1
|
Yamakawa S, Hejnol A. Ecdysteroid-dependent molting in tardigrades. Curr Biol 2024; 34:5804-5812.e4. [PMID: 39566498 DOI: 10.1016/j.cub.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/07/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Although molting is a defining feature of the most species-rich animal taxa-the Ecdysozoa, including arthropods, tardigrades, nematodes, and others1,2-its evolutionary background remains enigmatic. In pancrustaceans, such as insects and decapods, molting is regulated by the ecdysteroid (Ecd) hormone and its downstream cascade (Figure 1A, see also the text).3,4,5 However, whether Ecd-dependent molting predates the emergence of the arthropods and represents an ancestral machinery in ecdysozoans remains unclear. For example, involvement of the Ecd hormone in molting regulation has been suggested only in some parasitic nematodes outside of arthropods,6,7 and insect Ecd synthesis and receptor genes are lacking in some ecysozoan lineages (Figure S1A).8,9,10 In this study, we investigated the role of Ecd in the molting process of the tardigrade Hypsibius exemplaris. We show that the endogenous Ecd level periodically increases during the molting cycle of H. exemplaris. The pulse treatment with exogenous Ecd induced molting, whereas an antagonist of the Ecd receptor suppressed the molting. Our spatial and temporal gene expression analysis revealed the putative regulatory organs and Ecd downstream cascades. We demonstrate that tardigrade molting is regulated by the Ecd hormone, supporting the ancestry of Ecd-dependent molting in panarthropods. Furthermore, we were able to identify the putative neural center of molting regulation in tardigrades. This region may be homologous to the neural center in the protocerebrum of pancrustaceans and represent an ancestral state of panarthropods. Together, our results suggest that Ecd-dependent molting evolved in the early-late Ediacaran, 22-76 million years earlier than previously suggested.11.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Andreas Hejnol
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway.
| |
Collapse
|
2
|
Jiang L, Xie XB, Zhang L, Tang Y, Zhu X, Huang Y, Hong Y, Hansson BS, Cui ZJ, Han Q. Activation of the G protein-coupled sulfakinin receptor inhibits blood meal intake in the mosquito Aedes aegypti. FASEB J 2024; 38:e23864. [PMID: 39109513 DOI: 10.1096/fj.202401165r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 12/02/2024]
Abstract
Little is known about the blood-feeding physiology of arbovirus vector Aedes aegypti although this type of mosquito is known to transmit infectious diseases dengue, Zika, yellow fever, and chikungunya. Blood feeding in the female A. aegypti mosquito is essential for egg maturation and for transmission of disease agents between human subjects. Here, we identify the A. aegypti sulfakinin receptor gene SKR from the A. aegypti genome and show that SKR is expressed at different developmental stages and in varied anatomical localizations in the adult mosquito (at three days after eclosion), with particularly high expression in the CNS. Knockingdown sulfakinin and sulfakinin receptor gene expression in the female A. aegypti results in increased blood meal intake, but microinjection in the thorax of the sulfakinin peptide 1 and 2 both inhibits dose dependently blood meal intake (and delays the time course of blood intake), which is reversible with receptor antagonist. Sulfakinin receptor expressed ectopically in mammalian cells CHO-K1 responds to sulfakinin stimulation with persistent calcium spikes, blockable with receptor antagonist. These data together suggest that activation of the Gq protein-coupled (i.e., calcium-mobilizing) sulfakinin receptor inhibits blood meal intake in female A. aegypti mosquitoes and could serve as a strategic node for the future control of A. aegypti mosquito reproduction/population and disease transmission.
