1
|
Zamora‐Camacho FJ, Aragón P. Increased Temperature and Exposure to Ammonium Alter the Life Cycle of an Anuran Species. Ecol Evol 2024; 14:e70685. [PMID: 39629171 PMCID: PMC11612019 DOI: 10.1002/ece3.70685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Amphibian populations are undergoing a major recession worldwide, likely triggered by global change components such as the global warming and pollutants, among which agrochemicals, in general, and fertilizers, in particular, play a central role given their relevance in agriculture. Potential synergies among these stressors could maximize their individual effects. In this work, we investigated the consequences of a controlled chronic exposure to increased temperature and a sublethal dose of ammonium during the larval stage of Pelophylax perezi frogs on the growth, development, and locomotor performance of tadpoles and the metamorphs they gave rise to. To that end, tadpoles were reared either in heated or nonheated tanks, with or without ammonium added. The parents of these tadpoles came from either a pine grove or an agrosystem. Survival was reduced in agrosystem tadpoles reared with ammonium. Increased temperature potentiated tadpole growth while giving way to smaller metamorphs. Faster growth could be a consequence of increased metabolism, whereas the smaller size could follow an accelerated development and metamorphosis, which reduced the growth period. Also, swimming speed was greater in tadpoles reared in heated tanks, while jumping distance was greater in metamorphs reared in nonheated tanks. The effects of temperature were more marked in agrosystem than in pine grove individuals, which could mirror reduced adaptability. Thus, the ability to withstand the effects of these stressors was lower in agrosystem tadpoles.
Collapse
Affiliation(s)
- Francisco Javier Zamora‐Camacho
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
- Department of Biology of Organisms and SystemsUniversity of OviedoOviedoSpain
| | - Pedro Aragón
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| |
Collapse
|
2
|
Corrie LM, Kuecks-Winger H, Ebrahimikondori H, Birol I, Helbing CC. Transcriptomic profiling of Rana [Lithobates] catesbeiana back skin during natural and thyroid hormone-induced metamorphosis under different temperature regimes with particular emphasis on innate immune system components. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101238. [PMID: 38714098 DOI: 10.1016/j.cbd.2024.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
As amphibians undergo thyroid hormone (TH)-dependent metamorphosis from an aquatic tadpole to the terrestrial frog, their innate immune system must adapt to the new environment. Skin is a primary line of defense, yet this organ undergoes extensive remodelling during metamorphosis and how it responds to TH is poorly understood. Temperature modulation, which regulates metamorphic timing, is a unique way to uncover early TH-induced transcriptomic events. Metamorphosis of premetamorphic tadpoles is induced by exogenous TH administration at 24 °C but is paused at 5 °C. However, at 5 °C a "molecular memory" of TH exposure is retained that results in an accelerated metamorphosis upon shifting to 24 °C. We used RNA-sequencing to identify changes in Rana (Lithobates) catesbeiana back skin gene expression during natural and TH-induced metamorphosis. During natural metamorphosis, significant differential expression (DE) was observed in >6500 transcripts including classic TH-responsive transcripts (thrb and thibz), heat shock proteins, and innate immune system components: keratins, mucins, and antimicrobial peptides (AMPs). Premetamorphic tadpoles maintained at 5 °C showed 83 DE transcripts within 48 h after TH administration, including thibz which has previously been identified as a molecular memory component in other tissues. Over 3600 DE transcripts were detected in TH-treated tadpoles at 24 °C or when tadpoles held at 5 °C were shifted to 24 °C. Gene ontology (GO) terms related to transcription, RNA metabolic processes, and translation were enriched in both datasets and immune related GO terms were observed in the temperature-modulated experiment. Our findings have implications on survival as climate change affects amphibia worldwide.
Collapse
Affiliation(s)
- Lorissa M Corrie
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Haley Kuecks-Winger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Hossein Ebrahimikondori
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
3
|
Rutkoski CF, Grott SC, Israel NG, Guerreiro FDC, Carneiro FE, Bitschinski D, Warsneski A, Horn PA, Lima D, Bastolla CLV, Mattos JJ, Bainy ACD, da Silva EB, de Albuquerque CAC, Alves TC, de Almeida EA. Prednisone and prednisolone effects on development, blood, biochemical and histopathological markers of Aquarana catesbeianus tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106869. [PMID: 38387247 DOI: 10.1016/j.aquatox.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Synthetic glucocorticoids are often found in surface waters and can cause harmful effects to aquatic organisms such as amphibians. In this work we evaluated the effects of the drugs prednisone (PD) and prednisolone (PL) on developmental, molecular, blood, biochemical and histological markers. Aquarana catesbeianus tadpoles were exposed for 16 days to environmentally relevant concentrations of 0, 0.1, 1 and 10 µg/L of both drugs. PD increased the transcript levels of the enzyme deiodinase III (Dio3), the hormones cortisol and T4 and delayed development. Changes in the thyroid gland occurred after tadpoles were exposed to both drugs, with a reduction in the diameter and number of follicles and an increase/or decrease in area. Also, both drugs caused a decrease in lymphocytes (L) and an increase in neutrophils (N), thrombocytes, the N:L ratio and lobed and notched erythrocytes. Increased activity of the enzymes superoxide dismutase, glutathione S-transferase and glucose 6-phosphate dehydrogenase was observed after exposure to PD. Furthermore, both drugs caused an increase in the activity of the enzymes catalase and glutathione peroxidase. However, only PD caused oxidative stress in exposed tadpoles, evidenced by increased levels of malondialdehyde and carbonyl proteins. Both drugs caused an increase in inflammatory infiltrates, blood cells and melanomacrophages in the liver. Our results indicate that PD was more toxic than PL, affecting development and causing oxidative stress.
