. Front Immunol 2024; 15:1330995. [PMID: 38515741 PMCID: PMC10954836 DOI: 10.3389/fimmu.2024.1330995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Stress may pose a serious challenge to immune homeostasis. Stress however also may prepare the immune system for challenges such as wounding or infection, which are likely to happen during a fight or flight stress response. Methods In common carp (Cyprinus carpio L.) we studied the stress-induced redistribution of neutrophils into circulation, and the expression of genes encoding CXC chemokines known to be involved in the regulation of neutrophil retention (CXCL12) and redistribution (CXCL8), and their receptors (CXCR4 and CXCR1-2, respectively) in blood leukocytes and in the fish hematopoietic organ - the head kidney. The potential involvement of CXC receptors and stress hormone receptors in stress-induced neutrophil redistribution was determined by an in vivo study with selective CXCR inhibitors and antagonists of the receptors involved in stress regulation: glucocorticoid/mineralocorticoid receptors (GRs/MRs), adrenergic receptors (ADRs) and the melanocortin 2 receptor (MC2R). Results The stress-induced increase of blood neutrophils was accompanied by a neutrophil decrease in the hematopoietic organs. This increase was cortisol-induced and GR-dependent. Moreover, stress upregulated the expression of genes encoding CXCL12 and CXCL8 chemokines, their receptors, and the receptor for granulocytes colony-stimulation factor (GCSFR) and matrix metalloproteinase 9 (MMP9). Blocking of the CXCR4 and CXCR1 and 2 receptors with selective inhibitors inhibited the stress-induced neutrophil redistribution and affected the expression of genes encoding CXC chemokines and CXCRs as well as GCSFR and MMP9. Discussion Our data demonstrate that acute stress leads to the mobilization of the immune system, characterized by neutrophilia. CXC chemokines and CXC receptors are involved in this stress-induced redistribution of neutrophils from the hematopoietic tissue into the peripheral blood. This phenomenon is directly regulated by interactions between cortisol and the GR/MR. Considering the pivotal importance of neutrophilic granulocytes in the first line of defense, this knowledge is important for aquaculture, but will also contribute to the mechanisms involved in the stress-induced perturbation in neutrophil redistribution as often observed in clinical practice.
Collapse
Affiliation(s)
- Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Magdalena Marcinkowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | | | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Shimon-Hophy M, Avtalion RR. Influence of chronic stress on the mechanism of the cytotoxic system in common carp (Cyprinus carpio). Immunology 2021; 164:211-222. [PMID: 33930181 PMCID: PMC8442244 DOI: 10.1111/imm.13345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaculture conditions expose fish to internal and environmental stressors that increase their susceptibility to morbidity and mortality. The brain accumulates stress signals and processes them according to the intensity, frequency duration and type of stress, recruiting several brain functions to activate the autonomic or limbic system. Triggering the autonomic system causes the rapid release of catecholamines, such as adrenaline and noradrenaline, into circulation from chromaffin cells in the head kidney. Catecholamines trigger blood cells to release proinflammatory and regulatory cytokines to cope with acute stress. Activation of the limbic axis stimulates the dorsolateral and dorsomedial pallium to process emotions, memory, behaviour and the activation of preoptic nucleus‐pituitary gland‐interrenal cells in the head kidney, releasing glucocorticoids, such as cortisol to the bloodstream. Glucocorticoids cause downregulation of various immune system functions depending on the duration, intensity and type of chronic stress. As stress persists, most immune functions, with the exception of cytotoxic functions, overcome these effects and return to homeostasis. The deterioration of cytotoxic functions during chronic stress appears to be responsible for increased morbidity and mortality.
