1
|
Martín J, Rodríguez-Ruiz G, Navarro-Castilla Á, Barja I, López P. Blind date: female fossorial amphisbaenians prefer scent marks of large and healthy males. Integr Zool 2024; 19:1018-1033. [PMID: 38247017 DOI: 10.1111/1749-4877.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Selecting a good mate is a decision with important fitness consequences. For this reason, mate choice has promoted the evolution of sexual ornaments signaling the quality of an individual. In fossorial animals, inhabiting visually restricted underground environments, chemical senses should be very important for mate choice. We examined whether sexual chemical signals (substrate scent marks) produced by males of the Iberian worm lizard, Blanus cinereus, a strictly fossorial blind amphisbaenian, provide information to females on morphological traits and health state. We administered corticosterone (CORT) to males simulating a continuous stressor affecting their health. Females preferred settling at sites scent-marked by males in comparison with similar sites with female scent or unmarked sites, but the attractiveness of males' scent differed between individuals. Females preferred scent marks of larger/older males and with a higher immune response, while their body condition and CORT treatment were unrelated to female preferences. Chemical analyses showed that proportions of some compounds in precloacal secretions of males (used to produce scent marks) were correlated with the morphological (body size) and health state (immune response and body condition, but not CORT treatment) of these males. These results suggest that females may make site-selection decisions based on assessing the chemical characteristics of males' scent marks, which were reliably related to some of the traits of the male that produced the scent. Therefore, females might use chemical senses to increase the opportunities to find and mate with males of high quality, coping with the restrictions of the subterranean environment.
Collapse
Affiliation(s)
- José Martín
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Álvaro Navarro-Castilla
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, Madrid, Spain
| | - Isabel Barja
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, Madrid, Spain
| | - Pilar López
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
2
|
Martinez V, Duran EMI, Kimmitt AA, Russell KE, Jill Heatley J, Grace JK. Chronic stress increases adaptive immune response over six weeks in the house sparrow, Passer domesticus. Gen Comp Endocrinol 2024; 358:114612. [PMID: 39293532 DOI: 10.1016/j.ygcen.2024.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
The vertebrate stress response enables an organism to shift energy towards activities that promote immediate survival when facing a threat to homeostasis, but it can also have detrimental effects on organismal health. Acute and chronic stressors generally have contrasting effects on immune responses, but the timeline of this transition between acute and chronic stressors and their effects on immune responses remains unclear. In this study, we investigate changes in immune markers in captive house sparrows (Passer domesticus) after exposure to normal laboratory conditions, an acute stressor, and chronic stressors for 42 days. Specifically, we examined changes in baseline and stress-induced corticosterone concentrations, body condition, heterophil/lymphocyte (H:L) ratio, hemolysis-hemagglutination, and wound healing. We found that individuals exposed to a single acute stressor had significantly higher stress-induced corticosterone concentrations 24 h after stressor exposure, however this effect was reversed after 48 h. Chronic stressor exposure resulted in generally stronger adaptive immune responses, demonstrated by higher baseline and stress-induced lysis, higher baseline hemagglutination, and slower wound healing. Within-trait correlations also increased with chronic stressor exposure, suggesting limitations on phenotypic plasticity. Most of the effects of chronic stressor exposure on immune markers strengthened over the 42 days of the experiment and differences between captivity-only and treatment groups were not apparent until approximately 20 days of chronic stressor exposure. These results highlight the importance of stressor duration in understanding the effects of chronic stressor exposure on immune responses.
Collapse
Affiliation(s)
- Viridiana Martinez
- Dept. of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | - Elena M I Duran
- Interdisciplinary Doctoral Degree Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA
| | - Abigail A Kimmitt
- Dept. of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA; Dept. of Biology, Hofstra University, Hempstead, NY 11549, USA
| | - Karen E Russell
- Dept. of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - J Jill Heatley
- Dept. of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jacquelyn K Grace
- Dept. of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA; Interdisciplinary Doctoral Degree Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Stiffler WE, Hilton ML, Heinrich GL, Goessling JM. Relationships between Spatial Biology and Physiological Ecology in the Gopher Tortoise, Gopherus polyphemus. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:209-219. [PMID: 39270327 DOI: 10.1086/731340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
AbstractThe overlap between spatial and physiological ecology is generally understudied, yet both fields are fundamentally related in assessing how individuals balance limited resources. Herein, we quantified the relationships between spatial ecology using two parameters of home range (annual home range area and number of burrows used in 1 yr) and four measures of physiology that integrate stress and immunity (baseline plasma corticosterone [CORT] concentration, plasma lactate concentration, heterophil-to-lymphocyte [H∶L] ratio, and bactericidal ability [BA]) in a wild free-ranging population of the gopher tortoise (Gopherus polyphemus) to test the hypothesis that space usage is correlated with physiological state. We also used structural equation models (SEMs) to test for causative relationships between the spatial and physiological parameters. We predicted that larger home ranges would be negatively correlated with traditional biomarkers of stress and positively correlated with immunity, consistent with our hypothesis that home ranges are determined based on individual condition. Males had larger home ranges, used more burrows, and had higher baseline CORT than females. We found significant negative correlations between lactate and home range (r = -0.456 , df = 21 , P = 0.029 ). CORT was negatively correlated with the number of burrows used in both sexes (F = 7.322 , df = 2, 20 , P = 0.003 , adjusted R 2 = 0.383 ). No correlations were observed between space use and BA or, notably, H∶L ratio. SEMs suggested that variation in the number of burrows used was a result of variation in baseline CORT. The lack of a relationship between H∶L ratio and home range suggests that home range differences are not associated with differences in chronic stress, despite the pattern between baseline CORT and number of burrows used. Instead, this study indicates that animals balance trade-offs in energetics, likely by way of baseline corticosteroid, in such a way as to maintain function across continuously variable home range strategies.
