1
|
Wilson AB, Whittington CM, Meyer A, Scobell SK, Gauthier ME. Prolactin and the evolution of male pregnancy. Gen Comp Endocrinol 2023; 334:114210. [PMID: 36646326 DOI: 10.1016/j.ygcen.2023.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Prolactin (PRL) is a multifunctional hormone of broad physiological importance, and is involved in many aspects of fish reproduction, including the regulation of live birth (viviparity) and both male and female parental care. Previous research suggests that PRL also plays an important reproductive role in syngnathid fishes (seahorses, pipefish and seadragons), a group with a highly derived reproductive strategy, male pregnancy - how the PRL axis has come to be co-opted for male pregnancy remains unclear. We investigated the molecular evolution and expression of the genes for prolactin and its receptor (PRLR) in an evolutionarily diverse sampling of syngnathid fishes to explore how the co-option of PRL for male pregnancy has impacted its evolution, and to clarify whether the PRL axis is also involved in regulating reproductive function in species with more rudimentary forms of male pregnancy. In contrast to the majority of teleost fishes, all syngnathid fishes tested carry single copies of PRL and PRLR that cluster genetically within the PRL1 and PRLRa lineages of teleosts, respectively. PRL1 gene expression in seahorses and pipefish is restricted to the pituitary, while PRLRa is expressed in all tissues, including the brood pouch of species with both rudimentary and complex brooding structures. Pituitary PRL1 expression remains stable throughout pregnancy, but PRLRa expression is specifically upregulated in the male brood pouch during pregnancy, consistent with the higher affinity of pouch tissues for PRL hormone during embryonic incubation. Finally, immunohistochemistry of brood pouch tissues reveals that both PRL1 protein and PRLRa and Na+/K+ ATPase-positive cells line the inner pouch epithelium, suggesting that pituitary-derived PRL1 may be involved in brood pouch osmoregulation during pregnancy. Our data provide a unique molecular perspective on the evolution and expression of prolactin and its receptor during male pregnancy, and provide the foundation for further manipulative experiments exploring the role of PRL in this unique form of reproduction.
Collapse
Affiliation(s)
- Anthony B Wilson
- Department of Biology, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, United States; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland; Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Germany.
| | - Camilla M Whittington
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland; Sydney School of Veterinary Science, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Germany
| | - Sunny K Scobell
- Department of Biology, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, United States
| | - Marie-Emilie Gauthier
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
2
|
Moroki Y, Komori M, Ogawa Y, Nagumo E, Ohno H, Fukamachi S. An Attempt to Identify the Medaka Receptor for Somatolactin Alpha Using a Reverse Genetics Approach. Genes (Basel) 2023; 14:genes14040796. [PMID: 37107554 PMCID: PMC10137387 DOI: 10.3390/genes14040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Somatolactin alpha (SLα) is a fish-specific hormone involved in body color regulation. The growth hormone (GH) is another hormone that is expressed in all vertebrates and promotes growth. These peptide hormones act by binding to receptors (SLα receptor (SLR) and GH receptor (GHR)); however, the relationships between these ligands and their receptors vary among species. Here, we first performed phylogenetic tree reconstruction by collecting the amino-acid sequences classified as SLR, GHR, or GHR-like from bony fish. Second, we impaired SLR or GHR functions in medaka (Oryzias sakaizumii) using CRISPR/Cas9. Lastly, we analyzed SLR and GHR mutants for phenotypes to deduce their functions. Phylogenetic tree reconstruction was performed using a total of 222 amino-acid sequences from 136 species, which revealed that many GHRa and GHRb are vaguely termed as GHR or GHR-like, while showing no orthologous/paralogous relationships. SLR and GHR mutants were successfully established for phenotyping. SLR mutants exhibited premature lethality after hatching, indicating an essential role for SLR in normal growth. GHR mutations did not affect viability, body length, or body color. These results provide no evidence that either SLR or GHR functions as a receptor for SLα; rather, phylogenetically and functionally, they seem to be receptors for GH, although their (subfunctionalized) roles warrant further investigation.
Collapse
|
3
|
Kuraku S, Kaiya H, Tanaka T, Hyodo S. Evolution of Vertebrate Hormones and Their Receptors: Insights from Non-Osteichthyan Genomes. Annu Rev Anim Biosci 2023; 11:163-182. [PMID: 36400012 DOI: 10.1146/annurev-animal-050922-071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeostatic control and reproductive functions of humans are regulated at the molecular levels largely by peptide hormones secreted from endocrine and/or neuroendocrine cells in the central nervous system and peripheral organs. Homologs of those hormones and their receptors function similarly in many vertebrate species distantly related to humans, but the evolutionary history of the endocrine system involving those factors has been obscured by the scarcity of genome DNA sequence information of some taxa that potentially contain their orthologs. Focusing on non-osteichthyan vertebrates, namely jawless and cartilaginous fishes, this article illustrates how investigating genome sequence information assists our understanding of the diversification of vertebrate gene repertoires in four broad themes: (a) the presence or absence of genes, (b) multiplication and maintenance of paralogs, (c) differential fates of duplicated paralogs, and (d) the evolutionary timing of gene origins.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan; .,Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hiroyuki Kaiya
- Grandsoul Research Institute of Immunology, Inc., Uda, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
4
|
Discovery of prolactin-like in lamprey: Role in osmoregulation and new insight into the evolution of the growth hormone/prolactin family. Proc Natl Acad Sci U S A 2022; 119:e2212196119. [PMID: 36161944 DOI: 10.1073/pnas.2212196119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used a representative of one of the oldest extant vertebrate lineages (jawless fish or agnathans) to investigate the early evolution and function of the growth hormone (GH)/prolactin (PRL) family. We identified a second member of the GH/PRL family in an agnathan, the sea lamprey (Petromyzon marinus). Structural, phylogenetic, and synteny analyses supported the identification of this hormone as prolactin-like (PRL-L), which has led to added insight into the evolution of the GH/PRL family. At least two ancestral genes were present in early vertebrates, which gave rise to distinct GH and PRL-L genes in lamprey. A series of gene duplications, gene losses, and chromosomal rearrangements account for the diversity of GH/PRL-family members in jawed vertebrates. Lamprey PRL-L is produced in the proximal pars distalis of the pituitary and is preferentially bound by the lamprey PRL receptor, whereas lamprey GH is preferentially bound by the lamprey GH receptor. Pituitary PRL-L messenger RNA (mRNA) levels were low in larvae, then increased significantly in mid-metamorphic transformers (stage 3); thereafter, levels subsided in final-stage transformers and metamorphosed juveniles. The abundance of PRL-L mRNA and immunoreactive protein increased in the pituitary of juveniles under hypoosmotic conditions, and treatment with PRL-L blocked seawater-associated inhibition of freshwater ion transporters. These findings clarify the origin and divergence of GH/PRL family genes in early vertebrates and reveal a function of PRL-L in osmoregulation of sea lamprey, comparable to a role of PRLs that is conserved in jawed vertebrates.