Collapse
Affiliation(s)
- Mazal Shimon-Hophy
- Laboratory of Comparative Immunology and Genetics, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ramy R Avtalion
- Laboratory of Comparative Immunology and Genetics, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
3
|
Seibel H, Baßmann B, Rebl A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front Vet Sci 2021; 8:616955. [PMID: 33860003 PMCID: PMC8042153 DOI: 10.3389/fvets.2021.616955] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Blood analyses provide substantial information about the physiological aspects of animal welfare assessment, including the activation status of the neuroendocrine and immune system, acute and long-term impacts due to adverse husbandry conditions, potential diseases, and genetic predispositions. However, fish blood is still not routinely analyzed in research or aquaculture for the assessment of health and/or welfare. Over the years, the investigative techniques have evolved from antibody-based or PCR-based single-parameter analyses to now include transcriptomic, metabolomic, and proteomic approaches and from hematological observations to fluorescence-activated blood cell sorting in high-throughput modes. The range of testing techniques established for blood is now broader than for any other biogenic test material. Evaluation of the particular characteristics of fish blood, such as its cell composition, the nucleation of distinct blood cells, or the multiple isoforms of certain immune factors, requires adapted protocols and careful attention to the experimental designs and interpretation of the data. Analyses of fish blood can provide an integrated picture of the endocrine, immunological, reproductive, and genetic functions under defined environmental conditions and treatments. Therefore, the scarcity of high-throughput approaches using fish blood as a test material for fish physiology studies is surprising. This review summarizes the wide range of techniques that allow monitoring of informative fish blood parameters that are modulated by different stressors, conditions, and/or treatments. We provide a compact overview of several simple plasma tests and of multiparametric analyses of fish blood, and we discuss their potential use in the assessment of fish welfare and pathologies.
Collapse
Affiliation(s)
- Henrike Seibel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- Gesellschaft für Marine Aquakultur mbH (GMA), Büsum, Germany
| | - Björn Baßmann
- Department of Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
4
|
Maciuszek M, Pijanowski L, Pekala-Safinska A, Palichleb P, Błachut M, Verburg-van Kemenade BML, Chadzińska M. 17α-ethinylestradiol and 4-tert-octylphenol concurrently disrupt the immune response of common carp. FISH & SHELLFISH IMMUNOLOGY 2020; 107:238-250. [PMID: 33038508 DOI: 10.1016/j.fsi.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The aquatic environment is massively polluted with endocrine-disrupting compounds (EDCs) including synthetic estrogens (e.g. 17α-ethinylestradiol, EE2) and alkylphenols (e.g. 4-tert-octylphenol, 4t-OP). A major mechanism of action for estrogenic EDCs is their interaction with estrogen receptors and consequently their modulation of the action of enzymes involved in steroid conversion e.g. aromatase CYP19. We now studied the effects of EE2 and 4t-OP on the anti-bacterial immune response of common carp. We investigated effects on the number/composition of inflammatory leukocytes and on the gene expression of mediators that regulate inflammation and EDC binding. In vitro we found that high concentrations of both EE2 and 4t-OP down-regulated IFN-γ2 and IFN-γ-dependent immune responses in LPS-stimulated monocytes/macrophages. Similarly, during bacterial infection in fish, in vivo treated with EE2 and 4t-OP, decreased gene expression of il-12p35 and of ifn-γ2 was found in the focus of inflammation. Moreover, during A. salmonicida-induced infection in EE2-treated carp, but not in fish fed with 4t-OP-treated food, we found an enhanced inflammatory reaction manifested by high number of inflammatory peritoneal leukocytes, including phagocytes and higher expression of pro-inflammatory mediators (inos, il-1β, cxcl8_l2). Furthermore, in the liver, EE2 down-regulated the expression of acute phase proteins: CRPs and C3. Importantly, both in vitro and in vivo, EDCs altered the expression of estrogen receptors: nuclear (erα and erβ) and membrane (gpr30). EDCs also induced up-regulation of the cyp19b gene. Our findings reveal that contamination of the aquatic milieu with estrogenic EDCs, may considerably violate the subtle and particular allostatic interactions between the immune response and endogenous estrogens and this may have negative consequences for fish health.