Collapse
Affiliation(s)
- Camila Fatima Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Daiane Bitschinski
- Biodiversity Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Aline Warsneski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Priscila Aparecida Horn
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | | | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | |
Collapse
|
4
|
Field EM, Corrie LM, Kuecks-Winger HN, Helbing CC. Utilization of temperature-mediated activation of thyroid hormone-induced molecular memory to evaluate early signaling events in the olfactory epithelium of Rana [Lithobates] catesbeiana tadpoles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101189. [PMID: 38218111 DOI: 10.1016/j.cbd.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The amphibian olfactory system is highly distinct between aquatic tadpole and terrestrial frog life stages and therefore must remodel extensively during thyroid hormone (TH)-dependent metamorphosis. Developmentally appropriate functioning of the olfactory epithelium is critical for survival. Previous studies in other Rana [Lithobates] catesbeiana premetamorphic tadpole tissues showed that initiation of TH-induced metamorphosis can be uncoupled from execution of TH-dependent programs by holding tadpoles in the cold rather than at warmer permissive temperatures. TH-exposed tadpoles at the nonpermissive (5 °C) temperature do not undergo metamorphosis but retain a "molecular memory" of TH exposure that is activated upon shift to a permissive warm temperature. Herein, premetamorphic tadpoles were held at permissive (24 °C) or nonpermissive (5 °C) temperatures and injected with 10 pmoles/g body weight 3,5,3'-triiodothyronine (T3) or solvent control. Olfactory epithelium was collected at 48 h post-injection. RNA-sequencing (RNA-Seq) and reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) analyses generated differentially expressed transcript profiles of 4328 and 54 contigs for permissive and nonpermissive temperatures, respectively. Translation, rRNA, spliceosome, and proteolytic processes gene ontologies were enriched by T3 treatment at 24 °C while negative regulation of cell proliferation was enriched by T3 at 5 °C. Of note, as found in other tissues, TH-induced basic leucine zipper-containing protein-encoding transcript, thibz, was significantly induced by T3 at both temperatures, suggesting a role in the establishment of molecular memory in the olfactory epithelium. The current study provides critical insights by deconstructing early TH-induced induction of postembryonic processes that may be targets for disruption by environmental contaminants.
Collapse
Affiliation(s)
- Emma M Field
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Lorissa M Corrie
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Haley N Kuecks-Winger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
5
|
Evans EP, Helbing CC. Defining components of early thyroid hormone signalling through temperature-mediated activation of molecular memory in cultured Rana [lithobates] catesbeiana tadpole back skin. Gen Comp Endocrinol 2024; 347:114440. [PMID: 38159870 DOI: 10.1016/j.ygcen.2023.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Thyroid hormones (THs) are essential signalling molecules for the postembryonic development of all vertebrates. THs are necessary for the metamorphosis from tadpole to froglet and exogenous TH administration precociously induces metamorphosis. In American bullfrog (Rana [Lithobates] catesbeiana) tadpoles, the TH-induced metamorphosis observed at a warm temperature (24 °C) is arrested at a cold temperature (4 °C) even in the presence of exogenous THs. However, when TH-exposed tadpoles are shifted from cold to warm temperatures (4 → 24 °C), they undergo TH-dependent metamorphosis at an accelerated rate even when the initial TH signal is no longer present. Thus, they possess a "molecular memory" of TH exposure that establishes the TH-induced response program at the cold temperature and prompts accelerated metamorphosis after a shift to a warmer temperature. The components of the molecular memory that allow the uncoupling of initiation from the execution of the metamorphic program are not understood. To investigate this, we used cultured tadpole back skin (C-Skin) in a repeated measures experiment under 24 °C only, 4 °C only, and 4 → 24 °C temperature shifted regimes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) and RNA-sequencing (RNA-seq) analyses. RNA-seq identified 570, 44, and 890 transcripts, respectively, that were significantly changed by TH treatment. These included transcripts encoding transcription factors and proteins involved in mRNA structure and stability. Notably, transcripts associated with molecular memory do not overlap with those identified previously in cultured tail fin (C-fin) except for TH-induced basic leucine zipper-containing protein (thibz) suggesting that thibz may have a central role in molecular memory that works with tissue-specific factors to establish TH-induced gene expression programs.