Collapse
|
5
|
Kourtidis A, Dighera B, Risner A, Hackemack R, Nikolaidis N. Origin and Evolution of the Multifaceted Adherens Junction Component Plekha7. Front Cell Dev Biol 2022; 10:856975. [PMID: 35399503 PMCID: PMC8983885 DOI: 10.3389/fcell.2022.856975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Plekha7 is a key adherens junction component involved in numerous functions in mammalian cells. Plekha7 is the most studied member of the PLEKHA protein family, which includes eight members with diverse functions. However, the evolutionary history of Plekha7 remains unexplored. Here, we outline the phylogeny and identify the origins of this gene and its paralogs. We show that Plekha7, together with Plekha4, Plekha5, and Plekha6, belong to a subfamily that we name PLEKHA4/5/6/7. This subfamily is distinct from the other Plekha proteins, which form two additional separate subfamilies, namely PLEKHA1/2 and PLEKHA3/8. Sequence, phylogenetic, exon-intron organization, and syntenic analyses reveal that the PLEKHA4/5/6/7 subfamily is represented by a single gene in invertebrates, which remained single in the last common ancestor of all chordates and underwent gene duplications distinctly in jawless and jawed vertebrates. In the latter species, a first round of gene duplications gave rise to the Plekha4/7 and Plekha5/6 pairs and a second round to the four extant members of the subfamily. These observations are consistent with the 1R/2R hypothesis of vertebrate genome evolution. Plekha7 and Plekha5 also exist in two copies in ray-finned fishes, due to the Teleostei-specific whole genome duplication. Similarities between the vertebrate Plekha4/5/6/7 members and non-chordate sequences are restricted to their N-terminal PH domains, whereas similarities across the remaining protein molecule are only sporadically found among few invertebrate species and are limited to the coiled-coil and extreme C-terminal ends. The vertebrate Plekha4/5/6/7 proteins contain extensive intrinsically disordered domains, which are topologically and structurally conserved in all chordates, but not in non-chordate invertebrates. In summary, our study sheds light on the origins and evolution of Plekha7 and the PLEKHA4/5/6/7 subfamily and unveils new critical information suitable for future functional studies of this still understudied group of proteins.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Bryan Dighera
- Department of Biological Science, Center for Applied Biotechnology Studies, Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Alyssa Risner
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Rob Hackemack
- Department of Biological Science, Center for Applied Biotechnology Studies, Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| |
Collapse
|
6
|
Link K, Shved N, Serrano N, Akgül G, Caelers A, Faass O, Mouttet F, Raabe O, D’Cotta H, Baroiller JF, Eppler E. Effects of seawater and freshwater challenges on the Gh/Igf system in the saline-tolerant blackchin tilapia (Sarotherodon melanotheron). Front Endocrinol (Lausanne) 2022; 13:976488. [PMID: 36313755 PMCID: PMC9596810 DOI: 10.3389/fendo.2022.976488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Prolactin (Prl) and growth hormone (Gh) as well as insulin-like growth factor 1 (Igf1) are involved in the physiological adaptation of fish to varying salinities. The Igfs have been also ascribed other physiological roles during development, growth, reproduction and immune regulation. However, the main emphasis in the investigation of osmoregulatory responses has been the endocrine, liver-derived Igf1 route and local regulation within the liver and osmoregulatory organs. Few studies have focused on the impact of salinity alterations on the Gh/Igf-system within the neuroendocrine and immune systems and particularly in a salinity-tolerant species, such as the blackchin tilapia Sarotherodon melanotheron. This species is tolerant to hypersalinity and saline variations, but it is confronted by severe climate changes in the Saloum inverse estuary. Here we investigated bidirectional effects of increased salinity followed by its decrease on the gene regulation of prl, gh, igf1, igf2, Gh receptor and the tumor-necrosis factor a. A mixed population of sexually mature 14-month old blackchin tilapia adapted to freshwater were first exposed to seawater for one week and then to fresh water for another week. Brain, pituitary, head kidney and spleen were excised at 4 h, 1, 2, 3 and 7 days after both exposures and revealed differential expression patterns. This investigation should give us a better understanding of the role of the Gh/Igf system within the neuroendocrine and immune organs and the impact of bidirectional saline challenges on fish osmoregulation in non-osmoregulatory organs, notably the complex orchestration of growth factors and cytokines.