Collapse
Affiliation(s)
- Linlong Jiang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
| | - Xiao Bing Xie
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan, China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
| | - Xiaojing Zhu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
| | - Yuqi Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
| | - Yue Hong
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Zong Jie Cui
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, China
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan, China
| |
Collapse
|
3
|
Quiroga-Artigas G, Moriel-Carretero M. Storage cell proliferation during somatic growth establishes that tardigrades are not eutelic organisms. Biol Open 2024; 13:bio060299. [PMID: 38411464 PMCID: PMC10924213 DOI: 10.1242/bio.060299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Tardigrades, microscopic ecdysozoans known for extreme environment resilience, were traditionally believed to maintain a constant cell number after completing embryonic development, a phenomenon termed eutely. However, sporadic reports of dividing cells have raised questions about this assumption. In this study, we explored tardigrade post-embryonic cell proliferation using the model species Hypsibius exemplaris. Comparing hatchlings to adults, we observed an increase in the number of storage cells, responsible for nutrient storage. We monitored cell proliferation via 5-ethynyl-2'-deoxyuridine (EdU) incorporation, revealing large numbers of EdU+ storage cells during growth, which starvation halted. EdU incorporation associated with molting, a vital post-embryonic development process involving cuticle renewal for further growth. Notably, DNA replication inhibition strongly reduced EdU+ cell numbers and caused molting-related fatalities. Our study is the first to demonstrate using molecular approaches that storage cells actively proliferate during tardigrade post-embryonic development, providing a comprehensive insight into replication events throughout their somatic growth. Additionally, our data underscore the significance of proper DNA replication in tardigrade molting and survival. This work definitely establishes that tardigrades are not eutelic, and offers insights into cell cycle regulation, replication stress, and DNA damage management in these remarkable creatures as genetic manipulation techniques emerge within the field.
Collapse
Affiliation(s)
- Gonzalo Quiroga-Artigas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| |
Collapse
|
4
|
Medina-Jiménez BI, Budd GE, Janssen R. Single-cell RNA sequencing of mid-to-late stage spider embryos: new insights into spider development. BMC Genomics 2024; 25:150. [PMID: 38326752 PMCID: PMC10848406 DOI: 10.1186/s12864-023-09898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.
Collapse
Affiliation(s)
- Brenda I Medina-Jiménez
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
5
|
Koyama T, Rana DW, Halberg KV. Managing fuels and fluids: Network integration of osmoregulatory and metabolic hormonal circuits in the polymodal control of homeostasis in insects. Bioessays 2023; 45:e2300011. [PMID: 37327252 DOI: 10.1002/bies.202300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Osmoregulation in insects is an essential process whereby changes in hemolymph osmotic pressure induce the release of diuretic or antidiuretic hormones to recruit individual osmoregulatory responses in a manner that optimizes overall homeostasis. However, the mechanisms by which different osmoregulatory circuits interact with other homeostatic networks to implement the correct homeostatic program remain largely unexplored. Surprisingly, recent advances in insect genetics have revealed several important metabolic functions are regulated by classic osmoregulatory pathways, suggesting that internal cues related to osmotic and metabolic perturbations are integrated by the same hormonal networks. Here, we review our current knowledge on the network mechanisms that underpin systemic osmoregulation and discuss the remarkable parallels between the hormonal networks that regulate body fluid balance and those involved in energy homeostasis to provide a framework for understanding the polymodal optimization of homeostasis in insects.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Danial Wasim Rana
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Escudero Castelán N, Semmens DC, Guerra LAY, Zandawala M, Dos Reis M, Slade SE, Scrivens JH, Zampronio CG, Jones AM, Mirabeau O, Elphick MR. Receptor deorphanization in an echinoderm reveals kisspeptin evolution and relationship with SALMFamide neuropeptides. BMC Biol 2022; 20:187. [PMID: 36002813 PMCID: PMC9400282 DOI: 10.1186/s12915-022-01387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kisspeptins are neuropeptides that regulate reproductive maturation in mammals via G-protein-coupled receptor-mediated stimulation of gonadotropin-releasing hormone secretion from the hypothalamus. Phylogenetic analysis of kisspeptin-type receptors indicates that this neuropeptide signaling system originated in a common ancestor of the Bilateria, but little is