1
|
Ren Z, Ye D, Su N, Wang C, He L, Wang H, He M, Sun Y. foxl2l is a germ cell-intrinsic gatekeeper of oogenesis in zebrafish. Zool Res 2024; 45:1116-1130. [PMID: 39257375 PMCID: PMC11491788 DOI: 10.24272/j.issn.2095-8137.2024.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/20/2024] [Indexed: 09/12/2024] Open
Abstract
Zebrafish serve as a valuable model organism for studying germ cell biology and reproductive processes. The AB strain of zebrafish is proposed to exhibit a polygenic sex determination system, where most males initially develop juvenile ovaries before committing to male fate. In species with chromosomal sex determination, gonadal somatic cells are recognized as key determinants of germ cell fate. Notably, the loss of germ cells in zebrafish leads to masculinization, implying that germ cells harbor an intrinsic feminization signal. However, the specific signal triggering oogenesis in zebrafish remains unclear. In the present study, we identified foxl2l as an oocyte progenitor-specific gene essential for initiating oogenesis in germ cells. Results showed that foxl2l-knockout zebrafish bypassed the juvenile ovary stage and exclusively developed into fertile males. Further analysis revealed that loss of foxl2l hindered the initiation of oocyte-specific meiosis and prevented entry into oogenesis, leading to premature spermatogenesis during early gonadal development. Furthermore, while mutation of the pro-male gene dmrt1 led to fertile female differentiation, simultaneous disruption of foxl2l in dmrt1 mutants completely blocked oogenesis, with a large proportion of germ cells arrested as germline stem cells, highlighting the crucial role of foxl2l in oogenesis. Overall, this study highlights the unique function of foxl2l as a germ cell-intrinsic gatekeeper of oogenesis in zebrafish.
Collapse
Affiliation(s)
- Zhiqin Ren
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Ding Ye
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China. E-mail:
| | - Naike Su
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaofan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Lijia He
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Mudan He
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang X, Li D, Qin Z, Chen J, Zhou J. CRISPR/Cpf1-FOKI-induced gene editing in Gluconobacter oxydans. Synth Syst Biotechnol 2024; 9:369-379. [PMID: 38559425 PMCID: PMC10980938 DOI: 10.1016/j.synbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Gluconobacter oxydans is an important Gram-negative industrial microorganism that produces vitamin C and other products due to its efficient membrane-bound dehydrogenase system. Its incomplete oxidation system has many crucial industrial applications. However, it also leads to slow growth and low biomass, requiring further metabolic modification for balancing the cell growth and incomplete oxidation process. As a non-model strain, G. oxydans lacks efficient genome editing tools and cannot perform rapid multi-gene editing and complex metabolic network regulation. In the last 15 years, our laboratory attempted to deploy multiple CRISPR/Cas systems in different G. oxydans strains and found none of them as functional. In this study, Cpf1-based or dCpf1-based CRISPRi was constructed to explore the targeted binding ability of Cpf1, while Cpf1-FokI was deployed to study its nuclease activity. A study on Cpf1 found that the CRISPR/Cpf1 system could locate the target genes in G. oxydans but lacked the nuclease cleavage activity. Therefore, the CRISPR/Cpf1-FokI system based on FokI nuclease was constructed. Single-gene knockout with efficiency up to 100% and double-gene iterative editing were achieved in G. oxydans. Using this system, AcrVA6, the anti-CRISPR protein of G. oxydans was discovered for the first time, and efficient genome editing was realized.
Collapse
Affiliation(s)
- Xuyang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Puthumana J, Chandrababu A, Sarasan M, Joseph V, Singh ISB. Genetic improvement in edible fish: status, constraints, and prospects on CRISPR-based genome engineering. 3 Biotech 2024; 14:44. [PMID: 38249355 PMCID: PMC10796887 DOI: 10.1007/s13205-023-03891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
Conventional selective breeding in aquaculture has been effective in genetically enhancing economic traits like growth and disease resistance. However, its advances are restricted by heritability, the extended period required to produce a strain with desirable traits, and the necessity to target multiple characteristics simultaneously in the breeding programs. Genome editing tools like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) are promising for faster genetic improvement in fishes. CRISPR/Cas9 technology is the least expensive, most precise, and well compatible with multiplexing of all genome editing approaches, making it a productive and highly targeted approach for developing customized fish strains with specified characteristics. As a result, the use of CRISPR/Cas9 technology in aquaculture is rapidly growing, with the main traits researched being reproduction and development, growth, pigmentation, disease resistance, trans-GFP utilization, and omega-3 metabolism. However, technological obstacles, such as off-target effects, ancestral genome duplication, and mosaicism in founder population, need to be addressed to achieve sustainable fish production. Furthermore, present regulatory and risk assessment frameworks are inadequate to address the technical hurdles of CRISPR/Cas9, even though public and regulatory approval is critical to commercializing novel technology products. In this review, we examine the potential of CRISPR/Cas9 technology for the genetic improvement of edible fish, the technical, ethical, and socio-economic challenges to using it in fish species, and its future scope for sustainable fish production.