Collapse
|
4
|
Field EK, Terry J, Hartzheim AM, Krajcir K, Mullin SJ, Neuman-Lee LA. Investigating relationships among stress, reproduction, and immunity in three species of watersnake. Gen Comp Endocrinol 2023; 343:114350. [PMID: 37524232 DOI: 10.1016/j.ygcen.2023.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Energy is a finite resource required for all physiological processes and must be allocated efficiently among essential activities to ensure fitness and survival. During the active season, adult organisms are expected to prioritize investment in reproduction over other energetically expensive processes, such as responding to immunological challenges. Furthermore, when encountering a stressor, the balance between reproduction and immunity might be disrupted in order to fuel the stress response. Because of the distinct differences in life histories across species, watersnakes provide a unique group of study in which to examine these tradeoffs. Over a two-year period, we captured three watersnake species throughout Northeast Arkansas. Animals were subjected to restraint stress and blood samples were collected throughout the acute stress response. Blood samples were used to assess innate immunity and steroid hormone concentrations. We found the peak in corticosterone concentration is season-specific, potentially because energetic reserves fluctuate with reproductive activities. We also found body condition was positively related to acute stress and negatively related to immunity. Watersnakes evidently prioritize reproduction over immunity, especially during the energetically intensive process of vitellogenesis. Energetic tradeoffs between reproduction, immunity, and the stress response are complex, and this study contributes to our understanding of energetic shifts in free-living organisms in the context of stress.
Collapse
Affiliation(s)
- Emily K Field
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States; Mississippi Department of Wildlife, Fisheries, and Parks, Mississippi Museum of Natural Science, Jackson MS, United States.
| | - Jennifer Terry
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States
| | - Alyssa M Hartzheim
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States; North Carolina Museum of Natural Sciences, Raleigh, NC, United States
| | - Kevin Krajcir
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States; Arkansas Natural Heritage Commission, Little Rock, AR, United States
| | - Stephen J Mullin
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States.
| | - Lorin A Neuman-Lee
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States.
| |
Collapse
|
5
|
Titon SCM, Junior BT, Assis VR, Cobo de Figueiredo A, Floreste FR, Lima AS, Gomes FR. Testosterone immunomodulation in free-living and captive Rhinella icterica male toads. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220118. [PMID: 37305916 PMCID: PMC10258661 DOI: 10.1098/rstb.2022.0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 06/13/2023] Open
Abstract
Testosterone (T) regulates immune function, with both immunostimulatory and immunosuppressive effects on several vertebrates. We investigated the covariation between plasma T and corticosterone (CORT) levels and immunity (plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR)) in free-living Rhinella icterica male toads inside and outside the reproductive season. We found an overall positive correlation between steroids and immune traits, with toads during the reproductive season displaying increased T, CORT and BKA. We also investigated the T transdermal application effects on T, CORT, phagocytosis of blood cells, BKA and NLR in captive toads. Toads were treated with T (1, 10 or 100 µg) or vehicle (sesame oil) for eight consecutive days. Animals were bled on the first and eighth days of treatment. Increased plasma T was observed on the first and last day of T-treatment, while increased BKA was observed following all T doses on the last day, with a positive correlation between T and BKA. Plasma CORT, NLR and phagocytosis increased on the last day for all T-treated and vehicle groups. Overall, we demonstrated a positive covariation between T and immune traits in the field and T-induced augmented BKA in captive toads, indicating a T immunoenhancing effect in R. icterica males. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
| | - Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| | - Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| | - Felipe Rangel Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| | - Alan Siqueira Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Assis VR, Titon SCM, Titon B, Gomes FR. The Impacts of Transdermal Application of Corticosterone on Toad (Rhinella icterica) Immunity. Integr Comp Biol 2022; 62:1640-1653. [PMID: 35902322 DOI: 10.1093/icb/icac130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023] Open
Abstract
Recent studies have shown that acute physiological increases in endogenous glucocorticoid levels have immunostimulatory effects. Although post-acute stress immunosuppressive effects have also been described, the difference between enhancing and suppressing the immune response seems mediated by the stressor's duration, intensity, and the immune component under analysis. To elicit physiologically relevant corticosterone levels that can be found in Rhinella icterica toads after stressful events (e.g., restraint or captivity) and understand how acute increased glucocorticoid levels of different intensities affect corticosterone and testosterone plasma levels and immune parameters (in vitro plasma bacterial killing ability, neutrophil-to-lymphocyte ratio, and in vivo phagocytosis of peritoneal leukocytes), we submitted toads to the transdermal application of two corticosterone doses (1 and 10 μg). Corticosterone transdermal application increased corticosterone plasma levels with different intensities: 3 times for 1 μg and fourteen times for 10 μg, compared to the vehicle, and the neutrophil-to-lymphocyte ratio increased regardless of the corticosterone dose. However, there was no effect on testosterone levels and bacterial killing ability. Interestingly, both corticosterone doses promoted immunosuppression, decreasing peritoneal leukocytes' phagocytosis activity by 60% for toads receiving the dose of 1µg and 40% for those receiving 10 μg. Our results show the complexity of the relationship between increased corticosterone levels and immunomodulation. The different corticosterone doses promoted increases of distinct magnitudes in corticosterone plasma levels, with the less intense increase in corticosterone levels generating greater cell-mediated immunosuppression. Future studies using different corticosterone doses to achieve and compare physiological vs. pharmacological hormone levels are imperative to understanding these interrelationships between corticosterone and immune response.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Braz Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
