1
|
Gudenschwager-Basso EK, Frydman G, Weerakoon S, Andargachew H, Piltaver CM, Huckle WR. Morphological evaluation of the feline placenta correlates with gene expression of vascular growth factors and receptors†. Biol Reprod 2024; 110:569-582. [PMID: 38092011 DOI: 10.1093/biolre/ioad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 03/16/2024] Open
Abstract
Placental angiogenesis is critical for normal development. Angiogenic factors and their receptors are key regulators of this process. Dysregulated placental vascular development is associated with pregnancy complications. Despite their importance, vascular growth factor expression has not been thoroughly correlated with placental morphologic development across gestation in cats. We postulate that changes in placental vessel morphology can be appreciated as consequences of dynamic expression of angiogenic signaling agents. Here, we characterized changes in placental morphology alongside expression analysis of angiogenic factor splice variants and receptors throughout pregnancy in domestic shorthair cats. We observed increased vascular and lamellar density in the lamellar zone during mid-pregnancy. Immunohistochemical analysis localized the vascular endothelial growth factor A (VEGF-A) receptor KDR to endothelial cells of the maternal and fetal microvasculatures. PlGF and its principal receptor Flt-1 were localized to the trophoblasts and fetal vasculature. VEGF-A was found in trophoblast cells and associated with endothelial cells. We detected expression of two Plgf splice variants and four Vegf-a variants. Quantitative real-time polymerase chain reaction analysis showed upregulation of mRNAs encoding pan Vegf-a and all Vegf-a splice forms at gestational days 30-35. Vegf-A showed a marked relative increase in expression during mid-pregnancy, consistent with the pro-angiogenic changes seen in the lamellar zone at days 30-35. Flt-1 was upregulated during late pregnancy. Plgf variants showed stable expression during the first two-thirds of pregnancy, followed by a marked increase toward term. These findings revealed specific spatiotemporal expression patterns of VEGF-A family members consistent with pivotal roles during normal placental development.
Collapse
Affiliation(s)
- Erwin K Gudenschwager-Basso
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Galit Frydman
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Shaneke Weerakoon
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
- Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Hariyat Andargachew
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Cassandra M Piltaver
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - William R Huckle
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| |
Collapse
|
2
|
Wang X, Chen F, Lu J, Wu M, Cheng J, Xu W, Li Z, Zhang Y. Developmental and cardiovascular toxicities of acetochlor and its chiral isomers in zebrafish embryos through oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165296. [PMID: 37406693 DOI: 10.1016/j.scitotenv.2023.165296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Acetochlor (ACT) is a widely used pesticide, yet the environmental and health safety of its chiral isomers remains inadequately evaluated. In this study, we evaluated the toxicity of ACT and its chiral isomers in a zebrafish model. Our findings demonstrate that ACT and its chiral isomers disrupt early zebrafish embryo development, inducing oxidative stress, abnormal lipid metabolism, and apoptosis. Additionally, ACT and its chiral isomers lead to cardiovascular damage, including reduced heart rate, decreased red blood cell (RBC) flow rate, and vascular damage. We further observed that (+)-S-ACT has a significant impact on the transcription of genes involved in cardiac and vascular development, including tbx5, hand2, nkx2.5, gata4, vegfa, dll4, cdh5, and vegfc. Our study highlights the potential risk posed by different conformations of chiral isomeric pesticides and raises concerns regarding their impact on human health. Overall, our results suggest that the chiral isomers of ACT induce developmental defects and cardiovascular toxicity in zebrafish, with (+)-S-ACT being considerably more toxic to zebrafish than (-)-R-ACT.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Kowalewski MP. Advances in understanding canine pregnancy: Endocrine and morpho-functional regulation. Reprod Domest Anim 2023; 58 Suppl 2:163-175. [PMID: 37724655 DOI: 10.1111/rda.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 09/21/2023]
Abstract
Canine pregnancy relies on luteal steroidogenesis for progesterone (P4) production. The canine placenta responds to P4, depending on the nuclear P4 receptor (PGR). This has sparked interest in investigating the interaction between ovarian luteal steroids and the placenta in dogs. Canine placentation is characterized by restricted (shallow) trophoblast invasion, making the dog an interesting model for studying decidua-derived modulation of trophoblast invasion, compared with the more invasive (hemochorial) placentation. The PGR is expressed in maternally derived decidual cells and plays a crucial role in feto-maternal communication during pregnancy maintenance. Understanding PGR-mediated signalling has clinical implications for improving reproductive performance control in dogs. Altering the PGR signalling induces the release of PGF2α from the foetal trophoblast, hindering placental homeostasis, which can also be achieved with antigestagens like aglepristone. Consequently, luteolysis, both natural and antigestagen-induced, involves apoptosis, vascular lesion, and immune cell infiltration in the placenta, resulting in placentolysis and foetal membranes expulsion. Our laboratory developed the immortalized dog uterine stromal (DUS) cell line to study canine-specific decidualization. We study canine reproduction by observing physiological processes and investigating evidence-based mechanisms of decidualization and feto-maternal interaction. Our focus on morphology, function and molecular aspects enhances understanding and enables targeted and translational studies.
Collapse
Affiliation(s)
- Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Expression profile of genes related to pregnancy maintenance in Dromedary Camel during the first trimester. Anim Reprod Sci 2023; 251:107211. [PMID: 36990016 DOI: 10.1016/j.anireprosci.2023.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
So far, few signals involved in embryo-maternal dialogue have been identified in pregnant she-camel. Our objective was to investigate expression profiles of genes relevant to uterine extracellular matrix remodeling (ITGB4, SLCO2A1, FOS, and JUN), uterine tissue vascularization, and placental formation (VEGFA, PGF, and PDGFA), embryonic growth and development (IGF1 and PTEN), plus cell death of uterine tissue (BCL2) in early pregnant versus non-pregnant she-camels. Forty genital tracts (20 pregnant and 20 non-pregnant) and blood samples were collected from abattoirs. Total RNA was extracted from uterine tissues and qRT-PCR was conducted for candidate genes. Serum concentrations of progesterone (P4) and estradiol17-β (E2) were measured. Expression of ITGB4, FOS, and PGF genes increased (P < 0.001) in the right uterine horn of pregnant versus non-pregnant she-camels. Moreover, JUN, SLCO2A1, VEGFA, and PTEN mRNAs were up-regulated (P < 0.001) in various segments of uterine tissues in pregnant groups. The PDGFA transcript was over-expressed (P < 0.001) in both uterine horns of pregnant groups. Additionally, IGF1 was higher (P < 0.001) in the right horn and the uterine body of pregnant groups, and expression of BCL2 was increased (P < 0.001) in the pregnant uterine body. Moreover, serum concentrations of P4 were higher (P < 0.001) and E2 lower (P < 0.05) in pregnant she-camels. Taken together, the fine-tuning of genes related to implantation, matrix formation, vascularization, and placental formation is highly required for successful pregnancy in she-camels.
