1
|
Oefele M, Hau M, Ruuskanen S, Casagrande S. Mitochondrial function is enhanced by thyroid hormones during zebra finch development. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240417. [PMID: 39086825 PMCID: PMC11288688 DOI: 10.1098/rsos.240417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
An organism's response to its environment is largely determined by changes in the energy supplied by aerobic mitochondrial metabolism via adenosine triphosphate (ATP) production. ATP is especially important under energy-demanding conditions, such as during rapid growth. It is currently poorly understood how environmental factors influence energy metabolism and mitochondrial functioning, but recent studies suggest the role of thyroid hormones (TH). TH are key regulators of growth and metabolism and can be flexibly adjusted to environmental conditions, such as environmental temperature or food availability. To test whether TH enhancement is causally linked to mitochondrial function and growth, we provided TH orally at physiological concentrations during the main growth phase in zebra finch (Taeniopygia guttata) nestlings reared in a challenging environment. TH treatment accelerated maximal mitochondrial working capacity-a trait that reflects mitochondrial ATP production, without affecting growth. To our knowledge, this is the first study to characterize the regulation of mitochondria by TH during development in a semi-naturalistic context and to address implications for fitness-related traits, such as growth.
Collapse
Affiliation(s)
- Marlene Oefele
- Evolutionary Physiology Research Group, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Strasse, Seewiesen82319, Germany
| | - Michaela Hau
- Evolutionary Physiology Research Group, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Strasse, Seewiesen82319, Germany
- Department of Biology, University of Konstanz, KonstanzD-78464, Germany
| | - Suvi Ruuskanen
- Environmental Physiology Research Group, University of Jyväskylä, Seminaarinkatu 15, University of Jyväskylä, JyväskyläFI-40014, Finland
| | - Stefania Casagrande
- Evolutionary Physiology Research Group, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Strasse, Seewiesen82319, Germany
| |
Collapse
|
2
|
Abstract
In recent years, the impact of prenatal sound on development, notably for programming individual phenotypes for postnatal conditions, has increasingly been revealed. However, the mechanisms through which sound affects physiology and development remain mostly unexplored. Here, I gather evidence from neurobiology, developmental biology, cellular biology and bioacoustics to identify the most plausible modes of action of sound on developing embryos. First, revealing often-unsuspected plasticity, I discuss how prenatal sound may shape auditory system development and determine individuals' later capacity to receive acoustic information. I also consider the impact of hormones, including thyroid hormones, glucocorticoids and androgen, on auditory plasticity. Second, I review what is known about sound transduction to other - non-auditory - brain regions, and its potential to input on classical developmental programming pathways. Namely, the auditory pathway has direct anatomical and functional connectivity to the hippocampus, amygdala and/or hypothalamus, in mammals, birds and anurans. Sound can thus trigger both immediate and delayed responses in these limbic regions, which are specific to the acoustic stimulus and its biological relevance. Third, beyond the brain, I briefly consider the possibility for sound to directly affect cellular functioning, based on evidence in earless organisms (e.g. plants) and cell cultures. Together, the multi-disciplinary evidence gathered here shows that the brain is wired to allow multiple physiological and developmental effects of sound. Overall, there are many unexplored, but possible, pathways for sound to impact even primitive or immature organisms. Throughout, I identify the most promising research avenues for unravelling the processes of acoustic developmental programming.
Collapse
Affiliation(s)
- Mylene M Mariette
- Doñana Biological Station EBD-CSIC, 41092 Seville, Spain
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
3
|
Javůrková VG, Mikšík I. New insights into the relationships between egg maternal components: the interplays between albumen steroid hormones, proteins and eggshell protoporphyrin. Comp Biochem Physiol A Mol Integr Physiol 2023; 279:111401. [PMID: 36781044 DOI: 10.1016/j.cbpa.2023.111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Recent studies have shown that the egg yolk maternal components, which are a mixture of substances that can affect the developing embryo, do not act separately but are interconnected and co-adapted. Surprisingly, no study to date has focused on the associations between maternally derived albumen steroids and albumen and eggshell compounds with pleiotropic effects. Eggshell pigment protoporphyrin (PROTO IX) should provide primary antimicrobial protection for eggs, but as a proven pro-oxidant, it may compromise female fitness. Abundant albumen proteins ovotransferrin (OVOTR) and lysozyme (LSM) have been shown to have antimicrobial, antioxidant, immunoregulatory and growth-regulatory roles. To investigate associations between albumen steroids and OVOTR, LSM and eggshell cuticle PROTO IX, we used chicken eggs with differently pigmented eggshells. We found that albumen steroid hormones were strongly intercorrelated. In addition, we revealed that albumen LSM and testosterone (T) were positively associated, while a negative association was found between albumen LSM and pregnenolone (P5). Eggshell cuticle PROTO IX was negatively associated with the concentration of albumen 17α-hydroxypregnenolone (17-OHP5). Finally, of all the hormones tested, only the concentration of albumen 17-OHP5 correlated negatively with egg volume and varied with eggshell colour and chicken breed. Although experimental evidence for the effect of maternal albumen steroids on avian developing embryo is still scarce, our study is the first to highlight co-variation and potential co-adjustment of maternally derived albumen steroids, proteins and eggshell cuticle pigment suggesting similar allocation mechanisms known for yolk maternal compounds with the potential to influence the avian embryo and offspring phenotype.