Collapse
Affiliation(s)
- Karl Link
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Natallia Shved
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Nabil Serrano
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Gülfirde Akgül
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Antje Caelers
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
| | - Oliver Faass
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
| | | | - Oksana Raabe
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Helena D’Cotta
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Université Montpellier, Institut de Recherche pour le Développement (the French National Research Institute for Sustainable Development) (IRD), Ecole Pratique des Hautes Etudes (Practical School of Advanced Studies) (EPHE), Centre National de la Recherche Scientifique (French National Centre for Scientific Research) (CNRS), Unité Mixte de Recherche (Mixed Research Unit) (UMR) 5554, Montpellier, France
- UMR116-Institut des Sciences de l’Evolution de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Jean-François Baroiller
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Université Montpellier, Institut de Recherche pour le Développement (the French National Research Institute for Sustainable Development) (IRD), Ecole Pratique des Hautes Etudes (Practical School of Advanced Studies) (EPHE), Centre National de la Recherche Scientifique (French National Centre for Scientific Research) (CNRS), Unité Mixte de Recherche (Mixed Research Unit) (UMR) 5554, Montpellier, France
- UMR116-Institut des Sciences de l’Evolution de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Elisabeth Eppler
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
- Institute of Anatomy, University of Bern, Bern, Switzerland
- *Correspondence: Elisabeth Eppler,
| |
Collapse
|
7
|
Wang Q, Zhang Q, Li Y, Zhao X, Zhang Y. Screening and Identification of Differential Ovarian Proteins before and after Induced Ovulation via Seminal Plasma in Bactrian Camels. Animals (Basel) 2021; 11:ani11123512. [PMID: 34944287 PMCID: PMC8698062 DOI: 10.3390/ani11123512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Camelidae are induced ovulators whose ovulation is tightly regulated by multiple factors. Understanding the biological mechanisms underlying follicular development, hormone secretion, and ovulation requires investigating the potential molecular pathways involved in these mechanisms. However, little is known about these molecular pathways in Bactrian camels. To screen and identify candidate biomarkers after seminal plasma (SP)-induced ovulation in the ovaries, we performed comprehensive proteomic and molecular biological analyses of the ovaries from camels that were intramuscularly injected with either seminal plasma or phosphate-buffered saline. Identification of these candidate biomarkers will enable a better understanding of reproduction in Bactrian camels. Our findings suggest candidate proteins for further studies on the molecular mechanisms of induced ovulation. Abstract Camelidae are induced ovulators whose ovulation is tightly regulated by multiple factors. Understanding the biological mechanisms underlying follicular development, hormone secretion, and ovulation requires investigating the potential molecular pathways involved. However, little is known about these pathways in Bactrian camels. To screen and identify candidate biomarkers after inducing ovulation, this study performed comprehensive proteomic and molecular biological analyses of the ovaries from two camel groups (n = 6). We identified 5075 expressed ovarian proteins, of which 404 were differentially expressed (264 upregulated, 140 downregulated) (p < 0.05 or p < 0.01), in samples from plasma-induced versus control camels. Gene ontology annotation identified the potential functions of the differentially expressed proteins (DEPs). These results validated the differential expression for a subset of these proteins using Western blot (p < 0.05) and immunofluorescence staining. Three DEPs (FST, NR5A1, and PRL) were involved in neurochemical signal transduction, as well as endocrine and reproductive hormone regulatory processes. The Kyoto Encyclopedia of Genes and Genomes analysis indicated the involvement of several pathways, including the calcium, cAMP, gonadotropin-releasing hormone, MAPK, and neuroactive ligand–receptor signaling pathways, suggesting that induced ovulation depends on the hypothalamic–pituitary–ovarian axis. Identifying these candidate biomarkers enables a better understanding of Bactrian camel reproduction. Ovarian proteomic profiling and the measurement of selected proteins using more targeted methods is a promising approach for studying induced-ovulation mechanisms.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Q.W.); (Y.L.)
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China;
| | - Yina Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Q.W.); (Y.L.)
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Q.W.); (Y.L.)
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China;
- Correspondence: (X.Z.); (Y.Z.)
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Q.W.); (Y.L.)
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China;
- Correspondence: (X.Z.); (Y.Z.)
| |
Collapse
|
8
|
Evolution and medicine - The central role of anatomy. Ann Anat 2021; 239:151809. [PMID: 34324995 DOI: 10.1016/j.aanat.2021.151809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
In medicine, there is an increasing number of publications that deal with or at least consider an evolutionary background. In zoology or comparative anatomy, work on evolutionary developments is taking on an ever-greater role in parallel. The pre-clinical (or pre-medical) phase in medical studies would be able to form a bridge between these related and yet so distant subjects but is currently completely evolution-free. This means that there is no consideration of the evolution of the healthy human being as a prerequisite for a systematic study of the evolutionary background in medicine. In this work the view is expressed that anatomy should be given a central, framework-giving and integrating role, which should urgently be actively pursued.
Collapse
|
9
|
Differential Regulation of Gonadotropins as Revealed by Transcriptomes of Distinct LH and FSH Cells of Fish Pituitary. Int J Mol Sci 2021; 22:ijms22126478. [PMID: 34204216 PMCID: PMC8234412 DOI: 10.3390/ijms22126478] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023] Open
Abstract
From mammals to fish, reproduction is driven by luteinizing hormone (LH) and follicle-stimulating hormone (FSH) temporally secreted from the pituitary gland. Teleost fish are an excellent model for addressing the unique regulation and function of each gonadotropin cell since, unlike mammals, they synthesize and secrete LH and FSH from distinct cells. Only very distant vertebrate classes (such as fish and birds) demonstrate the mono-hormonal strategy, suggesting a potential convergent evolution. Cell-specific transcriptome analysis of double-labeled transgenic tilapia expressing GFP and RFP in LH or FSH cells, respectively, yielded genes specifically enriched in each cell type, revealing differences in hormone regulation, receptor expression, cell signaling, and electrical properties. Each cell type expresses a unique GPCR signature that reveals the direct regulation of metabolic and homeostatic hormones. Comparing these novel transcriptomes to that of rat gonadotrophs revealed conserved genes that might specifically contribute to each gonadotropin activity in mammals, suggesting conserved mechanisms controlling the differential regulation of gonadotropins in vertebrates.
Collapse
|
10
|
Ocampo Daza D. Fast evolution of growth hormone, prolactin systems in mammals may be due to viral arms race. Bioessays 2021; 43:e2100047. [PMID: 33615515 DOI: 10.1002/bies.202100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel Ocampo Daza
- School of Natural Sciences, University of California Merced, Merced, California, USA.,Clinical Trial Consultants AB, Dag Hammarskjölds väg 10B, Uppsala, Sweden
| |
Collapse
|
11
|
Wallis M. Do some viruses use growth hormone, prolactin and their receptors to facilitate entry into cells?: Episodic evolution of hormones and receptors suggests host-virus arms races; related placental lactogens may provide protective viral decoys. Bioessays 2021; 43:e2000268. [PMID: 33521987 DOI: 10.1002/bies.202000268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
The molecular evolution of pituitary growth hormone and prolactin in mammals shows two unusual features: episodes of markedly accelerated evolution and, in some species, complex families of related proteins expressed in placenta and resulting from multiple gene duplications. Explanations of these phenomena in terms of physiological adaptations seem unconvincing. Here, I propose an alternative explanation, namely that these evolutionary features reflect the use of the hormones (and their receptors) as viral receptors. Episodes of rapid evolution can then be explained as due to "arms races" in which changes in the hormone lead to reduced interaction with the virus, and subsequent changes in the virus counteract this. Placental paralogues of the hormones could provide decoys that bind viruses, and protect the foetus against infection. The hypothesis implies that the extensive changes introduced into growth hormone, prolactin and their receptors during the course of mammalian evolution reflect viral interactions, not endocrine adaptations.