Collapse
|
5
|
Kazemian A, Tavares Pereira M, Hoffmann B, Kowalewski MP. Antigestagens Mediate the Expression of Decidualization Markers, Extracellular Matrix Factors and Connexin 43 in Decidualized Dog Uterine Stromal (DUS) Cells. Animals (Basel) 2022; 12:ani12070798. [PMID: 35405788 PMCID: PMC8996927 DOI: 10.3390/ani12070798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/27/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Adequate embryo-maternal communication is essential for a successful pregnancy. In the dog, this interaction is intimately associated with maternal stroma-derived decidual cells, the only cell population in the canine placenta expressing the nuclear progesterone receptor (PGR) and, therefore, sensitive to the circulating progesterone levels. Prepartum decrease of progesterone or clinical application of PGR blockers (antigestagens, e.g., aglepristone and mifepristone) induce placental release of luteolytic factors and terminate pregnancy. However, the importance of progesterone for decidual cells functionality has not been fully elucidated. Therefore, we investigated the effects of PGR blockers on the expression of markers of decidualization and cellular viability, as well as on epithelial and mesenchymal factors in in vitro decidualized dog uterine stromal (DUS) cells. Decidualization increased the expression of the respective markers, including factors involved in cell growth and prostaglandin synthesis. Their expression was suppressed by the application of antigestagens. Additionally, the expression of factors involved in tissue remodeling and cell-cell communication was increased, and antiproliferative and proapoptotic effects were induced in decidualized cells. Altogether, progesterone signaling appears to be crucial for modulating decidual cells physiology and biological activity, and thus for the maintenance of pregnancy. Abstract Feto-maternal communication in the dog involves the differentiation of stromal cells into decidual cells. As the only placental cells expressing the nuclear progesterone (P4) receptor (PGR), decidual cells play crucial roles in the maintenance and termination of pregnancy. Accordingly, to investigate possible PGR-mediated mechanisms in canine decidual cells, in vitro decidualized dog uterine stromal (DUS) cells were treated with functional PGR-blockers, mifepristone and aglepristone. Effects on decidualization markers, epithelial and mesenchymal factors, and markers of cellular viability were assessed. Decidualization increased the expression of PTGES, PGR, IGF1, and PRLR, along with ECM1, COL4 and CX43, but downregulated IGF2. DUS cells retained their mesenchymal character, and the expression of COL4 indicated the mesenchymal-epithelial transformation. Antigestagen treatment decreased the availability of PTGES, PRLR, IGF1 and PGR. Furthermore, antigestagens decreased the mRNA and protein expression of CX43, and transcriptional levels of ECM1 and COL4. Additionally, antigestagens increased levels of activated-CASP3 (a proapoptotic factor), associated with lowered levels of PCNA (a proliferation marker). These data reveal important aspects of the functional involvement of PGR in canine decidual cells, regarding the expression of decidualization markers and acquisition of epithelial-like characteristics. Some of these mechanisms may be crucial for the maintenance and/or termination of canine pregnancy.
Collapse
Affiliation(s)
- Ali Kazemian
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (A.K.); (M.T.P.)
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (A.K.); (M.T.P.)
| | - Bernd Hoffmann
- Clinic for Obstetrics, Gynaecology and Andrology of Large and Small Animals, Faculty of Veterinary Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Mariusz P. Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (A.K.); (M.T.P.)
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
6
|
Makowczenko KG, Jastrzebski JP, Paukszto L, Dobrzyn K, Kiezun M, Smolinska N, Kaminski T. Chemerin Impact on Alternative mRNA Transcription in the Porcine Luteal Cells. Cells 2022; 11:715. [PMID: 35203364 PMCID: PMC8870241 DOI: 10.3390/cells11040715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Chemerin participates in the regulation of processes related to physiological and disorder mechanisms in mammals, including metabolism, obesity, inflammation, and reproduction. In this study, we have investigated chemerin influence on alternative mRNA transcription within the porcine luteal cell transcriptome, such as differential expression of long non-coding RNAs (DELs) and their interactions with differentially expressed genes (DEGs), differences in alternative splicing of transcripts (DASs), and allele-specific expression (ASEs) related to the single nucleotide variants (SNVs) frequency. Luteal cells were collected from gilts during the mid-luteal phase of the oestrous cycle. After in vitro culture of cells un-/treated with chemerin, the total RNA was isolated and sequenced using the high-throughput method. The in silico analyses revealed 24 DELs cis interacting with 6 DEGs and trans-correlated with 300 DEGs, 137 DASs events, and 18 ASEs. The results enabled us to analyse metabolic and signalling pathways in detail, providing new insights into the effects of chemerin on the corpus luteum functions related to inflammatory response, leukocyte infiltration, the occurrence of luteotropic and luteolytic signals (leading to apoptosis and/or necroptosis). Validation of the results using qPCR confirmed the predicted expression changes. Chemerin at physiological concentrations significantly modifies the transcription processes in the porcine luteal cells.
Collapse
Affiliation(s)
- Karol G. Makowczenko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| | - Jan P. Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Lukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-719 Olsztyn, Poland;
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| |
Collapse
|
7
|
Rytelewska E, Kiezun M, Zaobidna E, Gudelska M, Kisielewska K, Dobrzyn K, Kaminski T, Smolinska N. CHEMERIN as a modulator of angiogenesis and apoptosis processes in the corpus luteum of pigs: An in vitro study. Biol Reprod 2021; 105:1002-1015. [PMID: 34192738 DOI: 10.1093/biolre/ioab126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
The corpus luteum (CL) undergoes rapid changes, and its functional capabilities are influenced by processes such as angiogenesis and apoptosis. According to the literature, chemerin - a protein which participates in the regulation of energy homeostasis and the immune response, may also affect angiogenesis and apoptosis. Therefore, the aim of this study was to investigate the in vitro effect of chemerin on angiogenesis and apoptosis in porcine luteal cells (Lc) during specific phases related to CL physiology. Luteal cells were harvested from gilts during the early-, mid-, and late-luteal phases of the estrous cycle. The cells were preincubated for 48 h and incubated for 24 h with chemerin or a serum-free medium (controls). The abundance of angiogenesis- and apoptosis-related proteins was determined by ELISA in spent culture media, or by ELISA and Western Blot in protein extracts. The current study demonstrated that chemerin stimulates the production of VEGF-A and bFGF by porcine Lc and increases the protein abundance of angiogenic factors receptors (VEGFR1, VEGFR2, VEGFR3, FGFR1, FGFR2) in these cells. The study also revealed that chemerin exerts a modulatory effect (stimulatory/inhibitory, depending on the phase of the cycle) on the protein abundance of Fas, FasL, Bcl-2 and caspase-3 in porcine Lc. These results imply that chemerin may affect angiogenesis and apoptosis processes in the porcine CL, as evidenced by its modulatory effect of chemerin on the protein abundance of crucial angiogenesis- and apoptosis-related factors, observed in an in vitro study of porcine Lc.