Collapse
Affiliation(s)
- Veronika Gvoždíková Javůrková
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic.
| | - Ivan Mikšík
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
4
|
Balog K, Mizeranschi AE, Wanjala G, Sipos B, Kusza S, Bagi Z. Application potential of chicken DNA chip in domestic pigeon species - Preliminary results. Saudi J Biol Sci 2023; 30:103594. [PMID: 36874200 PMCID: PMC9975693 DOI: 10.1016/j.sjbs.2023.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Introducing the SNP technology to pigeon breeding will enhance the competitiveness of a sector that produces one of the healthiest and best quality meats. The present study aimed to test the applicability of the Illumina Chicken_50K_CobbCons array on 24 domestic pigeon individuals from the Mirthys hybrids and Racing pigeon breeds. A total of 53,313 SNPs were genotyped. Principal component analysis shows a significant overlap between the two groups. The chip performed poorly in this data set, with a call rate per sample of 0.474 (49%). The low call rate was likely due to an increase in the evolutionary distance. A total of 356 SNPs were retained after a relatively strict quality control. We have demonstrated that it is technically feasible to use a chicken microarray chip on pigeon samples. Presumably, with a larger sample size and by assigning phenotypic data, efficiency would be improved, allowing more thorough analyses, such as genome-wide association studies.
Collapse
Affiliation(s)
- Katalin Balog
- University of Debrecen, Doctoral School of Animal Science, Böszörményi út 138, 4032, Debrecen, Hungary.,Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| | | | - George Wanjala
- University of Debrecen, Doctoral School of Animal Science, Böszörményi út 138, 4032, Debrecen, Hungary.,Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| | - Bíborka Sipos
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Böszörményi út 138, 4032, Debrecen, Hungary
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| |
Collapse
|
5
|
Hsu B, Pakanen V, Boner W, Doligez B, Eeva T, Groothuis TGG, Korpimäki E, Laaksonen T, Lelono A, Monaghan P, Sarraude T, Thomson RL, Tolvanen J, Tschirren B, Vásquez RA, Ruuskanen S. Maternally transferred thyroid hormones and life-history variation in birds. J Anim Ecol 2022; 91:1489-1506. [PMID: 35470435 PMCID: PMC9546341 DOI: 10.1111/1365-2656.13708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/21/2022] [Indexed: 12/04/2022]
Abstract
In vertebrates, thyroid hormones (THs) play an important role in the regulation of growth, development, metabolism, photoperiodic responses and migration. Maternally transferred THs are important for normal early phase embryonic development when embryos are not able to produce endogenous THs. Previous studies have shown that variation in maternal THs within the physiological range can influence offspring phenotype. Given the essential functions of maternal THs in development and metabolism, THs may be a mediator of life-history variation across species. We tested the hypothesis that differences in life histories are associated with differences in maternal TH transfer across species. Using birds as a model, we specifically tested whether maternally transferred yolk THs covary with migratory status, developmental mode and traits related to pace-of-life (e.g. basal metabolic rate, maximum life span). We collected un-incubated eggs (n = 1-21 eggs per species, median = 7) from 34 wild and captive bird species across 17 families and six orders to measure yolk THs [both triiodothyronine (T3) and thyroxine (T4)], compiled life-history trait data from the literature and used Bayesian phylogenetic mixed models to test our hypotheses. Our models indicated that both concentrations and total amounts of the two main forms of THs (T3 and T4) were higher in the eggs of migratory species compared to resident species, and total amounts were higher in the eggs of precocial species, which have longer prenatal developmental periods, than in those of altricial species. However, maternal yolk THs did not show clear associations with pace-of-life-related traits, such as fecundity, basal metabolic rate or maximum life span. We quantified interspecific variation in maternal yolk THs in birds, and our findings suggest higher maternal TH transfer is associated with the precocial mode of development and migratory status. Whether maternal THs represent a part of the mechanism underlying the evolution of precocial development and migration or a consequence of such life histories is currently unclear. We therefore encourage further studies to explore the physiological mechanisms and evolutionary processes underlying these patterns.
