1
|
Bonaccorsi di Patti MC, Angiulli E, Casini A, Vaccaro R, Cioni C, Toni M. Synuclein Analysis in Adult Xenopus laevis. Int J Mol Sci 2022; 23:ijms23116058. [PMID: 35682736 PMCID: PMC9181771 DOI: 10.3390/ijms23116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The α-, β- and γ-synucleins are small soluble proteins expressed in the nervous system of mammals and evolutionary conserved in vertebrates. After being discovered in the cartilaginous fish Torpedo californica, synucleins have been sequenced in all vertebrates, showing differences in the number of genes and splicing isoforms in different taxa. Although α-, β- and γ-synucleins share high homology in the N-terminal sequence, suggesting their evolution from a common ancestor, the three isoforms also differ in molecular characteristics, expression levels and tissue distribution. Moreover, their functions have yet to be fully understood. Great scientific interest on synucleins mainly derives from the involvement of α-synuclein in human neurodegenerative diseases, collectively named synucleinopathies, which involve the accumulation of amyloidogenic α-synuclein inclusions in neurons and glia cells. Studies on synucleinopathies can take advantage of the development of new vertebrate models other than mammals. Moreover, synuclein expression in non-mammalian vertebrates contribute to clarify the physiological role of these proteins in the evolutionary perspective. In this paper, gene expression levels of α-, β- and γ-synucleins have been analysed in the main organs of adult Xenopus laevis by qRT-PCR. Moreover, recombinant α-, β- and γ-synucleins were produced to test the specificity of commercial antibodies against α-synuclein used in Western blot and immunohistochemistry. Finally, the secondary structure of Xenopus synucleins was evaluated by circular dichroism analysis. Results indicate Xenopus as a good model for studying synucleinopathies, and provide a useful background for future studies on synuclein functions and their evolution in vertebrates.
Collapse
Affiliation(s)
| | - Elisa Angiulli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy; (A.C.); (R.V.)
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy; (A.C.); (R.V.)
| | - Carla Cioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Mattia Toni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00161 Rome, Italy; (E.A.); (C.C.)
- Correspondence: (M.C.B.d.P.); (M.T.)
| |
Collapse
|
2
|
Schmidt JK, Jones KM, Van Vleck T, Emborg ME. Modeling genetic diseases in nonhuman primates through embryonic and germline modification: Considerations and challenges. Sci Transl Med 2022; 14:eabf4879. [PMID: 35235338 PMCID: PMC9373237 DOI: 10.1126/scitranslmed.abf4879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic modification of the embryo or germ line of nonhuman primates is envisioned as a method to develop improved models of human disease, yet the promise of such animal models remains unfulfilled. Here, we discuss current methods and their limitations for producing nonhuman primate genetic models that faithfully genocopy and phenocopy human disease. We reflect on how to ethically maximize the translational relevance of such models in the search for new therapeutic strategies to treat human disease.
Collapse
Affiliation(s)
- Jenna K. Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn M. Jones
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Trevor Van Vleck
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Lerner A. The intestinal luminal sources of α-synuclein: a gastroenterologist perspective. Nutr Rev 2021; 80:282-293. [PMID: 33942062 DOI: 10.1093/nutrit/nuab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is characterized by nonmotor/motor dysfunction, midbrain dopaminergic neuronal death, and α-synuclein (aSN) deposits. The current hypothesis is that aSN accumulates in the enteric nervous system to reach the brain. However, invertebrate, vertebrate, and nutritional sources of aSN reach the luminal compartment. Submitted to local amyloidogenic forces, the oligomerized proteins' cargo can be sensed and sampled by a specialized mucosal cell to be transmitted to the adjacent enteric nervous system, starting their upward journey to the brain. The present narrative review extends the current mucosal origin of Parkinson's disease, presenting the possibility that the disease starts in the intestinal lumen. If substantiated, eliminating the nutritional sources of aSN (eg, applying a vegetarian diet) might revolutionize the currently used dopaminergic pharmacologic therapy.
Collapse
Affiliation(s)
- Aaron Lerner
- A. Lerner is with the Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
4
|
Chung YG, Seay M, Elsworth JD, Redmond DE. Generation of Pluripotent Stem Cells Using Somatic Cell Nuclear Transfer and Induced Pluripotent Somatic Cells from African Green Monkeys. Stem Cells Dev 2020; 29:1294-1307. [PMID: 32715987 DOI: 10.1089/scd.2020.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patient-specific stem cells derived from somatic cell nuclear transfer (SCNT) embryos or from induced pluripotent stem cells (iPSCs) could be used to treat various diseases with minimal immune rejection. Many studies using these cells have been conducted in rats and mice; however, there exist numerous dissimilarities between the rodents and humans limiting the clinical predictive power and experimental utility of rodent experiments alone. Nonhuman primates (NHPs) share greater homology to human than rodents in all respects, including genomics, physiology, biochemistry, and the immune system. Thus, experimental data obtained from monkey studies would be more predictive for designing an effective cell replacement therapy in humans. Unfortunately, there are few iPSC lines and even fewer SCNT lines that have been derived in NHPs, hampering broader studies in regenerative medicine. One promising potential therapy would be the replacement of dopamine neurons that are lost in Parkinson's disease. After dopamine depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the African green monkey (Chlorocebus sabaeus) shows the most complete model of Parkinsonism compared with other species and brain pathology and behavioral changes are almost identical to those in humans after accidental exposure to MPTP. Therefore, we have developed a SCNT procedure to generate multiple pluripotent stem cell lines in this species for studies of possible treatment of Parkinsonism and for comparing with cells derived from iPSCs. Using 24 female monkeys as egg donors and 7 somatic cell donor monkeys, we have derived 11 SCNT embryonic stem cell lines that expressed typical stemness genes and formed all three germ layer derivatives. We also derived two iPSC lines using an episome-mediated reprogramming factor delivery system. This report describes the process for deriving these cell lines and proving their pluripotency for differentiation into various potentially therapeutic cells.