Collapse
Affiliation(s)
- Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Manomi Sarasan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - I. S. Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| |
Collapse
|
4
|
Munley KM, Hoadley AP, Alward BA. A phylogenetics-based nomenclature system for steroid receptors in teleost fishes. Gen Comp Endocrinol 2024; 347:114436. [PMID: 38141859 DOI: 10.1016/j.ygcen.2023.114436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Teleost fishes have emerged as tractable models for studying the neuroendocrine regulation of social behavior via molecular genetic techniques, such as CRISPR/Cas9 gene editing. Moreover, teleosts provide an opportunity to investigate the evolution of steroid receptors and their functions, as species within this lineage possess novel steroid receptor paralogs that resulted from a teleost-specific whole genome duplication. Although teleost fishes have grown in popularity as models for behavioral neuroendocrinology, there is not a consistent nomenclature system for steroid receptors and their genes, which may impede a clear understanding of steroid receptor paralogs and their functions. Here, we used a phylogenetic approach to assess the relatedness of protein sequences encoding steroid receptor paralogs in 18 species from 12 different orders of the Infraclass Teleostei. While most similarly named sequences grouped based on the established phylogeny of the teleost lineage, our analysis revealed several inconsistencies in the nomenclature of steroid receptor paralogs, particularly for sequences encoding estrogen receptor beta (ERβ). Based on our results, we propose a nomenclature system for teleosts in which Greek symbols refer to proteins and numbers refer to genes encoding different subtypes of steroid receptors within the five major groups of this nuclear receptor subfamily. Collectively, our results bridge a critical gap by providing a cohesive naming system for steroid receptors in teleost fishes, which will serve to improve communication, promote collaboration, and enhance our understanding of the evolution and function of steroid receptors across vertebrates.
Collapse
Affiliation(s)
| | - Andrew P Hoadley
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Beau A Alward
- Department of Psychology, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
5
|
Paull GC, Lee CJ, Tyler CR. Beyond compliance: harmonising research and husbandry practices to improve experimental reproducibility using fish models. Biol Rev Camb Philos Soc 2024; 99:253-264. [PMID: 37817305 DOI: 10.1111/brv.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023]
Abstract
Reproducibility in animal research is impacted by the environment, by husbandry practices in the laboratory and by the animals' provenance. These factors, however, are often not adequately considered by researchers. A disconnect between researchers and animal care staff can result in inappropriate housing and husbandry decisions for scientific studies with those animals. This is especially the case for the research in neuro-behaviour, epigenetics, and the impact of climate change, as heritable phenotypic, behavioural or physiological changes are known to result from the animals' environmental housing, husbandry, provenance and prior experience. This can lead to greater variation (even major differences) in data outcomes among studies, driving scientific uncertainties. Herein, we illustrate some of the endpoints measured in fish studies known to be intrinsically linked to the environment and husbandry conditions and assess the significance of housing and husbandry practice decisions for research adopting these endpoints for different fish species. We highlight the different priorities and challenges faced by researchers and animal care staff and how harmonising their activities and building greater understanding of how husbandry practices affect the fish will improve reproducibility in research outcomes. We furthermore illustrate how improving engagement between stakeholders, including regulatory bodies, can better underpin fish husbandry decisions and where researchers could help to drive best husbandry practices through their own research with fish models.
Collapse
Affiliation(s)
- Gregory C Paull
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Carole J Lee
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
6
|
Gutási A, Hammer SE, El-Matbouli M, Saleh M. Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Animals (Basel) 2023; 13:1250. [PMID: 37048506 PMCID: PMC10093118 DOI: 10.3390/ani13071250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Gene editing and gene silencing techniques have the potential to revolutionize our knowledge of biology and diseases of fish and other aquatic animals. By using such techniques, it is feasible to change the phenotype and modify cells, tissues and organs of animals in order to cure abnormalities and dysfunctions in the organisms. Gene editing is currently experimental in wide fields of aquaculture, including growth, controlled reproduction, sterility and disease resistance. Zink finger nucleases, TALENs and CRISPR/Cas9 targeted cleavage of the DNA induce favorable changes to site-specific locations. Moreover, gene silencing can be used to inhibit the translation of RNA, namely, to regulate gene expression. This methodology is widely used by researchers to investigate genes involved in different disorders. It is a promising tool in biotechnology and in medicine for investigating gene function and diseases. The production of food fish has increased markedly, making fish and seafood globally more popular. Consequently, the incidence of associated problems and disease outbreaks has also increased. A greater investment in new technologies is therefore needed to overcome such problems in this industry. To put it concisely, the modification of genomic DNA and gene silencing can comprehensively influence aquatic animal medicine in the future. On the ethical side, these precise genetic modifications make it more complicated to recognize genetically modified organisms in nature and can cause several side effects through created mutations. The aim of this review is to summarize the current state of applications of gene modifications and genome editing in fish medicine.