Collapse
Affiliation(s)
- Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
8
|
Mattoso Miskulin Cardoso AP, Tavares Pereira M, Dos Santos Silva R, Medeiros de Carvalho Sousa LM, Giometti IC, Kowalewski MP, de Carvalho Papa P. Global transcriptome analysis implicates cholesterol availability in the regulation of canine cyclic luteal function. Gen Comp Endocrinol 2021; 307:113759. [PMID: 33771531 DOI: 10.1016/j.ygcen.2021.113759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
Considering the key role of the corpus luteum in the regulation of the canine diestrus, the present study aimed to investigate changes in the luteal transcriptome of pseudopregnant dogs (n = 18) from days (D) 10, 20, 30, 40, 50 and 60 post-ovulation. After RNAsequencing was performed, data was analyzed by resorting to several informatic tools. A total of 3300 genes were differently expressed among all samples (FDR < 0.01). By comparing different time points, enriched biological processes as response to estradiol and lipids (D20 vs D10) and intracellular cholesterol transport (D40 vs D60) were observed. Moreover, LXR/RXR (liver X receptor- retinoid X receptor) signaling appeared as an overrepresented pathway in all comparisons. Thus, the expression of 19 genes involved in intracellular cholesterol availability was further evaluated; most were affected by time (P < 0.05). Adding to the deep transcriptomic analysis, presented data implies the importance of cholesterol regulation in luteal physiology of pseudopregnant dogs.
Collapse
Affiliation(s)
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Renata Dos Santos Silva
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Ines Cristina Giometti
- Faculty of Veterinary Medicine, University of Western São Paulo, Presidente Prudente, Brazil
| | | | - Paula de Carvalho Papa
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Kowalewski MP, Kazemian A, Klisch K, Gysin T, Tavares Pereira M, Gram A. Canine Endotheliochorial Placenta: Morpho-Functional Aspects. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:155-179. [PMID: 34694481 DOI: 10.1007/978-3-030-77360-1_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the domestic dog, placentation arises from central implantation, passing through a transitional, yet important stage of choriovitelline placenta (yolk sac placenta), on the way to the formation of the definite, deciduate, zonary (girdle) allantochorionic endotheliochorial placenta.Sharing some similarities with other invasive types of placentation, e.g., by revealing decidualization, it is characterized by restricted (shallow) invasion of trophoblast not affecting maternal capillaries and maternal decidual cells. Thus, being structurally and functionally placed between noninvasive epitheliochorial placentation and the more invasive hemochorial type, it presents an interesting and important model for understanding the evolutionarily determined aspects of mammalian placentation. More profound insights into the biological mechanisms underlying the restricted invasion of the fetal trophoblast into maternal uterine structures and the role of decidual cells in that process could provide better understanding of some adverse conditions occurring in humans, like preeclampsia or placenta accreta. As an important endocrine organ actively responding to ovarian steroids and producing its own hormones, e.g., serving as the source of gestational relaxin or prepartum prostaglandins, the canine placenta has become an attractive research target, both in basic and clinical research. In particular, the placental feto-maternal communication between maternal stroma-derived decidual cells and fetal trophoblast cells (i.e., an interplay between placenta materna and placenta fetalis) during the maintenance and termination of canine pregnancy serves as an interesting model for induction of parturition in mammals and is an attractive subject for translational and comparative research. Here, an updated view on morpho-functional aspects associated with canine placentation is presented.
Collapse
Affiliation(s)
- Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.
| | - Ali Kazemian
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Karl Klisch
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Tina Gysin
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Kowalewski MP, Pereira MT, Papa P, Gram A. Progesterone receptor blockers: historical perspective, mode of function and insights into clinical and scientific applications. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2020; 48:433-440. [PMID: 33276393 DOI: 10.1055/a-1274-9290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antigestagens (antiprogestins) are functional competitors of progesterone (P4) that prevent P4 from mediating its biological functions either by suppressing its production or blocking its function. Among the latter are progesterone antagonists, competitors of P4 binding to its nuclear receptor PGR, which have found application in both human and veterinary medicine, in particular in small animal practice for the prevention of nidation and the interruption of pregnancy. Depending on their mode of action, progesterone receptor antagonists can be divided into 2 classes. Class I antagonists bind to the PGR but fail to induce its binding to promoters of target genes (competitive inhibitors). Class II antigestagens, including aglepristone used in veterinary medicine, bind to the PGR, activate its association with a promoter, but interfere with the downstream signalling cascades, e. g., by recruiting transcriptional repressors. They act thereby as transdominant repressors exerting negative effects on target gene expression. Importantly for experimental sciences, as active antagonists, class II antagonists do not require the presence of the natural ligand for their action. Besides their clinical application, antigestagens are used in research for investigating P4-dependent physiological and pathological processes. Here an overview of the history and the current usage of progesterone receptor antagonists in veterinary medicine and research is presented.
Collapse
Affiliation(s)
| | | | - Paula Papa
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich
| | - Aykut Gram
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University
| |
Collapse
|
11
|
Nowak M, Aslan S, Kowalewski MP. Determination of novel reference genes for improving gene expression data normalization in selected canine reproductive tissues - a multistudy analysis. BMC Vet Res 2020; 16:440. [PMID: 33183298 PMCID: PMC7659137 DOI: 10.1186/s12917-020-02635-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/22/2020] [Indexed: 11/19/2022] Open
Abstract
Background Real time RT-PCR (qPCR) is a useful and powerful tool for quantitative measurement of gene expression. The proper choice of internal standards such as reference genes is crucial for correct data evaluation. In female dogs, as in other species, the reproductive tract is continuously undergoing hormonal and cycle stage-dependent morphological changes, which are associated with altered gene expression. However, there have been few attempts published so far targeted to the dog aimed at determining optimal reference genes for the reproductive organs. Most of these approaches relied on genes previously described in other species. Large-scale transcriptome-based experiments are promising tools for defining potential candidate reference genes, but were never considered in this context in canine research. Results Here, using available microarray and RNA-seq datasets derived from reproductive organs (corpus luteum, placenta, healthy and diseased uteri) of dogs, we have performed multistudy analysis to identify the most stably expressed genes for expression studies, in each tissue separately and collectively for different tissues. The stability of newly identified reference genes (EIF4H, KDELR2, KDM4A and PTK2) has been determined and ranked relative to previously used reference genes, i.e., GAPDH, β-actin and cyclophillin A/PPIA, using RefFinder and NormFinder algorithms. Finally, expression of selected target genes (luteal IL-1b and MHCII, placental COX2 and VEGFA, and uterine IGF2 and LHR) was re-evaluated and normalized. All proposed candidate reference genes were more stable, ranked higher and introduced less variation than previously used genes. Conclusions Based on our analyses, we recommend applying KDM4A and PTK2 for normalization of gene expression in the canine CL and placenta. The inclusion of a third reference gene, EIF4H, is suggested for healthy uteri. With this, the interpretation of qPCR data will be more reliable, allowing better understanding of canine reproductive physiology. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02635-6.