Collapse
Affiliation(s)
- Young Gie Chung
- Enolc, Inc., Farmington, Connecticut, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| | - Montrell Seay
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| | - John D Elsworth
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| | - D Eugene Redmond
- Research Department, Axion Research Foundation, Hamden, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| |
Collapse
|
5
|
Sorrentino ZA, Xia Y, Gorion KM, Hass E, Giasson BI. Carboxy-terminal truncations of mouse α-synuclein alter aggregation and prion-like seeding. FEBS Lett 2020; 594:1271-1283. [PMID: 31912891 DOI: 10.1002/1873-3468.13728] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Abstract
α-synuclein (αsyn) forms pathologic inclusions in several neurodegenerative diseases termed synucleinopathies. The inclusions are comprised of αsyn fibrils harboring prion-like properties. Prion-like activity of αsyn has been studied by intracerebral injection of fibrils into mice, where the presence of a species barrier requires the use of mouse αsyn. Post-translational modifications to αsyn such as carboxy (C)-terminal truncation occur in synucleinopathies, and their implications for prion-like aggregation and seeding are under investigation. Herein, C-truncated forms of αsyn found in human disease are recapitulated in mouse αsyn to study their seeding activity in vitro, in HEK293T cells, in neuronal-glial culture, and in nontransgenic mice. The results show that C-truncation of mouse αsyn accelerates aggregation of αsyn but alters prion-like seeding of inclusion formation.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kimberly-Marie Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ethan Hass
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Breger LS, Fuzzati Armentero MT. Genetically engineered animal models of Parkinson's disease: From worm to rodent. Eur J Neurosci 2018; 49:533-560. [PMID: 30552719 DOI: 10.1111/ejn.14300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterised by aberrant accumulation of insoluble proteins, including alpha-synuclein, and a loss of dopaminergic neurons in the substantia nigra. The extended neurodegeneration leads to a drop of striatal dopamine levels responsible for disabling motor and non-motor impairments. Although the causes of the disease remain unclear, it is well accepted among the scientific community that the disorder may also have a genetic component. For that reason, the number of genetically engineered animal models has greatly increased over the past two decades, ranging from invertebrates to more complex organisms such as mice and rats. This trend is growing as new genetic variants associated with the disease are discovered. The EU Joint Programme - Neurodegenerative Disease Research (JPND) has promoted the creation of an online database aiming at summarising the different features of experimental models of Parkinson's disease. This review discusses available genetic models of PD and the extent to which they adequately mirror the human pathology and reflects on future development and uses of genetically engineered experimental models for the study of PD.
Collapse
Affiliation(s)
- Ludivine S Breger
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Centre Broca Nouvelle Aquitaine, Université de Bordeaux, Bordeaux cedex, France
| | | |
Collapse
|
7
|
Zasso J, Ahmed M, Cutarelli A, Conti L. Inducible Alpha-Synuclein Expression Affects Human Neural Stem Cells' Behavior. Stem Cells Dev 2018; 27:985-994. [PMID: 29669468 DOI: 10.1089/scd.2018.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Converging evidence suggest that levels of alpha-synuclein (aSyn) expression play a critical role in Parkinson's disease (PD). Several mutations of the SNCA gene, encoding for aSyn have been associated to either the familial or the sporadic forms of PD. Nonetheless, the mechanism underlying wild-type aSyn-mediated neurotoxicity in neuronal cells as well as its specific driving role in PD pathogenesis has yet to be fully clarified. In this view, the development of proper in vitro cellular systems is a crucial step. In this study, we present a novel human Tet-on human neural stem cell (hNSC) line, in which aSyn timing and level of expression can be tightly experimentally tuned. Induction of aSyn in self-renewing hNSCs leads to progressive formation of aSyn aggregates and impairs their proliferation and cell survival. Furthermore, aSyn induction during the neuronal differentiation process results in reduced neuronal differentiation and increased number of astrocytes and undifferentiated cells in culture. Finally, acute aSyn induction in hNSC-derived dopaminergic neuronal cultures results in cell toxicity. This novel conditional in vitro cell model system may be a valuable tool for dissecting of aSyn pathogenic effects in hNSCs and neurons and in developing new potential therapeutic strategies.