7
|
Christie Monteiro Titon S, Titon Junior B, Cobo de Figueiredo A, Rangel Floreste F, Siqueira Lima A, Cunha Cyrino J, Ribeiro Gomes F. Plasma steroids and immune measures vary with restraint duration in a toad (Rhinella icterica). Gen Comp Endocrinol 2022; 318:113987. [PMID: 35131311 DOI: 10.1016/j.ygcen.2022.113987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
Immunoenhancing effects have been widely described following acute stressors in several vertebrates, and valuable contributions have been made from studies on acute stress to understand hormonal-immune interactions. However, most studies focus on hormonal and immune responses after standardized time lapses, neglecting potential influence of duration of exposition to stressor. Herein, we investigate fluctuations of plasma hormone concentrations (corticosterone and testosterone) and immunity (neutrophil to lymphocyte ratio, phagocytosis of blood cells, and plasma bacterial killing ability) in a toad species (Rhinella icterica) in response to six different periods of exposure to restraint stress. We observed increased plasma corticosterone concentrations following restraint in all sampled times (0.5 to 48 h), with the highest values being observed during the first hour (0.5 to 1 h). Restraint-induced increases in the neutrophil to lymphocyte ratio and phagocytosis percentage were observed from the first 0.5 h, gradually increasing after that with the time of restraint. We also observed decreased testosterone plasma concentrations in response to a more prolonged restraint (24 and 48 h). No changes were observed in plasma bacterial killing ability following restraint. Together, our results demonstrate dynamic time-related hormonal and immune changes. These results point to the fact that for some species measuring hormonal and immune variables at single time points following a stressor might work better when preceded by a study of the temporal changes of the response variables to the stimuli applied. Also, time of response needs to be considered when different variables are used as proxies of stress.
Collapse
Affiliation(s)
| | - Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Felipe Rangel Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Alan Siqueira Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - João Cunha Cyrino
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| |
Collapse
|
8
|
Assis BA, Avery JD, Earley RL, Langkilde T. Fitness Costs of Maternal Ornaments and Prenatal Corticosterone Manifest as Reduced Offspring Survival and Sexual Ornament Expression. Front Endocrinol (Lausanne) 2022; 13:801834. [PMID: 35311233 PMCID: PMC8928773 DOI: 10.3389/fendo.2022.801834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Colorful traits (i.e., ornaments) that signal quality have well-established relationships with individual condition and physiology. Furthermore, ornaments expressed in females may have indirect fitness effects in offspring via the prenatal physiology associated with, and social consequences of, these signaling traits. Here we examine the influence of prenatal maternal physiology and phenotype on condition-dependent signals of their offspring in adulthood. Specifically, we explore how prenatal maternal testosterone, corticosterone, and ornament color and size correlate with female and male offspring survival to adulthood and ornament quality in the lizard Sceloporus undulatus. Offspring of females with more saturated badges and high prenatal corticosterone were less likely to survive to maturity. Badge saturation and area were negatively correlated between mothers and their male offspring, and uncorrelated to those in female offspring. Maternal prenatal corticosterone was correlated negatively with badge saturation of male offspring in adulthood. Our results indicate that maternal ornamentation and prenatal concentrations of a stress-relevant hormone can lead to compounding fitness costs by reducing offspring survival to maturity and impairing expression of a signal of quality in surviving males. This mechanism may occur in concert with social costs of ornamentation in mothers. Intergenerational effects of female ornamentation and prenatal stress may be interdependent drivers of balancing selection and intralocus sexual conflict over signaling traits.
Collapse
Affiliation(s)
- Braulio A. Assis
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Braulio A. Assis,
| | - Julian D. Avery
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, United States
- The Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, United States
| | - Ryan L. Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
9
|
MacLeod KJ, Langkilde T, Heppner JJ, Howey CAF, Sprayberry K, Tylan C, Sheriff MJ. Compensating for a stressful pregnancy? Glucocorticoid treatment during gravidity reduces metabolic rate in female fence lizards post-parturition. Horm Behav 2021; 136:105072. [PMID: 34628291 DOI: 10.1016/j.yhbeh.2021.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022]
Abstract
Reproduction is a critical part of an animal's life history, but one which incurs significant costs to survival and future reproductive potential. These physiological consequences are likely to be influenced by context - for example, if an individual is subject to environmental stressors, physiological and behavioral changes associated with reproduction may be altered. Glucocorticoids, hormones produced as part of the physiological response to stressors, may alter how reproduction affects female physiology and behavior, and therefore the outcomes of reproductive trade-offs. Glucocorticoids prioritize immediate survival over reproduction, for example through changes in immune function, metabolic rate, and foraging, which may reduce energy expenditure or increase energy gain. However, we previously found that female eastern fence lizards (Sceloporus undulatus) experiencing elevated glucocorticoid levels during gestation were nevertheless able to maintain reproductive output and body condition. Here we investigate compensatory mechanisms by which eastern fence lizard females may maintain reproduction under experimental increases in a glucocorticoid, corticosterone (CORT). We found that, although CORT-treated females had similar immune function and behavior, they had reduced metabolic rates 3-5 days post-parturition compared to control females. Given that CORT-treated females spent a similar time basking and had equal food intake compared to control females, we suggest that the reduced metabolic rate is a mechanism by which CORT-treated females maintain their energy balance and reduce the energetic costs of gestation during periods of stress. This study suggests that physiological responses to reproduction may be context-dependent and could act to minimize costs of reproduction in situations where CORT is elevated (such as during periods of environmental stress).