Collapse
Affiliation(s)
- Marta Nowak
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Selim Aslan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia, North Cyprus, Turkey
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Chen G, Jia Z, Wang L, Hu T. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). ENVIRONMENTAL RESEARCH 2020; 185:109432. [PMID: 32247151 DOI: 10.1016/j.envres.2020.109432] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
As a type of cyanobacterial toxins, saxitoxin (STX) is receiving great interest due to its increasing presence in waterbodies. However, the underlying mechanism of STX-induced adverse effect is poorly understood. Here, we examined the developmental toxicity and molecular mechanism induced by STX using zebrafish embryos as an animal model. The embryonic toxicity induced by STX was demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, abnormalities in embryo morphology as well as defects in angiogenesis and common cardinal vein remodeling. STX induced embryonic DNA damage and cell apoptosis, which would be alleviated by antioxidant N-acetyl-L-cysteine. Additionally, STX significantly increased reactive oxygen species level, catalase activity and malondialdehyde content and decreased the activity of superoxide dismutase and glutathione content. STX also promoted the expression of vascular development-related genes DLL4 and VEGFC, and inhibited VEGFA expression. Furthermore, STX altered the transcriptional regulation of apoptosis-related genes (BAX, BCL-2, P53 and CASPASE 3). Taken together, STX induced adverse effect on development of zebrafish embryos, which might be associated with oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Zimu Jia
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
13
|
Chen G, Wang L, Li W, Zhang Q, Hu T. Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110444. [PMID: 32169726 DOI: 10.1016/j.ecoenv.2020.110444] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Nodularin (NOD) is a kind of cyanobacterial toxins. It is of concern due to elicit severe genotoxicity in humans and animals. The comprehensive evaluation of NOD-induced adverse effects in living organisms is urgently needed. This study is aimed to report the developmental toxicity and molecular mechanism using zebrafish embryos exposed to NOD. The embryonic toxicity induced by NOD is demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, embryonic malformation as well as defects in angiogenesis and common cardinal vein remodeling. NOD triggered a decreased rate of angiogenesis through inhibiting endothelial cells migration. NOD induced embryonic cell apoptosis and DNA damage, which can be alleviated by antioxidant N-acetyl-L-cysteine. NOD significantly caused oxidative damage as indicated by changes in reactive oxygen species, superoxide dismutase, catalase, glutathione and malondialdehyde. NOD also altered the expression of vascular development-genes (DLL4, CDH5, VEGFA, VEGFC) and apoptosis-related genes (BAX, BCL-2, P53, CASPASE 3). Taken together, NOD induced adverse effect on zebrafish embryos development, which may be associated with oxidative stress and apoptosis through the activation of P53-BAX/BCL-2-CASPASE 3-mediated pathway.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenping Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
14
|
Factors affecting the fate of the canine corpus luteum: Potential contributors to pregnancy and non-pregnancy. Theriogenology 2020; 150:339-346. [PMID: 32089321 DOI: 10.1016/j.theriogenology.2020.01.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
The fate of the canine corpus luteum (CL) differs from that of other domestic species: beyond the extended luteal regression observed in both pregnant and non-pregnant cycles, active luteolysis is observed only in pregnant dogs. Luteal regression in the absence of pregnancy lacks a luteolytic trigger. The CL lifespan during pregnancy is around 60 days, as long as that of the cyclic CL. Although they are already available in the first half of diestrus, LH and especially prolactin (PRL) play a decisive luteotropic role from approximately day 25 post-ovulation onwards. Nevertheless, many locally-produced factors are orchestrated to ensure a fully functional CL, which in the bitch produces progesterone (P4), 17b-estradiol, and other local regulators. Recently, insulin has been described as another luteotropic factor in this species, able to increase glucose uptake in luteal cells and contribute to steroid biosynthesis. The locally-produced PGE2 is also a potent luteotropic factor in the first half of diestrus, promoting STAR expression, as are also proliferating, vasoactive- and immunomodulatory factors. These, in turn, all contribute to the formation and maintenance of the canine CL. Meanwhile PGF2a, produced by the utero-placental compartment, participates actively in triggering pre-partum luteolysis. Cytokines play different roles, either contributing as luteotropic or as acute inflammation molecules. So far, the one clinically most efficient mechanism of interrupting a pregnancy in the dog is to block P4 receptors, using an antigestagen (e.g., aglepristone) in the second half of diestrus. To enhance the chances of pregnancy, however, several luteotropic factors could be used.
Collapse
|
15
|
Kowalewski MP, Tavares Pereira M, Kazemian A. Canine conceptus-maternal communication during maintenance and termination of pregnancy, including the role of species-specific decidualization. Theriogenology 2020; 150:329-338. [PMID: 32143817 DOI: 10.1016/j.theriogenology.2020.01.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/27/2022]
Abstract
Among domestic animal species, the reproductive biology of the dog belongs to the most peculiar. This includes the conceptus-maternal communication and endocrine mechanisms involved in maintenance of pregnancy. Dogs fully depend on luteal progesterone (P4) throughout pregnancy, with similar steroid secretion patterns in pregnant and non-pregnant bitches until prepartum luteolysis. Thus, dogs lack the classical recognition of pregnancy. The luteal P4 is the most important hormone regulating the onset and maintenance of pregnancy in previously estrogenized bitches. Although the canine uterus is exposed to high P4 levels, decidualization is not spontaneous but induced by the presence of embryos. Following implantation, decidualization continues, associated with development of the invasive endotheliochorial placenta, leading to establishment of maternal decidual cells expressing the nuclear P4 receptor (PGR). Consequently, although not producing steroids, the canine placenta remains highly sensitive to circulating ovarian steroids. The placental conceptus-maternal communication is responsible for the maintenance of pregnancy, with functional withdrawal of PGR evoking a luteolytic cascade with prepartum PGF2α release. The fetal trophoblast is the major source of prepartum placental prostaglandins. This conceptus-maternal communication is unique to the dog and has clinical implications. Due to luteal steroids, there is no prepartum estradiol increase. Elevated cortisol levels are observed irregularly. This emphasizes the unique character of canine reproductive physiology and the challenges in transferring translational research to the dog. Further research is needed for better understanding of canine reproduction and improving clinical protocols, including the latest results obtained from applying modern laboratory technologies such as the transcriptomic approach.