Collapse
Affiliation(s)
- Jacopo Zasso
- Centre for Integrative Biology-CIBIO, Università degli Studi di Trento , Trento, Italy
| | - Mastad Ahmed
- Centre for Integrative Biology-CIBIO, Università degli Studi di Trento , Trento, Italy
| | - Alessandro Cutarelli
- Centre for Integrative Biology-CIBIO, Università degli Studi di Trento , Trento, Italy
| | - Luciano Conti
- Centre for Integrative Biology-CIBIO, Università degli Studi di Trento , Trento, Italy
| |
Collapse
|
8
|
Emborg ME. Nonhuman Primate Models of Neurodegenerative Disorders. ILAR J 2017; 58:190-201. [PMID: 28985333 PMCID: PMC5886328 DOI: 10.1093/ilar/ilx021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease are age-related neurodegenerative disorders characterized by progressive neuronal cell death. Although each disease has particular pathologies and symptoms, accumulated evidence points to similar mechanisms of neurodegeneration, including inflammation, oxidative stress, and protein aggregation. A significant body of research is ongoing to understand how these pathways affect each other and what ultimately triggers the onset of the disease. Experiments in nonhuman primates (NHPs) account for only 5% of all research in animals. Yet the impact of NHP studies for clinical translation is much greater, especially for neurodegenerative disorders, as NHPs have a complex cognitive and motor functions and highly developed neuroanatomy. New NHP models are emerging to better understand pathology and improve the platform in which to test novel therapies. The goal of this report is to review NHP models of AD, HD, and PD in the context of the current understanding of these diseases and their contribution to the development of novel therapies.
Collapse
Affiliation(s)
- Marina E Emborg
- Marina E. Emborg, MD, PhD, is the director of the Preclinical Parkinson’s Research Program at the Wisconsin National Primate Research Center and an associate professor in the department of Medical Physics at the University of Wisconsin in Madison, Wisconsin.
| |
Collapse
|
9
|
Marmion DJ, Kordower JH. α-Synuclein nonhuman primate models of Parkinson's disease. J Neural Transm (Vienna) 2017; 125:385-400. [PMID: 28434076 DOI: 10.1007/s00702-017-1720-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023]
Abstract
Proper understanding of the mechanism(s) by which α-synuclein misfolds and propagates may hold the key to unraveling the complex pathophysiology of Parkinson's disease. A more complete understanding of the disease itself, as well as establishing animal models that fully recapitulate pathological and functional disease progression, are needed to develop treatments that will delay, halt or reverse the disease course. Traditional neurotoxin-based animal models fail to mimic crucial aspects of Parkinson's and thus are not relevant for the study of neuroprotection and disease-modifying therapies. Therefore, a new era of animal models centered on α-synuclein has emerged with the utility of nonhuman primates in these studies beginning to become important. Indeed, disease modeling in nonhuman primates offers a more similar anatomical and genetic background to humans, and the ability to assess complex behavioral impairments that are difficult to test in rodents. Furthermore, results obtained from monkey studies translate better to applications in humans. In this review, we highlight the importance of α-synuclein in Parkinson's disease and discuss the development of α-synuclein based nonhuman primate models.
Collapse
Affiliation(s)
- David J Marmion
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Cohn Bldg Room 306, Chicago, IL, 60612, USA
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Cohn Bldg Room 306, Chicago, IL, 60612, USA.
- The Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
10
|
Abstract
In 2017, it is two hundred years since James Parkinson provided the first complete clinical description of the disease named after him, fifty years since the introduction of high-dose D,L-DOPA treatment and twenty years since α-synuclein aggregation came to the fore. In 1998, multiple system atrophy joined Parkinson's disease and dementia with Lewy bodies as the third major synucleinopathy. Here we review our work, which led to the identification of α-synuclein in Lewy bodies, Lewy neurites and Papp-Lantos bodies, as well as what has happened since. Some of the experiments described were carried out in collaboration with ML Schmidt, JQ Trojanowski and VMY Lee.
Collapse
Affiliation(s)
| | - Ross Jakes
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
11
|
Toni M, Cioni C, De Angelis F, di Patti MCB. Synuclein expression in the lizard Anolis carolinensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:577-95. [DOI: 10.1007/s00359-016-1108-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/26/2016] [Indexed: 12/30/2022]
|
12
|
Vermilyea SC, Emborg ME. α-Synuclein and nonhuman primate models of Parkinson's disease. J Neurosci Methods 2015; 255:38-51. [PMID: 26247888 PMCID: PMC4604057 DOI: 10.1016/j.jneumeth.2015.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Abstract
Accumulation of α-synuclein (α-syn) leading to the formation of insoluble intracellular aggregates named Lewy bodies is proposed to have a significant role in Parkinson's disease (PD) pathology. Nonhuman primate (NHP) models of PD have proven essential for understanding the neurobiological basis of the disease and for the preclinical evaluation of first-in-class and invasive therapies. In addition to neurotoxin, aging and intracerebral gene transfer models, a new generation of models using inoculations of α-syn formulations, as well as transgenic methods is emerging. Understanding of their advantages and limitations will be essential when choosing a platform to evaluate α-syn-related pathology and interpreting the test results of new treatments targeting α-syn aggregation. In this review we aim to provide insight on this issue by critically analyzing the differences in endogenous α-syn, as well as α-syn pathology in PD and PD NHP models.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Neuroscience Training Program, University of Wisconsin, Madison, United States; Wisconsin National Primate Research Center, University of Wisconsin, Madison, United States.