Collapse
Affiliation(s)
- Michael Wallis
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
12
|
Wang X, Wen H, Li Y, Lyu L, Song M, Zhang Y, Li J, Yao Y, Li J, Qi X. Characterization of CYP11A1 and its potential role in sex asynchronous gonadal development of viviparous black rockfish Sebastes schlegelii (Sebastidae). Gen Comp Endocrinol 2021; 302:113689. [PMID: 33301756 DOI: 10.1016/j.ygcen.2020.113689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial cytochrome P450 side-chain cleavage (P450scc), encoded by the cyp11a1 gene, initiates the first step of steroid biosynthesis. In this study, a 1554-bp open reading frame (ORF) of black rockfish (Sebastes schlegelii) cyp11a1 was cloned. The cyp11a1 gene is located on chromosome 5 and has 9 exons. The ORF encodes a putative precursor protein of 517 amino acids, and the predicted cleavable mitochondrial targeting peptide is located at amino acids 1-39. P450scc shares homology with other teleosts and tetrapods, which have relatively conserved binding regions with heme, cholesterol and adrenodoxin. Tissue distribution analysis revealed that the highest expression levels of cyp11a1 were detected in mature gonads and head kidney but that low levels were detected in gestational/regressed ovaries, regressed testes and other tissues. Immunostaining of P450scc was observed in testicular Leydig cells, ovarian theca cells, interrenal glands of head kidney, pituitary and multiple regions of brain. Particularly, two kinds of fish-specific P450scc-positive cells, including coronet cells of brain saccus vasculosus and hypophyseal somatolactin cells, were identified in black rockfish. Our results provide novel evidence for the potential role played by P450scc in reproduction behavior by mediating steroidogenesis in viviparous teleost.
Collapse
Affiliation(s)
- Xiaojie Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Likang Lyu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Min Song
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Ying Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jianshuang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yijia Yao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jifang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
13
|
Ocampo Daza D, Bergqvist CA, Larhammar D. The Evolution of Oxytocin and Vasotocin Receptor Genes in Jawed Vertebrates: A Clear Case for Gene Duplications Through Ancestral Whole-Genome Duplications. Front Endocrinol (Lausanne) 2021; 12:792644. [PMID: 35185783 PMCID: PMC8851675 DOI: 10.3389/fendo.2021.792644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The neuronal and neuroendocrine peptides oxytocin (OT) and vasotocin (VT), including vasopressins, have six cognate receptors encoded by six receptor subtype genes in jawed vertebrates. The peptides elicit a broad range of responses that are specifically mediated by the receptor subtypes including neuronal functions regulating behavior and hormonal actions on reproduction and water/electrolyte balance. Previously, we have demonstrated that these six receptor subtype genes, which we designated VTR1A, VTR1B, OTR, VTR2A, VTR2B and VTR2C, arose from a syntenic ancestral gene pair, one VTR1/OTR ancestor and one VTR2 ancestor, through the early vertebrate whole-genome duplications (WGD) called 1R and 2R. This was supported by both phylogenetic and chromosomal conserved synteny data. More recently, other studies have focused on confounding factors, such as the OTR/VTR orthologs in cyclostomes, to question this scenario for the origin of the OTR/VTR gene family; proposing instead less parsimonious interpretations involving only one WGD followed by complex series of chromosomal or segmental duplications. Here, we have updated the phylogeny of the OTR/VTR gene family, including a larger number of vertebrate species, and revisited seven representative neighboring gene families from our previous conserved synteny analyses, adding chromosomal information from newer high-coverage genome assemblies from species that occupy key phylogenetic positions: the polypteriform fish reedfish (Erpetoichthys calabaricus), the cartilaginous fish thorny skate (Amblyraja radiata) and a more recent high-quality assembly of the Western clawed frog (Xenopus tropicalis) genome. Our analyses once again add strong support for four-fold symmetry, i.e., chromosome quadruplication in the same time window as the WGD events early in vertebrate evolution, prior to the jawed vertebrate radiation. Thus, the evolution of the OTR/VTR gene family can be most parsimoniously explained by two WGD events giving rise to the six ancestral genes, followed by differential gene losses of VTR2 genes in different lineages. We also argue for more coherence and clarity in the nomenclature of OT/VT receptors, based on the most parsimonious scenario.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Christina A. Bergqvist
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan Larhammar,
| |
Collapse
|
14
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
15
|
Fleming MS, Maugars G, Martin P, Dufour S, Rousseau K. Differential Regulation of the Expression of the Two Thyrotropin Beta Subunit Paralogs by Salmon Pituitary Cells In Vitro. Front Endocrinol (Lausanne) 2020; 11:603538. [PMID: 33329404 PMCID: PMC7729069 DOI: 10.3389/fendo.2020.603538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
We recently characterized two paralogs of the thyrotropin (TSH) beta subunit in Atlantic salmon, tshβa and tshβb, issued from teleost-specific whole genome duplication. The transcript expression of tshβb, but not of tshβa, peaks at the time of smoltification, which revealed a specific involvement of tshβb paralog in this metamorphic event. Tshβa and tshβb are expressed by distinct pituitary cells in salmon, likely related to TSH cells from the pars distalis and pars tuberalis, respectively, in mammals and birds. The present study aimed at investigating the neuroendocrine and endocrine factors potentially involved in the differential regulation of tshβa and tshβb paralogs, using primary cultures of Atlantic salmon pituitary cells. The effects of various neurohormones and endocrine factors potentially involved in the control of development, growth, and metabolism were tested. Transcript levels of tshβa and tshβb were measured by qPCR, as well as those of growth hormone (gh), for comparison and validation. Corticotropin-releasing hormone (CRH) stimulated tshβa transcript levels in agreement with its potential role in the thyrotropic axis in teleosts, but had no effect on tshβb paralog, while it also stimulated gh transcript levels. Thyrotropin-releasing hormone (TRH) had no effect on neither tshβ paralogs nor gh. Somatostatin (SRIH) had no effects on both tshβ paralogs, while it exerted a canonical inhibitory effect on gh transcript levels. Thyroid hormones [triiodothyronine (T3) and thyroxine (T4)] inhibited transcript levels of both tshβ paralogs, as well as gh, but with a much stronger effect on tshβa than on tshβb and gh. Conversely, cortisol had a stronger inhibitory effect on tshβb than tshβa, while no effect on gh. Remarkably, insulin-like growth factor 1 (IGF1) dose-dependently stimulated tshβb transcript levels, while it had no effect on tshβa, and a classical inhibitory effect on gh. This study provides the first data on the neuroendocrine factors involved in the differential regulation of the expression of the two tshβ paralogs. It suggests that IGF1 may be involved in triggering the expression peak of the tshβb paralog at smoltification, thus representing a potential internal signal in the link between body growth and smoltification metamorphosis.