Collapse
Affiliation(s)
- M P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland.
| | - M Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland
| | - A Kazemian
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
16
|
Xu F, Ren ZX, Zhong XM, Zhang Q, Zhang JY, Yang J. Intrauterine Inflammation Damages Placental Angiogenesis via Wnt5a-Flt1 Activation. Inflammation 2019; 42:818-825. [PMID: 30543046 DOI: 10.1007/s10753-018-0936-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intrauterine inflammation is the main reason for neonatal adverse outcomes and normal placenta perfusion plays an important role in fetal development. However, whether inflammation will affect placental angiogenesis and the underlying mechanism are still poorly understood. To investigate lipopolysaccharide (LPS)-induced intrauterine inflammation on placenta angiogenesis and Wnt5a-Flt1 expression. LPS-induced intrauterine inflammation rat model was established. Preterm rat outcomes were analyzed and angiogenesis of placenta villi was calculated by immunohistochemistry (IHC) of CD34 staining, and placenta Wnt5a-Flt1 expression was detected by western blot and IHC. Compared to control group, neonatal rats in LPS group showed higher death rate (1.4% vs 10.1%, p < 0.05) and lower birth weight (6.36 ± 0.48 vs 5.70 ± 0.67, p < 0.01); the villi vessel area and mean diameter in the placenta were significantly reduced in the LPS group (total area %, 16.7% ± 0.6% vs 8.7% ± 0.4%, p < 0.01, n = 9; mean diameter (pixel), 15.6 ± 0.5 vs 12.9 ± 0.3, p < 0.01, n = 9). Placenta Wnt5a-Flt1 expression was upregulated significantly (integrated optical density (IOD) in IHC: Wnt5a, 1667 ± 1204 vs 11,076 ± 4046, p < 0.05; Flt1, 2554 ± 466.2 vs 7998 ± 1613, p < 0.05; western blot: Wnt5a, 0.33 ± 0.05 vs 0.96 ± 0.06, p < 0.05; Flt1, 0.36 ± 0.15 vs 1.08 ± 0.08, p < 0.05). Intrauterine inflammation gave rise to offspring death rate and low birth weight; the mechanism might be disordered placental angiogenesis via Wnt5a-Flt1 activation triggered by inflammation.
Collapse
Affiliation(s)
- F Xu
- Department of Neonatology, Guangdong Women and Children Hospital, Guang Zhou Medical University, Guangzhou, 510010, Guangdong, China
| | - Z X Ren
- Department of Neonatology, Guangdong Women and Children Hospital, Guang Zhou Medical University, Guangzhou, 510010, Guangdong, China
| | - X M Zhong
- Department of Neonatology, Guangdong Women and Children Hospital, Guang Zhou Medical University, Guangzhou, 510010, Guangdong, China
| | - Q Zhang
- Department of Clinical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - J Y Zhang
- Department of Pathology, Guangdong Women and Children Hospital, Guang Zhou Medical University, Guangzhou, 510010, Guangdong, China
| | - J Yang
- Department of Neonatology, Guangdong Women and Children Hospital, Guang Zhou Medical University, Guangzhou, 510010, Guangdong, China.
| |
Collapse
|
17
|
Nowak M, Rehrauer H, Ay SS, Findik M, Boos A, Kautz E, Kowalewski MP. Gene expression profiling of the canine placenta during normal and antigestagen-induced luteolysis. Gen Comp Endocrinol 2019; 282:113194. [PMID: 31145892 DOI: 10.1016/j.ygcen.2019.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/20/2022]
Abstract
The domestic dog is the only domestic animal species that does not produce steroids in the placenta and instead relies on luteal steroids throughout pregnancy. Nevertheless, the canine placenta is highly responsive to steroids, and withdrawal of progesterone (P4) affects the feto-maternal unit, initializing the parturition cascade. Similar effects can be observed during antigestagen-induced abortion. Here, aiming to provide new insights into mechanisms involved in the termination of canine pregnancy, next generation sequencing (NGS, RNA-seq) was applied. Placental transcriptomes derived from natural prepartum and antigestagen-induced abortions were analyzed and compared with fully developed mid-gestation placentas. The contrast "prepartum luteolysis over mid-gestation" revealed 1973 differentially expressed genes (DEG). Terms associated with apoptosis, impairment of vascular function and activation of signaling of several cytokines (e.g., IL-8, IL-3, TGF-β) were overrepresented at natural luteolysis. When compared with mid-term, antigestagen treatment revealed 135 highly regulated DEG that were involved in the induced luteolysis and showed similar associations with functional terms and expression patterns as during natural luteolysis. The contrast "antigestagen-induced luteolysis over prepartum luteolysis" revealed that, although similar changes occur in both conditions, they are more pronounced during natural prepartum. Among P4-regulated DEG were those related to immune system and cortisol metabolism. It appears that, besides inducing placental PGF2α output, both natural and induced P4 withdrawal is associated with disruption of the feto-maternal interface, leading to impaired vascular functions, apoptosis and controlled modulation of the immune response. The time-related maturation of the feto-maternal interface needs to be considered because it may be clinically relevant.
Collapse
Affiliation(s)
- Marta Nowak
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich (FGCZ), ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Serhan S Ay
- Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Murat Findik
- Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland
| | - Ewa Kautz
- Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
18
|
Tavares Pereira M, Gram A, Nowaczyk R, Boos A, Hoffmann B, Janowski T, Kowalewski MP. Prostaglandin-mediated effects in early canine corpus luteum: In vivo effects on vascular and immune factors. Reprod Biol 2019; 19:100-111. [PMID: 30929911 DOI: 10.1016/j.repbio.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 01/17/2023]
Abstract
Prostaglandins (PGs) are important regulators of the early corpus luteum (CL) in the dog. Whereas, initially, CL is gonadotropin independent, in the second half of its lifespan, hypophyseal support is required. The transition period is marked by decreased availability of PGs, in particular of PGE2. We previously reported that inhibition of COX2/PTGS2 in vivo suppressed luteal production of PGE2, lowered circulating progesterone and negatively affected luteal development. Therefore, bitches were treated with a COX2-specific blocker, firocoxib, for 5, 10, 20 and 30 days after ovulation, leading to suppression of the steroidogenic machinery. Control groups received a placebo for the same periods. Considering the wide range of possible modulatory roles of PGs shown in different organ systems, this follow-up project aimed to understand further possible PG-mediated effects in early canine CL. Thirty-four (34) factors related predominantly to vascularization and immune response were screened (mRNAs and proteins) on samples from the above described in vivo study. Most of the effects were observed during the transitional period (days 20 and 30). The inhibition of COX2 diminished the expression of angiopoietin family members ANGPT1, -2, Tie1 and -2 receptors. The expression of endothelin (ET)-1 was increased. Concerning the immune system, increased expression of the pro-inflammatory cytokines, IL1β, IL6 and IL12a, and elevated expression levels of CD4, was observed. Cumulatively, besides its involvement in regulating steroidogenesis, our results indicate a broader role of PGs in the canine CL, including modulation of angiogenesis, vascular stabilization and local immunomodulation. Possible cross-species translational effects are strongly implied.