Collapse
Affiliation(s)
- Bin‐Yan Hsu
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Veli‐Matti Pakanen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Winnie Boner
- Institute of Biodiversity, Animal Healthy and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Blandine Doligez
- Department of Biometry and Evolutionary Biology, CNRS UMR 5558Université de Lyon 1VilleurbanneFrance
| | - Tapio Eeva
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Ton G. G. Groothuis
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | | | | | - Asmoro Lelono
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
- Biology Department, Natural Sciences and Mathematics FacultyJember University of IndonesiaJemberIndonesia
| | - Pat Monaghan
- Institute of Biodiversity, Animal Healthy and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Tom Sarraude
- Department of BiologyUniversity of TurkuTurkuFinland
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Robert L. Thomson
- Fitzpatrick Institute of African Ornithology, DST‐NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
| | - Jere Tolvanen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | | | - Rodrigo A. Vásquez
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileSantiagoChile
| | - Suvi Ruuskanen
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
6
|
Cossin-Sevrin N, Hsu BY, Marciau C, Viblanc VA, Ruuskanen S, Stier A. Effect of prenatal glucocorticoids and thyroid hormones on developmental plasticity of mitochondrial aerobic metabolism, growth and survival: an experimental test in wild great tits. J Exp Biol 2022; 225:jeb243414. [PMID: 35420125 PMCID: PMC10216743 DOI: 10.1242/jeb.243414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Developmental plasticity is partly mediated by transgenerational effects, including those mediated by the maternal endocrine system. Glucocorticoid and thyroid hormones may play central roles in developmental programming through their action on metabolism and growth. However, the mechanisms by which they affect growth and development remain understudied. One hypothesis is that maternal hormones directly affect the production and availability of energy-carrying molecules (e.g. ATP) by their action on mitochondrial function. To test this hypothesis, we experimentally increased glucocorticoid and thyroid hormones in wild great tit eggs (Parus major) to investigate their impact on offspring mitochondrial aerobic metabolism (measured in blood cells), and subsequent growth and survival. We show that prenatal glucocorticoid supplementation affected offspring cellular aerobic metabolism by decreasing mitochondrial density, maximal mitochondrial respiration and oxidative phosphorylation, while increasing the proportion of the maximum capacity being used under endogenous conditions. Prenatal glucocorticoid supplementation only had mild effects on offspring body mass, size and condition during the rearing period, but led to a sex-specific (females only) decrease in body mass a few months after fledging. Contrary to our expectations, thyroid hormone supplementation did not affect offspring growth or mitochondrial metabolism. Recapture probability as juveniles or adults was not significantly affected by prenatal hormonal treatment. Our results demonstrate that prenatal glucocorticoids can affect post-natal mitochondrial density and aerobic metabolism. The weak effects on growth and apparent survival suggest that nestlings were mostly able to compensate for the transient decrease in mitochondrial aerobic metabolism induced by prenatal glucocorticoids.
Collapse
Affiliation(s)
- Nina Cossin-Sevrin
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Coline Marciau
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, TAS 7004, Australia
| | - Vincent A. Viblanc
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Suvi Ruuskanen
- Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Antoine Stier
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
7
|
Miltiadous A, Buchanan KL. Experimental manipulation of maternal corticosterone: Hormone transfer to the yolk in the zebra finch Taeniopygia guttata. Gen Comp Endocrinol 2021; 313:113898. [PMID: 34492223 DOI: 10.1016/j.ygcen.2021.113898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Maternally-derived hormones affect offspring physiological and behavioural phenotype, plausibly as an adaptive response to maternal environmental conditions. Corticosterone (CORT), the principal avian glucocorticoid produced in response to stress, is recognised as a potential mediator of such maternal reproductive effects. Maternally-derived yolk CORT is implicated in mediating offspring growth and hatchling begging behaviour. However, determining the potential for maternal effects in opportunistic breeders subject to variable environments relies on understanding whether natural variation in maternal circulating hormones may directly impact the embryo during development. Therefore, we tested whether elevated maternal CORT concentrations increase yolk CORT concentrations in zebra finch (Taeniopygia guttata) eggs. We remotely dosed breeding females with biologically-relevant doses of CORT, or the oil vehicle, 0-3 h prior to the predicted time of ovulation, and allowed pairs to produce two clutches, one under each treatment, in a crosswise, balanced design. CORT dosing elevated maternal plasma CORT and increased mean yolk CORT by a factor of 1.75 compared to the egg yolks of control mothers. Importantly, CORT concentrations did not differ between inner and outer layers of yolk. We found no egg lay order effect and maternal CORT dosing did not influence reproductive outputs (clutch initiation date, clutch size or egg mass). Our results confirm the direct impact of biologically-relevant increases in maternal CORT on yolk CORT, providing evidence that maternal CORT concentrations during yolk deposition to the follicle alters embryonic exogenous CORT exposure. Further research is required to determine the impact of maternal CORT on embryonic developmental programming.