Collapse
Affiliation(s)
- E P Evans
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - C C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
6
|
Grott SC, Israel NG, Lima D, Velasquez Bastolla CL, Carneiro F, Alves TC, Bitschinski D, Dias Bainy AC, Barbosa da Silva E, Coelho de Albuquerque CA, Alves de Almeida E. Effects of the herbicide ametryn on development and thyroidogenesis of bullfrog tadpoles (Aquarana catesbeiana) under different temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121159. [PMID: 36716946 DOI: 10.1016/j.envpol.2023.121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Thyroid hormones (TH) are essential for the metamorphosis of amphibians and their production can be influenced by environmental stressors, such as temperature fluctuations, and exposure to aquatic pollutants, such as herbicides. In the present study we evaluated the influence of different temperatures (25 and 32 °C) on the effects of the herbicide ametryn (AMT, 0 - control, 10, 50 and 200 ng.L-1) for 16 days on thyroidogenesis of bullfrog tadpoles. Higher temperature and AMT exposure caused a delay in the development of tadpoles, despite no differences were noted in weight gain and total length of the animals. Levels of triiodothyronine (T3) and thyroxine (T4) were not altered neither by AMT nor by temperature, but the highest temperature caused a decrease in total area and number of follicles in the thyroid gland. Transcript levels of thyroid hormone receptors alpha and beta (TRα and TRβ) and iodothyronine deiodinase 3 (DIO3) were lower at 32 °C, which is consistent with developmental delay at the higher temperature. Tadpoles exposed to 200 ng.L-1 of AMT at 25 °C also presented delayed development, which was consistent with lower TRα and DIO3 transcript levels. Lower levels of estradiol were noted in tadpoles exposed to AMT at the higher temperature, being also possibly related to a developmental delay. This study demonstrates that higher temperature and AMT exposure impair thyroidgenesis in bullfrog tadpoles, disrupting metamorphosis.
Collapse
Affiliation(s)
- Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Francisco Carneiro
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daiane Bitschinski
- Biodiversity Post-graduate Program, University of Blumenau, Blumenau, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | | | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
7
|
Wang W, Wang D, Li X, Ai W, Wang X, Wang H. Toxicity mechanisms regulating bone differentiation and development defects following abnormal expressions of miR-30c targeted by triclosan in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158040. [PMID: 35973548 DOI: 10.1016/j.scitotenv.2022.158040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
As a ubiquitous environmental estrogen-disrupting chemical, triclosan (TCS) can induce severe osteotoxicity; however, the underlying molecular mechanisms remain uncertain. Herein, we evaluated the toxic effects of TCS on the development of cartilage and osteogenesis in 5-dpf zebrafish. Under TCS exposure from 62.5 to 250 μg/L, several osteodevelopmental malformations were observed, such as defect of craniofacial cartilage, pharyngeal arch cartilage dysplasia, and impairments on skeletal mineralization. Further, the morphology of mature chondrocytes became swollen and deformed, their number decreased, nucleus displacement occurred, and most immature chondrocytes were crowded at both ends of ceratobranchial. SEM observation of larval caudal fin revealed that, the layer of collagen fibers and the mineralized calcium nodules were significantly decreased, with the collagen fibers becoming shorter upon TCS exposure. The activity of bone-derived alkaline phosphatase significantly reduced, and marker functional genes related to cartilage and osteoblast development were abnormally expressed. RNA-seq and bioinformatics analysis indicated, that changes in marker genes intimately related to the negative regulation of miR-30c-5p overexpression targeted by TCS, and the up-regulation of miR-30c induced bone developmental defects by inhibiting the bone morphogenetic protein (BMP) signaling pathway. These findings were confirmed by artificially intervening the expression of miR-30c and using BMP pathway agonists in vivo. In sum, TCS induced osteototoxicity by targeting miR-30c up-regulation and interfering in the BMP signaling pathway. These findings enhance mechanistic understanding of TCS-induced spontaneous bone disorders and bone metastatic diseases. Further research is necessary to monitor chronic TCS-exposure levels in surrounding environments and develop relevant safety precautions based on TCS environmental risk.
Collapse
Affiliation(s)
- Weiwei Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Danting Wang
- Department of Transfusion, The West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu 610041, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiming Ai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
8
|
Effects of Low Temperature on Antioxidant and Heat Shock Protein Expression Profiles and Transcriptomic Responses in Crayfish ( Cherax destructor). Antioxidants (Basel) 2022; 11:antiox11091779. [PMID: 36139854 PMCID: PMC9495765 DOI: 10.3390/antiox11091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Low temperature is a critical factor restricting the growth and survival of aquatic animals, but research on the mechanism of response to low temperature in Cherax destructor is limited. C. destructor is one of the most important freshwater crustaceans with strong adaptability in Australia, and it has been commercialized gradually in recent years. Here, growth indicators, antioxidant parameters, anti-stress gene expression, and transcriptome sequencing were used on crayfish following 8 weeks of low-temperature acclimation. The results showed that weight gain, length gain, and molting rates decreased as the temperature decreased. The activity of antioxidant enzymes decreased, while the content of antioxidant substances and the expression of anti-stress genes increased. Transcriptome sequencing identified 589 differentially expressed genes, 279 of which were upregulated and 310 downregulated. The gene functions and pathways for endocrine disorders, glucose metabolism, antioxidant defense, and immune responses were identified. In conclusion, although low-temperature acclimation inhibited the basal metabolism and immune ability of crayfish, it also increased the antioxidant substance content and anti-stress-gene expression to protect the organism from low-temperature damage. This study provided molecular insights into the study of low-temperature responses of low-temperature-tolerant crustacean species.