known about kisspeptin signaling in invertebrates. RESULTS Contrasting with the occurrence of a single kisspeptin receptor in mammalian species, here, we report the discovery of an expanded family of eleven kisspeptin-type receptors in a deuterostome invertebrate - the starfish Asterias rubens (phylum Echinodermata). Furthermore, neuropeptides derived from four precursor proteins were identified as ligands for six of these receptors. One or more kisspeptin-like neuropeptides derived from two precursor proteins (ArKPP1, ArKPP2) act as ligands for four A. rubens kisspeptin-type receptors (ArKPR1,3,8,9). Furthermore, a family of neuropeptides that act as muscle relaxants in echinoderms (SALMFamides) are ligands for two A. rubens kisspeptin-type receptors (ArKPR6,7). The SALMFamide neuropeptide S1 (or ArS1.4) and a 'cocktail' of the seven neuropeptides derived from the S1 precursor protein (ArS1.1-ArS1.7) act as ligands for ArKPR7. The SALMFamide neuropeptide S2 (or ArS2.3) and a 'cocktail' of the eight neuropeptides derived from the S2 precursor protein (ArS2.1-ArS2.8) act as ligands for ArKPR6. CONCLUSIONS Our findings reveal a remarkable diversity of neuropeptides that act as ligands for kisspeptin-type receptors in starfish and provide important new insights into the evolution of kisspeptin signaling. Furthermore, the discovery of the hitherto unknown relationship of kisspeptins with SALMFamides, neuropeptides that were discovered in starfish prior to the identification of kisspeptins in mammals, presents a radical change in perspective for research on kisspeptin signaling.
Collapse
Affiliation(s)
- Nayeli Escudero Castelán
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Dean C Semmens
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present address: Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Luis Alfonso Yañez Guerra
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Meet Zandawala
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Mario Dos Reis
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Susan E Slade
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - James H Scrivens
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: School of Science, Engineering & Design, Stephenson Street, Teesside University, Middlesbrough, TS1 3BX, TS1 3BA, Tees Valley, UK
| | | | - Alexandra M Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK.
| |
Collapse
|
7
|
Wegener C, Chen J. Allatostatin A Signalling: Progress and New Challenges From a Paradigmatic Pleiotropic Invertebrate Neuropeptide Family. Front Physiol 2022; 13:920529. [PMID: 35812311 PMCID: PMC9263205 DOI: 10.3389/fphys.2022.920529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
Neuropeptides have gained broad attraction in insect neuroscience and physiology, as new genetic tools are increasingly uncovering their wide-ranging pleiotropic functions with high cellular resolution. Allatostatin A (AstA) peptides constitute one of the best studied insect neuropeptide families. In insects and other panarthropods, AstA peptides qualify as brain-gut peptides and have regained attention with the discovery of their role in regulating feeding, growth, activity/sleep and learning. AstA receptor homologs are found throughout the protostomia and group with vertebrate somatostatin/galanin/kisspeptin receptors. In this review, we summarise the current knowledge on the evolution and the pleiotropic and cell-specific non-allatostatic functions of AstA. We speculate about the core functions of AstA signalling, and derive open questions and challengesfor future research on AstA and invertebrate neuropeptides in general.
Collapse
Affiliation(s)
- Christian Wegener
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
- *Correspondence: Christian Wegener,
| | - Jiangtian Chen
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, United States
| |
Collapse
|
8
|
Abstract
Experimentally tractable organisms like C. elegans, Drosophila, zebrafish, and mouse are popular models for addressing diverse questions in biology. In 1997, two of the most valuable invertebrate model organisms to date-C. elegans and Drosophila-were found to be much more closely related to each other than expected. C. elegans and Drosophila belong to the nematodes and arthropods, respectively, and these two phyla and six other phyla make up a clade of molting animals referred to as the Ecdysozoa. The other ecdysozoan phyla could be valuable models for comparative biology, taking advantage of the rich and continual sources of research findings as well as tools from both C. elegans and Drosophila. But when the Ecdysozoa was first recognized, few tools were available for laboratory studies in any of these six other ecdysozoan phyla. In 1999 I began an effort to develop tools for studying one such phylum, the tardigrades. Here, I describe how the tardigrade species Hypsibius exemplaris and tardigrades more generally have emerged over the past two decades as valuable new models for answering diverse questions. To date, these questions have included how animal body plans evolve and how biological materials can survive some remarkably extreme conditions.