Collapse
Affiliation(s)
- Anna Miltiadous
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
8
|
Sarraude T, Hsu BY, Ruuskanen S, Groothuis T. Is maternal thyroid hormone deposition subject to a trade-off between self and egg because of iodine? An experimental study in rock pigeon. J Exp Biol 2021; 224:272570. [PMID: 34605889 PMCID: PMC8545739 DOI: 10.1242/jeb.242203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022]
Abstract
Maternal hormones constitute a key signalling pathway for mothers to shape offspring phenotype and fitness. Thyroid hormones (THs; triiodothyronine, T3; and thyroxine, T4) are metabolic hormones known to play crucial roles in embryonic development and survival in all vertebrates. During early developmental stages, embryos exclusively rely on exposure to maternal THs, and maternal hypothyroidism can cause severe embryonic maldevelopment. The TH molecule includes iodine, an element that cannot be synthesised by the organism. Therefore, TH production may become costly when environmental iodine availability is low. This may yield a trade-off for breeding females between allocating the hormones to self or to their eggs, potentially to the extent that it even influences the number of laid eggs. In this study, we investigated whether low dietary iodine may limit TH production and transfer to the eggs in a captive population of rock pigeons (Columba livia). We provided breeding females with an iodine-restricted (I−) diet or iodine-supplemented (I+) diet and measured the resulting circulating and yolk iodine and TH concentrations and the number of eggs laid. Our iodine-restricted diet successfully decreased both circulating and yolk iodine concentrations compared with the supplemented diet, but not circulating or yolk THs. This indicates that mothers may not be able to independently regulate hormone exposure for self and their embryos. However, egg production was clearly reduced in the I− group, with fewer females laying eggs. This result shows that restricted availability of iodine does induce a cost in terms of egg production. Whether females reduced egg production to preserve THs for themselves or to prevent embryos from exposure to low iodine and/or THs is as yet unclear. Summary: Restricted dietary iodine in captive rock pigeons reduces egg production in some females, thus inducing a trade-off between offspring quality and offspring quantity.
Collapse
Affiliation(s)
- Tom Sarraude
- Department of Biology, University of Turku, FI-20014 Turku, Finland.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Suvi Ruuskanen
- Department of Biology, University of Turku, FI-20014 Turku, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Seminaarinkatu 15, FI-40014, Finland
| | - Ton Groothuis
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
10
|
Sarraude T, Hsu BY, Groothuis TGG, Ruuskanen S. Manipulation of Prenatal Thyroid Hormones Does Not Affect Growth or Physiology in Nestling Pied Flycatchers. Physiol Biochem Zool 2021; 93:255-266. [PMID: 32412834 DOI: 10.1086/709030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hormones transferred from mothers to their offspring are thought to be a tool for mothers to prepare their progeny for expected environmental conditions, thus increasing fitness. Thyroid hormones (THs) are crucial across vertebrates for embryonic and postnatal development and metabolism. Yet yolk THs have mostly been ignored in the context of hormone-mediated maternal effects. In addition, the few studies on maternal THs have yielded contrasting results that could be attributed to either species or environmental differences. In this study, we experimentally elevated yolk THs (within the natural range) in a wild population of a migratory passerine, the European pied flycatcher (Ficedula hypoleuca), and assessed the effects on hatching success, nestling survival, growth, and oxidative status (lipid peroxidation, antioxidant enzyme activity, and oxidative balance). We also sought to compare our results with those of a closely related species, the collared flycatcher (Ficedula albicolis), that has strong ecological and life-history similarities with our species. We found no effects of yolk THs on any of the responses measured. We could detect only a weak trend on growth: elevated yolk THs tended to increase growth during the second week after hatching. Our results contradict the findings of previous studies, including those of the collared flycatcher. However, differences in fledging success and nestling growth between both species in the same year suggest a context-dependent influence of the treatment. This study should stimulate more research on maternal effects mediated by THs and their potential context-dependent effects.