Collapse
|
9
|
Grott SC, Israel N, Lima D, Bitschinski D, Abel G, Alves TC, da Silva EB, de Albuquerque CAC, Mattos JJ, Bainy ACD, de Almeida EA. Influence of temperature on growth, development and thyroid metabolism of American bullfrog tadpoles (Lithobates catesbeianus) exposed to the herbicide tebuthiuron. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103910. [PMID: 35718323 DOI: 10.1016/j.etap.2022.103910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The influence of temperature (25 and 32 °C) on the negative effects of the herbicide tebuthiuron (TBU, 0, 10, 50 and 200 ng.L-1, 16 days) on thyroid function and metamorphosis of Lithobates catesbeianus tadpoles was evaluated. Metamorphosis was accelerated by TBU exposure at 25 ºC, but delayed at 32 ºC with considerable losses of body mass. T3 and T4 levels were not altered. The highest TBU concentrarion at 25 ºC increased TR β and DIO3 transcript levels, which is consistent with development acceleration in tadpoles. At 32 ºC TR β transcript levels were lower than the values recorded at 25 ºC, and those tadpoles exposed to the highest TBU concentration presented increased diameter of thyroid follicles compared to controls at same temperature. This study evidences that TBU at environmentally realistic concentrations is able to disrupt thyroidogenesis in bullfrog tadpoles, impairing their development. These effects are influenced by temperature.
Collapse
Affiliation(s)
- Suelen C Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Israel
- Center for Studies in Aquatic Toxicology, CETAq/FURB, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | - Gustavo Abel
- Center for Studies in Aquatic Toxicology, CETAq/FURB, Brazil
| | - Thiago C Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Elizia B da Silva
- Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | | | - Jacó J Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Eduardo A de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
10
|
Koide EM, Abbott EA, Helbing CC. Uncovering early thyroid hormone signalling events through temperature-mediated activation of molecular memory in the cultured bullfrog tadpole tail fin. Gen Comp Endocrinol 2022; 323-324:114047. [PMID: 35472316 DOI: 10.1016/j.ygcen.2022.114047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
Abstract
Thyroid hormone (TH) is a critical signalling molecule for all vertebrate organisms, playing a crucial role in postembryonic development. The best-studied mechanism of TH response is through modulating gene expression, however TH's involvement in coordinating the early steps in the TH signal transduction pathway is still poorly understood. The American bullfrog, Rana [Lithobates] catesbeiana, is a useful model to study these early responses as tadpole post-embryonic development in the form of metamorphosis of the tadpole into a frog can be experimentally induced by TH exposure. The rate of TH-induced metamorphosis can be modulated by temperature where sufficiently cold temperatures (5 °C) completely halt precocious metamorphosis. Interestingly, when premetamorphic tadpoles exposed to exogenous THs at 5 °C are shifted to permissive temperatures (24 °C), their metamorphic rate exceeds that of TH-exposed tadpoles at the permissive temperature. This suggests that a molecular memory of TH exposure is retained at 5 °C even after THs are cleared at this low temperature. However, the molecular memory machinery is poorly understood. Herein we use RNA-seq analysis to identify potential components of the molecular memory in cultured tail fin that allows for the recapitulation of the molecular memory phenomenon. Eighty-one gene transcripts were TH-responsive at 5 °C compared to matched controls indicating that the molecular memory is more complex than previously thought. Many of these transcripts encode transcription factors including thyroid hormone-induced B/Zip, thibz, and a novel krüppel-like factor family member, klfX. Actinomycin D and cycloheximide treatment had no effect on their TH induction suggesting that a change in transcription or translation is not required. Rather a change in RNA stability may be a possible mechanism contributing to the molecular memory. The ability to manipulate temperature and TH response in cultured organs provide an exciting opportunity to further elucidate the early TH signalling mechanisms during postembryonic development.
Collapse
Affiliation(s)
- E M Koide
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - E A Abbott
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - C C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
11
|
Beltrán I, Herculano-Houzel S, Sinervo B, Whiting MJ. Are ectotherm brains vulnerable to global warming? Trends Ecol Evol 2021; 36:691-699. [PMID: 34016477 DOI: 10.1016/j.tree.2021.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
Elevated temperatures during development affect a wide range of traits in ectotherms. Less well understood is the impact of global warming on brain development, which has only rarely been studied experimentally. Here, we evaluate current progress in the field and search for common response patterns among ectotherm groups. Evidence suggests that temperature may have a positive effect on neuronal activity and growth in developing brains, but only up to a threshold, above which temperature is detrimental to neuron development. These responses appear to be taxon dependent but this assumption may be due to a paucity of data for some taxonomic groups. We provide a framework with which to advance this highly promising field in the future.
Collapse
Affiliation(s)
- Iván Beltrán
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
12
|
Usal M, Veyrenc S, Darracq-Ghitalla-Ciock M, Regnault C, Sroda S, Fini JB, Canlet C, Tremblay-Franco M, Raveton M, Reynaud S. Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116109. [PMID: 33234375 DOI: 10.1016/j.envpol.2020.116109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L-1) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2-BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2-BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.
Collapse
Affiliation(s)
- Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | | | - Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sophie Sroda
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Jean-Baptiste Fini
- Unité PhyMA Laboratory, Adaptation Du Vivant, Muséum National D'Histoire Naturelle, 7 Rue Cuvier, 75005, Paris, France.
| | - Cécile Canlet
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027, Toulouse, France.
| | - Marie Tremblay-Franco
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027, Toulouse, France.