Collapse
Affiliation(s)
- Mitchell Stewart Fleming
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
- Conservatoire National du Saumon Sauvage (CNSS), Chanteuges, France
| | - Gersende Maugars
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage (CNSS), Chanteuges, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| |
Collapse
|
16
|
Shaughnessy CA, Breves JP. Molecular mechanisms of Cl
−
transport in fishes: New insights and their evolutionary context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:207-216. [DOI: 10.1002/jez.2428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jason P. Breves
- Department of Biology Skidmore College Saratoga Springs New York USA
| |
Collapse
|
17
|
Breves JP, Popp EE, Rothenberg EF, Rosenstein CW, Maffett KM, Guertin RR. Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes. Gen Comp Endocrinol 2020; 298:113589. [PMID: 32827513 DOI: 10.1016/j.ygcen.2020.113589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
In fishes, prolactin (Prl) signaling underlies the homeostatic regulation of hydromineral balance by controlling essential solute and water transporting functions performed by the gill, gastrointestinal tract, kidney, urinary bladder, and integument. Comparative studies spanning over 60 years have firmly established that Prl promotes physiological activities that enable euryhaline and stenohaline teleosts to reside in freshwater environments; nonetheless, the specific molecular and cellular targets of Prl in ion- and water-transporting tissues are still being resolved. In this short review, we discuss how particular targets of Prl (e.g., ion cotransporters, tight-junction proteins, and ion pumps) confer adaptive functions to the esophagus and intestine. Additionally, in some instances, Prl promotes histological and functional transformations within esophageal and intestinal epithelia by regulating cell proliferation. Collectively, the demonstrated actions of Prl in the gastrointestinal tract of teleosts indicate that Prl operates to promote phenotypes supportive of freshwater acclimation and to inhibit phenotypes associated with seawater acclimation. We conclude our review by underscoring that future investigations are warranted to determine how growth hormone/Prl-family signaling evolved in basal fishes to support the gastrointestinal processes underlying hydromineral balance.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Emily E Popp
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Eva F Rothenberg
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Clarence W Rosenstein
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Kaitlyn M Maffett
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Rebecca R Guertin
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
18
|
Hou ZS, Xin YR, Zeng C, Zhao HK, Tian Y, Li JF, Wen HS. GHRH-SST-GH-IGF axis regulates crosstalk between growth and immunity in rainbow trout (Oncorhynchus mykiss) infected with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2020; 106:887-897. [PMID: 32866610 DOI: 10.1016/j.fsi.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
An energy trade-off is existed between immunological competence and growth. The axis of growth hormone releasing hormone, somatostatin, growth hormone, insulin-like growth factor (GHRH-SST-GH-IGF axis) regulates growth performances and immune competences in rainbow trout (Oncorhynchus mykiss). The salmonid-specific whole genome duplication event is known to result in duplicated copies of several key genes in GHRH-SST-GH-IGF axis. In this study, we evaluated the physiological functions of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity. Based on principal components analysis (PCA), we observed the overall expression profiles of GHRH-SST-GH-IGF axis were significantly altered by Vibrio anguillarum infection. Trout challenged with Vibrio anguillarum showed down-regulated igf1s subtypes and up-regulated igfbp1a1. The brain sst genes (sst1a, sst1b, sst3b and sst5) and igfpbs genes (igfbp4s and igfbp5b2) were significantly affected by V. anguillarum infection, while the igfbp4s, igfbp5s, igfbp6s and igf2bps genes showed significant changes in peripheral immune tissues in response to V. anguillarum infection. Gene enrichment analyses showed functional and signaling pathways associated with apoptosis (such as p53, HIF-1 or FoxO signaling) were activated. We further proposed a possible model that describes the IGF and IGFBPs-regulated interaction between cell growth and programmed death. Our study provided new insights into the physiological functions and potentially regulatory mechanisms of the GHRH-SST-GH-IGF axis, indicating the pleiotropic effects of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity in trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Yuan Tian
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Ji-Fang Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| |
Collapse
|
19
|
Ravhe IS, Krishnan A, Manoj N. Evolutionary history of histamine receptors: Early vertebrate origin and expansion of the H 3-H 4 subtypes. Mol Phylogenet Evol 2020; 154:106989. [PMID: 33059072 DOI: 10.1016/j.ympev.2020.106989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
Histamine receptors belonging to the superfamily of G protein-coupled receptors (GPCRs) mediate the diverse biological effects of biogenic histamine. They are classified into four phylogenetically distinct subtypes H1-H4, each with a different binding affinity for histamine and divergent downstream signaling pathways. Here we present the evolutionary history of the histamine receptors using a phylogenetic approach complemented with comparative genomics analyses of the sequences, gene structures, and synteny of gene neighborhoods. The data indicate the earliest emergence of histamine-mediated GPCR signaling by a H2 in a prebilaterian ancestor. The analyses support a revised classification of the vertebrate H3-H4 receptor subtypes. We demonstrate the presence of the H4 across vertebrates, contradicting the currently held notion that H4 is restricted to mammals. These non-mammalian vertebrate H4 orthologs have been mistaken for H3. We also identify the presence of a new H3 subtype (H3B), distinct from the canonical H3 (H3A), and propose that the H3A, H3B, and H4 likely emerged from a H3 progenitor through the 1R/2R whole genome duplications in an ancestor of the vertebrates. It is apparent that the ability of the H1, H2, and H3-4 to bind histamine was acquired convergently. We identified genomic signatures suggesting that the H1 and H3-H4 shared a last common ancestor with the muscarinic receptor in a bilaterian predecessor whereas, the H2 and the α-adrenoreceptor shared a progenitor in a prebilaterian ancestor. Furthermore, site-specific analysis of the vertebrate subtypes revealed potential residues that may account for the functional divergence between them.
