1
|
Granat FA, Trumel C, Braun JPD, Bourgès-Abella NH. Quality of hematology and clinical chemistry results in laboratory and zoo nonhuman primates: Effects of the preanalytical phase. A review. J Med Primatol 2023; 52:414-427. [PMID: 37612808 DOI: 10.1111/jmp.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Most errors in clinical pathology originate in the preanalytical phase, which includes all steps from the preparation of animals and equipment to the collection of the specimen and its management until analyzed. Blood is the most common specimen collected in nonhuman primates. Other specimens collected include urine, saliva, feces, and hair. The primary concern is the variability of blood hematology and biochemistry results due to sampling conditions with the effects of capture, restraint, and/or anesthesia. Housing and diet have fewer effects, with the exception of food restriction to reduce obesity. There has been less investigation regarding the impact of sampling conditions of nonblood specimens.
Collapse
Affiliation(s)
- Fanny A Granat
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Laboratoire central de biologie médicale, ENVT, Toulouse, France
| | - Catherine Trumel
- Laboratoire central de biologie médicale, ENVT, Toulouse, France
- CREFRE, Université de Toulouse, Inserm, ENVT, UPS, Toulouse, France
| | | | | |
Collapse
|
2
|
Brandhuber M, Atkinson S, Cunningham C, Roth T, Curry E. Assessing Dehydroepiandrosterone Sulfate (DHEAS) as a novel biomarker for monitoring estrus and successful reproduction in polar bears. Gen Comp Endocrinol 2023; 338:114276. [PMID: 36940836 PMCID: PMC10319433 DOI: 10.1016/j.ygcen.2023.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
Polar bears (Ursus maritimus) in the wild are under threat due to climate change, primarily loss of sea ice, and experience poor reproductive success in zoos. The polar bear is a seasonally polyestrous species that exhibits embryonic diapause and pseudopregnancy, complicating characterization of reproductive function. Fecal excretion of testosterone and progesterone have been studied in polar bears, but accurately predicting reproductive success remains difficult. Dehydroepiandrosterone (DHEA) is a steroid hormone precursor correlated with reproductive success in other species, but has not been well studied in the polar bear. The purpose of the present study was to characterize the longitudinal excretion of DHEAS, the sulfated form of DHEA, from zoo-housed polar bears using a validated enzyme immunoassay. Lyophilized fecal samples from parturient females (n = 10), breeding non-parturient females (n = 11), a non-breeding adult female, a juvenile female, and a breeding adult male were investigated. Five of the breeding non-parturient females had been previously contracepted, while six were never contracepted. DHEAS concentrations were closely associated with testosterone concentrations (p < 0.05, rho > 0.57) for all reproductive statuses. Breeding females exhibited statistically significant (p < 0.05) increases in DHEAS concentration on or near breeding dates, which were not observed outside of the breeding season, or in the non-breeding or juvenile animals. Breeding non-parturient females exhibited higher median and baseline DHEAS concentrations than parturient females over the course of the breeding season. Previously contracepted (PC) breeding non-parturient females also exhibited higher season-long median and baseline DHEAS concentrations than non-previously (NPC) contracepted breeding non-parturient females. These findings suggest that DHEA is related to estrus or ovulation in the polar bear, that there is an optimal DHEA concentration window, and concentrations exceeding that threshold may be associated with reproductive dysfunction.
Collapse
Affiliation(s)
- Monica Brandhuber
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Dept., Juneau Center, 17101 Pt. Lena Loop Road, Juneau, AK 99801, USA.
| | - Shannon Atkinson
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Dept., Juneau Center, 17101 Pt. Lena Loop Road, Juneau, AK 99801, USA.
| | - Curry Cunningham
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Dept., Juneau Center, 17101 Pt. Lena Loop Road, Juneau, AK 99801, USA.
| | - Terri Roth
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo and Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA.
| | - Erin Curry
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo and Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA.