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
13
|
Small heat shock proteins in the amphibian Pelophylax bergeri: Cloning and characterization of Hsp27 and Hsp30 cDNAs and their expression analysis in ex vivo skin exposed to abiotic stresses. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:90-101. [DOI: 10.1016/j.cbpa.2019.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023]
|
14
|
Thambirajah AA, Koide EM, Imbery JJ, Helbing CC. Contaminant and Environmental Influences on Thyroid Hormone Action in Amphibian Metamorphosis. Front Endocrinol (Lausanne) 2019; 10:276. [PMID: 31156547 PMCID: PMC6530347 DOI: 10.3389/fendo.2019.00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Aquatic and terrestrial environments are increasingly contaminated by anthropogenic sources that include pharmaceuticals, personal care products, and industrial and agricultural chemicals (i. e., pesticides). Many of these substances have the potential to disrupt endocrine function, yet their effect on thyroid hormone (TH) action has garnered relatively little attention. Anuran postembryonic metamorphosis is strictly dependent on TH and perturbation of this process can serve as a sensitive barometer for the detection and mechanistic elucidation of TH disrupting activities of chemical contaminants and their complex mixtures. The ecological threats posed by these contaminants are further exacerbated by changing environmental conditions such as temperature, photoperiod, pond drying, food restriction, and ultraviolet radiation. We review the current knowledge of several chemical and environmental factors that disrupt TH-dependent metamorphosis in amphibian tadpoles as assessed by morphological, thyroid histology, behavioral, and molecular endpoints. Although the molecular mechanisms for TH disruption have yet to be determined for many chemical and environmental factors, several affect TH synthesis, transport or metabolism with subsequent downstream effects. As molecular dysfunction typically precedes phenotypic or histological pathologies, sensitive assays that detect changes in transcript, protein, or metabolite abundance are indispensable for the timely detection of TH disruption. The emergence and application of 'omics techniques-genomics, transcriptomics, proteomics, metabolomics, and epigenomics-on metamorphosing tadpoles are powerful emerging assets for the rapid, proxy assessment of toxicant or environmental damage for all vertebrates including humans. Moreover, these highly informative 'omics techniques will complement morphological, behavioral, and histological assessments, thereby providing a comprehensive understanding of how TH-dependent signal disruption is propagated by environmental contaminants and factors.
Collapse
Affiliation(s)
| | | | | | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
15
|
Luehr TC, Koide EM, Wang X, Han J, Borchers CH, Helbing CC. Metabolomic insights into the effects of thyroid hormone on Rana [Lithobates] catesbeiana metamorphosis using whole-body Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI). Gen Comp Endocrinol 2018; 265:237-245. [PMID: 29470956 DOI: 10.1016/j.ygcen.2018.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023]
Abstract
Anuran metamorphosis involves the transformation of an aquatic tadpole into a juvenile frog. This process is completely dependent upon thyroid hormones (THs). Although much research has been focused on changes in gene expression programs during this postembryonic developmental period, transitions in the metabolic profiles are relatively poorly understood. Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI) is a technique that generates highly multiplexed mass spectra while retaining spatial location information on a thin tissue section. Reconstructed ion heat maps are correlated with morphology of the tissue section for biological interpretation. The present study is the first to use whole-body MALDI-MSI on tadpoles to gain insights into anuran metamorphosis. Approximately 1000 features were detected in each of five tissues examined (brain, eye, liver, notochord, and tail muscle) from premetamorphic North American bullfrog (Rana [Lithobates] catesbeiana) tadpoles. Of these detected metabolites, 1700 were unique and 136 were significantly affected by exposure to 50 nM thyroxine for 48 h. Of the significantly-affected metabolites, 64 features were tentatively identified using the MassTRIX annotation tool. All tissues revealed changes in lipophilic compounds including phosphatidylcholines, phosphatidylinositols, phosphatidylglycerols, phosphatidylethanolamines, and phosphatidylserines. These lipophilic compounds made up the largest portion of significantly-affected metabolites indicating that lipid signaling is a major target of TH action in frog tadpoles.
Collapse
Affiliation(s)
- Teesha C Luehr
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, BC V8Z 7X8, BC, Canada
| | - Emily M Koide
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Xiaodong Wang
- University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, BC V8Z 7X8, BC, Canada
| | - Jun Han
- University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, BC V8Z 7X8, BC, Canada
| | - Christoph H Borchers
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, BC V8Z 7X8, BC, Canada; Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Caren C Helbing
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
16
|
Regnault C, Usal M, Veyrenc S, Couturier K, Batandier C, Bulteau AL, Lejon D, Sapin A, Combourieu B, Chetiveaux M, Le May C, Lafond T, Raveton M, Reynaud S. Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline. Proc Natl Acad Sci U S A 2018; 115:E4416-E4425. [PMID: 29686083 PMCID: PMC5948982 DOI: 10.1073/pnas.1721267115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite numerous studies suggesting that amphibians are highly sensitive to endocrine disruptors (EDs), both their role in the decline of populations and the underlying mechanisms remain unclear. This study showed that frogs exposed throughout their life cycle to ED concentrations low enough to be considered safe for drinking water, developed a prediabetes phenotype and, more commonly, a metabolic syndrome. Female Xenopus tropicalis exposed from tadpole stage to benzo(a)pyrene or triclosan at concentrations of 50 ng⋅L-1 displayed glucose intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a prediabetes state. This metabolic syndrome led to progeny whose metamorphosis was delayed and occurred while the individuals were both smaller and lighter, all factors that have been linked to reduced adult recruitment and likelihood of reproduction. We found that F1 animals did indeed have reduced reproductive success, demonstrating a lower fitness in ED-exposed Xenopus Moreover, after 1 year of depuration, Xenopus that had been exposed to benzo(a)pyrene still displayed hepatic disorders and a marked insulin secretory defect resulting in glucose intolerance. Our results demonstrate that amphibians are highly sensitive to EDs at concentrations well below the thresholds reported to induce stress in other vertebrates. This study introduces EDs as a possible key contributing factor to amphibian population decline through metabolism disruption. Overall, our results show that EDs cause metabolic disorders, which is in agreement with epidemiological studies suggesting that environmental EDs might be one of the principal causes of metabolic disease in humans.