Collapse
Affiliation(s)
- Anikó Gutási
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sabine E. Hammer
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mansour El-Matbouli
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mona Saleh
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
7
|
Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, Chopra C, Madkour M, Elolimy A, Hashem NM. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 2023; 47:1-16. [PMID: 35781172 DOI: 10.1007/s11259-022-09967-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, CB# 7260, 3093 Genetic Medicine, Chapel Hill, NC, 27599-2760, USA
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P -ta 1Decembrie 10, 410073, Oradea, Romania
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Elolimy
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
8
|
Investigation of antibiotic-resistant vibrios associated with shrimp (Penaeus vannamei) farms. Arch Microbiol 2022; 205:41. [PMID: 36571636 DOI: 10.1007/s00203-022-03376-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
For the sustainable farming of disease-free and healthy shrimps, antimicrobial use is frequent nowadays in shrimp-cultured system. Considering the serious impact of global antimicrobial resistance (AMR), the present study was focused to investigate the prevalence of antimicrobial-resistant vibrios among infected shrimps (Penaeus vannamei) from two brackish water-cultured farms. Diverse species of vibrios viz. V. alginolyticus, V. parahaemolyticus, V. cholerae, V. mimicus, and V. fluvialis along with Aeromonas hydrophila, A. salmonicida and Shewanella algae were recovered from the shrimps on TCBS medium. Shannon-Wiener diversity index and H' (loge) were 1.506 and 1.69 for the isolates from farm 1 and farm 2, respectively. V. alginolyticus was found to be the most resistant isolate by showing multiple antibiotic resistance (MAR) index of 0.60 followed by V. mimicus (0.54) and V. parahaemolyticus (0.42). Among the 35 antibiotics of 15 different classes tested, tetracyclines, beta-lactams and cephalosporins were found as the most resistant antibiotic classes. All the isolates possessed a MAR index > 0.2 and the majority exhibited minimum inhibitory concentration (MIC) > 256 mcg/ml, thereby indicating the excess exposure of antibiotics in the systems. An enhanced altered resistance phenotype and a significant shift in the MAR index were noticed after plasmid curing. Public health is further concerning because plasmid-borne AMR is evident among the isolates and the studied shrimp samples are significant in the food industry. This baseline information will help the authorities to curb antimicrobial use and pave the way for establishing new alternative strategies by undertaking a multidimensional "One-Health" approach.
Collapse
|
9
|
Chen W, Zhai Y, Zhu B, Wu K, Fan Y, Zhou X, Liu L, Ge W. Loss of growth differentiation factor 9 causes an arrest of early folliculogenesis in zebrafish-A novel insight into its action mechanism. PLoS Genet 2022; 18:e1010318. [PMID: 36520929 PMCID: PMC9799306 DOI: 10.1371/journal.pgen.1010318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Growth differentiation factor 9 (GDF9) was the first oocyte-specific growth factor identified; however, most information about GDF9 functions comes from studies in the mouse model. In this study, we created a mutant for Gdf9 gene (gdf9-/-) in zebrafish using TALEN approach. The loss of Gdf9 caused a complete arrest of follicle development at primary growth (PG) stage. These follicles eventually degenerated, and all mutant females gradually changed to males through sex reversal, which could be prevented by mutation of the male-promoting gene dmrt1. Interestingly, the phenotypes of gdf9-/- could be rescued by simultaneous mutation of inhibin α (inha-/-) but not estradiol treatment, suggesting a potential role for the activin-inhibin system or its signaling pathway in Gdf9 actions. In gdf9-null follicles, the expression of activin βAa (inhbaa), but not βAb (inhbab) and βB (inhbb), decreased dramatically; however, its expression rebounded in the double mutant (gdf9-/-;inha-/-). These results indicate clearly that the activation of PG follicles to enter the secondary growth (SG) requires intrinsic factors from the oocyte, such as Gdf9, which in turn works on the neighboring follicle cells to trigger follicle activation, probably involving activins. In addition, our data also support the view that estrogens are not involved in follicle activation as recently reported.
Collapse
Affiliation(s)
- Weiting Chen
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Zhu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yuqin Fan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Lin Liu
- School of Life Science, South China Normal University, Guangzhou, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
10
|
Panthum T, Jaisamut K, Singchat W, Ahmad SF, Kongkaew L, Wongloet W, Dokkaew S, Kraichak E, Muangmai N, Duengkae P, Srikulnath K. Something Fishy about Siamese Fighting Fish ( Betta splendens) Sex: Polygenic Sex Determination or a Newly Emerged Sex-Determining Region? Cells 2022; 11:1764. [PMID: 35681459 PMCID: PMC9179492 DOI: 10.3390/cells11111764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Fishes provide a unique and intriguing model system for studying the genomic origin and evolutionary mechanisms underlying sex determination and high sex-chromosome turnover. In this study, the mode of sex determination was investigated in Siamese fighting fish, a species of commercial importance. Genome-wide SNP analyses were performed on 75 individuals (40 males and 35 females) across commercial populations to determine candidate sex-specific/sex-linked loci. In total, 73 male-specific loci were identified and mapped to a 5.6 kb region on chromosome 9, suggesting a putative male-determining region (pMDR) containing localized dmrt1 and znrf3 functional sex developmental genes. Repeat annotations of the pMDR revealed an abundance of transposable elements, particularly Ty3/Gypsy and novel repeats. Remarkably, two out of the 73 male-specific loci were located on chromosomes 7 and 19, implying the existence of polygenic sex determination. Besides male-specific loci, five female-specific loci on chromosome 9 were also observed in certain populations, indicating the possibility of a female-determining region and the polygenic nature of sex determination. An alternative explanation is that male-specific loci derived from other chromosomes or female-specific loci in Siamese fighting fish recently emerged as new sex-determining loci during domestication and repeated hybridization.