Collapse
Affiliation(s)
- K J MacLeod
- Department of Ecosystem Science and Management, Pennsylvania State University, Forest Resources Building, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA; Department of Biology, Lund University, Sölvegatan 37, Lund 223 62, Sweden.
| | - T Langkilde
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - J J Heppner
- Department of Ecosystem Science and Management, Pennsylvania State University, Forest Resources Building, University Park, PA 16802, USA; Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - C A F Howey
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA; Department of Biology, University of Scranton, Loyola Science Center, Scranton, PA 18510, USA
| | - K Sprayberry
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - C Tylan
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - M J Sheriff
- Department of Ecosystem Science and Management, Pennsylvania State University, Forest Resources Building, University Park, PA 16802, USA; Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| |
Collapse
|
10
|
MacLeod KJ, Kohl KD, Trevelline BK, Langkilde T. Context-dependent effects of glucocorticoids on the lizard gut microbiome. Mol Ecol 2021; 31:185-196. [PMID: 34661319 DOI: 10.1111/mec.16229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
The vertebrate gut microbiota (bacterial, archaeal and fungal communities of the gastrointestinal tract) can have profound effects on the physiological processes of their hosts. Although relatively stable, changes in microbiome structure and composition occur due to changes in the environment, including exposure to stressors and associated increases in glucocorticoid hormones. Although a growing number of studies have linked stressor exposure to microbiome changes, few studies have experimentally explored the specific influence of glucocorticoids on the microbiome in wild animals, or across ecologically important processes (e.g., reproductive stages). Here we tested the response of the gut microbiota of adult female Sceloporus undulatus across gestation to ecologically relevant elevations of a stress-relevant glucocorticoid hormone (CORT) in order to determine (i) how experimentally elevated CORT influenced microbiome characteristics, and (ii) whether this relationship was dependent on reproductive context (i.e., whether females were gravid or not, and, in those that were gravid, gestational stage). We show that the effects of CORT on gut microbiota are complex and depend on both gestational state and stage. CORT treatment altered microbial community membership and resulted in an increase in microbiome diversity in late-gestation females, and microbial community membership varied according to treatment. In nongravid females, CORT treatment decreased interindividual variation in microbial communities, but this effect was not observed in late-gestation females. Our results highlight the need for a more holistic understanding of the downstream physiological effects of glucocorticoids, as well as the importance of context (here, gestational state and stage) in interpreting stress effects in ecology.
Collapse
Affiliation(s)
- Kirsty J MacLeod
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Biology, Lund University, Lund, Sweden
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian K Trevelline
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
| | - Tracy Langkilde
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Short-term stressors and corticosterone effects on immunity in male toads ( Rhinella icterica): A neuroimmune-endocrine approach. Brain Behav Immun Health 2021; 13:100230. [PMID: 34589745 PMCID: PMC8474493 DOI: 10.1016/j.bbih.2021.100230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
In the last decades, it is growing the idea that stress-induced immunomodulation is bimodal: with acute stress associated with enhancing effects while chronic stress with suppressive effects. However, the immune-endocrine interactions and its implications are often overlooked in ectotherms. We investigated the impact of corticosterone (CORT) treatment and short-term stressors on CORT plasma levels and the immunity of male toads (Rhinella icterica), using three distinct protocols: restraint, immune challenge (with lipopolysaccharide, LPS), and CORT transdermal application (TA). Our results showed increased CORT and neutrophil: lymphocyte ratio (NLR) regardless of the stress input (restraint, LPS challenge) or CORT TA. In the meantime, the bacterial killing ability (BKA) was not affected by any treatment, suggesting this immune parameter might be a more constitutive and robust response. Interestingly, the cellular immune response showed distinct patterns. Increased phagocytosis of blood leukocytes and phytohemagglutinin edema followed LPS and CORT TA (15 μg), respectively. In contrast, the phagocytosis of peritoneal leukocytes decreased after CORT TA (1 and 10 μg), indicating that short-term increases in CORT levels might impair local immune function. Such differences in cellular immunity might also be associated with CORT doses or the interaction between CORT and other immune mediators, such as melatonin, testosterone, and cytokines. Overall, our results highlight the immune-enhancing effects of the acute stress response and CORT TA, and the complexity of the immune-endocrine interaction in anurans. It also highlights the relevance of investigating distinct contexts for CORT increase arising from different situations, as well as diverse immune components for a better understanding of the stress-induced immunomodulation. Restraint, LPS and exogenous CORT increased CORT plasma levels in Rhinella icterica. Distinct acute stressors and exogenous CORT increased neutrophil: lymphocyte ratio. LPS induced increased phagocytosis of blood cells. Exogenous CORT increased PHA edema, and decreased phagocytosis of peritoneal cells. BKA were sustained in all acute stress protocols and exogenous CORT treatment.