| |
Collapse
|
3
|
Mouri K, Shimizu K. Dehydroepiandrosterone sulfate (DHEAS) in excreta is a good indicator of serum DHEAS in Japanese macaques (Macaca fuscata). Gen Comp Endocrinol 2023; 338:114277. [PMID: 36965641 DOI: 10.1016/j.ygcen.2023.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/24/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
We developed a microplate enzyme immunoassay (EIA) to measure dehydroepiandrosterone sulfate (DHEAS) in the blood, urine, and feces of Japanese macaques and evaluated the relationship between serum DHEAS and excreta DHEAS. Our DHEAS EIA using heterological DHEA derivatives conjugated with enzyme was highly sensitive, and linearities and recoveries for all matrices of Japanese macaques were reliable. For the biological evaluation of the metabolism of DHEAS in Japanese macaques, dissolved DHEAS was injected into the subjects, and consecutively collected serum, urine, and fecal samples were analyzed. The peaks of serum DHEAS were observed 6 h after the administration, while those of urine and feces were observed after 24 h. The fluctuation of those in urine and feces were significantly correlated with serum DHEAS levels. In addition, we measured pregnanediol-glucuronide (PdG), and estrone-conjugate (E1C) in urine and fecal samples to investigate the effects of administrated DHEAS on these progesterone and estrogen metabolites. The peak of PdG was observed 24 h after administration, then declined sharply. The concentration of E1C increased 1 week after administration in two out of three subjects. Our results suggest that measuring urinary and fecal DHEAS with our EIA provides a non-invasive alternative to assessing DHEAS levels in the serum of Japanese macaques.
Collapse
Affiliation(s)
- Keiko Mouri
- Wildlife Research Center, Kyoto University, Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Keiko Shimizu
- Faculty of Science, Okayama University of Science, 1-1, Ridai-Cho, Kita-Ku, Okayama 700-0005, Japan.
| |
Collapse
|
4
|
Takeshita RS, Edler MK, Meindl RS, Sherwood CC, Hopkins WD, Raghanti MA. Age, adrenal steroids, and cognitive functioning in captive chimpanzees ( Pan troglodytes). PeerJ 2022; 10:e14323. [PMID: 36389417 PMCID: PMC9653054 DOI: 10.7717/peerj.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Background Dehydroepiandrosterone-sulfate is the most abundant circulating androgen in humans and other catarrhines. It is involved in several biological functions, such as testosterone production, glucocorticoid antagonist actions, neurogenesis and neuroplasticty. Although the role of dehydroepiandrosterone-sulfate (DHEAS) in cognition remains elusive, the DHEAS/cortisol ratio has been positively associated with a slower cognitive age-decline and improved mood in humans. Whether this relationship is found in nonhuman primates remains unknown. Methods We measured DHEAS and cortisol levels in serum of 107 adult chimpanzees to investigate the relationship between DHEAS levels and age. A subset of 21 chimpanzees was used to test the potential associations between DHEAS, cortisol, and DHEAS/cortisol ratio in cognitive function, taking into account age, sex, and their interactions. We tested for cognitive function using the primate cognitive test battery (PCTB) and principal component analyses to categorize cognition into three components: spatial relationship tasks, tool use and social communication tasks, and auditory-visual sensory perception tasks. Results DHEAS levels, but not the DHEAS/cortisol ratio, declined with age in chimpanzees. Our analyses for spatial relationships tasks revealed a significant, positive correlation with the DHEAS/cortisol ratio. Tool use and social communication had a negative relationship with age. Our data show that the DHEAS/cortisol ratio, but not DHEAS individually, is a promising predictor of spatial cognition in chimpanzees.