Collapse
Affiliation(s)
- Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | | | | | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 69000 Lyon, France
| | - David Lejon
- Rovaltain Research Company, F-26300 Alixan, France
| | | | | | - Maud Chetiveaux
- Plate-forme Therassay, l'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Cédric Le May
- Plate-forme Therassay, l'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Thomas Lafond
- Centre de Ressources Biologiques Xénopes, Université Rennes 1, CNRS, Unité Mixte de Service 3387, 35042 Rennes, France
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France;
| |
Collapse
|
17
|
Falfushynska HI, Gnatyshyna LL, Horyn O, Stoliar OB. Vulnerability of marsh frog Pelophylax ridibundus to the typical wastewater effluents ibuprofen, triclosan and estrone, detected by multi-biomarker approach. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:26-38. [PMID: 28757214 DOI: 10.1016/j.cbpc.2017.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 11/24/2022]
Abstract
Pharmaceutical and personal care products (PPCPs) are the environmental pollutants of growing concern. The aim of this study was to indicate the effects of typical PPCPs on the marsh frog Pelophylax ridibundus. We treated male frogs with waterborne ibuprofen (IBU, 250ng·L-1), triclosan (TCS, 500ng·L-1), or estrone (E1, 100ng·L-1) for 14days. Common vulnerability of the frogs was detected from dramatic decrease of Zn, total and metalated metallothionein (MT) concentrations, Zn/Cu ratio, the elevation of activity of glutathione-S-transferase, cathepsin D and DNA instability in the liver, the depletion of cholinesterase in the brain and cortisol in the blood plasma in all exposures. Nevertheless, lipofuscin concentration in the liver was always decreased. The groups were best distinguished by cytochrome P450 (CYP450) activity determined by ELISA. The exposure to IBU caused lesser damage, but elevated the levels of oxyradicals and glutathione (GSH and GSSG) and lysosomal membrane instability. Exposures to TCS and E1 provoked the endocrine disturbance (increased levels of vitellogenin and thyrotropin in blood plasma), decreased lactate dehydrogenase activity and increased level of pyruvate in the liver. TCS caused the increase of GSSG by 7.3 times and lactate levels. Only E1 lead to decrease of deiodinase activity in the liver, activation of CYP450 and caspase-3 and efflux of cathepsin D from lysosomes. Spectrophotometric and ELISA assays of MTs and CYP450 gave distinct results in E1-group. Broad disruption of the hormonal pathways caused by E1 could be of concern for the health status of frogs in their habitats.
Collapse
Affiliation(s)
- Halina I Falfushynska
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 2, M. Kryvonosa Str., Ternopil 46027, Ukraine
| | - Lesya L Gnatyshyna
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 2, M. Kryvonosa Str., Ternopil 46027, Ukraine; I.Ya. Horbachevsky Ternopil State Medical University, 1, Maidan Voli, Ternopil 46001, Ukraine
| | - Oksana Horyn
- I.Ya. Horbachevsky Ternopil State Medical University, 1, Maidan Voli, Ternopil 46001, Ukraine
| | - Oksana B Stoliar
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 2, M. Kryvonosa Str., Ternopil 46027, Ukraine.
| |
Collapse
|
18
|
Freitas JS, Teresa FB, de Almeida EA. Influence of temperature on the antioxidant responses and lipid peroxidation of two species of tadpoles (Rhinella schneideri and Physalaemus nattereri) exposed to the herbicide sulfentrazone (Boral 500SC®). Comp Biochem Physiol C Toxicol Pharmacol 2017; 197:32-44. [PMID: 28457947 DOI: 10.1016/j.cbpc.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/19/2022]
Abstract
Amphibians can experience large temperature fluctuations in their habitats, especially during the larval stage, when tadpoles are restricted to small and ephemeral ponds. Changes in water temperature can alter development, metabolism and behaviour of cold-blooded animals but also the toxicokinetics of chemicals in the environment. In Brazil, pesticides application is intensified during the rainy season, which is the period of reproduction for many amphibian species. We evaluated here the influence of temperature (28, 32, and 36°C) on the toxicity of the herbicide sulfentrazone (Boral®SC) in tadpoles of Physalaemus nattereri and Rhinella schneideri, by analysis of oxidative stress biomarkers. Exposure of tadpoles to sulfentrazone altered the antioxidant enzymes activities and induced lipid peroxidation with temperature-associated responses. Catalase, superoxide dismutase and glucose-6-phosphate dehydrogenase (G6PDH) were impaired by combined effect of temperature and sulfentrazone in both species. G6PDH was increased in most groups exposed to 36°C. Biotransformation enzyme glutathione-S-transferase had more evident alterations in P. nattereri at higher temperatures and changes in tGSH contents presented different patterns between the species. Lipid peroxidation was particularly induced in tadpoles of P. nattereri. Integrated biomarker response (IBR) index indicated a synergic effect of temperature and sulfentrazone for tadpoles of P. nattereri, while the IBR was mainly influenced by temperature in R. schneideri. Our study showed that temperature modulates biochemical responses in tadpoles exposed to sulfentrazone with a species-specific pattern. These findings imply that the effects of abiotic factors should be taken into account to evaluate the real risks of exposure of amphibians to commonly used pesticides.