Collapse
Affiliation(s)
- Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Agnieszka Pekala-Safinska
- Department of Fish Diseases, National Veterinary Research Institute, 57 Partyzantow Ave., 24-100, Pulawy, Poland
| | - Paulina Palichleb
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Michał Błachut
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | | | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
5
|
Cortisol Metabolism in Carp Macrophages: A Role for Macrophage-Derived Cortisol in M1/M2 Polarization. Int J Mol Sci 2020; 21:ijms21238954. [PMID: 33255713 PMCID: PMC7728068 DOI: 10.3390/ijms21238954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are crucial not only for initiation of inflammation and pathogen eradication (classically polarized M1 macrophages), but also for inflammation inhibition and tissue regeneration (alternatively polarized M2 macrophages). Their polarization toward the M1 population occurs under the influence of interferon-γ + lipopolysaccharide (IFN-γ + LPS), while alternatively polarized M2 macrophages evolve upon, e.g., interlukin 4 (IL-4) or cortisol stimulation. This in vitro study focused on a possible role for macrophage-derived cortisol in M1/M2 polarization in common carp. We studied the expression of molecules involved in cortisol synthesis/conversion from and to cortisone like 11β-hydroxysteroid dehydrogenase type 2 and 3. (11β-HSD2 and 3) and 11β-hydroxylase (CYP11b), as well as the expression of glucocorticoid receptors (GRs) and proliferator-activated receptor gamma (PPARγ) in M1 and M2 macrophages. Lastly, we analyzed how inhibition of these molecules affect macrophage polarization. In M1 cells, upregulation of gene expression of GRs and 11β-HSD3 was found, while, in M2 macrophages, expression of 11β-hsd2 was upregulated. Moreover, blocking of cortisol synthesis/conversion and GRs or PPARγ induced changes in expression of anti-inflammatory interleukin 10 (IL-10). Consequently, our data show that carp monocytes/macrophages can convert cortisol. The results strongly suggest that cortisol, via intracrine interaction with GRs, is important for IL-10-dependent control of the activity of macrophages and for the regulation of M1/M2 polarization to finally determine the outcome of an infection.
Collapse
|
6
|
Covantes-Rosales CE, Toledo-Ibarra GA, Díaz-Resendíz KJG, Ventura-Ramón GH, Girón-Pérez MI. Muscarinic acetylcholine receptor expression in brain and immune cells of Oreochromis niloticus. J Neuroimmunol 2019; 328:105-107. [PMID: 30691695 DOI: 10.1016/j.jneuroim.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/02/2023]
Abstract
Nervous and immune systems maintain a bidirectional communication, expressing receptors for neurotransmitters and cytokines. Despite being well established in mammals, this has been poorly described in lower vertebrates as fishes. Experimental evidence shows that the neurotransmitter acetylcholine (ACh) regulates the immune response. In this research, we evaluated mRNA levels of muscarinic acetylcholine receptor (mAChR) in spleen mononuclear cells of Nile tilapia (Oreochromis niloticus) and compared the expression levels of immune cells with the brain. The mAChR subtypes (M2-M5A) were detected in both tissues, but mAChRs mRNA levels were higher in immune cells. This data have a potential use in biomedical and comparative immunology fields.
Collapse
Affiliation(s)
- C E Covantes-Rosales
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n. Cd, de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - G A Toledo-Ibarra
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n. Cd, de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - K J G Díaz-Resendíz
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n. Cd, de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - G H Ventura-Ramón
- Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - M I Girón-Pérez
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n. Cd, de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico.
| |
Collapse
|
7
|
Khansari AR, Parra D, Reyes-López FE, Tort L. Modulatory in vitro effect of stress hormones on the cytokine response of rainbow trout and gilthead sea bream head kidney stimulated with Vibrio anguillarum bacterin. FISH & SHELLFISH IMMUNOLOGY 2017; 70:736-749. [PMID: 28882798 DOI: 10.1016/j.fsi.2017.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
In fish, the stress response and their consequences in the immune system have been widely described. Recently, a differential cytokine regulation between rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) was reported after treatment with stress hormones together with their receptor antagonists. Nevertheless, there is no evidence of whether antagonists for stress hormone receptors may influence the interaction between hormones and cytokines after bacterial administration. Thus, the aim of our study was to evaluate the cytokine expression in the presence of stress hormones (cortisol, ACTH, adrenaline), hormone receptor antagonists and inactivated Vibrio anguillarum bacterin in rainbow trout and gilthead sea bream head kidney primary cell culture (HKPCC). Mifepristone, spironolactone, propranolol and phentolamine were used to block GR, MR, MC2R, and β-/α-adrenoreceptors. Our results showed an expected increase of the pro-inflammatory and anti-inflammatory response after inactivated V. anguillarum bacterin treatment in both species. Cortisol, ACTH and adrenaline did not modulate the expression of immune-related genes in rainbow trout, while in sea bream cortisol was able to reduce the stimulated gene expression of all cytokines. This effect was only restored to basal expression level in IL-1β and TNF-α by mifepristone. ACTH reduced both pro-inflammatory and anti-inflammatory cytokine expression, excluding IL-1β, only in sea bream. Adrenaline enhanced the expression of IL-1β and TGF-β1 stimulated by inactivated V. anguillarum in sea bream, and the effect was diminished by propranolol. In sum, our results confirm that the immunoendocrine differences reported at gene expression profile between two teleost species are also observed after exposure to inactivated V. anguillarum bacterin, suggesting that stress hormones would differentially modulate the immune response against pathogens in teleost species.