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin, Madison, United States; Wisconsin National Primate Research Center, University of Wisconsin, Madison, United States; Department of Medical Physics, University of Wisconsin, Madison, 1220 Capitol Court, Madison, WI 53715, United States.
| |
Collapse
|
13
|
Abstract
Synucleins (syns) are a family of proteins involved in several human neurodegenerative diseases and tumors. Since the first syn discovery in the brain of the electric ray Torpedo californica, members of the same family have been identified in all vertebrates and comparative studies have indicated that syn proteins are evolutionary conserved. No counterparts of syns were found in invertebrates suggesting that they are vertebrate-specific proteins. Molecular studies showed that the number of syn members varies among vertebrates. Three genes encode for α-, β- and γ-syn in mammals and birds. However, a variable number of syn genes and encoded proteins is expressed or predicted in fish depending on the species. Among biologically verified sequences, four syn genes were identified in fugu, encoding for α, β and two γ (γ1 and γ2) isoforms, whereas only three genes are expressed in zebrafish, which lacks α-syn gene. The list of “non verified” sequences is much longer and is often found in sequence databases. In this review we provide an overview of published papers and known syn sequences in agnathans and fish that are likely to impact future studies in this field. Indeed, fish models may play a key role in elucidating some of the molecular mechanisms involved in physiological and pathological functions of syn proteins.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Via Alfonso Borelli 50, Rome 00161, Italy.
| | - Carla Cioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Via Alfonso Borelli 50, Rome 00161, Italy.
| |
Collapse
|
14
|
Bourdenx M, Dovero S, Engeln M, Bido S, Bastide MF, Dutheil N, Vollenweider I, Baud L, Piron C, Grouthier V, Boraud T, Porras G, Li Q, Baekelandt V, Scheller D, Michel A, Fernagut PO, Georges F, Courtine G, Bezard E, Dehay B. Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathol Commun 2015. [PMID: 26205255 PMCID: PMC4513748 DOI: 10.1186/s40478-015-0222-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons as well as the presence of proteinaceous inclusions named Lewy bodies. α-synuclein (α-syn) is a major constituent of Lewy bodies, and the first disease-causing protein characterized in PD. Several α-syn-based animal models of PD have been developed to investigate the pathophysiology of PD, but none of them recapitulate the full picture of the disease. Ageing is the most compelling and major risk factor for developing PD but its impact on α-syn toxicity remains however unexplored. In this study, we developed and exploited a recombinant adeno-associated viral (AAV) vector of serotype 9 overexpressing mutated α-syn to elucidate the influence of ageing on the dynamics of PD-related neurodegeneration associated with α-syn pathology in different mammalian species. RESULTS Identical AAV pseudotype 2/9 vectors carrying the DNA for human mutant p.A53T α-syn were injected into the substantia nigra to induce neurodegeneration and synucleinopathy in mice, rats and monkeys. Rats were used first to validate the ability of this serotype to replicate α-syn pathology and second to investigate the relationship between the kinetics of α-syn-induced nigrostriatal degeneration and the progressive onset of motor dysfunctions, strikingly reminiscent of the impairments observed in PD patients. In mice, AAV2/9-hα-syn injection into the substantia nigra was associated with accumulation of α-syn and phosphorylated hα-syn, regardless of mouse strain. However, phenotypic mutants with either accelerated senescence or resistance to senescence did not display differential susceptibility to hα-syn overexpression. Of note, p-α-syn levels correlated with nigrostriatal degeneration in mice. In monkeys, hα-syn-induced degeneration of the nigrostriatal pathway was not affected by the age of the animals. Unlike mice, monkeys did not exhibit correlations between levels of phosphorylated α-syn and neurodegeneration. CONCLUSIONS In conclusion, AAV2/9-mediated hα-syn induces robust nigrostriatal neurodegeneration in mice, rats and monkeys, allowing translational comparisons among species. Ageing, however, neither exacerbated nigrostriatal neurodegeneration nor α-syn pathology per se. Our unprecedented multi-species investigation thus favours the multiple-hit hypothesis for PD wherein ageing would merely be an aggravating, additive, factor superimposed upon an independent disease process.