Collapse
Affiliation(s)
- Juliane Silberschmidt Freitas
- Graduate Program in Animal Biology, Department of Chemistry and Environmental Sciences, Universidade Estadual Paulista "Júlio de Mesquita Filho", Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Fabrício Barreto Teresa
- Universidade Estadual de Goiás, Campus de Ciências Exatas e Tecnológicas, BR 153 n° 3105 - Fazenda Barreiro do Meio, CEP: 75132-903 Anápolis, GO, Brazil
| | - Eduardo Alves de Almeida
- Department of Natural Sciences, Fundação Universidade Regional de Blumenau, Av. Antonio da Veiga 140, Itoupava Seca, 89030-903 Blumenau, Santa Catarina, Brazil.
| |
Collapse
|
19
|
Freitas JS, Kupsco A, Diamante G, Felicio AA, Almeida EA, Schlenk D. Influence of Temperature on the Thyroidogenic Effects of Diuron and Its Metabolite 3,4-DCA in Tadpoles of the American Bullfrog (Lithobates catesbeianus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13095-13104. [PMID: 27787998 DOI: 10.1021/acs.est.6b04076] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Temperature is a key variable affecting the timing of amphibian metamorphosis from tadpoles to tetrapods, through the production and subsequent function of thyroid hormones (TH). Thyroid function can be impaired by environmental contaminants as well as temperature. Tadpoles can experience large temperature fluctuations in their habitats and many species are distributed in areas that may be impacted by agriculture. Diuron is a widely used herbicide detected in freshwater ecosystems and may impact endocrine function in aquatic organisms. We evaluated the influence of temperature (28 and 34 °C) on the action of diuron and its metabolite 3,4-dichloroaniline (3,4-DCA) on thyroid function and metamorphosis in tadpoles of Lithobates catesbeianus. Exposure to both compounds induced more pronounced changes in gene expression and plasma 3,3',5-triiodothyronine (T3) concentrations in tadpoles treated at higher temperature. T3 concentrations were increased in tadpoles exposed to 200 ng/L of diuron at 34 °C and an acceleration of metamorphosis was observed for the same group. Transcriptomic responses included alteration of thyroid hormone induced bZip protein (thibz), deiodinases (dio2, dio3), thyroid receptors (trα, trβ) and Krüppel-like factor 9 (klf9), suggesting regulation by temperature on TH-gene expression. These results suggest that environmental temperature should be considered in risk assessments of environmental contaminants for amphibian species.
Collapse
Affiliation(s)
- Juliane S Freitas
- Graduate Program in Animal Biology, Department of Chemistry and Environmental Sciences, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Allison Kupsco
- Department of Environmental Sciences, University of California , Riverside 900 University Ave, 92521 Riverside, California, United States
| | - Graciel Diamante
- Department of Environmental Sciences, University of California , Riverside 900 University Ave, 92521 Riverside, California, United States
| | - Andreia A Felicio
- Graduate Program in Animal Biology, Department of Chemistry and Environmental Sciences, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Eduardo A Almeida
- Department of Natural Sciences, Fundação Universidade Regional de Blumenau , Av. Antonio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California , Riverside 900 University Ave, 92521 Riverside, California, United States
| |
Collapse
|
20
|
Regnault C, Willison J, Veyrenc S, Airieau A, Méresse P, Fortier M, Fournier M, Brousseau P, Raveton M, Reynaud S. Metabolic and immune impairments induced by the endocrine disruptors benzo[a]pyrene and triclosan in Xenopus tropicalis. CHEMOSPHERE 2016; 155:519-527. [PMID: 27153234 DOI: 10.1016/j.chemosphere.2016.04.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Despite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role played by endocrine disruptors (EDs) in the decline of amphibian populations remains unclear. EDs have been extensively studied in adult amphibians for their capacity to disturb reproduction by interfering with the sexual hormone axis. Here, we studied the in vivo responses of Xenopus tropicalis males exposed to environmentally relevant concentrations of each ED, benzo[a]pyrene (BaP) and triclosan (TCS) alone (10 μg L(-1)) or a mixture of the two (10 μg L(-1) each) over a 24 h exposure period by following the modulation of the transcription of key genes involved in metabolic, sexual and immunity processes and the cellular changes in liver, spleen and testis. BaP, TCS and the mixture of the two all induced a marked metabolic disorder in the liver highlighted by insulin resistance-like and non-alcoholic fatty liver disease (NAFLD)-like phenotypes together with hepatotoxicity due to the impairment of lipid metabolism. For TCS and the mixture, these metabolic disorders were concomitant with modulation of innate immunity. These results confirmed that in addition to the reproductive effects induced by EDs in amphibians, metabolic disorders and immune system disruption should also be considered.