Collapse
Affiliation(s)
- Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Kitipong Jaisamut
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Lalida Kongkaew
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Wongsathit Wongloet
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Sahabhop Dokkaew
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Department of Botany, Kasetsart University, Bangkok 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|
11
|
Luo M, Wang J, Dong Z, Wang C, Lu G. CRISPR-Cas9 sgRNA design and outcome assessment: Bioinformatics tools and aquaculture applications. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Towards progressive regulatory approaches for agricultural applications of animal biotechnology. Transgenic Res 2022; 31:167-199. [PMID: 35000100 PMCID: PMC8742713 DOI: 10.1007/s11248-021-00294-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022]
Abstract
Traditional breeding techniques, applied incrementally over thousands of years, have yielded huge benefits in the characteristics of agricultural animals. This is a result of significant, measurable changes to the genomes of those animal species and breeds. Genome editing techniques may now be applied to achieve targeted DNA sequence alterations, with the potential to affect traits of interest to production of agricultural animals in just one generation. New opportunities arise to improve characteristics difficult to achieve or not amenable to traditional breeding, including disease resistance, and traits that can improve animal welfare, reduce environmental impact, or mitigate impacts of climate change. Countries and supranational institutions are in the process of defining regulatory approaches for genome edited animals and can benefit from sharing approaches and experiences to institute progressive policies in which regulatory oversight is scaled to the particular level of risk involved. To facilitate information sharing and discussion on animal biotechnology, an international community of researchers, developers, breeders, regulators, and communicators recently held a series of seven virtual workshop sessions on applications of biotechnology for animal agriculture, food and environmental safety assessment, regulatory approaches, and market and consumer acceptance. In this report, we summarize the topics presented in the workshop sessions, as well as discussions coming out of the breakout sessions. This is framed within the context of past and recent scientific and regulatory developments. This is a pivotal moment for determination of regulatory approaches and establishment of trust across the innovation through-chain, from researchers, developers, regulators, breeders, farmers through to consumers.
Collapse
|
13
|
TALEN-Mediated Gene Editing of slc24a5 (Solute Carrier Family 24, Member 5) in Kawakawa, Euthynnus affinis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9121378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcription activator-like effector (TALE) nucleases (TALENs) mediated gene editing methods are becoming popular and have revealed the staggering complexity of genome control during development. Here, we present a simple and efficient gene knockout using TALENs in kawakawa, Euthynnus affinis, using slc24a5. We examined slc24a5 gene expression and functional differences between two TALENs that hold the TALE scaffolds, +153/+47 and +136/+63 and target slc24a5. Developmental changes in slc24a5 transcripts were seen in early-stage embryos by real-time PCR; slc24a5 expression was first detected 48 h post fertilization (hpf), which increased dramatically at 72 hpf. Four TALENs, 47- and 63-type of two different target loci (A and B), respectively, were constructed using Platinum TALEN and evaluated in vitro by a single-strand annealing (SSA) assay. TALEN activities were further evaluated in vivo by injecting TALEN mRNAs in the two-cell stage of the zygote. Most of the TALEN-induced mutants showed mosaic patterns in the retinal pigment epithelium (RPE) and fewer melanin pigments on the body at 72 hpf and later when compared to the control, implying the gene’s association with melanin pigment formation. A heteroduplex mobility assay (HMA) and the genome sequence further confirmed the TALEN-induced mutations of substitution, insertion, and deletion at an endogenous locus.
Collapse
|
14
|
Ren Z, Zhang Z, Liu TM, Ge W. Novel zebrafish polycystic kidney disease models reveal functions of the Hippo pathway in renal cystogenesis. Dis Model Mech 2021; 14:272239. [PMID: 34545930 PMCID: PMC8592019 DOI: 10.1242/dmm.049027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
The Hippo signaling pathway is a kinase cascade that plays an important role in organ size control. As the main effectors of the Hippo pathway, transcription coactivators Yap1/Wwtr1 are regulated by the upstream kinase Stk3. Recent studies in mammals have implicated the Hippo pathway in kidney development and kidney diseases. To further illustrate its roles in vertebrate kidney, we generated a series of zebrafish mutants targeting stk3, yap1 and wwtr1 genes. The stk3−/− mutant exhibited edema, formation of glomerular cysts and pronephric tubule dilation during the larval stage. Interestingly, disruption of wwtr1, but not yap1, significantly alleviated the renal phenotypes of the stk3−/− mutant, and overexpression of Wwtr1 with the CMV promoter also induced pronephric phenotypes, similar to those of the stk3−/− mutant, during larval stage. Notably, adult fish with Wwtr1 overexpression developed phenotypes similar to those of human polycystic kidney disease (PKD). Overall, our analyses revealed roles of Stk3 and Wwtr1 in renal cyst formation. Using a pharmacological approach, we further demonstrated that Stk3-deficient zebrafish could serve as a PKD model for drug development. Summary: A zebrafish stk3 mutant line and Wwtr1 overexpression line provide evidence for functions of the Hippo signaling pathway in renal cyst formation and represent potential models for polycystic kidney disease.
Collapse
Affiliation(s)
- Zhiqin Ren
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Zhiwei Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Tzu-Ming Liu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
15
|
Okoli AS, Blix T, Myhr AI, Xu W, Xu X. Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective. Transgenic Res 2021; 31:1-21. [PMID: 34304349 PMCID: PMC8821480 DOI: 10.1007/s11248-021-00274-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022]
Abstract
Aquaculture is becoming the primary source of seafood for human diets, and farmed fish aquaculture is one of its fastest growing sectors. The industry currently faces several challenges including infectious and parasitic diseases, reduced viability, fertility reduction, slow growth, escapee fish and environmental pollution. The commercialization of the growth-enhanced AquAdvantage salmon and the CRISPR/Cas9-developed tilapia (Oreochromis niloticus) proffers genetic engineering and genome editing tools, e.g. CRISPR/Cas, as potential solutions to these challenges. Future traits being developed in different fish species include disease resistance, sterility, and enhanced growth. Despite these notable advances, off-target effect and non-clarification of trait-related genes among other technical challenges hinder full realization of CRISPR/Cas potentials in fish breeding. In addition, current regulatory and risk assessment frameworks are not fit-for purpose regarding the challenges of CRISPR/Cas notwithstanding that public and regulatory acceptance are key to commercialization of products of the new technology. In this study, we discuss how CRISPR/Cas can be used to overcome some of these limitations focusing on diseases and environmental release in farmed fish aquaculture. We further present technical limitations, regulatory and risk assessment challenges of the use of CRISPR/Cas, and proffer research strategies that will provide much-needed data for regulatory decisions, risk assessments, increased public awareness and sustainable applications of CRISPR/Cas in fish aquaculture with emphasis on Atlantic salmon (Salmo salar) breeding.