Collapse
Affiliation(s)
- Infant Sagayaraj Ravhe
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arunkumar Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
20
|
Bertolesi GE, McFarlane S. Melanin-concentrating hormone like and somatolactin. A teleost-specific hypothalamic-hypophyseal axis system linking physiological and morphological pigmentation. Pigment Cell Melanoma Res 2020; 34:564-574. [PMID: 32898924 DOI: 10.1111/pcmr.12924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Plastic adaptation to match the skin colour to the surrounding is key to survival. Two biological responses in skin colour are associated with background adaptation. A fast "physiological response" that aggregates/disperses the pigment organelles of skin chromatophores, and a slow "morphological response" that alters the type and/or density of pigment cells in the skin. Both responses are linked by unknown mechanisms. In this review, we discuss the role in skin colour regulation of two molecules that form part of a hypothalamic-hypophyseal pathway unique to teleosts, melanin-concentrating hormone "like" (MCHL) (previously known as MCH), and somatolactin. MCHL neurons project to the neurohypophysis and to the pars intermedia pituitary, where they interact with somatolactin-expressing cells. With a white background MCHL is released into the circulation to induce rapid melanosome aggregation and skin lightening. Somatolactin is also a fish-specific peptide whose expression and secretion are altered in organisms adapted chronically to white/black backgrounds, and that regulates morphological pigmentation. We discuss the evidence for a model whereby in teleosts, MCHL and somatolactin provide the previously unknown link between physiological and morphological pigmentation.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Garcia de la Serrana D, Pérez M, Nande M, Hernández-Urcera J, Pérez E, Coll-Lladó C, Hollenbeck C. Regulation of growth-related genes by nutrition in paralarvae of the common octopus (Octopus vulgaris). Gene 2020; 747:144670. [PMID: 32298760 DOI: 10.1016/j.gene.2020.144670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/26/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023]
Abstract
The common octopus (Octopus vulgaris) is a species of great interest to the aquaculture industry. However, the high mortalities registered during different phases of the octopus lifecycle, particularly the paralarvae stage, present a challenge for commercial aquaculture. Improvement of diet formulation is seen as one way to reduce mortality and improve growth. Molecular growth-markers could help to improve rearing protocols and increase survival and growth performance; therefore, over a hundred orthologous genes related to protein balance and muscle growth in vertebrates were identified for the common octopus and their suitability as molecular markers for growth in octopus paralarvae explored. We successfully amplified 14 of those genes and studied their transcription in paralarvae either fed with artemia, artemia + zoea diets or submitted to a short fasting-refeeding procedure. Paralarvae fed with artemia + zoea had higher growth rates compared to those fed only with artemia, as well as a significant increase in octopus mtor (mtor-L) and hsp90 (hsp90-L) transcription, with both genes also up-regulated during refeeding. Our results suggest that at least mtor-L and hsp90-L are likely linked to somatic growth in octopus paralarvae. Conversely, ckip1-L, crk-L, src-L and srf-L had expression patterns that did not match to periods of growth as would be expected based on similar studies in vertebrates, indicating that further research is needed to understand their function during growth and in a muscle specific context.
Collapse
Affiliation(s)
- D Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK.
| | - M Pérez
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| | - M Nande
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain; CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - J Hernández-Urcera
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain; Department of Ecology and Marine Resources, Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | - E Pérez
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| | - C Coll-Lladó
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - C Hollenbeck
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
22
|
Ocampo Daza D, Haitina T. Reconstruction of the Carbohydrate 6-O Sulfotransferase Gene Family Evolution in Vertebrates Reveals Novel Member, CHST16, Lost in Amniotes. Genome Biol Evol 2020; 12:993-1012. [PMID: 32652010 PMCID: PMC7353957 DOI: 10.1093/gbe/evz274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Glycosaminoglycans are sulfated polysaccharide molecules, essential for many biological processes. The 6-O sulfation of glycosaminoglycans is carried out by carbohydrate 6-O sulfotransferases (C6OSTs), previously named Gal/GalNAc/GlcNAc 6-O sulfotransferases. Here, for the first time, we present a detailed phylogenetic reconstruction, analysis of gene synteny conservation and propose an evolutionary scenario for the C6OST family in major vertebrate groups, including mammals, birds, nonavian reptiles, amphibians, lobe-finned fishes, ray-finned fishes, cartilaginous fishes, and jawless vertebrates. The C6OST gene expansion likely started early in the chordate lineage, giving rise to four ancestral genes after the divergence of tunicates and before the emergence of extant vertebrates. The two rounds of whole-genome duplication in early vertebrate evolution (1R/2R) only contributed two additional C6OST subtype genes, increasing the vertebrate repertoire from four genes to six, divided into two branches. The first branch includes CHST1 and CHST3 as well as a previously unrecognized subtype, CHST16 that was lost in amniotes. The second branch includes CHST2, CHST7, and CHST5. Subsequently, local duplications of CHST5 gave rise to CHST4 in the ancestor of tetrapods, and to CHST6 in the ancestor of primates. The teleost-specific gene duplicates were identified for CHST1, CHST2, and CHST3 and are result of whole-genome duplication (3R) in the teleost lineage. We could also detect multiple, more recent lineage-specific duplicates. Thus, the vertebrate repertoire of C6OST genes has been shaped by gene duplications and gene losses at several stages of vertebrate evolution, with implications for the evolution of skeleton, nervous system, and cell-cell interactions.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Department of Organismal Biology, Uppsala University, Sweden
- School of Natural Sciences, University of California Merced