Collapse
Affiliation(s)
- Bob Goldstein
- Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.
| |
Collapse
|
9
|
Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022; 79:188. [PMID: 35286508 PMCID: PMC8921109 DOI: 10.1007/s00018-022-04214-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regulation of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Shun-Fan Wu
- College of Plant Protection/Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Wang P, Cui Q, Zhang Y, Wang X, Huang X, Li X, Zhao Q, Lei G, Li B, Wei W. A Review of Pedal Peptide/Orcokinin-type Neuropeptides. Curr Protein Pept Sci 2021; 22:41-49. [PMID: 33167831 DOI: 10.2174/1389203721666201109112758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Neuropeptides are endogenous active substances that play important roles in a number of physiological processes and are ubiquitous in the nervous tissue in vivo. The gene encoding pedal peptide/orcokinin-type (PP/OK-type) neuropeptide is an important member of the neuropeptide gene family and is ubiquitous in invertebrates of Bilateria; orcokinin (OK) is mainly found in Arthropoda, while pedal peptide (PP) is mainly found in Mollusca. OK and PP are also present in other animals. PP/OK-type neuropeptides are a kind of multifunctional neuropeptides predominantly expressed in the nervous tissue and play important roles in the nerve regulation of movement. Moreover, OK has a number of other physiological functions. This review describes the distribution, expression, function and maturation of PP/OK-type neuropeptides to facilitate investigations of new functions and receptors of PP/OK-type neuropeptides, providing the theoretical foundation for the potential use of PP/OK-type neuropeptides in the prevention and control of agricultural and forestry pests, as an additive for skin care products and in the screening of drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Pingyang Wang
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Qiuying Cui
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Yuli Zhang
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Xia Wang
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Xuhua Huang
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Xiaoxia Li
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultrual Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212018, China
| | - Guisheng Lei
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Biao Li
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| | - Wei Wei
- Guangxi Central Laboratory of Sericultural Genetic Improvement and Technological Innovation, Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi Nanning 530007, China
| |
Collapse
|
11
|
Minh Nhut T, Mykles DL, Elizur A, Ventura T. Ecdysis triggering hormone modulates molt behaviour in the redclaw crayfish Cherax quadricarinatus, providing a mechanistic evidence for conserved function in molt regulation across Pancrustacea. Gen Comp Endocrinol 2020; 298:113556. [PMID: 32687930 DOI: 10.1016/j.ygcen.2020.113556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Molting enables growth and development across ecdysozoa. The molting process is strictly controlled by hormones - ecdysteroids. Ecdysteroidogenesis occurs in theprothoracic glands and stimulated by prothoracicotropic hormone in insects, while it ensues in the Y-organ and regulated by the molt inhibiting hormone in crustaceans. A peak in ecdysteroids in the hemolymph induces a cascade of multiple neuropeptides including Ecdysis Triggering Hormone (ETH) and Corazonin. The role of ETH is well defined in controlling the molt process in insects, but it is yet to be defined in crustaceans. In this study, we investigated the behavioral response of intermolt crayfish to ETH and Corazonin injections as well as the impact of ETH on the molt period using in vivo assays. Injection of Corazonin and ETH resulted in a clear and immediate eye twitching response to these two neuropeptides. The Corazonin injection induced eye twitching in slow and asynchronous manner, while ETH injection caused eye twitching in a relatively fast and synchronous way. A single injection of ETH to crayfish resulted in a remarkable prolong molt period, at twice the normal molting cycle, suggesting that ETH plays a key role in controlling the molt cycle in decapod crustaceans. Given the key significance of ETH in molt regulation and its plausible application in pest control, we characterized ETH across the pancrustacean orders. Bioinformatic analysis shows the mature ETH sequence is identical in all studied decapod species. ETH can be classified into specific groups based on the associated motif in each insect order and shows an insect motif -KxxPRx to be conserved in crustaceans.