Collapse
|
12
|
Spence AR, French SS, Hopkins GR, Durso AM, Hudson SB, Smith GD, Neuman‐Lee LA. Long‐term monitoring of two snake species reveals immune–endocrine interactions and the importance of ecological context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 333:744-755. [DOI: 10.1002/jez.2442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Austin R. Spence
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Susannah S. French
- Department of Biology, Ecology Center Utah State University Logan Utah USA
| | | | - Andrew M. Durso
- Department of Biological Sciences Florida Gulf Coast University Fort Myers Florida USA
| | - Spencer B. Hudson
- Department of Biology, Ecology Center Utah State University Logan Utah USA
| | - Geoffrey D. Smith
- Department of Biological Sciences Dixie State University St. George Utah USA
| | - Lorin A. Neuman‐Lee
- Department of Biological Sciences Arkansas State University Jonesboro Arkansas USA
| |
Collapse
|
13
|
Effects of temperature on plasma corticosterone in a native lizard. Sci Rep 2020; 10:16315. [PMID: 33004871 PMCID: PMC7530705 DOI: 10.1038/s41598-020-73354-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
The glucocorticoid stress response is frequently used to indicate vertebrate response to the environment. Body temperature may affect glucocorticoid concentrations, particularly in ectotherms. We conducted lab manipulations and field measurements to test the effects of body temperature on plasma corticosterone (predominant glucocorticoid in reptiles) in eastern fence lizards (Sceloporus undulatus). First, we acclimated lizards to one of 4 treatments: 22 °C, 29 °C, 33 °C, or 36 °C, and measured cloacal temperatures and plasma corticosterone concentrations at baseline and after exposure to a standardized stressor (cloth bag). Both baseline and stress-induced corticosterone concentrations were lower in lizards with lower body temperatures. Second, we acclimated lizards to 22 °C or 29 °C and exposed them to a standardized (cloth bag) stressor for 3 to 41 min. Lizards acclimated to 29 °C showed a robust increase in plasma corticosterone concentrations with restraint stress, but those at 22 °C showed no such increases in corticosterone concentrations. Third, we measured lizards upon capture from the field. There was no correlation between body temperature and baseline plasma corticosterone in field-caught lizards. These results suggest body temperature can significantly affect plasma corticosterone concentrations in reptiles, which may be of particular concern for experiments conducted under laboratory conditions but may not translate to the field.
Collapse
|
14
|
Hudson SB, Lidgard AD, French SS. Glucocorticoids, energy metabolites, and immunity vary across allostatic states for plateau side‐blotched lizards (
Uta stansburiana uniformis
) residing in a heterogeneous thermal environment. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:732-743. [DOI: 10.1002/jez.2415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Spencer B. Hudson
- Department of Biology Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | | | - Susannah S. French
- Department of Biology Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| |
Collapse
|
15
|
Schreier KC, Grindstaff JL. Repeatable behavioural and immune defence strategies against infection are not traded off. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Sprayberry K, Tylan C, Owen DAS, Macleod KJ, Sheriff MJ, Langkilde T. History of predator exposure affects cell-mediated immunity in female eastern fence lizards, Sceloporus undulatus (Squamata: Phrynosomatidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
On exposure to stressors, energy is diverted from non-urgent functions towards those important for immediate survival. The degree and nature of reallocation may be affected by the evolutionary history of the animal. The eastern fence lizard (Sceloporus undulatus) coexists in parts of its range with invasive fire ants (Solenopsis invicta), which attack and wound lizards and elevate stress-relevant hormones (corticosterone), whereas other populations have never been exposed to fire ants. We examined how a history of fire ant invasion affected the immune response in female lizards after exposure to exogenous corticosterone (mimicking exposure to a stressor) during gestation (dosing regimens differed among corticosterone-exposed lizards owing to the constraints of the original studies, but we found no evidence that this affected the outcome of the present study). A history of exposure to predatory stressors (fire ants) and corticosterone treatment affected cell-mediated immunity. Lizards from fire ant-invaded sites had a reduced immune response compared with those from uninvaded sites. Corticosterone treatment had no effect on the immune response of lizards from invaded sites but reduced the immune response of lizards from uninvaded sites. This suggests that an evolutionary history of exposure to wounding alters the immune response to corticosterone. Future work on how the immune system responds to environmental threats will be informative for the prediction and management of these threats.