Collapse
Affiliation(s)
- Rafaela S.C. Takeshita
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA,Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Melissa K. Edler
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA,Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Richard S. Meindl
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - William D. Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Mary Ann Raghanti
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA,Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
5
|
Takeshita RSC. Validation of an enzyme immunoassay for measurement of fecal dehydroepiandrosterone sulfate in gibbons and siamangs. Zoo Biol 2022; 41:544-553. [PMID: 35254709 DOI: 10.1002/zoo.21687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
Monitoring wildlife stress levels is essential to ensure their quality of life in captivity or in the wild. One promising method to assess the stress response is the comeasurement of glucocorticoids (GC) and dehydroepiandrosterone sulfate (DHEAS), adrenal hormones involved in the modulation of the stress response. Although noninvasive methods to measure GCs have been validated in several species, only a few studies have validated DHEAS assays. The aims of this study were (1) to describe an enzyme immunoassay (EIA) to measure DHEAS levels, (2) to validate this assay for fecal samples in gibbons and siamangs, and (3) to test hormonal stability after one freeze-thaw cycle and over time at two freezer temperatures (-20°C and -80°C). Subjects included 32 gibbons and siamangs from U.S. zoological parks. The EIA was validated analytically by parallelism and accuracy tests, and biologically by confirming a DHEAS response 1-2 days after a stressful event (accident, vaccination, or transportation) in three individuals. In addition, fecal DHEAS levels in a pregnant female were above nonpregnant/nonlactating levels and declined progressively the following parturition. The hormonal stability experiments revealed no significant changes in fecal DHEAS levels after one freeze-thaw cycle. Hormonal levels in fecal extracts were stable for 2 months, regardless of the storage temperature, with no significant differences between -20°C and -80°C conditions. The EIA described has high sensitivity and it is suitable for fecal DHEAS measurement in gibbons and siamangs, with a potential to be applied to other species.
Collapse
|
6
|
Validation of a Dehydroepiandrosterone-Sulfate Assay in Three Platyrrhine Primates (Alouatta caraya, Aotus azarae infulatus, and Sapajus apella). INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00239-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Dumontet T, Martinez A. Adrenal androgens, adrenarche, and zona reticularis: A human affair? Mol Cell Endocrinol 2021; 528:111239. [PMID: 33676986 DOI: 10.1016/j.mce.2021.111239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
In humans, reticularis cells of the adrenal cortex fuel the production of androgen steroids, constituting the driver of numerous morphological changes during childhood. These steps are considered a precocious stage of sexual maturation and are grouped under the term "adrenarche". This review describes the molecular and enzymatic characteristics of the zona reticularis, along with the possible signals and mechanisms that control its emergence and the associated clinical features. We investigate the differences between species and discuss new studies such as genetic lineage tracing and transcriptomic analysis, highlighting the rodent inner cortex's cellular and molecular heterogeneity. The recent development and characterization of mouse models deficient for Prkar1a presenting with adrenocortical reticularis-like features prompt us to review our vision of the mouse adrenal gland maturation. We expect these new insights will help increase our understanding of the adrenarche process and the pathologies associated with its deregulation.
Collapse
Affiliation(s)
- Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA.
| | - Antoine Martinez
- Génétique, Reproduction et Développement (GReD), Centre National de La Recherche Scientifique CNRS, Institut National de La Santé & de La Recherche Médicale (INSERM), Université Clermont-Auvergne (UCA), France.
| |
Collapse
|
8
|
Petrullo L, Hinde K, Lu A. Steroid hormone concentrations in milk predict sex-specific offspring growth in a nonhuman primate. Am J Hum Biol 2019; 31:e23315. [PMID: 31468643 DOI: 10.1002/ajhb.23315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES In humans and other mammals, maternal hormones are transferred to offspring during lactation via milk and may regulate postnatal development, including the pace of early growth. Here, we used a nonhuman primate model to test the hypotheses that milk cortisol and dehydroepiandrosterone-sulfate (DHEAS) concentrations reflect maternal characteristics, and that changes in these hormones across lactation are associated with early postnatal growth rates. METHODS Demographic information, morphometrics, and milk samples were collected from rhesus macaque mothers and their infants at the California National Primate Research Center in Davis, California. Using linear models, we examined the relationship between maternal traits and milk hormone concentrations (N = 104 females) and explored the effect of milk hormones on the rate of offspring growth (N = 72 mother-infant dyads), controlling for available milk energy. RESULTS Contrary to previous studies, we found that milk cortisol concentrations were categorically higher in multiparous females than in primiparous females. However, milk DHEAS concentrations decreased with maternal parity. Neither milk cortisol nor DHEAS were related to maternal rank. Finally, changes in milk hormones predicted offspring growth in a sex-specific and temporal manner: increases in cortisol from peak to late lactation predicted faster female growth, and increases in DHEAS concentrations from early to peak and peak to late lactation predicted faster male growth. CONCLUSIONS Our findings shed light on how hormonal components of milk have sex-specific effects on offspring growth during early postnatal life with varying temporal windows of sensitivity.