Collapse
Affiliation(s)
- Arinze S Okoli
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway.
| | - Torill Blix
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway.,The Norwegian College of Fishery Science, The Arctic University of Norway (UiT), Tromsø, Norway
| | - Anne I Myhr
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao, 266061, China
| |
Collapse
|
16
|
Zohar Y. Fish reproductive biology - Reflecting on five decades of fundamental and translational research. Gen Comp Endocrinol 2021; 300:113544. [PMID: 32615136 PMCID: PMC7324349 DOI: 10.1016/j.ygcen.2020.113544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Driven by the broad diversity of species and physiologies and by reproduction-related bottlenecks in aquaculture, the field of fish reproductive biology has rapidly grown over the last five decades. This review provides my perspective on the field during this period, integrating fundamental and applied developments and milestones. Our basic understanding of the brain-pituitary-gonadal axis led to overcoming the failure of farmed fish to ovulate and spawn in captivity, allowing us to close the fish life cycle and establish a predictable, year-round production of eggs. Dissecting the molecular and hormonal mechanisms associated with sex determination and differentiation drove technologies for producing better performing mono-sex and reproductively-sterile fish. The growing contingent of passionate fish biologists, together with the availability of innovative platforms such as transgenesis and gene editing, as well as new models such as the zebrafish and medaka, have generated many discoveries, also leading to new insights of reproductive biology in higher vertebrates including humans. Consequently, fish have now been widely accepted as vertebrate reproductive models. Perhaps the best testament of the progress in our discipline is demonstrated at the International Symposia on Reproductive Physiology of Fish (ISRPF), at which our scientific family has convened every four years since the grandfather of the field, the late Ronald Billard, organized the inaugural 1977 meeting in Paimpont, France. As the one person who has been fortunate enough to attend all of these meetings since their inception, I have witnessed first-hand the astounding evolution of our field as we capitalized on the molecular and biotechnological revolutions in the life sciences, which enabled us to provide a higher resolution of fish reproductive and endocrine processes, answer more questions, and dive into deeper comprehension. Undoubtedly, the next (five) decades will be similarly exciting as we continue to integrate physiology with genomics, basic and translational research, and the small fish models with the aquacultured species.
Collapse
Affiliation(s)
- Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD 21202, United States
| |
Collapse
|
17
|
Schwartz TS. The Promises and the Challenges of Integrating Multi-Omics and Systems Biology in Comparative Stress Biology. Integr Comp Biol 2020; 60:89-97. [PMID: 32386307 DOI: 10.1093/icb/icaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comparative stress biology is inherently a systems biology approach with the goal of integrating the molecular, cellular, and physiological responses with fitness outcomes. In this way, the systems biology approach is expected to provide a holistic understanding of how different stressors result in different fitness outcomes, and how different individuals (or populations or species) respond to stressors differently. In this perceptive article, I focus on the use of multiple types of -omics data in stress biology. Targeting students and those researchers who are considering integrating -omics approaches in their comparative stress biology studies, I discuss the promise of the integration of these measures for furthering our holistic understanding of how organisms respond to different stressors. I also discuss the logistical and conceptual challenges encountered when working with -omics data and the current hurdles to fully utilize these data in studies of stress biology in non-model organisms.
Collapse
Affiliation(s)
- Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
18
|
Qiu X, Takamura T, Enoki S, Kato-Unoki Y, Takai Y, Nagano Y, Kinoshita M, Kitano T, Shimasaki Y, Oshima Y. Detoxification roles of tributyltin-binding protein type 2 in Japanese medaka (Oryzias latipes) exposed to tributyltin. MARINE POLLUTION BULLETIN 2020; 159:111445. [PMID: 32758797 DOI: 10.1016/j.marpolbul.2020.111445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin-binding protein type 2 (TBT-bp2), a homolog of α1-acid glycoprotein, may contribute to both accumulation and detoxification of TBT in fish. In this study, we conducted acute TBT exposure tests using both wide-type (WT) and TBT-bp2-/- (KO) strains of medaka and compared their responses in survival time and accumulation of TBT. Deficiency of TBT-bp2 significantly accelerated the time to death of medaka and decreased the LC50 of TBT, indicating that the KO-strain is more sensitive to TBT. No significant difference in the intrinsic TBT concentration in surviving fish was observed between the two strains. However, the intrinsic TBT concentration in dead KO-strain was significantly lower than that in WT-strain. These findings provide direct evidence, supporting the hypothesis that TBT-bp2 plays a critical role in the detoxification of TBT in fish.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takumi Takamura
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Chemicals Evaluation and Research Institute, 3-2-7, Miyanojin, Kurume-shi, Fukuoka 839-0801, Japan
| | - Shintaro Enoki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoko Kato-Unoki
- Center for Advanced Instrumental and Educational Supports, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yosuke Nagano
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Masato Kinoshita
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi 920-1192, Japan.