Collapse
Affiliation(s)
- Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Renata Nowaczyk
- Division of Animal Anatomy, Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Bernd Hoffmann
- Clinic for Obstetrics, Gynaecology and Andrology, Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Tomasz Janowski
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Holst BS, Gustavsson MH, Johannisson A, Hillström A, Strage E, Olsson U, Axnér E, Lilliehöök I. Inflammatory changes during canine pregnancy. Theriogenology 2019; 125:285-292. [DOI: 10.1016/j.theriogenology.2018.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
|
20
|
Tan SW, Li PZ, Li H, Yu H, Zhang ZF, Zeng Z, Huang DC. Genetic effects of vascular endothelial growth factor and its receptor 2 on feather maturity in three chicken breeds. Br Poult Sci 2019; 60:109-114. [PMID: 30602288 DOI: 10.1080/00071668.2018.1564244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. The goal of the current study was to evaluate the genetic effects of the vascular endothelial growth factor (VEGF) and its receptor (VEGFR-2) on feather maturity in the Qingyuan partridge chicken, Guangxi sanhuang chicken and Princess chicken. 2. Both SSCP-PCR and qPCR were employed to detect the polymorphism and gene expression of the VEGF and VEGFR-2 genes. 3. Four SNPs were identified in the VEGFR-2 gene. Exon10-A69G was associated with feather maturity (P < 0.01). Princess chickens with the genotype EF had higher feather maturity scores (P < 0.01). Higher expression levels of VEGF and VEGFR-2 were detected in the immature feather group of Qingyuan partridge chickens, especially in the skin. 4. The VEGF and VEGFR-2 genes play critical roles in feather maturity. In addition, exon10-A69G and genotype EF in the Princess chicken could potentially be utilised as genetic markers to improve efficiency in breeding.
Collapse
Affiliation(s)
- S-W Tan
- a School of Life Science and Engineering , Foshan University , Guangdong , China.,b College of Life Science , Wuhan University , Hubei , China
| | - P-Z Li
- a School of Life Science and Engineering , Foshan University , Guangdong , China
| | - H Li
- a School of Life Science and Engineering , Foshan University , Guangdong , China
| | - H Yu
- a School of Life Science and Engineering , Foshan University , Guangdong , China.,c Breeding Center , Guangodong Tinoo's Food Co., LTD , Guangdong , China
| | - Z-F Zhang
- c Breeding Center , Guangodong Tinoo's Food Co., LTD , Guangdong , China
| | - Z Zeng
- a School of Life Science and Engineering , Foshan University , Guangdong , China
| | - D-C Huang
- a School of Life Science and Engineering , Foshan University , Guangdong , China
| |
Collapse
|
21
|
Balogh O, Müller L, Boos A, Kowalewski MP, Reichler IM. Expression of insulin-like growth factor 1 and its receptor in preovulatory follicles and in the corpus luteum in the bitch. Gen Comp Endocrinol 2018; 269:68-74. [PMID: 30125572 DOI: 10.1016/j.ygcen.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
In the bitch, ovarian follicular and corpus luteum (CL) development and function are regulated by gonadotropins as well as local factors, the role of which is especially important during the early CL phase of relative gonadotrophic independence. We assumed that insulin-like growth factor 1 (IGF1) has a paracrine/autocrine regulatory role in ovarian follicular and luteal function in the dog. To address our hypothesis, we studied gene and protein expression of IGF1 and its receptor (IGF1R) in preovulatory follicles and in the CL of pregnant and non-pregnant dogs, and following antigestagen (aglepristone, progesterone receptor blocker) treatment in mid-gestation. Ovaries in the follicular phase were collected from five bitches. CL were collected on pregnancy Days 8-12 (pre-implantation), 18-25 (post-implantation), 35-40 (mid-gestation), at prepartum luteolysis, and 24 h and 72 h after aglepristone treatment in mid-gestation (n = 3-5 per group). From non-pregnant bitches, CL were collected on Days 5, 15, 25, 35, 45, 65 after ovulation (n = 4-5 per group). Semi-quantitative real-time (TaqMan) PCR and immunohistochemistry were applied. IGF1 immunostaining in preovulatory follicles seemed stronger in theca interna than granulosa cells. IGF1R signals appeared more intense in granulosa cells at the apical part of mural folds. In pregnant dogs, luteal IGF1 mRNA expression decreased significantly from pre-implantation to prepartum luteolysis, while IGF1R expression increased at prepartum luteolysis. Aglepristone treatment in mid-gestation had no effect on IGF1 and IGF1R mRNA levels. In non-pregnant bitches, highest IGF1 mRNA concentrations were found in the early CL and decreased by Days 45 and 65, while IGF1R expression did not change. In the CL of pregnant bitches, signals for IGF1 and IGF1R in luteal cells were strongest at pre- and post-implantation and weakest at prepartum luteolysis. IGF1 and IGF1R immunostaining was also detected in macrophages and in blood vessels. In conclusion, IGF1 may have a paracrine or autocrine role in granulosa and theca interna cells in preovulatory follicles. As IGF1 was highest represented in early luteal stages in pregnant and non-pregnant bitches, this may support a role for IGF1 in steroid synthesis, angiogenesis and cell proliferation as well as in immune function in the early canine CL. The unaffected mRNA levels after aglepristone treatment may support that IGF1 is not directly regulated by local progesterone in an auto- or paracrine manner.
Collapse
Affiliation(s)
- Orsolya Balogh
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Linda Müller
- Department and Clinic of Reproduction, University of Veterinary Medicine, Istvan Street 2, 1078 Budapest, Hungary
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Iris M Reichler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
22
|
Luteal and hypophyseal expression of the canine relaxin (RLN) system during pregnancy: Implications for luteotropic function. PLoS One 2018; 13:e0191374. [PMID: 29364921 PMCID: PMC5783387 DOI: 10.1371/journal.pone.0191374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/03/2018] [Indexed: 11/19/2022] Open
Abstract
By acting through its receptors (RXFP1, RXFP2), relaxin (RLN) exerts species-specific effects during pregnancy; possible luteotropic effects through stimulation of prolactin (PRL) release have been suggested. In the domestic dog (Canis lupus familiaris) serum PRL increases in pregnant bitches shortly after RLN appears in the circulation, and a possible functional relationship between the RLN and the PRL systems in regulating progesterone secretion has been implied. Therefore, here (Study 1) the luteal expression and localization of the RLN system was investigated by immunohistochemistry using custom-made antibodies and semi-quantitative PCR, at selected time points during gestation: pre-implantation (d. 8–12), post-implantation (d. 18–25), mid-gestation (d. 35–40) and at normal and antigestagen-induced luteolysis. Further, (Study 2) hypophyseal expression of the RLN system and its spatial association with PRL was assessed. Luteal expression of RLN, but not of its receptors, was time-dependent: it increased significantly following implantation towards mid-gestation and decreased at prepartum. Antigestagen treatment resulted in downregulation of RLN and RXFP2. Whereas RLN was localized in steroidogenic cells, RXFP1 and RXFP2 also stained strongly in macrophages and vascular endothelial cells. The RLN system was detected in the canine adenohypophysis and was co-localized with PRL in hypophyseal lactotrophs. The intraluteal RLN seems to be involved in regulating the canine corpus luteum (CL) in a time-dependent manner. The presence of RLN family members in the adenohypophysis implies their possible involvement in regulating the availability of PRL and other pituitary hormones.