Collapse
|
15
|
Santpere G, Carnero-Montoro E, Petit N, Serra F, Hvilsom C, Rambla J, Heredia-Genestar JM, Halligan DL, Dopazo H, Navarro A, Bosch E. Analysis of Five Gene Sets in Chimpanzees Suggests Decoupling between the Action of Selection on Protein-Coding and on Noncoding Elements. Genome Biol Evol 2015; 7:1490-505. [PMID: 25977458 PMCID: PMC4494068 DOI: 10.1093/gbe/evv082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We set out to investigate potential differences and similarities between the selective forces acting upon the coding and noncoding regions of five different sets of genes defined according to functional and evolutionary criteria: 1) two reference gene sets presenting accelerated and slow rates of protein evolution (the Complement and Actin pathways); 2) a set of genes with evidence of accelerated evolution in at least one of their introns; and 3) two gene sets related to neurological function (Parkinson’s and Alzheimer’s diseases). To that effect, we combine human–chimpanzee divergence patterns with polymorphism data obtained from target resequencing 20 central chimpanzees, our closest relatives with largest long-term effective population size. By using the distribution of fitness effect-alpha extension of the McDonald–Kreitman test, we reproduce inferences of rates of evolution previously based only on divergence data on both coding and intronic sequences and also obtain inferences for other classes of genomic elements (untranslated regions, promoters, and conserved noncoding sequences). Our results suggest that 1) the distribution of fitness effect-alpha method successfully helps distinguishing different scenarios of accelerated divergence (adaptation or relaxed selective constraints) and 2) the adaptive history of coding and noncoding sequences within the gene sets analyzed is decoupled.
Collapse
Affiliation(s)
- Gabriel Santpere
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Elena Carnero-Montoro
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Natalia Petit
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - François Serra
- Structural Genomics Team, Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | | | - Jordi Rambla
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Jose Maria Heredia-Genestar
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Daniel L Halligan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hernan Dopazo
- Biomedical Genomics & Evolution Laboratory, Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Arcadi Navarro
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain National Institute for Bioinformatics (INB), PRBB, Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), PRBB, Barcelona, Spain Center for Genomic Regulation (CRG), PRBB, Barcelona, Spain
| | - Elena Bosch
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| |
Collapse
|
16
|
Vaccaro R, Toni M, Casini A, Vivacqua G, Yu S, D'este L, Cioni C. Localization of α-synuclein in teleost central nervous system: immunohistochemical and Western blot evidence by 3D5 monoclonal antibody in the common carp, Cyprinus carpio. J Comp Neurol 2015; 523:1095-124. [PMID: 25488013 DOI: 10.1002/cne.23722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 01/26/2023]
Abstract
Alpha synuclein (α-syn) is a 140 amino acid vertebrate-specific protein, highly expressed in the human nervous system and abnormally accumulated in Parkinson's disease and other neurodegenerative disorders, known as synucleinopathies. The common occurrence of α-syn aggregates suggested a role for α-syn in these disorders, although its biological activity remains poorly understood. Given the high degree of sequence similarity between vertebrate α-syns, we investigated this proteins in the central nervous system (CNS) of the common carp, Cyprinus carpio, with the aim of comparing its anatomical and cellular distribution with that of mammalian α-syn. The distribution of α-syn was analyzed by semiquantitative western blot, immunohistochemistry, and immunofluorescence by a novel monoclonal antibody (3D5) against a fully conserved epitope between carp and human α-syn. The distribution of 3D5 immunoreactivity was also compared with that of choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), and serotonin (5HT) by double immunolabelings. The results showed that a α-syn-like protein of about 17 kDa is expressed to different levels in several brain regions and in the spinal cord. Immunoreactive materials were localized in neuronal perikarya and varicose fibers but not in the nucleus. The present findings indicate that α-syn-like proteins may be expressed in a few subpopulations of catecholaminergic and serotoninergic neurons in the carp brain. However, evidence of cellular colocalization 3D5/TH or 3D5/5HT was rare. Differently, the same proteins appear to be coexpressed with ChAT by cholinergic neurons in several motor and reticular nuclei. These results sustain the functional conservation of the α-syn expression in cholinergic systems and suggest that α-syn modulates similar molecular pathways in phylogenetically distant vertebrates.
Collapse
Affiliation(s)
- Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Xiao J, Vemula S, Yue Z. Rodent Models of Autosomal Dominant Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Alpha-synuclein and tau: teammates in neurodegeneration? Mol Neurodegener 2014; 9:43. [PMID: 25352339 PMCID: PMC4230508 DOI: 10.1186/1750-1326-9-43] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022] Open
Abstract
The accumulation of α-synuclein aggregates is the hallmark of Parkinson’s disease, and more generally of synucleinopathies. The accumulation of tau aggregates however is classically found in the brains of patients with dementia, and this type of neuropathological feature specifically defines the tauopathies. Nevertheless, in numerous cases α-synuclein positive inclusions are also described in tauopathies and vice versa, suggesting a co-existence or crosstalk of these proteinopathies. Interestingly, α-synuclein and tau share striking common characteristics suggesting that they may work in concord. Tau and α-synuclein are both partially unfolded proteins that can form toxic oligomers and abnormal intracellular aggregates under pathological conditions. Furthermore, mutations in either are responsible for severe dominant familial neurodegeneration. Moreover, tau and α-synuclein appear to promote the fibrillization and solubility of each other in vitro and in vivo. This suggests that interactions between tau and α-synuclein form a deleterious feed-forward loop essential for the development and spreading of neurodegeneration. Here, we review the recent literature with respect to elucidating the possible links between α-synuclein and tau.