Collapse
Affiliation(s)
- Christophe Regnault
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - John Willison
- Univ. Grenoble-Alpes, Institut de recherches en technologies et Sciences pour le vivant, Laboratoire de chimie et biologie des métaux (iRTSV-LCBM), F-38000, France; CNRS, IRTSV-LCBM, F-38000, Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives (CEA), iRTSV-LCBM, F-38000, Grenoble, France.
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - Antinéa Airieau
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - Patrick Méresse
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, CUBE, F-38000, Grenoble, France.
| | | | | | | | - Muriel Raveton
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| |
Collapse
|
21
|
Hammond SA, Nelson CJ, Helbing CC. Environmental influences on the epigenomes of herpetofauna and fish. Biochem Cell Biol 2016; 94:95-100. [DOI: 10.1139/bcb-2015-0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Herpetofauna (amphibians and reptiles) and fish represent important sentinel and indicator species for environmental and ecosystem health. It is widely accepted that the epigenome plays an important role in gene expression regulation. Environmental stimuli, including temperature and pollutants, influence gene activity, and there is growing evidence demonstrating that an important mechanism is through modulation of the epigenome. This has been primarily studied in human and mammalian models; relatively little is known about the impact of environmental conditions or pollutants on herpetofauna or fish epigenomes and the regulatory consequences of these changes on gene expression. Herein we review recent studies that have begun to address this deficiency, which have mainly focused on limited specific epigenetic marks and individual genes or large-scale global changes in DNA methylation, owing to the comparative ease of measurement. Greater understanding of the epigenetic influences of these environmental factors will depend on increased availability of relevant species-specific genomic sequence information to facilitate chromatin immunoprecipitation and DNA methylation experiments.
Collapse
Affiliation(s)
- S. Austin Hammond
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Christopher J. Nelson
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
22
|
Suzuki S, Awai K, Ishihara A, Yamauchi K. Cold temperature blocks thyroid hormone-induced changes in lipid and energy metabolism in the liver of Lithobates catesbeianus tadpoles. Cell Biosci 2016; 6:19. [PMID: 26981232 PMCID: PMC4792105 DOI: 10.1186/s13578-016-0087-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/07/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Exposure of the American bullfrog Lithobates catesbeianus tadpoles to low temperature affects many biological processes including lipid metabolism and the thyroid hormone (TH) signaling pathway, resulting in arrest of TH-induced metamorphosis. To clarify what molecular events occur in this phenomenon, we investigated the glycerophospholipid and fatty acid (FA) compositions, the activities of mitochondrial enzymes and the transcript levels of related genes in the liver of control (26 °C) and cold-treated (4 °C) tadpoles with or without 5 nM 3,3',5-triiodothyronine (T3). RESULTS Exposure to T3 decreased the tail height and polyunsaturation of FAs in the glycerophospholipids, and increased plasma glucose levels and transcript levels of primary TH-response genes including TH receptor, and some energy metabolic (cox4, srebp1 and fas) and FA chain elongase genes (elovl3 and elovl5). However, these T3-induced responses were abolished at 4 °C. Exposure to cold temperature enhanced plasma glucose, triglyceride and free FA levels, monounsaturation of FAs, mitochondrial enzymes activities (cytochrome c oxidase and carnitine palmitoyltransferase; U/g liver), with the upregulation of the genes involved in glycogenolysis (pygl), gluconeogenesis (pck1 and g6pc2), FA β-oxidation (acadl), and cholesterol uptake and synthesis (hmgcr, srebp2 and ldlr1), glycerophospholipids synthesis (pcyt1, pcyt2, pemt, and pparg), and FA monounsaturation (scd1) and chain elongation (elovl1 and elovl2). T3 had little effect on the cold-induced changes. CONCLUSIONS Our study demonstrated that exposures to T3 and cold temperature exert different effects on lipid metabolism, resulting in changes in the FA composition in glycerophospholipids, and suggests that a cold-induced signal may block TH-signaling pathway around primary TH-response genes.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- />Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Koichiro Awai
- />Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Akinori Ishihara
- />Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
- />Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Kiyoshi Yamauchi
- />Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
- />Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
| |
Collapse
|
23
|
Identification of organ-autonomous constituents of the molecular memory conferred by thyroid hormone exposure in cold temperature-arrested metamorphosing Rana (Lithobates) catesbeiana tadpoles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 17:58-65. [DOI: 10.1016/j.cbd.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/10/2015] [Accepted: 01/03/2016] [Indexed: 11/15/2022]
|
24
|
Veldhoen N, Stevenson MR, Helbing CC. Comparison of thyroid hormone-dependent gene responses in vivo and in organ culture of the American bullfrog ( Rana (Lithobates) catesbeiana ) lung. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:99-105. [DOI: 10.1016/j.cbd.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/09/2015] [Accepted: 09/26/2015] [Indexed: 11/25/2022]
|
25
|
Patiño R, Carr JA. Introduction to Special Issue: Disruption of thyroid, sex steroid, and adrenal hormone systems and their crosstalk in aquatic wildlife. Gen Comp Endocrinol 2015; 219:1-5. [PMID: 26031188 DOI: 10.1016/j.ygcen.2015.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/27/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit, and Departments of Natural Resources Management and Biological Sciences, Texas Tech University, Lubbock, TX 79409-2120, USA
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|