| |
Collapse
|
19
|
Hayasaka O, Anraku K, Akamatsu Y, Tseng YC, Archdale MV, Kotani T. Threshold and spectral sensitivity of vision in medaka Oryzias latipes determined by a novel template wave matching method. Comp Biochem Physiol A Mol Integr Physiol 2020; 251:110808. [PMID: 32979502 DOI: 10.1016/j.cbpa.2020.110808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 11/17/2022]
Abstract
We propose a new analytical method for determining the response threshold in electroretinogram (ERG) in which the wave shows a biphasic slow dc-potential shift. This method uses the recorded wave to the highest intensity stimuli in each wavelength tested as a template wave f(t), and it was compared with other recorded waves obtained under lower intensities g(t). Our test recordings in medaka Oryzias latipes were analogous between the template and the compared waveforms, although there were differences in amplitude and time lag (τ, peak time difference) which occurred as a result of the difference in stimulus intensity. Cross-correlation analysis was applied. Based on the obtained cross-correlation function Cfg(τ) in each comparison, τ was determined as the time lag at which the cross-correlation coefficient Rfg(τ) showed the maximum value. Determined thresholds that were based on both the experimenter's visual inspection and this new method agreed well when the adoption condition was set to satisfy R(τ) ≥ 0.7 and τ ≤ 150 ms in scotopic or τ ≤ 120 ms in photopic conditions. We concluded that this "template wave matching method" is a quick and reliable objective assessment that can be used to determine the threshold. This study analyzed ERG recordings in response to 6 kinds of wavelength light stimuli (380 nm to 620 nm) at different photon flux densities. We report the threshold levels and relative spectral sensitivities in scotopic and photopic vision of medaka.
Collapse
Affiliation(s)
- Oki Hayasaka
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiko Anraku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan.
| | - Yuya Akamatsu
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Miguel Vazquez Archdale
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Tomonari Kotani
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
20
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
21
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
22
|
Trends of CRISPR technology development and deployment into Agricultural Production-Consumption Systems. WORLD PATENT INFORMATION 2020. [DOI: 10.1016/j.wpi.2019.101944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Abstract
Gene editing offers opportunities to solve fish farming sustainability issues that presently hampers expansion of the aquaculture industry. In for example Atlantic salmon farming, there are now two major bottlenecks limiting the expansion of the industry. One is the genetic impact of escaped farmed salmon on wild populations, which is considered the most long-term negative effect on the environment. Secondly and the utmost acute problem is the fish parasite salmon lice, which is currently causing high lethality in wild salmonids due to high concentrations of the parasite in the sea owing to sea cage salmon farming. There are also sustainability issues associated with increased use of vegetable-based ingredients as replacements for marine products in fish feed. This transition comes at the expense of the omega-3 content both in fish feed and the fish filet of the farmed fish. Reduced fish welfare represents another obstacle, and robust farmed fish is needed to avoid negative stress associated phenotypes such as cataract, bone and fin deformities, precocious maturity and higher disease susceptibility. Gene editing could solve some of these problems as genetic traits can be altered positively to reach phenotype of interest such as for example disease resistance and increased omega-3 production.
Collapse
|
24
|
Li J, Cheng CHK. Evolution of gonadotropin signaling on gonad development: insights from gene knockout studies in zebrafish. Biol Reprod 2019; 99:686-694. [PMID: 29718109 DOI: 10.1093/biolre/ioy101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadal development is precisely regulated by the two gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Much progress on understanding the functions of LH and FSH signaling on gonad development has been achieved in the past decades, mostly from studies in mammals, especially genetic studies in both mouse and human. The functions of both LH and FSH signaling in nonmammalian species are still largely unknown. In recent years, using zebrafish, a teleost phylogenetically distant from mammals, we and others have genetically analyzed the functions of gonadotropins and their receptors through gene knockout studies. In this review, we will summarize the pertinent findings and discuss how the actions of gonadotropin signaling on gonad development have evolved during evolution from fish to mammals.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
25
|
Targeted mutagenesis of the ryanodine receptor by Platinum TALENs causes slow swimming behaviour in Pacific bluefin tuna (Thunnus orientalis). Sci Rep 2019; 9:13871. [PMID: 31554877 PMCID: PMC6761128 DOI: 10.1038/s41598-019-50418-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/05/2019] [Indexed: 11/08/2022] Open
Abstract
In bluefin tuna aquaculture, high mortalities of hatchery-reared juveniles occur in sea cages owing to wall collisions that are caused by high-speed swimming in panic due to changes in illuminance. Here, we report that targeted gene mutagenesis of the ryanodine receptor (RyR1b), which allows the sarcoplasmic reticulum to release Ca2+ in fast skeletal muscle, using highly active Platinum TALENs caused slow swimming behaviour in response to external stimuli in Pacific bluefin tuna (PBT) larvae. This characteristic would be a useful trait to prevent wall collisions in aquaculture production. A pair of Platinum TALENs targeting exons 2 and 43 of the PBT ryr1b gene induced deletions in each TALEN target site of the injected embryos with extremely high efficiency. In addition, ryr1b expression was significantly decreased in the mutated G0 larvae at 7 days after hatching (DAH). A touch-evoked escape behaviour assay revealed that the ryr1b-mutated PBT larvae swam away much less efficiently in response to mechanosensory stimulation at 7 DAH than did the wild-type larvae. Our results demonstrate that genome editing technologies are effective tools for determining the functional characterization of genes in a comparatively short period, and create avenues for facilitating genetic studies and breeding of bluefin tuna species.