Collapse
|
19
|
Paslawski W, Andreasen M, Nielsen SB, Lorenzen N, Thomsen K, Kaspersen JD, Pedersen JS, Otzen DE. High stability and cooperative unfolding of α-synuclein oligomers. Biochemistry 2014; 53:6252-63. [PMID: 25216651 DOI: 10.1021/bi5007833] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many neurodegenerative diseases are linked with formation of amyloid aggregates. It is increasingly accepted that not the fibrils but rather oligomeric species are responsible for degeneration of neuronal cells. Strong evidence suggests that in Parkinson's disease (PD), cytotoxic α-synuclein (αSN) oligomers are key to pathogenicity. Nevertheless, insight into the oligomers' molecular properties remains scarce. Here we show that αSN oligomers, despite a large amount of disordered structure, are remarkably stable against extreme pH, temperature, and even molar amounts of chemical denaturants, though they undergo cooperative unfolding at higher denaturant concentrations. Mutants found in familial PD lead to slightly larger oligomers whose stabilities are very similar to that of wild-type αSN. Isolated oligomers do not revert to monomers but predominantly form larger aggregates consisting of stacked oligomers, suggesting that they are off-pathway relative to the process of fibril formation. We also demonstrate that 4-(dicyanovinyl)julolidine (DCVJ) can be used as a specific probe for detection of αSN oligomers. The high stability of the αSN oligomer indicates that therapeutic strategies should aim to prevent the formation of or passivate rather than dissociate this cytotoxic species.
Collapse
Affiliation(s)
- Wojciech Paslawski
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tenreiro S, Eckermann K, Outeiro TF. Protein phosphorylation in neurodegeneration: friend or foe? Front Mol Neurosci 2014; 7:42. [PMID: 24860424 PMCID: PMC4026737 DOI: 10.3389/fnmol.2014.00042] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/22/2014] [Indexed: 12/15/2022] Open
Abstract
Protein misfolding and aggregation is a common hallmark in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and fronto-temporal dementia (FTD). In these disorders, the misfolding and aggregation of specific proteins occurs alongside neuronal degeneration in somewhat specific brain areas, depending on the disorder and the stage of the disease. However, we still do not fully understand the mechanisms governing protein aggregation, and whether this constitutes a protective or detrimental process. In PD, alpha-synuclein (aSyn) forms protein aggregates, known as Lewy bodies, and is phosphorylated at serine 129. Other residues have also been shown to be phosphorylated, but the significance of phosphorylation in the biology and pathophysiology of the protein is still controversial. In AD and in FTD, hyperphosphorylation of tau protein causes its misfolding and aggregation. Again, our understanding of the precise consequences of tau phosphorylation in the biology and pathophysiology of the protein is still limited. Through the use of a variety of model organisms and technical approaches, we are now gaining stronger insight into the effects of phosphorylation in the behavior of these proteins. In this review, we cover recent findings in the field and discuss how targeting phosphorylation events might be used for therapeutic intervention in these devastating diseases of the nervous system.
Collapse
Affiliation(s)
- Sandra Tenreiro
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular Lisboa, Portugal
| | - Katrin Eckermann
- Department of Neurology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen Göttingen, Germany
| | - Tiago F Outeiro
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular Lisboa, Portugal ; Instituto de Fisiologia, Faculdade de Medicina da Universidade de Lisboa Lisboa, Portugal ; Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
21
|
Paslawski W, Mysling S, Thomsen K, Jørgensen TJD, Otzen DE. Co-existence of Two Different α-Synuclein Oligomers with Different Core Structures Determined by Hydrogen/Deuterium Exchange Mass Spectrometry. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Paslawski W, Mysling S, Thomsen K, Jørgensen TJD, Otzen DE. Co-existence of Two Different α-Synuclein Oligomers with Different Core Structures Determined by Hydrogen/Deuterium Exchange Mass Spectrometry. Angew Chem Int Ed Engl 2014; 53:7560-3. [DOI: 10.1002/anie.201400491] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/06/2014] [Indexed: 12/24/2022]
|
23
|
Abstract
A number of neurodegenerative diseases principally affect humans as they age and are characterized by the loss of specific groups of neurons in different brain regions. Although these disorders are generally sporadic, it is now clear that many of them have a substantial genetic component. As genes are the raw material with which evolution works, we might benefit from understanding these genes in an evolutionary framework. Here, I will discuss how we can understand whether evolution has shaped genes involved in neurodegeneration and the implications for practical issues, such as our choice of model systems for studying these diseases, and more theoretical concerns, such as the level of selection against these phenotypes.