Collapse
Affiliation(s)
- Tran Minh Nhut
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia.
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Abigail Elizur
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia.
| | - Tomer Ventura
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia.
| |
Collapse
|
12
|
Honer M, Buscemi K, Barrett N, Riazati N, Orlando G, Nelson MD. Orcokinin neuropeptides regulate sleep in Caenorhabditis elegans. J Neurogenet 2020; 34:440-452. [PMID: 33044108 DOI: 10.1080/01677063.2020.1830084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Orcokinin neuropeptides are conserved among ecdysozoans, but their functions are incompletely understood. Here, we report a role for orcokinin neuropeptides in the regulation of sleep in the nematode Caenorhabditis elegans. The C. elegans orcokinin peptides, which are encoded by the nlp-14 and nlp-15 genes, are necessary and sufficient for quiescent behaviors during developmentally timed sleep (DTS) as well as during stress-induced sleep (SIS). The five orcokinin neuropeptides encoded by nlp-14 have distinct but overlapping functions in the regulation of movement and defecation quiescence during SIS. We suggest that orcokinins may regulate behavioral components of sleep-like states in nematodes and other ecdysozoans.
Collapse
Affiliation(s)
- Madison Honer
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Kristen Buscemi
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Natalie Barrett
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Niknaz Riazati
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Gerald Orlando
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Abou El Asrar R, Cools D, Vanden Broeck J. Role of peptide hormones in insect gut physiology. CURRENT OPINION IN INSECT SCIENCE 2020; 41:71-78. [PMID: 32814267 DOI: 10.1016/j.cois.2020.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Nutrient uptake and digestion are essential for optimal growth and development. In insects, these processes are regulated by the gut-brain axis, which is a neurohumoral communication system for maintaining gut homeostasis. The insect gut is a complex organ consisting of three distinct structures, denominated foregut, midgut and hindgut, each with their specific specializations. These specializations are tightly regulated by the interplay of several neuropeptides: a versatile group of signalling molecules involved in a multitude of processes including gut physiology. Neuropeptides take part in the regulation of gut processes ranging from digestive enzyme release to muscle activity and satiety. Some neuropeptide mimetics are a promising strategy for ecological pest management. This review focuses on a selection of neuropeptides that are well-known for their role in gut physiology, and neuropeptides for which the mode of action is yet to be unravelled.
Collapse
Affiliation(s)
- Rania Abou El Asrar
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Dorien Cools
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Williams EA. Function and Distribution of the Wamide Neuropeptide Superfamily in Metazoans. Front Endocrinol (Lausanne) 2020; 11:344. [PMID: 32547494 PMCID: PMC7270403 DOI: 10.3389/fendo.2020.00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/01/2020] [Indexed: 01/19/2023] Open
Abstract
The Wamide neuropeptide superfamily is of interest due to its distinctive functions in regulating life cycle transitions, metamorphic hormone signaling, and several aspects of digestive system function, from gut muscle contraction to satiety and fat storage. Due to variation among researchers in naming conventions, a global view of Wamide signaling in animals in terms of conservation or diversification of function is currently lacking. Here, I summarize the phylogenetic distribution of Wamide neuropeptides based on current data and describe recent findings in the areas of Wamide receptors and biological functions. Common trends that emerge across Cnidarians and protostomes are the presence of multiple Wamide receptors within a single organism, and the fact that Wamide signaling likely functions across an extensive variety of biological systems, including visual, circadian, and reproductive systems. Important areas of focus for future research are the further identification of Wamide-receptor pairs, confirmation of the phylogenetic distribution of Wamides through largescale sequencing and mass spectrometry, and assignment of different functions to specific subsets of Wamide-expressing neurons. More extensive study of Wamide signaling throughout larval development in a greater number of phyla is also important in order to understand the role of Wamides in hormonal regulation. Defining the evolution and function of neuropeptide signaling in animal nervous systems will benefit from an increased understanding of Wamide function and signaling mechanisms in a wider variety of organisms, beyond the traditional model systems.