Collapse
|
11
|
Ruuskanen S, Hsu BY, Nord A. Endocrinology of thermoregulation in birds in a changing climate. Mol Cell Endocrinol 2021; 519:111088. [PMID: 33227349 DOI: 10.1016/j.mce.2020.111088] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
The ability to maintain a (relatively) stable body temperature in a wide range of thermal environments by use of endogenous heat production is a unique feature of endotherms such as birds. Endothermy is acquired and regulated via various endocrine and molecular pathways, and ultimately allows wide aerial, aquatic, and terrestrial distribution in variable environments. However, due to our changing climate, birds are faced with potential new challenges for thermoregulation, such as more frequent extreme weather events, lower predictability of climate, and increasing mean temperature. We provide an overview on thermoregulation in birds and its endocrine and molecular mechanisms, pinpointing gaps in current knowledge and recent developments, focusing especially on non-model species to understand the generality of, and variation in, mechanisms. We highlight plasticity of thermoregulation and underlying endocrine regulation, because thorough understanding of plasticity is key to predicting responses to changing environmental conditions. To this end, we discuss how changing climate is likely to affect avian thermoregulation and associated endocrine traits, and how the interplay between these physiological processes may play a role in facilitating or constraining adaptation to a changing climate. We conclude that while the general patterns of endocrine regulation of thermogenesis are quite well understood, at least in poultry, the molecular and endocrine mechanisms that regulate, e.g. mitochondrial function and plasticity of thermoregulation over different time scales (from transgenerational to daily variation), need to be unveiled. Plasticity may ameliorate climate change effects on thermoregulation to some extent, but the increased frequency of extreme weather events, and associated changes in resource availability, may be beyond the scope and/or speed for plastic responses. This could lead to selection for more tolerant phenotypes, if the underlying physiological traits harbour genetic and individual variation for selection to act on - a key question for future research.
Collapse
Affiliation(s)
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, Finland
| | - Andreas Nord
- Lund University, Department of Biology, Section for Evolutionary Ecology, Ecology Building, Sölvegatan 37, SE-22362, Lund, Sweden
| |
Collapse
|
12
|
Explaining discrepancies in the study of maternal effects: the role of context and embryo. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Sarraude T, Hsu BY, Groothuis TGG, Ruuskanen S. Testing different forms of regulation of yolk thyroid hormone transfer in pied flycatchers. J Exp Biol 2020; 223:jeb226688. [PMID: 32978314 DOI: 10.1242/jeb.226688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Hormones transferred from mothers to their offspring are considered a maternal tool to prepare progeny for expected environmental conditions, increasing maternal and offspring fitness. To flexibly influence offspring, mothers should be able to transmit the hormonal signals independent of their own hormonal status. However, the ability to regulate hormone transfer to the next generation is under debate. We studied the transfer of thyroid hormones (THs) to eggs in a bird model. We elevated thyroxine (T4, the prohormone for the biologically active triiodothyronine, T3) during egg laying using T4 implants in females of a wild population of pied flycatchers (Ficedula hypoleuca), and measured the resulting plasma and yolk T4 and T3 levels. We found an increase in plasma and yolk T4 and no change in plasma or yolk T3 concentration, leading to a decrease in yolk T3/T4 ratio in response to the T4 treatment. The yolk T3/T4 ratio was similar to the plasma ratio in females during the yolking phase. This suggests that mothers are not able to regulate TH transfer to yolk but may regulate the T4 to T3 conversion to avoid potential costs of elevated exposure to the active hormone to herself and to her progeny. The absence of regulation in hormone transfer to eggs is in contrast to our predictions. Future studies on deiodinase activity that converts T4 to T3 in maternal and embryonic tissues may help our understanding of how mothers regulate circulating THs during breeding, as well as the embryos' role in converting maternal T4 to its biologically active T3 form during development.
Collapse
Affiliation(s)
- Tom Sarraude
- Department of Biology, University of Turku, FI-20014, Turku, Finland
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Ton G G Groothuis
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Suvi Ruuskanen
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
14
|
Suvi R, Giovanna M, Katja A. Experimental copper exposure, but not heat stress, leads to elevated intraovarian thyroid hormone levels in three-spined sticklebacks (Gasterosteus aculeatus). ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1431-1440. [PMID: 32975733 PMCID: PMC7581574 DOI: 10.1007/s10646-020-02278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 05/04/2023]
Abstract
Climate change and pollution are some of the greatest anthropogenic threats to wild animals. Transgenerational plasticity-when parental exposure to environmental stress leads to changes in offspring phenotype-has been highlighted as a potential mechanism to respond to various environmental and anthropogenic changes across taxa. Transgenerational effects may be mediated via multiple mechanisms, such as transfer of maternal hormones to eggs/foetus. However, sources of variation in hormone transfer are poorly understood in fish, and thus the first step is to characterise whether environmental challenges alter transfer of maternal hormones to eggs. To this end, we explored the population variation and environmental variation (in response to temperature and endocrine disrupting copper) in maternal thyroid hormone (TH), transfer to offspring in a common fish model species, the three-spined stickleback (Gasterosteus aculeatus) using multiple approaches: (i) We compared ovarian TH levels among six populations across a wide geographical range in the Baltic Sea, including two populations at high water temperature areas (discharge water areas of nuclear power plants) and we experimentally exposed fish to (ii) environmentally relevant heat stress and (iii) copper for 7 days. We found that populations did not differ in intraovarian TH levels, and short-term heat stress did not influence intraovarian TH levels. However, copper exposure increased both T4 and T3 levels in ovaries. The next step would be to evaluate if such alterations would lead to changes in offspring phenotype.