Collapse
Affiliation(s)
- Mark R Cookson
- Cell Biology and Gene Expression Unit, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892-3707, USA.
| |
Collapse
|
24
|
Kang L, Wu KP, Vendruscolo M, Baum J. The A53T mutation is key in defining the differences in the aggregation kinetics of human and mouse α-synuclein. J Am Chem Soc 2011; 133:13465-70. [PMID: 21721555 DOI: 10.1021/ja203979j] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite a 95% sequence similarity, the aggregation of human and mouse α-synuclein is remarkably different, as the human form is slower than the mouse form in forming fibrils but is associated with Parkinson's disease in both humans and transgenic mice. Here, the amino acid code underlying these differences is investigated by comparing the lag times, growth rates, and secondary structure propensities of a systematic series of eight human-mouse chimeras. Fluorescence analysis of these variants shows that the A53T substitution dominates the growth kinetics, while the lag phase is affected by a combination of the A53T and S87N substitutions. The secondary structure propensities derived from an NMR chemical shift analysis of the monomeric forms of the human-mouse variants enable us to establish a link between the changes in the conformational properties in the region of position 53 upon mutation and the corresponding changes in growth rates. These results suggest that the presence of an alanine residue at position 53 may be an evolutionary adaptation to minimize Parkinson's disease in humans and indicates that effective drug development efforts may be directed to target this N-terminal region of the sequence.
Collapse
Affiliation(s)
- Lijuan Kang
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | | | | | | |
Collapse
|
25
|
Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 2010; 16:1210-4. [PMID: 21052075 DOI: 10.1038/nm.2224] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Age-related neurodegenerative diseases are largely limited to humans and rarely occur spontaneously in animals. Genetically engineered mouse models recapitulate aspects of the corresponding human diseases and are instrumental in studying disease mechanisms and testing therapeutic strategies. If considered within the range of their validity, mouse models have been predictive of clinical outcome. Translational failure is less the result of the incomplete nature of the models than of inadequate preclinical studies and misinterpretation of the models. This commentary summarizes current models and highlights key questions we should be asking about animal models, as well as questions that cannot be answered with the current models.
Collapse
Affiliation(s)
- Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Mak SK, McCormack AL, Langston JW, Kordower JH, Di Monte DA. Decreased α-synuclein expression in the aging mouse substantia nigra. Exp Neurol 2009; 220:359-65. [DOI: 10.1016/j.expneurol.2009.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/09/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
|
27
|
Threonine 53 in alpha-synuclein is conserved in long-living non-primate animals. Biochem Biophys Res Commun 2009; 387:602-5. [PMID: 19619507 DOI: 10.1016/j.bbrc.2009.07.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 11/22/2022]
Abstract
Alpha-synuclein is the main constituent of Lewy bodies in familial and sporadic cases of Parkinson's disease (PD). Autosomal dominant point mutations, gene duplications or triplications in the alpha-synuclein (SNCA) gene cause hereditary forms of PD. One of the alpha-synuclein point mutations, Ala53Thr, is associated with increased oligomerization toxicity leading to familial early-onset PD in humans. The amino acid in position 53 in alpha-synuclein is an alanine in humans, great apes and Old World primates. However, this amino acid is a threonine in the alpha-synuclein of all other examined species, including New World monkeys. Here, we present DNA sequence analysis of SNCA and the deduced amino acid sequences of alpha-synuclein cloned from various different species, ranging from fish to mammals, which are known for their long-living potential. In all these investigated species the 53Thr is found. We conclude that 53Thr is not a molecular adaptation for long-living animals to minimize the risk of developing PD.
Collapse
|
28
|
Song W, Patel A, Qureshi HY, Han D, Schipper HM, Paudel HK. The Parkinson disease-associated A30P mutation stabilizes alpha-synuclein against proteasomal degradation triggered by heme oxygenase-1 over-expression in human neuroblastoma cells. J Neurochem 2009; 110:719-33. [PMID: 19457084 DOI: 10.1111/j.1471-4159.2009.06165.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Proteosomal degradation of proteins is one of the major mechanisms of intracellular protein turnover. Failure of the proteosome to degrade misfolded protein is implicated in the accumulation of alpha-synuclein in Parkinson's disease (PD). Heme oxygenase-1 (HO-1), an enzyme that converts heme to free iron, carbon monoxide (CO) and biliverdin (bilirubin precursor) is expressed in response to various stressors. HO-1 is up-regulated in PD- and Alzheimer's disease-affected neural tissues. In this study, we found that HO-1 over-expression engenders dose-dependent decreases in alpha-synuclein protein levels in human neuroblastoma M17 cells. When over-expression of HO-1 was silenced in HO-1 transfected cells, level of alpha-synuclein was restored. Likewise, treatment of HO-1 over-expressing cells with the HO-1 inhibitor, tin mesoporphyrin, the iron chelator deferoxamine or antagonist of CO-dependent cGMP activation, methylene blue, mitigated the HO-1-induced reduction in alpha-synuclein levels. Furthermore, when HO-1 over-expressing cells were treated with the proteosome inhibitors, lactacystin and MG132, level of alpha-synuclein was almost completely restored. In contrast to the effect on alpha-synuclein [wild-type (WT)] levels, HO-1 over-expression did not significantly impact PD-associated alpha-synuclein (A30P) levels in these cells. HO-1 also significantly reduced aggregation of alpha-synuclein (WT) but not that of A30P. Our results suggest that HO-1, which is expressed when neurons are exposed to toxic stimuli capable of inducing protein misfolding, triggers proteosomal degradation of proteins and prevents intracellular accumulation of protein aggregates and inclusions. Resistance to HO-1 induced proteosomal degradation may render the familial PD-associated A30P mutation prone to toxic intracellular aggregation.