Collapse
|
26
|
Ortega-Recalde O, Goikoetxea A, Hore TA, Todd EV, Gemmell NJ. The Genetics and Epigenetics of Sex Change in Fish. Annu Rev Anim Biosci 2019; 8:47-69. [PMID: 31525067 DOI: 10.1146/annurev-animal-021419-083634] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fish show extraordinary sexual plasticity, changing sex naturally as part of their life cycle or reversing sex because of environmental stressors. This plasticity shows that sexual fate is not an irreversible process but the result of an ongoing tug-of-war for supremacy between male and female signaling networks. The behavioral, gonadal, and morphological changes involved in this process are well described, yet the molecular events that underpin those changes remain poorly understood. Epigenetic modifications emerge as a critical link between environmental stimuli, the onset of sex change, and subsequent maintenance of sexual phenotype. Here we synthesize current knowledge of sex change, focusing on the genetic and epigenetic processes that are likely involved in the initiation and regulation of sex change. We anticipate that better understanding of sex change in fish will shed new light on sex determination and development in vertebrates and on how environmental perturbations affect sexual fate.
Collapse
|
27
|
Aksoy YA, Nguyen DT, Chow S, Chung RS, Guillemin GJ, Cole NJ, Hesselson D. Chemical reprogramming enhances homology-directed genome editing in zebrafish embryos. Commun Biol 2019; 2:198. [PMID: 31149642 PMCID: PMC6533270 DOI: 10.1038/s42003-019-0444-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
Precise genome editing is limited by the inefficiency of homology-directed repair (HDR) compared to the non-homologous end-joining (NHEJ) of double strand breaks (DSBs). The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 system generates precise, locus-specific DSBs that can serve as substrates for HDR. We developed an in vivo visual reporter assay to quantify HDR-mediated events at single-cell resolution in zebrafish and used this system to identify small-molecule modulators that shift the DNA repair equilibrium in favor of HDR. By further optimizing the reaction environment and repair template, we achieved dramatic enhancement of HDR-mediated repair efficiency in zebrafish. Accordingly, under optimized conditions, inhibition of NHEJ with NU7441 enhanced HDR-mediated repair up to 13.4-fold. Importantly, we demonstrate that the increase in somatic HDR events correlates directly with germline transmission, permitting the efficient recovery of large seamlessly integrated DNA fragments in zebrafish.
Collapse
Affiliation(s)
- Yagiz A. Aksoy
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW Australia
| | - David T. Nguyen
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW Australia
| | - Sharron Chow
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW Australia
| | - Roger S. Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW Australia
| | - Nicholas J. Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW Australia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW Australia
- St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW Australia
| |
Collapse
|
28
|
Lassoued R, Phillips PWB, Smyth SJ, Hesseln H. Estimating the cost of regulating genome edited crops: expert judgment and overconfidence. GM CROPS & FOOD 2019; 10:44-62. [PMID: 31070105 DOI: 10.1080/21645698.2019.1612689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Experts are often called on to inform decision makers with subjective estimates of uncertain events. Their judgment serves as the basis for policy-related decision-making. This paper analyzes survey results used to collect experts' opinions of the likely cost to bring genome edited crops to market. We also examine the effect of expertise (scientific experts versus social scientists in plant biotechnology) and possible knowledge mis-calibration, both in terms of overconfidence (i.e., when subjective knowledge is inflated) and under-confidence (i.e., when subjective knowledge is deflated), on the estimation of cost involved in the development and commercial release of genome edited crops. We found that the expected costs of genome edited crops are case specific and depend on whether crops will likely be regulated as genetically modified or accepted as conventional varieties and not subject to any regulatory oversight by federal regulators. While cost evaluation of genome edited crops did not vary among scientific and social experts, it did vary among domains of knowledge. Hence, expert's performance can be described as task-specific in the context of this study.
Collapse
Affiliation(s)
- Rim Lassoued
- a Department of Agricultural and Resource Economics , University of Saskatchewan , Saskatoon , Canada
| | - Peter W B Phillips
- b The Johnson Shoyama Graduate School of Public Policy , University of Saskatchewan , Saskatoon , Canada
| | - Stuart J Smyth
- a Department of Agricultural and Resource Economics , University of Saskatchewan , Saskatoon , Canada
| | - Hayley Hesseln
- a Department of Agricultural and Resource Economics , University of Saskatchewan , Saskatoon , Canada
| |
Collapse
|
29
|
Langevin C, Boudinot P, Collet B. IFN Signaling in Inflammation and Viral Infections: New Insights from Fish Models. Viruses 2019; 11:v11030302. [PMID: 30917538 PMCID: PMC6466407 DOI: 10.3390/v11030302] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
The overarching structure of the type I interferon (IFN) system is conserved across vertebrates. However, the variable numbers of whole genome duplication events during fish evolution offer opportunities for the expansion, diversification, and new functionalization of the genes that are involved in antiviral immunity. In this review, we examine how fish models provide new insights about the implication of virus-driven inflammation in immunity and hematopoiesis. Mechanisms that have been discovered in fish, such as the strong adjuvant effect of type I IFN that is used with DNA vaccination, constitute good models to understand how virus-induced inflammatory mechanisms can interfere with adaptive responses. We also comment on new discoveries regarding the role of pathogen-induced inflammation in the development and guidance of hematopoietic stem cells in zebrafish. These findings raise issues about the potential interferences of viral infections with the establishment of the immune system. Finally, the recent development of genome editing provides new opportunities to dissect the roles of the key players involved in the antiviral response in fish, hence enhancing the power of comparative approaches.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Bertrand Collet
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| |
Collapse
|
30
|
Hu Z, Ai N, Chen W, Wong QWL, Ge W. Loss of Growth Hormone Gene (gh1) in Zebrafish Arrests Folliculogenesis in Females and Delays Spermatogenesis in Males. Endocrinology 2019; 160:568-586. [PMID: 30668682 DOI: 10.1210/en.2018-00878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
As a master hormone controlling growth and metabolism, GH is also known to regulate reproduction. Studies in mammals have shown that mutations in GH or its receptor (GHR) not only result in retardation in body growth but also reproductive dysfunctions in both sexes. However, the roles of GH in reproduction of other vertebrates are poorly defined. In this study, we created two zebrafish GH (gh1) mutant lines using CRISPR/Cas9. The mutant developed normally up to 14 days postfertilization (dpf); however, a high rate of mortality was observed afterward in both lines, and only a small number of mutant fish could survive to adult stage. The body growth of the mutants was significantly retarded in both sexes in a gene dose-dependent manner compared with their wild-type siblings. A severe dysfunction of gonadal development was observed in survived mutant females, with ovarian folliculogenesis being arrested completely at primary growth stage until 100 dpf. Interestingly, the folliculogenesis in the mutant resumed after months of delay with a certain number of follicles entering vitellogenic growth. As for male reproduction, although the spermatogenesis in mutant males seemed normal in adults, the GH-insufficient heterozygote showed an obvious delay of spermatogenesis (puberty onset) at early developmental stages. The adult mutant males could not breed with wild-type females through natural spawning; however, the sperm isolated from the mutant testes could fertilize eggs through artificial fertilization. This study provides further genetic evidence for the dependence of puberty onset on somatic growth, but not age, in fish.