Collapse
Affiliation(s)
- Ruuskanen Suvi
- Department of Biology, University of Turku, Turku, Finland.
| | | | - Anttila Katja
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Sarraude T, Hsu BY, Groothuis T, Ruuskanen S. Testing the short-and long-term effects of elevated prenatal exposure to different forms of thyroid hormones. PeerJ 2020; 8:e10175. [PMID: 33088630 PMCID: PMC7571413 DOI: 10.7717/peerj.10175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Maternal thyroid hormones (THs) are known to be crucial in embryonic development in humans, but their influence on other, especially wild, animals remains poorly understood. So far, the studies that experimentally investigated the consequences of maternal THs focused on short-term effects, while early organisational effects with long-term consequences, as shown for other prenatal hormones, could also be expected. In this study, we aimed at investigating both the short- and long-term effects of prenatal THs in a bird species, the Japanese quail Coturnix japonica. We experimentally elevated yolk TH content (the prohormone T4, and its active metabolite T3, as well as a combination of both hormones). We analysed hatching success, embryonic development, offspring growth and oxidative stress as well as their potential organisational effects on reproduction, moult and oxidative stress in adulthood. We found that eggs injected with T4 had a higher hatching success compared with control eggs, suggesting conversion of T4 into T3 by the embryo. We detected no evidence for other short-term or long-term effects of yolk THs. These results suggest that yolk THs are important in the embryonic stage of precocial birds, but other short- and long-term consequences remain unclear. Research on maternal THs will greatly benefit from studies investigating how embryos use and respond to this maternal signalling. Long-term studies on prenatal THs in other taxa in the wild are needed for a better understanding of this hormone-mediated maternal pathway.
Collapse
Affiliation(s)
- Tom Sarraude
- Department of Biology, University of Turku, Turku, Finland.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, Turku, Finland
| | - Ton Groothuis
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Suvi Ruuskanen
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Hsu BY, Sarraude T, Cossin-Sevrin N, Crombecque M, Stier A, Ruuskanen S. Testing for context-dependent effects of prenatal thyroid hormones on offspring survival and physiology: an experimental temperature manipulation. Sci Rep 2020; 10:14563. [PMID: 32884067 PMCID: PMC7471313 DOI: 10.1038/s41598-020-71511-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Maternal effects via hormonal transfer from the mother to the offspring provide a tool to translate environmental cues to the offspring. Experimental manipulations of maternally transferred hormones have yielded increasingly contradictory results, which may be explained by differential effects of hormones under different environmental contexts. Yet context-dependent effects have rarely been experimentally tested. We therefore studied whether maternally transferred thyroid hormones (THs) exert context-dependent effects on offspring survival and physiology by manipulating both egg TH levels and post-hatching nest temperature in wild pied flycatchers (Ficedula hypoleuca) using a full factorial design. We found no clear evidence for context-dependent effects of prenatal THs related to postnatal temperature on growth, survival and potential underlying physiological responses (plasma TH levels, oxidative stress and mitochondrial density). We conclude that future studies should test for other key environmental conditions, such as food availability, to understand potential context-dependent effects of maternally transmitted hormones on offspring, and their role in adapting to changing environments.
Collapse
Affiliation(s)
- Bin-Yan Hsu
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
| | - Tom Sarraude
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
- GELIFES, University of Groningen, Groningen, The Netherlands
| | - Nina Cossin-Sevrin
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Mélanie Crombecque
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Antoine Stier
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Suvi Ruuskanen
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Hsu BY, Verhagen I, Gienapp P, Darras VM, Visser ME, Ruuskanen S. Between- and Within-Individual Variation of Maternal Thyroid Hormone Deposition in Wild Great Tits ( Parus major). Am Nat 2019; 194:E96-E108. [PMID: 31490720 DOI: 10.1086/704738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Maternal hormones are often considered a mediator of anticipatory maternal effects; namely, mothers adjust maternal hormone transfer to prepare the offspring for the anticipated environment. The flexibility for mothers to adjust hormone transfer is therefore a prerequisite for such anticipatory maternal effects. Nevertheless, previous studies have focused only on the average differences of maternal hormone transfer between groups and neglected the substantial individual variation, despite the fact that individual plasticity in maternal hormone transfer is actually the central assumption. In this study, we studied the between- and within-individual variation of maternal thyroid hormones (THs) in egg yolk of wild great tits (Parus major) and estimated the individual plasticity of maternal yolk THs across environmental temperature, clutch initiation dates, and egg laying order using linear mixed effects models. Interestingly, our models provide statistical evidence that the two main THs-the main biologically active hormone T3 and T4, which is mostly considered a prohormone-exhibited different variation patterns. Yolk T3 showed significant between-individual variation on the average levels, in line with its previously reported moderate heritability. Yolk T4, however, showed significant between-clutch variation in the pattern over the laying sequence, suggesting a great within-individual plasticity. Our findings suggest that the role and function of the hormone within the endocrine axis likely influences its flexibility to respond to environmental change. Whether the flexibility of T4 deposition brings a fitness advantage should be examined along with its potential effects on offspring, which remain to be further investigated.