Collapse
|
15
|
Odekunle EA, Elphick MR. Comparative and Evolutionary Physiology of Vasopressin/ Oxytocin-Type Neuropeptide Signaling in Invertebrates. Front Endocrinol (Lausanne) 2020; 11:225. [PMID: 32362874 PMCID: PMC7181382 DOI: 10.3389/fendo.2020.00225] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
The identification of structurally related hypothalamic hormones that regulate blood pressure and diuresis (vasopressin, VP; CYFQNCPRG-NH2) or lactation and uterine contraction (oxytocin, OT; CYIQNCPLG-NH2) was a major advance in neuroendocrinology, recognized in the award of the Nobel Prize for Chemistry in 1955. Furthermore, the discovery of central actions of VP and OT as regulators of reproductive and social behavior in humans and other mammals has broadened interest in these neuropeptides beyond physiology into psychology. VP/OT-type neuropeptides and their G-protein coupled receptors originated in a common ancestor of the Bilateria (Urbilateria), with invertebrates typically having a single VP/OT-type neuropeptide and cognate receptor. Gene/genome duplications followed by gene loss gave rise to variety in the number of VP/OT-type neuropeptides and receptors in different vertebrate lineages. Recent advances in comparative transcriptomics/genomics have enabled discovery of VP/OT-type neuropeptides in an ever-growing diversity of invertebrate taxa, providing new opportunities to gain insights into the evolution of VP/OT-type neuropeptide function in the Bilateria. Here we review the comparative physiology of VP/OT-type neuropeptides in invertebrates, with roles in regulation of reproduction, feeding, and water/salt homeostasis emerging as common themes. For example, we highlight recent reports of roles in regulation of oocyte maturation in the sea-squirt Ciona intestinalis, extraoral feeding behavior in the starfish Asterias rubens and energy status and dessication resistance in ants. Thus, VP/OT-type neuropeptides are pleiotropic regulators of physiological processes, with evolutionarily conserved roles that can be traced back to Urbilateria. To gain a deeper understanding of the evolution of VP/OT-type neuropeptide function it may be necessary to not only determine the actions of the peptides but also to characterize the transcriptomic/proteomic/metabolomic profiles of cells expressing VP/OT-type precursors and/or VP/OT-type receptors within the framework of anatomically and functionally identified neuronal networks. Furthermore, investigation of VP/OT-type neuropeptide function in a wider range of invertebrate species is now needed if we are to determine how and when this ancient signaling system was recruited to regulate diverse physiological and behavioral processes in different branches of animal phylogeny and in contrasting environmental contexts.
Collapse
Affiliation(s)
| | - Maurice R. Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Yañez-Guerra LA, Elphick MR. Evolution and Comparative Physiology of Luqin-Type Neuropeptide Signaling. Front Neurosci 2020; 14:130. [PMID: 32132900 PMCID: PMC7041311 DOI: 10.3389/fnins.2020.00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/01/2023] Open
Abstract
Luqin is a neuropeptide that was discovered and named on account of its expression in left upper quadrant cells of the abdominal ganglion in the mollusc Aplysia californica. Subsequently, luqin-type peptides were identified as cardio-excitatory neuropeptides in other molluscs and a cognate receptor was discovered in the pond snail Lymnaea stagnalis. Phylogenetic analyses have revealed that orthologs of molluscan luqin-type neuropeptides occur in other phyla; these include neuropeptides in ecdysozoans (arthropods, nematodes) that have a C-terminal RYamide motif (RYamides) and neuropeptides in ambulacrarians (echinoderms, hemichordates) that have a C-terminal RWamide motif (RWamides). Furthermore, precursors of luqin-type neuropeptides typically have a conserved C-terminal motif containing two cysteine residues, although the functional significance of this is unknown. Consistent with the orthology of the neuropeptides and their precursors, phylogenetic and pharmacological studies have revealed that orthologous G-protein coupled receptors (GPCRs) mediate effects of luqin-type neuropeptides in spiralians, ecdysozoans, and ambulacrarians. Luqin-type signaling originated in a common ancestor of the Bilateria as a paralog of tachykinin-type signaling but, unlike tachykinin-type signaling, luqin-type signaling was lost in chordates. This may largely explain why luqin-type signaling has received less attention than many other neuropeptide signaling systems. However, insights into the physiological actions of luqin-type neuropeptides (RYamides) in ecdysozoans have been reported recently, with roles in regulation of feeding and diuresis revealed in insects and roles in regulation of feeding, egg laying, locomotion, and lifespan revealed in the nematode Caenorhabditis elegans. Furthermore, characterization of a luqin-type neuropeptide in the starfish Asterias rubens (phylum Echinodermata) has provided the first insights into the physiological roles of luqin-type signaling in a deuterostome. In conclusion, although luqin was discovered in Aplysia over 30 years ago, there is still much to be learnt about luqin-type neuropeptide signaling. This will be facilitated in the post-genomic era by the emerging opportunities for experimental studies on a variety of invertebrate taxa.