Collapse
Affiliation(s)
- Zhe Hu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Weiting Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Queenie Wing-Lei Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
31
|
Sun Y, Zhu Z. Designing future farmed fishes using genome editing. SCIENCE CHINA-LIFE SCIENCES 2019; 62:420-422. [DOI: 10.1007/s11427-018-9467-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
|
32
|
Cleveland BM, Yamaguchi G, Radler LM, Shimizu M. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss). Sci Rep 2018; 8:16054. [PMID: 30375441 PMCID: PMC6207780 DOI: 10.1038/s41598-018-34326-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/17/2018] [Indexed: 01/10/2023] Open
Abstract
In salmonids, the majority of circulating insulin-like growth factor-I (IGF-I) is bound to IGF binding proteins (IGFBP), with IGFBP-2b being the most abundant in circulation. We used CRISPR/Cas9 methodology to disrupt expression of a functional IGFBP-2b protein by co-targeting for gene editing IGFBP-2b1 and IGFBP-2b2 subtypes, which represent salmonid-specific gene duplicates. Twenty-four rainbow trout were produced with mutations in the IGFBP-2b1 and IGFBP-2b2 genes. Mutant fish exhibited between 8–100% and 2–83% gene disruption for IGFBP-2b1 and IGFBP-2b2, respectively, with a positive correlation (P < 0.001) in gene mutation rate between individual fish. Analysis of IGFBP-2b protein indicated reductions in plasma IGFBP-2b abundance to between 0.04–0.96-fold of control levels. Plasma IGF-I, body weight, and fork length were reduced in mutants at 8 and 10 months post-hatch, which supports that IGFBP-2b is significant for carrying IGF-I. Despite reduced plasma IGF-I and IGFBP-2b in mutants, growth retardation in mutants was less severe between 10 and 12 months post-hatch (P < 0.05), suggesting a compensatory growth response occurred. These findings indicate that gene editing using CRISPR/Cas9 and ligand blotting is a feasible approach for characterizing protein-level functions of duplicated IGFBP genes in salmonids and is useful to unravel IGF-related endocrine mechanisms.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, United States of America.
| | - Ginnosuke Yamaguchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Lisa M Radler
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, United States of America
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
33
|
Zhang Y, Zhang Z, Ge W. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing. J Biol Chem 2018; 293:6611-6622. [PMID: 29500194 DOI: 10.1074/jbc.ra117.001080] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/24/2018] [Indexed: 11/06/2022] Open
Abstract
Homology-directed recombination (HDR)-mediated genome editing is a powerful approach for both basic functional study and disease modeling. Although some studies have reported HDR-mediated precise editing in nonrodent models, the efficiency of establishing pure mutant animal lines that carry specific amino acid substitutions remains low. Furthermore, because the efficiency of nonhomologous end joining (NHEJ)-induced insertion and deletion (indel) mutations is normally much higher than that of HDR-induced point mutations, it is often difficult to identify the latter in the background of indel mutations. Using zebrafish as the model organism and Y box-binding protein 1 (Ybx1/ybx1) as the model molecule, we have established an efficient platform for precise CRISPR/Cas9-mediated gene editing in somatic cells, yielding an efficiency of up to 74% embryos. Moreover, we established a procedure for screening germline transmission of point mutations out of indel mutations even when germline transmission efficiency was low (<2%). To further improve germline transmission of HDR-induced point mutations, we optimized several key factors that may affect HDR efficiency, including the type of DNA donor, suppression of NHEJ, stimulation of HDR pathways, and use of Cas9 protein instead of mRNA. The optimized combination of these factors significantly increased the efficiency of germline transmission of point mutation up to 25%. In summary, we have developed an efficient procedure for creating point mutations and differentiating mutant individuals from those carrying knockouts of entire genes.
Collapse
Affiliation(s)
- Yibo Zhang
- From the Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhiwei Zhang
- From the Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Wei Ge
- From the Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau 999078, China
| |
Collapse
|