Collapse
|
18
|
Groothuis TGG, Hsu BY, Kumar N, Tschirren B. Revisiting mechanisms and functions of prenatal hormone-mediated maternal effects using avian species as a model. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180115. [PMID: 30966885 PMCID: PMC6460091 DOI: 10.1098/rstb.2018.0115] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
Maternal effects can adaptively modulate offspring developmental trajectories in variable but predictable environments. Hormone synthesis is sensitive to environmental factors, and maternal hormones are thus a powerful mechanism to transfer environmental cues to the next generation. Birds have become a key model for the study of hormone-mediated maternal effects because the embryo develops outside the mother's body, facilitating the measurement and manipulation of prenatal hormone exposure. At the same time, birds are excellent models for the integration of both proximate and ultimate approaches, which is key to a better understanding of the evolution of hormone-mediated maternal effects. Over the past two decades, a surge of studies on hormone-mediated maternal effects has revealed an increasing number of discrepancies. In this review, we discuss the role of the environment, genetic factors and social interactions in causing these discrepancies and provide a framework to resolve them. We also explore the largely neglected role of the embryo in modulating the maternal signal, as well as costs and benefits of hormone transfer and expression for the different family members. We conclude by highlighting fruitful avenues for future research that have opened up thanks to new theoretical insights and technical advances in the field. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Ton G. G. Groothuis
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Bin-Yan Hsu
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
- Department of Biology, University of Turku, Turku, Finland
| | - Neeraj Kumar
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
19
|
Ruuskanen S, Espín S, Sánchez-Virosta P, Sarraude T, Hsu BY, Pajunen P, Costa RA, Eens M, Hargitai R, Török J, Eeva T. Transgenerational endocrine disruption: Does elemental pollution affect egg or nestling thyroid hormone levels in a wild songbird? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:725-735. [PMID: 30721863 DOI: 10.1016/j.envpol.2019.01.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) include a wide array of pollutants, such as some metals and other toxic elements, which may cause changes in hormonal homeostasis. In addition to affecting physiology of individuals directly, EDCs may alter the transfer of maternal hormones to offspring, i.e. causing transgenerational endocrine disruption. However, such effects have been rarely studied, especially in wild populations. We studied the associations between environmental elemental pollution (As, Cd, Cu, Ni, Pb) and maternally-derived egg thyroid hormones (THs) as well as nestling THs in great tits (Parus major) using extensive sampling of four pairs of polluted and reference populations across Europe (Finland, Belgium, Hungary, Portugal). Previous studies in these populations showed that breeding success, nestling growth and adult and nestling physiology were altered in polluted zones compared to reference zones. We sampled non-incubated eggs to measure maternally-derived egg THs, measured nestling plasma THs and used nestling faeces for assessing local elemental exposure. We also studied whether the effect of elemental pollution on endocrine traits is dependent on calcium (Ca) availability (faecal Ca as a proxy) as low Ca increases toxicity of some elements. Birds in the polluted zones were exposed to markedly higher levels of toxic elements than in reference zones at the populations in Finland, Belgium and Hungary. In contrast to our predictions, we did not find any associations between overall elemental pollution, or individual element concentrations and egg TH and nestling plasma TH levels. However, we found some indication that the effect of metals (Cd and Cu) on egg THs is dependent on Ca availability. In summary, our results suggest that elemental pollution at the studied populations is unlikely to cause overall TH disruption and affect breeding via altered egg or nestling TH levels with the current elemental pollution loads. Associations with Ca availability should be further studied.