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Sweden
| |
Collapse
|
23
|
Trudeau VL, Somoza GM. Multimodal hypothalamo-hypophysial communication in the vertebrates. Gen Comp Endocrinol 2020; 293:113475. [PMID: 32240708 DOI: 10.1016/j.ygcen.2020.113475] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
The vertebrate pituitary is arguably one of the most complex endocrine glands from the evolutionary, anatomical and functional perspectives. The pituitary plays a master role in endocrine physiology for the control of growth, metabolism, reproduction, water balance, and the stress response, among many other key processes. The synthesis and secretion of pituitary hormones are under the control of neurohormones produced by the hypothalamus. Under this conceptual framework, the communication between the hypophysiotropic brain and the pituitary gland is at the foundation of our understanding of endocrinology. The anatomy of the connections between the hypothalamus and the pituitary gland has been described in different vertebrate classes, revealing diverse modes of communication together with varying degrees of complexity. In this context, the evolution and variation in the neuronal, neurohemal, endocrine and paracrine modes will be reviewed in light of recent discoveries, and a re-evaluation of earlier observations. There appears to be three main hypothalamo-pituitary communication systems: 1. Diffusion, best exemplified by the agnathans; 2. Direct innervation of the adenohypophysis, which is most developed in teleost fish, and 3. The median eminence/portal blood vessel system, most conspicuously developed in tetrapods, showing also considerable variation between classes. Upon this basic classification, there exists various combinations possible, giving rise to taxon and species-specific, multimodal control over major physiological processes. Intrapituitary paracrine regulation and communication between folliculostellate cells and endocrine cells are additional processes of major importance. Thus, a more complex evolutionary picture of hypothalamo-hypophysial communication is emerging. There is currently little direct evidence to suggest which neuroendocrine genes may control the evolution of one communication system versus another. However, studies at the developmental and intergenerational timescales implicate several genes in the angiogenesis and axonal guidance pathways that may be important.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires B7130IWA, Argentina.
| |
Collapse
|
24
|
Dobolyi A, Oláh S, Keller D, Kumari R, Fazekas EA, Csikós V, Renner É, Cservenák M. Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. Front Neurosci 2020; 14:621. [PMID: 32612510 PMCID: PMC7308720 DOI: 10.3389/fnins.2020.00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamo-pituitary system developed in early vertebrates. Prolactin is an ancient vertebrate hormone released from the pituitary that exerts particularly diverse functions. The purpose of the review is to take a comparative approach in the description of prolactin, its secretion from pituitary lactotrophs, and hormonal functions. Since the reproductive and osmoregulatory roles of prolactin are best established in a variety of species, these functions are the primary subjects of discussion. Different types of prolactin and prolactin receptors developed during vertebrate evolution, which will be described in this review. The signal transduction of prolactin receptors is well conserved among vertebrates enabling us to describe the whole subphylum. Then, the review focuses on the regulation of prolactin release in mammals as we have the most knowledge on this class of vertebrates. Prolactin secretion in response to different reproductive stimuli, such as estrogen-induced release, mating, pregnancy and suckling is detailed. Reproduction in birds is different from that in mammals in several aspects. Prolactin is released during incubation in avian species whose regulation and functional significance are discussed. Little information is available on prolactin in reptiles and amphibians; therefore, they are mentioned only in specific cases to explain certain evolutionary aspects. In turn, the osmoregulatory function of prolactin is well established in fish. The different types of pituitary prolactin in fish play particularly important roles in the adaptation of eutherian species to fresh water environments. To achieve this function, prolactin is released from lactotrophs in hyposmolarity, as they are directly osmosensitive in fish. In turn, the released prolactin acts on branchial epithelia, especially ionocytes of the gill to retain salt and excrete water. This review will highlight the points where comparative data give new ideas or suggest new approaches for investigation in other taxa.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Keller
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rashmi Kumari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Emese A. Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
25
|
Gong N, Ferreira-Martins D, McCormick SD, Sheridan MA. Divergent genes encoding the putative receptors for growth hormone and prolactin in sea lamprey display distinct patterns of expression. Sci Rep 2020; 10:1674. [PMID: 32015405 PMCID: PMC6997183 DOI: 10.1038/s41598-020-58344-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
Growth hormone receptor (GHR) and prolactin receptor (PRLR) in jawed vertebrates were thought to arise after the divergence of gnathostomes from a basal vertebrate. In this study we have identified two genes encoding putative GHR and PRLR in sea lamprey (Petromyzon marinus) and Arctic lamprey (Lethenteron camtschaticum), extant members of one of the oldest vertebrate groups, agnathans. Phylogenetic analysis revealed that lamprey GHR and PRLR cluster at the base of gnathostome GHR and PRLR clades, respectively. This indicates that distinct GHR and PRLR arose prior to the emergence of the lamprey branch of agnathans. In the sea lamprey, GHR and PRLR displayed a differential but overlapping pattern of expression; GHR had high expression in liver and heart tissues, whereas PRLR was expressed highly in the brain and moderately in osmoregulatory tissues. Branchial PRLR mRNA levels were significantly elevated by stage 5 of metamorphosis and remained elevated through stage 7, whereas levels of GHR mRNA were only elevated in the final stage (7). Branchial expression of GHR increased following seawater (SW) exposure of juveniles, but expression of PRLR was not significantly altered. The results indicate that GHR and PRLR may both participate in metamorphosis and that GHR may mediate SW acclimation.