Collapse
Affiliation(s)
- Kristen Sprayberry
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, USA
| | - Catherine Tylan
- Department of Biology, The Pennsylvania State University, University Park, USA
| | - Dustin A S Owen
- Department of Biology, The Pennsylvania State University, University Park, USA
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, USA
| | - Kirsty J Macleod
- Department of Biology, The Pennsylvania State University, University Park, USA
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, USA
| | - Michael J Sheriff
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, USA
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, University Park, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, USA
| |
Collapse
|
17
|
MacLeod KJ, McCormick GL, Langkilde T. Glucocorticoids do not influence a secondary sexual trait or its behavioral expression in eastern fence lizards. Sci Rep 2019; 9:5229. [PMID: 30914721 PMCID: PMC6435798 DOI: 10.1038/s41598-019-41596-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/12/2019] [Indexed: 01/12/2023] Open
Abstract
Secondary sexual traits and associated behaviors can be influenced by environmental factors such as exposure to stressors. Such effects may be mediated by the physiological stress response, which is typified by the release of glucocorticoid hormones. The effects of glucocorticoids on sexual traits such as plumage and display coloration have most commonly been studied in isolation rather than in conjunction with other pertinent aspects of signalling, such as behavior and habitat use, though these have substantial potential to alter signal perception. Here we test the effects of corticosterone (CORT), a common glucocorticoid, on a secondary sexual trait (badge coloration) in male eastern fence lizards (Sceloporus undulatus), and behaviors associated with its expression. We show that neither baseline nor experimentally manipulated CORT levels were associated with badge coloration. Further, elevation of CORT levels in the field did not alter signalling or associated territorial behaviors. There was a trend for CORT-treatment to influence perch height selection, which may influence signal perception. We suggest that future studies investigating the effects of environmental stressors and associated physiological changes on secondary sexual traits should consider behaviors and ecology relevant to signal perception in order to best understand the influence of stressors in nature.
Collapse
Affiliation(s)
- K J MacLeod
- Department of Ecosystem Science and Management, The Pennsylvania State University, Forest Resources Building, University Park, PA, 16802, USA. .,Department of Biology, Intercollege Graduate Degree Program in Ecology, and Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - G L McCormick
- Department of Biology, Intercollege Graduate Degree Program in Ecology, and Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, PA, 16802, USA
| | - T Langkilde
- Department of Biology, Intercollege Graduate Degree Program in Ecology, and Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
18
|
McCormick GL, Robbins TR, Cavigelli SA, Langkilde T. Population history with invasive predators predicts innate immune function response to early life glucocorticoid exposure. J Exp Biol 2019; 222:jeb.188359. [DOI: 10.1242/jeb.188359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/11/2019] [Indexed: 12/29/2022]
Abstract
Early life stress can suppress immune function, but it is unclear if transgenerational stress exposure modulates the immune consequences of early stress. In populations where, historically, the immune system is frequently activated, e.g. persistent stressors that cause injury, it may be maladaptive to suppress immune function after early life stress. Thus, the relationship between early life stress and immune function may vary with population-level historical stressor exposure. We collected gravid fence lizards (Sceloporus undulatus) from populations that naturally differ in long-term exposure to invasive fire ants (Solenopsis invicta). We manipulated early life stress in resulting offspring via weekly exposure to fire ants, application of the stress-relevant hormone corticosterone, or control treatment from 2 to 43 weeks of age. We quantified adult immune function in these offspring with baseline and antigen-induced hemagglutination and plasma bacterial killing ability. Early life corticosterone exposure suppressed baseline hemagglutination in offspring of lizards from populations without fire ants but enhanced hemagglutination in those from populations with fire ants. This enhancement may prepare lizards for high rates of wounding, toxin exposure, and infection associated with fire ant attack. Adult bacterial killing ability and hemagglutination were not affected by early life exposure to fire ants, but the latter was higher in offspring of lizards from invaded sites. A population's history of persistent wounding may thus alter individual long-term immunological responses to early life stressors. Further consideration of historical stressor exposure (type and duration) may be important to better understand how early life stressors affect adult physiology.
Collapse
Affiliation(s)
- Gail L. McCormick
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Brain, Behavior and Cognition, The Huck Institute of the Life Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Travis R. Robbins
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sonia A. Cavigelli
- The Center for Brain, Behavior and Cognition, The Huck Institute of the Life Science, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tracy Langkilde
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Brain, Behavior and Cognition, The Huck Institute of the Life Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Iacchetta MG, Maloney KN, Gienger CM. Endocrine stress response of Eastern Fence Lizards in fire-disturbed landscapes. Curr Zool 2018; 65:643-650. [PMID: 31857811 PMCID: PMC6911847 DOI: 10.1093/cz/zoy092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/24/2018] [Indexed: 12/23/2022] Open
Abstract
Landscape disturbances can alter habitat structure and resource availability, often inducing physiological responses by organisms to cope with the changing conditions. Quantifying the endocrine stress response through measurement of glucocorticoids has become an increasingly common method for determining how organisms physiologically respond to challenges imposed by their environment. We tested the hypothesis that Eastern Fence Lizards cope with fire disturbance effects by modulating their secretion of corticosterone (CORT). We measured the baseline and stress-induced plasma CORT of male Eastern Fence Lizards in a chronosequence of fire-altered habitats (recently burned, recovering from burn, and unburned). Although habitat use by lizards differed among burn treatments, including differences in use of canopy cover, leaf litter, and vegetation composition, we did not detect a significant effect of fire-induced habitat alteration on plasma CORT concentration or on body condition. In addition, we found no effect of blood draw treatment (baseline or stress-induced), body temperature, body condition, or time taken to collect blood samples on concentration of plasma CORT. Low intensity burns, which are typical of prescribed fire, may not be a sufficient stressor to alter CORT secretion in Eastern Fence Lizards (at least during the breeding season). Instead, lizards may avoid allostatic overload using behavioral responses and by selecting microsites within their environment that permit thermoregulatory opportunities necessary for optimal performance and energy assimilation.