Collapse
Affiliation(s)
- Suvi Ruuskanen
- Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Silvia Espín
- Department of Biology, University of Turku, 20014, Turku, Finland; Area of Toxicology, Department of Socio-Sanitary Sciences, IMIB-Arrixaca, University of Murcia, Campus de Espínardo, 30100, Murcia, Spain
| | - Pablo Sánchez-Virosta
- Department of Biology, University of Turku, 20014, Turku, Finland; Area of Toxicology, Department of Socio-Sanitary Sciences, IMIB-Arrixaca, University of Murcia, Campus de Espínardo, 30100, Murcia, Spain
| | - Tom Sarraude
- Department of Biology, University of Turku, 20014, Turku, Finland; GELIFES, University of Groningen, Groningen, the Netherlands
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Piia Pajunen
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Rute A Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Rita Hargitai
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Tapio Eeva
- Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
20
|
Darras VM. The Role of Maternal Thyroid Hormones in Avian Embryonic Development. Front Endocrinol (Lausanne) 2019; 10:66. [PMID: 30800099 PMCID: PMC6375826 DOI: 10.3389/fendo.2019.00066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
During avian embryonic development, thyroid hormones (THs) coordinate the expression of a multitude of genes thereby ensuring that the correct sequence of cell proliferation, differentiation and maturation is followed in each tissue and organ. Although THs are needed from the start of development, the embryonic thyroid gland only matures around mid-incubation in precocial birds and around hatching in altricial species. Therefore, maternal THs deposited in the egg yolk play an essential role in embryonic development. They are taken up by the embryo throughout its development, from the first day till hatching, and expression of TH regulators such as distributor proteins, transporters, and deiodinases in the yolk sac membrane provide the tools for selective metabolism and transport starting from this level. TH receptors and regulators of local TH availability are expressed in avian embryos in a dynamic and tissue/cell-specific pattern from the first stages studied, as shown in detail in chicken. Maternal hyperthyroidism via TH supplementation as well as injection of THs into the egg yolk increase TH content in embryonic tissues while induction of maternal hypothyroidism by goitrogen treatment results in a decrease. Both increase and decrease of maternal TH availability were shown to alter gene expression in early chicken embryos. Knockdown of the specific TH transporter monocarboxylate transporter 8 at early stages in chicken cerebellum, optic tectum, or retina allowed to reduce local TH availability, interfering with gene expression and confirming that development of the central nervous system (CNS) is highly dependent on maternal THs. While some of the effects on cell proliferation, migration and differentiation seem to be transient, others result in persistent defects in CNS structure. In addition, a number of studies in both precocial and altricial birds showed that injection of THs into the yolk at the start of incubation influences a number of parameters in posthatch performance and fitness. In conclusion, the data presently available clearly indicate that maternal THs play an important role in avian embryonic development, but how exactly their influence on cellular and molecular processes in the embryo is linked to posthatch fitness needs to be further explored.
Collapse
|
21
|
Ruuskanen S, Hsu BY, Heinonen A, Vainio M, Darras VM, Sarraude T, Rokka A. A new method for measuring thyroid hormones using nano-LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094:24-30. [DOI: 10.1016/j.jchromb.2018.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/14/2018] [Accepted: 06/24/2018] [Indexed: 12/28/2022]
|
22
|
Giraudeau M, Ziegler AK, Mcgraw KJ, Okuliarová M, Zeman M, Tschirren B. In ovo yolk carotenoid and testosterone levels interactively influence female transfer of yolk antioxidants to her eggs. Biol Lett 2018; 14:20180103. [PMID: 29875206 PMCID: PMC6030601 DOI: 10.1098/rsbl.2018.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/03/2018] [Indexed: 11/12/2022] Open
Abstract
Mothers can influence prenatal conditions by varying the amount of nutrients, hormones or antioxidants they provide to their developing young. Some of these substances even affect the transfer of these compounds in the next generation, but it is less clear how different maternally transmitted compounds interact with each other to shape reproductive resource allocation in their offspring. Here, we found that female Japanese quails (Coturnix japonica) that were exposed to high carotenoid levels during embryonic development transferred lower concentrations of yolk antioxidants to their own eggs later in life. This effect disappeared when both testosterone and carotenoid concentrations were manipulated simultaneously, showing long-term and interactive effects of these maternally derived egg components on a female's own egg composition. Given that exposure to high levels of testosterone during embryo development stimulates the production of reactive oxygen species (ROS) and impairs antioxidant defenses, we propose that carotenoids act as in ovo antioxidants in an oxidatively stressful environment (i.e. when levels of testosterone are high) but might have prooxidant properties in an environment where they are not used to counteract an increased production of ROS. In line with this hypothesis, we previously showed that prenatal exposure to increased concentrations of yolk carotenoids leads to a rise of oxidative damage at adulthood, but only when yolk testosterone concentrations were not experimentally increased as well. As a consequence, antioxidants in the body may be used to limit oxidative damage in females exposed to high levels of carotenoids during development (but not in females exposed to increased levels of both carotenoids and testosterone), resulting in lower amounts of antioxidants being available for deposition into eggs. Since prenatal antioxidant exposure is known to influence fitness-related traits, the effect detected in this study might have transgenerational consequences.
Collapse
Affiliation(s)
- Mathieu Giraudeau
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Switzerland
| | - Ann-Kathrin Ziegler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Switzerland
- Department of Biology, Lund University, Sölvegatan 37, Lund, Sweden
| | - Kevin J Mcgraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Monika Okuliarová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Switzerland
| |
Collapse
|
23
|
Ruuskanen S, Hsu BY. Maternal Thyroid Hormones: An Unexplored Mechanism Underlying Maternal Effects in an Ecological Framework. Physiol Biochem Zool 2018; 91:904-916. [DOI: 10.1086/697380] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|