Collapse
Affiliation(s)
- Ali Reza Khansari
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Lluís Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
8
|
Khansari AR, Parra D, Reyes-López FE, Tort L. Cytokine modulation by stress hormones and antagonist specific hormonal inhibition in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) head kidney primary cell culture. Gen Comp Endocrinol 2017. [PMID: 28634082 DOI: 10.1016/j.ygcen.2017.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A tight interaction between endocrine and immune systems takes place mainly due to the key role of head kidney in both hormone and cytokine secretion, particularly under stress situations in which the physiological response promotes the synthesis and release of stress hormones which may lead into immunomodulation as side effect. Although such interaction has been previously investigated, this study evaluated for the first time the effect of stress-associated hormones together with their receptor antagonists on the expression of cytokine genes in head kidney primary cell culture (HKPCC) of the freshwater rainbow trout (Oncorhynchus mykiss) and the seawater gilthead sea bream (Sparus aurata). The results showed a striking difference when comparing the response obtained in trout and seabream. Cortisol and adrenocorticotropic hormone (ACTH) decreased the expression of immune-related genes in sea bream but not in rainbow trout and this cortisol effect was reverted by the antagonist mifepristone but not spironolactone. On the other hand, while adrenaline reduced the expression of pro-inflammatory cytokines (IL-1β, IL-6) in rainbow trout, the opposite effect was observed in sea bream showing an increased expression (IL-1β, IL-6). Interestingly, this effect was reverted by antagonist propranolol but not phentolamine. Overall, our results confirm the regional interaction between endocrine and cytokine messengers and a clear difference in the sensitivity to the hormonal stimuli between the two species.
Collapse
Affiliation(s)
- Ali Reza Khansari
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Lluís Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
9
|
Szwejser E, Verburg-van Kemenade BML, Maciuszek M, Chadzinska M. Estrogen-dependent seasonal adaptations in the immune response of fish. Horm Behav 2017; 88:15-24. [PMID: 27760301 DOI: 10.1016/j.yhbeh.2016.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
Clinical and experimental evidence shows that estrogens affect immunity in mammals. Less is known about this interaction in the evolutionary older, non-mammalian, vertebrates. Fish form an excellent model to identify evolutionary conserved neuroendocrine-immune interactions: i) they are the earliest vertebrates with fully developed innate and adaptive immunity, ii) immune and endocrine parameters vary with season, and iii) physiology is constantly disrupted by increasing contamination of the aquatic environment. Neuro-immuno-endocrine interactions enable adaption to changing internal and external environment and are based on shared signaling molecules and receptors. The presence of specific estrogen receptors on/in fish leukocytes, implies direct estrogen-mediated immunoregulation. Fish leukocytes most probably are also capable to produce estrogens as they express the cyp19a and cyp19b - genes, encoding aromatase cytochrome P450, the enzyme critical for conversion of C19 steroids to estrogens. Immunoregulatory actions of estrogens, vary among animal species, and also with dose, target cell type, or physiological condition (e.g., infected/non-infected, reproductive status). They moreover are multifaceted. Interestingly, season-dependent changes in immune status correlate with changes in the levels of circulating sex hormones. Whereas E2 circulating in the bloodstream is perhaps the most likely candidate to be the physiological mediator of systemic immune-reproductive trade-offs, leukocyte-derived hormones are hypothesized to be mainly involved in local tuning of the immune response. Contamination of the aquatic environment with estrogenic EDCs may violate the delicate and precise allostatic interactions between the endogenous estrogen system and the immune system. This has negative effects on fish health, but will also affect the physiology of its consumers.
Collapse
Affiliation(s)
- Ewa Szwejser
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
10
|
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:2-23. [PMID: 27296493 DOI: 10.1016/j.dci.2016.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only are psychological and environmental stressors communicated to the immune system, but also, vice versa, the immune response and adaptation to a current pathogen challenge are communicated to the entire body, including the brain, to evoke adaptive responses (e.g., fever, sickness behavior) that ensure allocation of energy to fight the pathogen. This phenomenon is evolutionarily conserved. Hence it is both interesting and important to consider the evolutionary history of this bi-directional neuroendocrine-immune communication to reveal phylogenetically ancient or relatively recently acquired mechanisms. Indeed, such considerations have already disclosed an extensive "common vocabulary" of information pathways as well as molecules and their receptors used by both the neuroendocrine and immune systems. This review focuses on the principal mechanisms of bi-directional communication and the evidence for evolutionary conservation of the important physiological pathways involved.