Collapse
Affiliation(s)
- Ningping Gong
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Diogo Ferreira-Martins
- Department of Biology, University of Massachusetts, Amherst, MA, USA.,U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, 01376, USA
| | - Stephen D McCormick
- Department of Biology, University of Massachusetts, Amherst, MA, USA.,U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, 01376, USA
| | - Mark A Sheridan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
26
|
Wallis M. Molecular evolution of prolactin in Chiroptera: Accelerated evolution and a large insertion in vespertilionid bats. Gen Comp Endocrinol 2018; 269:102-111. [PMID: 30172709 DOI: 10.1016/j.ygcen.2018.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/15/2022]
Abstract
Pituitary prolactin (PRL) shows an episodic pattern of evolution in mammals, with a slow underlying rate (near stasis) and periods of rapid change in some groups. PRL evolution in bats, the second most speciose mammalian order, has not previously been studied, and is examined here. Slow basal evolution of PRL is seen in some bats, particularly megabats, but in most microbat groups evolution of PRL is more rapid. Accelerated evolution of PRL is particularly notable in the family Vespertilionidae, where analysis of nonsynonymous and synonymous substitutions indicates that it reflects adaptive evolution/positive selection. Remarkably, vespertilionid bats also show a large sequence insertion, of variable length, into exon 4 of PRL, giving a protein sequence 18-60 amino acids longer than normal, with the longest insertions in bats of the genus Myotis. An equivalent insertion has not been reported in PRL of any other vertebrate group. In the 3-dimensional structure of the complex between PRL and the extracellular domain (ecd) of its receptor (PRL:PRLR2) the inserted sequence is seen to be introduced in the short loop between helices 2 and 3 of PRL; it is far removed from the receptor-binding sites, and may not interfere with binding. The ecd of the receptor also shows variable rates of evolution, with a higher rate in the Vespertilionidae, but this is much less marked than for the hormone. The distribution of substitutions introduced into PRL during vespertilionid evolution appears to be non-random, and this and the evidence for positive selection suggests that the rapid evolution and insert sequence introduction were associated with a significant change in the biological properties of the hormone.
Collapse
Affiliation(s)
- Michael Wallis
- Biochemistry and Biomedicine Group, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
27
|
Liu XH, Xie BW, Wang ZJ, Zhang YG. Characterization and expression analyses of somatolactin-α and -β genes in rare minnows (Gobiocypris rarus) following waterborne cadmium exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:983-995. [PMID: 29550894 DOI: 10.1007/s10695-018-0487-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Using reverse transcription-polymerase chain reaction (RT-PCR) and RACE (rapid amplification of cDNA ends), somatolactin-α (rmSLα) and -β (rmSLβ) were identified from the pituitary gland of rare minnows (Gobiocypris rarus). The full-length cDNAs of these two genes were 1288 and 801 bp, encoding prepeptides of 250 and 228 amino acids residues, respectively. rmSLβ can be detected in the brain (including the pituitary), ovary, testis, and gill, while rmSLα was mainly expressed in the brain. On the other hand, rmSLα was expressed in all the fetal developmental stages; however, rmSLβ can just be detected in the stages since from 14 h post-fertilization (hpf). After exposure to acute waterborne cadmium (Cd), rmSLα was distinctly upregulated in juvenile rare minnows at all detected time points, from 24 to 96 h and 10 days, while rmSLβ was significantly altered only in 96 h or 10-day treatment groups. As for adults, acute Cd exposure caused alterations of both rmSLα and rmSLβ in the brain (containing the pituitary) at the 24 h; subchronic waterborne Cd treatment led to upregulation of rmSLα, while decrease of mSLβ in the brain. Alteration of rmSL transcripts following waterborne Cd exposure further confirmed the endocrine disruption of this heavy metal. Besides, exposure to as low as 5 μg/L Cd caused alteration of rmSLα, which suggested that rmSLα might be a potential biomarker for risk assessment of aquatic Cd.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Bi-Wen Xie
- Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, School of Life Science, Neijiang, 641000, China
| | - Zhi-Jian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Yao-Guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing, 400715, China.
| |
Collapse
|
28
|
Pérez-Sánchez J, Simó-Mirabet P, Naya-Català F, Martos-Sitcha JA, Perera E, Bermejo-Nogales A, Benedito-Palos L, Calduch-Giner JA. Somatotropic Axis Regulation Unravels the Differential Effects of Nutritional and Environmental Factors in Growth Performance of Marine Farmed Fishes. Front Endocrinol (Lausanne) 2018; 9:687. [PMID: 30538673 PMCID: PMC6277588 DOI: 10.3389/fendo.2018.00687] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022] Open
Abstract
The Gh/Prl/Sl family has evolved differentially through evolution, resulting in varying relationships between the somatotropic axis and growth rates within and across fish species. This is due to a wide range of endogenous and exogenous factors that make this association variable throughout season and life cycle, and the present minireview aims to better define the nutritional and environmental regulation of the endocrine growth cascade over precisely defined groups of fishes, focusing on Mediterranean farmed fishes. As a result, circulating Gh and Igf-i are revitalized as reliable growth markers, with a close association with growth rates of gilthead sea bream juveniles with deficiency signs in both macro- or micro-nutrients. This, together with other regulated responses, promotes the use of Gh and Igf-i as key performance indicators of growth, aerobic scope, and nutritional condition in gilthead sea bream. Moreover, the sirtuin-energy sensors might modulate the growth-promoting action of somatotropic axis. In this scenario, transcripts of igf-i and gh receptors mirror changes in plasma Gh and Igf-i levels, with the ghr-i/ghr-ii expression ratio mostly unaltered over season. However, this ratio is nutritionally regulated, and enriched plant-based diets or diets with specific nutrient deficiencies downregulate hepatic ghr-i, decreasing the ghr-i/ghr-ii ratio. The same trend, due to a ghr-ii increase, is found in skeletal muscle, whereas impaired growth during overwintering is related to increase in the ghr-i/ghr-ii and igf-ii/igf-i ratios in liver and skeletal muscle, respectively. Overall, expression of insulin receptors and igf receptors is less regulated, though the expression quotient is especially high in the liver and muscle of sea bream. Nutritional and environmental regulation of the full Igf binding protein 1-6 repertoire remains to be understood. However, tissue-specific expression profiling highlights an enhanced and nutritionally regulated expression of the igfbp-1/-2/-4 clade in liver, whereas the igfbp-3/-5/-6 clade is overexpressed and regulated in skeletal muscle. The somatotropic axis is, therefore, highly informative of a wide-range of growth-disturbing and stressful stimuli, and multivariate analysis supports its use as a reliable toolset for the assessment of growth potentiality and nutrient deficiencies and requirements, especially in combination with selected panels of other nutritionally regulated metabolic biomarkers.
Collapse
|