Collapse
Affiliation(s)
- Luis Alfonso Yañez-Guerra
- School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Yoshida Y, Sugiura K, Tomita M, Matsumoto M, Arakawa K. Comparison of the transcriptomes of two tardigrades with different hatching coordination. BMC DEVELOPMENTAL BIOLOGY 2019; 19:24. [PMID: 31864287 PMCID: PMC6925440 DOI: 10.1186/s12861-019-0205-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/11/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Tardigrades are microscopic organisms, famous for their tolerance against extreme environments. The establishment of rearing systems of multiple species has allowed for comparison of tardigrade physiology, in particular in embryogenesis. Interestingly, in-lab cultures of limnic species showed smaller variation in hatching timing than terrestrial species, suggesting a hatching regulation mechanism acquired by adaptation to their habitat. RESULTS To this end, we screened for coordinated gene expression during the development of two species of tardigrades, Hypsibius exemplaris and Ramazzottius varieornatus, and observed induction of the arthropod molting pathway. Exposure of ecdysteroids and juvenile hormone analog affected egg hatching but not embryonic development in only the limnic H. exemplaris. CONCLUSION These observations suggest a hatching regulation mechanism by the molting pathway in H. exemplaris.
Collapse
Affiliation(s)
- Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Kenta Sugiura
- Graduate School of Science and Technology, Keio University, Fujisawa, Yokohama, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Midori Matsumoto
- Graduate School of Science and Technology, Keio University, Fujisawa, Yokohama, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan.
| |
Collapse
|
18
|
Nässel DR, Zandawala M, Kawada T, Satake H. Tachykinins: Neuropeptides That Are Ancient, Diverse, Widespread and Functionally Pleiotropic. Front Neurosci 2019; 13:1262. [PMID: 31824255 PMCID: PMC6880623 DOI: 10.3389/fnins.2019.01262] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Tachykinins (TKs) are ancient neuropeptides present throughout the bilaterians and are, with some exceptions, characterized by a conserved FX1GX2Ramide carboxy terminus among protostomes and FXGLMamide in deuterostomes. The best-known TK is the vertebrate substance P, which in mammals, together with other TKs, has been implicated in health and disease with important roles in pain, inflammation, cancer, depressive disorder, immune system, gut function, hematopoiesis, sensory processing, and hormone regulation. The invertebrate TKs are also known to have multiple functions in the central nervous system and intestine and these have been investigated in more detail in the fly Drosophila and some other arthropods. Here, we review the protostome and deuterostome organization and evolution of TK precursors, peptides and their receptors, as well as their functions, which appear to be partly conserved across Bilateria. We also outline the distribution of TKs in the brains of representative organisms. In Drosophila, recent studies have revealed roles of TKs in early olfactory processing, neuromodulation in circuits controlling locomotion and food search, nociception, aggression, metabolic stress, and hormone release. TK signaling also regulates lipid metabolism in the Drosophila intestine. In crustaceans, TK is an important neuromodulator in rhythm-generating motor circuits in the stomatogastric nervous system and a presynaptic modulator of photoreceptor cells. Several additional functional roles of invertebrate TKs can be inferred from their distribution in various brain circuits. In addition, there are a few interesting cases where invertebrate TKs are injected into prey animals as vasodilators from salivary glands or paralyzing agents from venom glands. In these cases, the peptides are produced in the glands of the predator with sequences mimicking the prey TKs. Lastly, the TK-signaling system appears to have duplicated in Panarthropoda (comprising arthropods, onychophores, and tardigrades) to give rise to a novel type of peptides, natalisins, with a distinct receptor. The distribution and functions of natalisins are distinct from the TKs. In general, it appears that TKs are widely distributed and act in circuits at short range as neuromodulators or cotransmitters.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