Collapse
Affiliation(s)
- B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Nicholas Cohen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| |
Collapse
|
11
|
Madden KS. Sympathetic neural-immune interactions regulate hematopoiesis, thermoregulation and inflammation in mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:92-97. [PMID: 27119982 DOI: 10.1016/j.dci.2016.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 05/23/2023]
Abstract
This review will highlight recently discovered mechanisms underlying sympathetic nervous system (SNS) regulation of the immune system in hematopoiesis, thermogenesis, and inflammation. This work in mammals illuminates potential mechanisms by which the nervous and immune systems may interact in invertebrate and early vertebrate species and allow diverse organisms to thrive under varying and extreme conditions and ultimately improve survival.
Collapse
Affiliation(s)
- Kelley S Madden
- Department of Biomedical Engineering, RC Box 270168, Goergen Hall, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
12
|
Zou J, Redmond AK, Qi Z, Dooley H, Secombes CJ. The CXC chemokine receptors of fish: Insights into CXCR evolution in the vertebrates. Gen Comp Endocrinol 2015; 215:117-31. [PMID: 25623148 DOI: 10.1016/j.ygcen.2015.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/15/2022]
Abstract
This article will review current knowledge on CXCR in fish, that represent three distinct vertebrate groups: Agnatha (jawless fishes), Chondrichthyes (cartilaginous fishes) and Osteichthyes (bony fishes). With the sequencing of many fish genomes, information on CXCR in these species in particular has expanded considerably. In mammals, 6 CXCRs have been described, and their homologues will be initially reviewed before considering a number of atypical CXCRs and a discussion of CXCR evolution.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhitao Qi
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Aquaculture and Ecology of Coastal Pools of Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
13
|
Nardocci G, Navarro C, Cortés PP, Imarai M, Montoya M, Valenzuela B, Jara P, Acuña-Castillo C, Fernández R. Neuroendocrine mechanisms for immune system regulation during stress in fish. FISH & SHELLFISH IMMUNOLOGY 2014; 40:531-538. [PMID: 25123831 DOI: 10.1016/j.fsi.2014.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/10/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
In the last years, the aquaculture crops have experienced an explosive and intensive growth, because of the high demand for protein. This growth has increased fish susceptibility to diseases and subsequent death. The constant biotic and abiotic changes experienced by fish species in culture are challenges that induce physiological, endocrine and immunological responses. These changes mitigate stress effects at the cellular level to maintain homeostasis. The effects of stress on the immune system have been studied for many years. While acute stress can have beneficial effects, chronic stress inhibits the immune response in mammals and teleost fish. In response to stress, a signaling cascade is triggered by the activation of neural circuits in the central nervous system because the hypothalamus is the central modulator of stress. This leads to the production of catecholamines, corticosteroid-releasing hormone, adrenocorticotropic hormone and glucocorticoids, which are the essential neuroendocrine mediators for this activation. Because stress situations are energetically demanding, the neuroendocrine signals are involved in metabolic support and will suppress the "less important" immune function. Understanding the cellular mechanisms of the neuroendocrine regulation of immunity in fish will allow the development of new pharmaceutical strategies and therapeutics for the prevention and treatment of diseases triggered by stress at all stages of fish cultures for commercial production.
Collapse
Affiliation(s)
- Gino Nardocci
- Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile. Av. República 252, 8370134 Santiago, Chile
| | - Cristina Navarro
- Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile. Av. República 252, 8370134 Santiago, Chile
| | - Paula P Cortés
- Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile. Av. República 252, 8370134 Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola (CBA), Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. Av. Libertador Bernardo O'Higgins 3363, Estación Central, 9170022 Santiago, Chile
| | - Margarita Montoya
- Centro de Biotecnología Acuícola (CBA), Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. Av. Libertador Bernardo O'Higgins 3363, Estación Central, 9170022 Santiago, Chile
| | - Beatriz Valenzuela
- Centro de Biotecnología Acuícola (CBA), Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. Av. Libertador Bernardo O'Higgins 3363, Estación Central, 9170022 Santiago, Chile
| | - Pablo Jara
- Centro de Biotecnología Acuícola (CBA), Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. Av. Libertador Bernardo O'Higgins 3363, Estación Central, 9170022 Santiago, Chile
| | - Claudio Acuña-Castillo
- Centro de Biotecnología Acuícola (CBA), Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. Av. Libertador Bernardo O'Higgins 3363, Estación Central, 9170022 Santiago, Chile.