Collapse
|
23
|
Schulz EV, Cruze L, Wei W, Gehris J, Wagner CL. Maternal vitamin D sufficiency and reduced placental gene expression in angiogenic biomarkers related to comorbidities of pregnancy. J Steroid Biochem Mol Biol 2017; 173:273-279. [PMID: 28216083 PMCID: PMC6349226 DOI: 10.1016/j.jsbmb.2017.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/30/2017] [Accepted: 02/05/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Maternal circulating 25-hydroxyvitamin D [25(OH)D] has been shown to optimize production of 1,25-dihydroxyvitamin D [1,25(OH)2D] during pregnancy at approximately 100nmoles/L, which has pronounced effects on fetal health outcomes. Additionally, associations are noted between low maternal 25(OH)D concentrations and vascular pregnancy complications, such as preeclampsia. To further elucidate the effects of vitamin D activity in pregnancy, we investigated the role of maternal 25(OH)D, the nutritional indicator of vitamin D status, in relation to placental maintenance and, specifically, expression of placental gene targets related to angiogenesis and vitamin D metabolism. METHODS A focused analysis of placental mRNA expression related to angiogenesis, pregnancy maintenance, and vitamin D metabolism was conducted in placentas from 43 subjects enrolled in a randomized controlled trial supplementing 400IU or 4400IU of vitamin D3 per day during pregnancy. Placental mRNA was isolated from biopsies within one hour of delivery, followed by quantitative PCR. We classified pregnant women with circulating concentrations of <100nmoles/L as deficient and those with ≥100nmoles/L as sufficient. The value of each gene's change in the PCR cycle threshold (ΔCT), which is a relative measure of target concentration, was compared with maternal 25(OH)D concentrations <100nmoles/L and ≥100nmoles/L based on a two-sample Wilcoxon test. RESULTS Soluble FMS-like tyrosine kinase 1 (sFlt-1) and vascular endothelial growth factor (VEGF) gene expression was significantly downregulated in the maternal subgroup with circulating 25(OH)D ≥100ng/mL compared to the subgroup <100ng/mL. DISCUSSION Here, we report a significant association between maternal vitamin D status and the expression of sFlt-1 and VEGF at the mRNA level. Achieving maternal circulating 25(OH)D ≥100nmoles/L suggests the impact of maternal vitamin D3 supplementation on gene transcription in the placenta, thereby potentially decreasing antiangiogenic factors that may contribute to vascular pregnancy complications.
Collapse
Affiliation(s)
- Elizabeth V Schulz
- Departments of Pediatrics, 169 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Lori Cruze
- OB/GYN, 169 Ashley Avenue, Charleston, SC, 29425, USA
| | - Wei Wei
- Public Health Sciences, 169 Ashley Avenue, Charleston, SC, 29425, USA
| | - John Gehris
- Comparative Medicine Medical University of South Carolina, 169 Ashley Avenue, Charleston, SC, 29425, USA
| | - Carol L Wagner
- Departments of Pediatrics, 169 Ashley Avenue, Charleston, SC, 29425, USA
| |
Collapse
|
24
|
Zhang B, Wu Z, Xie W, Tian D, Chen F, Qin C, Du Z, Tang G, Gao Q, Qiu X, Wu C, Tian J, Hu H. The expression of vasohibin-1 and its prognostic significance in bladder cancer. Exp Ther Med 2017; 14:3477-3484. [PMID: 29042936 PMCID: PMC5639433 DOI: 10.3892/etm.2017.4969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/19/2017] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis is important in the development of solid tumors. Vasohibin-1 (VASH-1) is an endothelium-derived protein that acts as an inhibitor of angiogenesis in many different types of cancer. However, the expression of VASH-1 and its clinical value in bladder cancer remain unknown. The current study analyzed the expression of VASH-1, as well as the expression of the angiogenesis-related factors vascular endothelial growth factor-A, hypoxia inducible factor-1α and cluster of differentiation 34 in bladder cancer tissues from 50 patients using immunohistochemistry. The associations between the expression of these factors and the clinicopathological characteristics of the patients were assessed. The current study demonstrated that VASH-1 is primarily expressed in the cytoplasm of bladder cancer cells and in a fraction of vascular endothelial cells. Furthermore, the expression of VASH-1 was positively associated with the tumor stage (P<0.01), pathological grade (P<0.01) and distant metastasis (P<0.05) but not with patient age or sex (P>0.05). Spearman rank correlation tests indicated that levels of those four factors were positively correlated with each other. Kaplan-Meier analysis indicated that high expression of these four factors was significantly associated with lower 5-year overall survival and progression-free survival rates. Collectively, the results of the current study suggest that VASH-1 is clinically significant in bladder cancer and its high expression may predict the progression and prognosis of patients with bladder cancer. The present study also implies that VASH-1 may be a novel target for vascular targeting therapy.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Department of Ultrasound, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhouliang Wu
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Wanqin Xie
- Key Laboratory of Genetics and Birth Health of Hunan, The Family Planning Research Institute of Hunan, Changsha, Hunan 410126, P.R. China
| | - Dawei Tian
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Feiran Chen
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Chuan Qin
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhiyong Du
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Gang Tang
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Qiongqiong Gao
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300211, P.R. China
| | - Xiaoyu Qiu
- College of Management and Economics, Tianjin University, Tianjin 300211, P.R. China
| | - Changli Wu
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jing Tian
- Department of Ultrasound, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Hailong Hu
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
25
|
Xu Z, Han K, Chen J, Wang C, Dong Y, Yu M, Bai R, Huang C, Hou L. Vascular endothelial growth factor is neuroprotective against ischemic brain injury by inhibiting scavenger receptor A expression on microglia. J Neurochem 2017. [PMID: 28632969 DOI: 10.1111/jnc.14108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zheng Xu
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Kaiwei Han
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Jigang Chen
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Chunhui Wang
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Yan Dong
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Mingkun Yu
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Rulin Bai
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Chenguang Huang
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Lijun Hou
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| |
Collapse
|
26
|
Gram A, Boos A, Kowalewski MP. Cellular localization, expression and functional implications of the utero-placental endothelin system during maintenance and termination of canine gestation. J Reprod Dev 2017; 63:235-245. [PMID: 28216513 PMCID: PMC5481626 DOI: 10.1262/jrd.2016-165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Utero-placental (Ut-Pl) angiogenesis and blood flow are fundamental for successful outcome of pregnancy. They are controlled by numerous vasodilator and vasoconstrictor systems such as endothelins (EDNs) and the renin angiotensin system. Dogs possess an invasive type of placentation, classified as endotheliochorial. Despite increasing knowledge regarding canine Ut-Pl function, little information exists on uterine and placental vascular activity during initiation, maintenance and termination of pregnancy in this species. The current study investigated expression of EDNs and their receptors (EDNRA and EDNRB) in the pre-implantation uterus and Ut-Pl compartments during gestation and at normal parturition, as well as in mid-pregnant dogs treated with the antigestagen aglepristone. The Ut-Pl mRNA expression of EDN1 and EDNRA was constant until mid-gestation and increased significantly during prepartum luteolysis. In contrast, EDN2 was highest pre-implantation and decreased following placentation, remaining low thereafter. Expression of the EDN-activating enzyme ECE1 and mRNA of EDNRB increased towards mid-gestation and was further elevated at prepartum luteolysis. Antigestagen treatment resulted in increased levels of EDN1 and EDNRA. At the cellular level, the uterine expression of EDN1, ECE1 and EDNRB was found predominantly in the endometrial surface and glandular epithelial cells; uterine signals for EDNRA were weak. In Ut-Pl all targets were mainly localized in the placenta fetalis, with syncytiotrophoblast staining stronger for ECE1 and EDNRB. In contrast, EDNRA stained strongly at the base of the placental labyrinth. Expression and localization of EDNs (EDN1, -2), EDN receptors and ECE1 in the placenta fetalis suggests their involvement in the trophoblast invasion and proliferation.