19
|
de Oliveira AL, Calcino A, Wanninger A. Ancient origins of arthropod moulting pathway components. eLife 2019; 8:46113. [PMID: 31266593 PMCID: PMC6660194 DOI: 10.7554/elife.46113] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Ecdysis (moulting) is the defining character of Ecdysoza (arthropods, nematodes and related phyla). Despite superficial similarities, the signalling cascade underlying moulting differs between Panarthropoda and the remaining ecdysozoans. Here, we reconstruct the evolution of major components of the ecdysis pathway. Its key elements evolved much earlier than previously thought and are present in non-moulting lophotrochozoans and deuterostomes. Eclosion hormone (EH) and bursicon originated prior to the cnidarian-bilaterian split, whereas ecdysis-triggering hormone (ETH) and crustacean cardioactive peptide (CCAP) evolved in the bilaterian last common ancestor (LCA). Identification of EH, CCAP and bursicon in Onychophora and EH, ETH and CCAP in Tardigrada suggests that the pathway was present in the panarthropod LCA. Trunk, an ancient extracellular signalling molecule and a well-established paralog of the insect peptide prothoracicotropic hormone (PTTH), is present in the non-bilaterian ctenophore Mnemiopsis leidyi. This constitutes the first case of a ctenophore signalling peptide with homology to a neuropeptide. Animals such as insects, crabs and spiders belong to one of the most species-rich animal groups, called the arthropods. These animals have exoskeletons, which are hard, external coverings that support their bodies. Arthropods shed their exoskeletons as they grow, a process called ecdysis or moulting, and this behaviour is controlled by a set of hormones and small protein-like molecules called neuropeptides that allow communication between neurons. Other animals, such as roundworms, also moult; and together with arthropods they are classified into a group called the Ecdysozoa. Since moulting is a common behaviour in ecdysozoans, it was previously assumed that its signalling components had evolved in the common ancestor of roundworms and arthropods, although differences in the moulting machinery between both groups exist. Here, De Oliveira et al. investigate the evolutionary origins of the arthropod moulting machinery and find that some of the hormones and neuropeptides involved appeared long before the arthropods themselves. Database searches showed that important hormones and neuropeptides involved in arthropod moulting can be found in diverse animal groups, such as jellyfish, molluscs and starfish, confirming that these molecules evolved before the last common ancestor of roundworms and arthropods. These animals must therefore use the hormones and neuropeptides in many processes unrelated to moulting. De Oliveira et al. also found that roundworms have lost most of these molecules, and that moulting in these animals must be driven by a different complement of hormones and neuropeptides. These results invite research into the role of moulting hormones and neuropeptides in animals outside the Ecdysozoa. They also show that signalling pathways and the processes they regulate are highly adaptable: two animals can use the same hormone in entirely different processes, but conversely, the same behaviour may be regulated by different molecules depending on the animal. This means that the evolution of a process and the evolution of its regulation can be decoupled, a finding that has important implications for the study of signalling pathways and their evolution.
Collapse
Affiliation(s)
- André Luiz de Oliveira
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Andrew Calcino
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|