| | - Ricardo Fernández
- Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile. Av. República 252, 8370134 Santiago, Chile.
| |
Collapse
|
14
|
Kepka M, Verburg-van Kemenade BML, Homa J, Chadzinska M. Mechanisms involved in apoptosis of carp leukocytes upon in vitro and in vivo immunostimulation. FISH & SHELLFISH IMMUNOLOGY 2014; 39:386-395. [PMID: 24925760 DOI: 10.1016/j.fsi.2014.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
During inflammation leukocyte activity must be carefully regulated, as high concentrations and/or prolonged action of pro-inflammatory mediators e.g. reactive oxygen species (ROS) can be detrimental not only for pathogens but also for host tissues. Programmed cell death - apoptosis is a most effective regulatory mechanism for down regulation of leukocyte activity, but little is known about this process in fish. We aimed to reveal the mechanisms of initiation and regulation of apoptosis in carp neutrophilic granulocytes and macrophages. During zymosan-induced peritonitis in carp, activated inflammatory neutrophilic granulocytes and monocytes/macrophages died by apoptosis. This correlated with a strong production of ROS, but pretreatment of the fish with NADPH oxidase inhibitor only slightly decreased late apoptosis. Interestingly in vitro incubation with zymosan or phorbol ester, but not lipopolisaccharide and poli I:C induced apoptosis of head kidney neutrophilic granulocytes. This coincided with loss of mitochondrial membrane potential. Moreover, in zymosan-stimulated neutrophilic granulocytes NADPH oxidase inhibitor not only reduced the production of ROS but also apoptosis. A similar effect was not observed in cells stimulated with phorbol ester, where DPI reduced ROS production, but not apoptosis. In PMA-stimulated neutrophilic granulocytes both the respiratory burst and apoptosis were reduced by protein kinase inhibitor. Furthermore, a short neutrophil stimulation either with PMA or with zymosan did induce caspase-independent apoptosis. These results show that in carp, apoptosis is an important regulatory process during in vitro and in vivo immunostimulation. In neutrophils, protein kinase, but not NADPH oxidase, is involved in PMA-induced apoptosis while apoptosis induced by zymosan is ROS-dependent.
Collapse
Affiliation(s)
- M Kepka
- Department of Evolutionary Immunology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - B M L Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - J Homa
- Department of Evolutionary Immunology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - M Chadzinska
- Department of Evolutionary Immunology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
15
|
Verburg-van Kemenade BML, Van der Aa LM, Chadzinska M. Neuroendocrine-immune interaction: regulation of inflammation via G-protein coupled receptors. Gen Comp Endocrinol 2013. [PMID: 23201149 DOI: 10.1016/j.ygcen.2012.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroendocrine- and immune systems interact in a bi-directional fashion to communicate the status of pathogen recognition to the brain and the immune response is influenced by physiological changes. The network of ligands and their receptors involved includes cytokines and chemokines, corticosteroids, classical pituitary hormones, catecholamines and neuropeptides (e.g. opioids), as well as neural pathways. We studied the role of opioid, adrenergic and melatonin G-protein coupled receptors (GPCR) on carp (Cyprinus carpio) leucocytes. Ligand interaction by morphine and adrenaline both in vitro and in vivo resulted in considerable decrease of chemotaxis and expression of CXC chemokines and chemokine CXC receptors. These effects may have substantial influence on the process of inflammation, the efficacy of which is crucial for an effective immune response. Both opioid receptors and chemokine receptors are G-protein coupled receptors (GPCRs), and were classically assumed to function as monomers. This paradigm is now challenged by the emerging concept of homo- and hetero dimerization which may represent the native form of many receptors. G-protein coupling, downstream signaling and regulatory processes such as receptor internalization are largely influenced by the dimeric nature. The true functional importance of GPCR interactions remains enigmatic, but it certainly has implications with respect to the specificity of currently used medications. This review focuses on the important function of chemokine GPCRs during inflammation and the potential neuroendocrine modulation of this process through "neuroendocrine" GPCRs.
Collapse
Affiliation(s)
- B M L Verburg-van Kemenade
- Cell Biology and Immunology Group, Wageningen University, De Elst 1, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | | | | |
Collapse
|