Collapse
Affiliation(s)
- Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
27
|
Graubner FR, Reichler IM, Rahman NA, Payan-Carreira R, Boos A, Kowalewski MP. Decidualization of the canine uterus: From early until late gestational in vivo morphological observations, and functional characterization of immortalized canine uterine stromal cell lines. Reprod Domest Anim 2016; 52 Suppl 2:137-147. [PMID: 27862405 DOI: 10.1111/rda.12849] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The apparent lack of classical mechanisms for maternal recognition of pregnancy is one of the most intriguing features of canine reproduction. Consequently, similar levels of circulating luteal steroids are observed in pregnant and non-pregnant dogs. However, the early pre-implantation canine embryo locally modulates uterine responses to its presence, facilitating the successful onset of pregnancy. As a part of this interaction, the canine uterus undergoes a species-specific decidualization. Maternal stroma-derived decidual cells develop, the only cells of the canine placenta expressing progesterone receptor (PGR). There exists an acute need for an in vitro stable cell line model for canine decidualization. Therefore, herein our goal was to establish, immortalize and characterize such a cell line. We immortalized three monolayer dog uterine stromal (DUS) cell lines by stably transfecting them with SV40Tag oncogene. Cells retained their mesenchymal character for over 30 passages, as evidenced by VIMENTIN staining. Genomic incorporation of the SV40Tag protein was confirmed by immunofluorescence and Western blot analyses. Cells submitted to a classical in vitro decidualization protocol (N6,2'-O-dibutyryladenosine-3',5'-cyclic monophosphate) revealed upregulated gene levels of selected major decidualization markers (e.g. PRLR, PGR, IGF1, PTGES). Additionally, the basic decidualization capability of PGE2 was demonstrated, revealing increased levels of, for example, PGR and PRLR gene expression, thereby implying its involvement in the progesterone-dependent decidualization in the canine uterus. In summary, our in vitro model with immortalized DUS cell line could serve as an ideal and unique model to study the underlying molecular and endocrine mechanisms of canine decidualization.
Collapse
Affiliation(s)
- F R Graubner
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - I M Reichler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - N A Rahman
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - R Payan-Carreira
- Centro de Ciência Animal e Veterinária (CECAV), Zootecnia Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - A Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - M P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Diessler M, Ventureira M, Hernandez R, Sobarzo C, Casas L, Barbeito C, Cebral E. Differential expression and activity of matrix metalloproteinases 2 and 9 in canine early placenta. Reprod Domest Anim 2016; 52:35-43. [PMID: 27859764 DOI: 10.1111/rda.12791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/16/2016] [Indexed: 12/01/2022]
Abstract
The zonary and endotheliochorial dog placenta is the most invasive placenta of carnivores. The importance of matrix metalloproteinases (MMP) in placenta invasiveness has been determined in several mammals including species with haemochorial, epitheliochorial and endotheliochorial placentation. Regarding the latter, the expression of MMP enzymes has been studied in the cat and the mature canine placenta. The aim of this study was to analyse the expression and activity of MMP-2 and MMP-9 in the early dog placenta. Placentae from 18 to 30 days of pregnancy were collected from four bitches. Two placentae from each bitch were analysed. Placental tissue from one uterine horn was fixed in formaldehyde for immunohistochemistry, while marginal haematoma, labyrinth, non-implantative and implantative endometrium from the contralateral horn were immediately frozen in dry ice for the analysis of MMP expression (Western blot [WB]) and activity (zymography). MMP-2 and MMP-9 were evidenced in the labyrinth, maternal glands and marginal haematoma; this finding was directly correlated with levels of MMP expression by WB, and with the activity of MMP-2, mainly in the haematoma (the area of major remodelling of tissues). Thus, although MMP-9 is well expressed in the early canine placenta, it is not active. Given the important role of MMPs for invasiveness, maternal-foetal angiogenesis and the establishment of a correct foetal nutrition, the results are consistent with the findings in other species in which the MMP-2 activation precedes the MMP-9 one in early placentation.
Collapse
Affiliation(s)
- M Diessler
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - M Ventureira
- Laboratorio de Reproducción y Fisiopatología Materno-Embrionaria, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA)- Comisión Nacional de Investigaciones Científicas (CONICET), Facultad de Ciencias Exactas y Naturales (FCEyN)-UBA, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED)-UBA/CONICET, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - R Hernandez
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED)-UBA/CONICET, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - C Sobarzo
- Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED)-UBA/CONICET, UBA, Buenos Aires, Argentina
| | - L Casas
- Small Animal Private Practice, La Plata, Argentina
| | - C Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED)-UBA/CONICET, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - E Cebral
- Laboratorio de Reproducción y Fisiopatología Materno-Embrionaria, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA)- Comisión Nacional de Investigaciones Científicas (CONICET), Facultad de Ciencias Exactas y Naturales (FCEyN)-UBA, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED)-UBA/CONICET, Facultad de Medicina, UBA, Buenos Aires, Argentina
| |
Collapse
|
29
|
Thongkittidilok C, Wildt DE, Songsasen N. Responsiveness of intraovarian dog follicles in vitro to epidermal growth factor and vascular endothelial growth factor depends on ovarian donor age. Reprod Domest Anim 2016; 52 Suppl 2:114-122. [DOI: 10.1111/rda.12852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- C Thongkittidilok
- Center for Species Survival Smithsonian Conservation Biology Institute National Zoological Park Front Royal VA USA
| | - DE Wildt
- Center for Species Survival Smithsonian Conservation Biology Institute National Zoological Park Front Royal VA USA
| | - N Songsasen
- Center for Species Survival Smithsonian Conservation Biology Institute National Zoological Park Front Royal VA USA
| |
Collapse
|