Collapse
Affiliation(s)
- Michael G Iacchetta
- Department of Biology and Center of Excellence for Field Biology, Austin Peay State University Clarksville, TN, USA.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - K Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center Nashville, TN, USA
| | - C M Gienger
- Department of Biology and Center of Excellence for Field Biology, Austin Peay State University Clarksville, TN, USA
| |
Collapse
|
20
|
Titon SCM, Titon Junior B, Assis VR, Kinker GS, Fernandes PACM, Gomes FR. Interplay among steroids, body condition and immunity in response to long-term captivity in toads. Sci Rep 2018; 8:17168. [PMID: 30464319 PMCID: PMC6249311 DOI: 10.1038/s41598-018-35495-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Stressful experiences can promote harmful effects on physiology and fitness. However, stress-mediated hormonal and immune changes are complex and may be highly dependent on body condition. Here, we investigated captivity-associated stress effects, over 7, 30, 60, and 90 days on plasma corticosterone (CORT) and testosterone (T) levels, body index, and innate immunity (bacterial killing ability and phagocytosis of peritoneal cells) in toads (Rhinella icterica). Toads in captivity exhibited elevated CORT and decreased T and immunity, without changes in body index. The inter-relationships between these variables were additionally contrasted with those obtained previously for R. schneideri, a related species that exhibited extreme loss of body mass under the same captive conditions. While T and phagocytosis were positively associated in both species, the relationship between CORT and bacterial killing ability was dependent on body index alterations. While CORT and bacterial killing ability were positively associated for toads that maintained body index, CORT was negatively associated with body index in toads that lost body mass over time in captivity. In these same toads, body index was positively associated with bacterial killing ability. These results demonstrate that steroids-immunity inter-relationships arising from prolonged exposure to a stressor in toads are highly dependent on body condition.
Collapse
Affiliation(s)
| | - Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Gabriela Sarti Kinker
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
21
|
Langkilde T, Thawley CJ, Robbins TR. Behavioral Adaptations to Invasive Species. ADVANCES IN THE STUDY OF BEHAVIOR 2017. [DOI: 10.1016/bs.asb.2016.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
DuRant SE, Arciniega ML, Bauer CM, Romero LM. A test of reactive scope: Reducing reactive scope causes delayed wound healing. Gen Comp Endocrinol 2016; 236:115-120. [PMID: 27432814 DOI: 10.1016/j.ygcen.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022]
Abstract
Reactive scope predicts that all animals have an adaptive ability to respond to stressors in their environment, termed reactive homeostasis, and that only when an animal's response to stressful stimuli exceeds a certain threshold (homeostatic overload) will stress have pathological effects. While this framework has successfully helped interpret effects of stressors on wildlife, no study has designed an experiment to directly test this framework. This study was designed to expose house sparrows (Passer domesticus) to treatments that would result in varying ranges of reactive homeostasis during chronic stress, which based on the reactive scope model should cause birds with the lowest reactive homeostasis range to exhibit signs of pathology during a subsequent challenge. To modulate the reactive homeostasis range, we altered allostatic load of birds by exposing them to chronic stress while either elevating, blocking, or not manipulating corticosterone. After concluding chronic stress treatments, birds were exposed to the subsequent challenge of a superficial wound. Individuals treated with corticosterone during chronic stress (high allostatic load) experienced the most pathology, including both weight loss and slower wound healing. Unmanipulated birds (medium allostatic load) also experienced weight loss but had normal healing rates, while birds with blocked corticosterone (low allostatic load) had minimal weight loss and normal healing rates. Our results indicate that increased allostatic load reduces the reactive homeostasis range, thereby causing individuals to cross the homeostatic overload threshold sooner, and thus support the reactive scope framework.
Collapse
Affiliation(s)
- S E DuRant
- Department of Integrative Biology, Oklahoma State University, Stillwater OK, 74078, United States; Department of Biology, Tufts University, Medford, MA 02144, United States.
| | - M L Arciniega
- Department of Biology, Tufts University, Medford, MA 02144, United States
| | - C M Bauer
- Department of Biology, Tufts University, Medford, MA 02144, United States
| | - L M Romero
- Department of Biology, Tufts University, Medford, MA 02144, United States
| |
Collapse
|
23
|
DuRant SE, de Bruijn R, Tran MN, Romero LM. Wound-healing ability is conserved during periods of chronic stress and costly life history events in a wild-caught bird. Gen Comp Endocrinol 2016; 229:119-26. [PMID: 26965949 DOI: 10.1016/j.ygcen.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 12/31/2022]
Abstract
Chronic stress, potentially through the actions of corticosterone, is thought to directly impair the function of immune cells. However, chronic stress may also have an indirect effect by influencing allocation of energy, ultimately shifting resources away from the immune system. If so, the effects of chronic stress on immune responses may be greater during energetically-costly life history events. To test whether the effects of chronic stress on immune responses differ during expensive life history events we measured wound healing rate in molting and non-molting European starlings (Sturnus vulgaris) exposed to control or chronic stress conditions. To determine whether corticosterone correlated with wound healing rates before starting chronic stress, we measured baseline and stress-induced corticosterone and two estimates of corticosterone release and regulation, negative feedback (using dexamethasone injection), and maximal capacity of the adrenals to secrete corticosterone (using adrenocorticotropin hormone [ACTH] injection). After 8days of exposure to chronic stress, we wounded both control and chronically stressed birds and monitored healing daily. We monitored nighttime heart rate, which strongly correlates with energy expenditure, and body mass throughout the study. Measures of corticosterone did not differ with molt status. Contrary to work on lizards and small mammals, all birds, regardless of stress or molt status, fully-healed wounds at similar rates. Although chronic stress did not influence healing rates, individuals with low baseline corticosterone or strong negative feedback had faster healing rates than individuals with high baseline corticosterone or weak negative feedback. In addition, wound healing does appear to be linked to energy expenditure and body mass. Non-molting, chronically stressed birds decreased nighttime heart rate during healing, but this pattern did not exist in molting birds. Additionally, birds of heavier body mass at the start of the experiment healed wounds more rapidly than lighter birds. Finally, chronically stressed birds lost body mass at the start of chronic stress, but after wounding all birds regardless of stress or molt status started gaining weight, which continued for the remainder of the study. Increased body mass could suggest compensatory feeding to offset energetic or resource demands (e.g., proteins) of wound healing. Although chronic stress did not inhibit healing, our data suggest that corticosterone may play an important role in mediating healing processes and that molt could influence energy saving tactics during periods of chronic stress. Although the experiment was designed to test allostasis, interpretation of data through reactive scope appears to be a better fit.