Collapse
Affiliation(s)
- Lauren Petrullo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - Katie Hinde
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona.,School for Human Evolution and Social Change, Arizona State University, Tempe, Arizona.,Brain, Mind, and Behavior Unit, California National Primate Research Center, Davis, California
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
9
|
Bernstein RM. Hormones and Human and Nonhuman Primate Growth. Horm Res Paediatr 2018; 88:15-21. [PMID: 28528334 DOI: 10.1159/000476065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
The aim of this paper was to review information pertaining to the hormonal regulation of nonhuman primate growth, with specific focus on the growth hormone (GH)-insulin-like growth factor (IGF) axis and adrenal androgens. Hormones of the GH-IGF axis are consistently associated with measures of growth - linear, weight, or both - during the growth period; in adulthood, concentrations of IGF-I, IGF-binding protein-3, and GH-binding protein are not associated with any measures of size. Comparing patterns of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) may be especially relevant for understanding whether the childhood stage of growth and development is unique to humans and perhaps other apes. Genetic, hormonal, and morphological data on adrenarche in other nonhuman primate species suggest that this endocrine transition is delayed in humans, chimpanzees, and possibly gorillas, while present very early in postnatal life in macaques. This suggests that although perhaps permitted by an extension of the pre-adolescent growth period, childhood builds upon existing developmental substrates rather than having been inserted de novo into an ancestral growth trajectory. Hormones can provide insight regarding the evolution of the human growth trajectory.
Collapse
|
10
|
Development and Validation of an Enzyme Immunoassay for Fecal Dehydroepiandrosterone Sulfate in Japanese Macaques (Macaca fuscata). INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0026-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Dead or alive? Predicting fetal loss in Japanese macaques (Macaca fuscata) by fecal metabolites. Anim Reprod Sci 2016; 175:33-38. [DOI: 10.1016/j.anireprosci.2016.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/21/2016] [Accepted: 10/19/2016] [Indexed: 11/24/2022]
|
12
|
Takeshita RSC, Bercovitch FB, Huffman MA, Mouri K, Garcia C, Rigaill L, Shimizu K. Environmental, biological, and social factors influencing fecal adrenal steroid concentrations in female Japanese macaques (Macaca fuscata). Am J Primatol 2014; 76:1084-93. [DOI: 10.1002/ajp.22295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/23/2014] [Accepted: 03/28/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Rafaela S. C. Takeshita
- Department of Ecology and Social Behavior; Primate Research Institute; Kyoto University; Inuyama Aichi Japan
| | - Fred B. Bercovitch
- Department of Ecology and Social Behavior; Primate Research Institute; Kyoto University; Inuyama Aichi Japan
| | - Michael A. Huffman
- Department of Ecology and Social Behavior; Primate Research Institute; Kyoto University; Inuyama Aichi Japan
| | - Keiko Mouri
- Department of Ecology and Social Behavior; Primate Research Institute; Kyoto University; Inuyama Aichi Japan
| | - Cécile Garcia
- Laboratoire de Dynamique de l'Evolution Humaine; CNRS UPR 2147; Paris France
| | - Lucie Rigaill
- Department of Ecology and Social Behavior; Primate Research Institute; Kyoto University; Inuyama Aichi Japan
| | - Keiko Shimizu
- Faculty of Science; Department of Zoology; Okayama University of Science; Okayama City Okayama Japan
| |
Collapse
|