Collapse
Affiliation(s)
- S E DuRant
- Department of Biology, Tufts University, Medford, MA 02155, United States; Department of Zoology, Oklahoma State University, Stillwater, OK 74078, United States.
| | - R de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | - M N Tran
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | - L M Romero
- Department of Biology, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
24
|
McCormick GL, Shea K, Langkilde T. How do duration, frequency, and intensity of exogenous CORT elevation affect immune outcomes of stress? Gen Comp Endocrinol 2015. [PMID: 26209864 DOI: 10.1016/j.ygcen.2015.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stress is typically characterized as "acute" (lasting from minutes to hours) or "chronic" (lasting from days to months). These terms are of limited use as they are inconsistently used and only encompass one aspect of the stressor (duration). Short and long duration stress are generally thought to produce specific outcomes (e.g. acute stress enhances while chronic stress suppresses immune function). We propose that aspects of stress other than duration, such as frequency and intensity, are important in determining its outcome. We experimentally manipulated duration, frequency, and intensity of application of exogenous corticosterone, CORT, in Sceloporus undulatus (Eastern fence lizards) and measured the immune outcomes. Our findings reveal that immune outcomes of stress are not easily predicted from the average amount or duration of CORT elevation, but that intensity plays an important role. Although three of our treatments received the same average amount of CORT, they produced different effects on immune outcomes (hemagglutination). As predicted by the literature, short-duration exposure to low-dose CORT enhanced hemagglutination; however, short-duration exposure to high-dose CORT suppressed hemagglutination, suggesting that stressor intensity affects immune outcomes of stress. While both are traditionally termed "acute" based on duration, these treatments produced different immune outcomes. Long-duration ("chronic") exposure to CORT did not produce the expected suppression of hemagglutination. Frequency of CORT application did not alter immune outcomes at low intensities. These results highlight the need to quantify more than just the duration of a stressor if we are to understand and manage the ecological consequences of stress. Specifically, we should consider stressor frequency and intensity, as well as duration, for a more complete characterization and understanding of stress.
Collapse
Affiliation(s)
- Gail L McCormick
- Department of Biology, Intercollege Graduate Degree Program in Ecology, 208 Mueller Lab, The Pennsylvania State University, University Park, PA 16802, USA; The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Katriona Shea
- Department of Biology, Intercollege Graduate Degree Program in Ecology, 208 Mueller Lab, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tracy Langkilde
- Department of Biology, Intercollege Graduate Degree Program in Ecology, 208 Mueller Lab, The Pennsylvania State University, University Park, PA 16802, USA; The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
25
|
Effects of acute restraint stress, prolonged captivity stress and transdermal corticosterone application on immunocompetence and plasma levels of corticosterone on the cururu Toad (Rhinella icterica). PLoS One 2015; 10:e0121005. [PMID: 25831055 PMCID: PMC4382218 DOI: 10.1371/journal.pone.0121005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoid steroids modulate immunocompetence in complex ways with both immunoenhancing and immunosuppressive effects in vertebrates exposed to different stressors. Such bimodal effects have been associated with variation in duration and intensity of the stress response. Given that natural populations have been exposed to a multitude of stressors, a better understanding of the functional association between duration and intensity of the stress response, the resulting changes in glucocorticoid plasma levels and their impact on different aspects of immunocompetence emerges as a cornerstone for vertebrate conservation strategies. We investigated the effects of a restraint challenge (with and without movement restriction), long-term captivity, and transdermal corticosterone application on plasma levels of corticosterone (hereinafter referred to as CORT) and different parameters of innate immunocompetence in the male cururu toads (Rhinella icterica). We show that for R. icterica restraint for 24h proved to be a stressful condition, increasing CORT by 3-fold without consistent immunological changes. However, the application of a more intense stressor (restraint with movement restriction), for the same period, potentiated this response resulting in a 9-fold increase in CORT, associated with increase Neutrophil/Lymphocyte ratio (N:L) and a lower bacterial killing ability (BKA). Transdermal application of corticosterone efficiently mimics repeated acute stress response events, without changing the immune parameters even after 13 days of treatment. Interestingly, long-term captivity did not mitigate the stress response, since the toads maintained 3-fold increased CORT even after 3 months under these conditions. Moreover, long-term captivity in the same condition increased total leukocyte count (TLC) and generated an even greater decrease in BKA, suggesting that consequences of the stress response can be aggravated by time in captivity.
Collapse
|