Collapse
Affiliation(s)
- Wei Song
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Cookson MR. alpha-Synuclein and neuronal cell death. Mol Neurodegener 2009; 4:9. [PMID: 19193223 PMCID: PMC2646729 DOI: 10.1186/1750-1326-4-9] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/04/2009] [Indexed: 11/16/2022] Open
Abstract
α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Building 35, Room 1A116, MSC 3707, 35 Convent Drive, Bethesda, MD 20982-3707, USA.
| |
Collapse
|
30
|
Schmidt E, Seifert M, Baumeister R. Caenorhabditis elegans as a model system for Parkinson's disease. NEURODEGENER DIS 2007; 4:199-217. [PMID: 17596715 DOI: 10.1159/000101845] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common age-related neurodegenerative diseases that is characterized by selective loss of dopaminergic neurons. Despite recent findings from mammalian model systems, molecular mechanisms of the pathophysiology are poorly understood. Given the high conservation of molecular pathways from invertebrates to mammalians, combined with technical advantages, such as high-throughput approaches, Caenorhabditis elegans represents a powerful system for the identification of factors involved in neurodegeneration. In this review we describe that C. elegans can be used to advance our understanding of the genetic mechanisms implicated in these disorders.
Collapse
Affiliation(s)
- Enrico Schmidt
- Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
31
|
Schneider BL, Seehus CR, Capowski EE, Aebischer P, Zhang SC, Svendsen CN. Over-expression of alpha-synuclein in human neural progenitors leads to specific changes in fate and differentiation. Hum Mol Genet 2007; 16:651-66. [PMID: 17309880 DOI: 10.1093/hmg/ddm008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Missense mutations and extra copies of the alpha-Synuclein gene result in Parkinson disease (PD). Human stem and progenitor cells can be expanded from embryonic tissues and provide a source of non-transformed neural cells to explore the effects of these pathogenic mutations specifically in human nervous tissue. We over-expressed the wild type, A53T and A30P forms of alpha-synuclein in expanded populations of progenitors derived from the human fetal cortex. The protein localized in the nucleus and around microvesicles. Only the A53T form was acutely toxic, suggesting a unique vulnerability of these progenitors to this mutation. Interestingly, constitutive over-expression of wild-type alpha-synuclein progressively impaired the innate ability of progenitors to switch toward gliogenesis at later passages. To explore the effect of alpha-synuclein on neuronal subtypes selectively affected in PD, such as dopaminergic neurons, alpha-synuclein and its mutations were also over-expressed in terminally differentiating neuroectodermal cultures derived from human embryonic stem cells (hESC). Alpha-synuclein induced acute cytotoxicity and reduced the number of neurons expressing either tyrosine hydroxylase or gamma-aminobutyric acid over time. Consistent with the selective vulnerability of ventral midbrain dopaminergic neurons, alpha-synuclein cytotoxicity appeared most pronounced following FGF8/SHH specification and was decreased by inhibition of dopamine synthesis. Together, these data show that alpha-synuclein over-expressed in human neural embryonic cells results in patterns of degeneration that in some cases match features of Parkinson Disease. Thus, neural cells derived from hESC provide a useful model system to understand the development of alpha-synuclein-related pathologies and allow therapeutic drug screening.
Collapse
Affiliation(s)
- Bernard L Schneider
- Waisman Center and Department of Anatomy, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Several genes have been identified for monogenic disorders that variably resemble Parkinson's disease. Dominant mutations in the gene encoding alpha-synuclein enhance the propensity of this protein to aggregate. As a consequence, these patients have a widespread disease with protein inclusion bodies in several brain areas. In contrast, mutations in several recessive genes (parkin, DJ-1, and PINK1) produce neuronal cell loss but generally without protein aggregation pathology. Progress has been made in understanding some of the mechanisms of toxicity: Parkin is an E3 ubiquitin ligase and DJ-1 and PINK1 appear to protect against mitochondrial damage. However, we have not yet fully resolved how the recessive genes relate to alpha-synuclein, or whether they represent different ways to induce a similar phenotype.
Collapse
Affiliation(s)
- Mark R Cookson
- Cell Biology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland 20892, USA.
| |
Collapse
|
33
|
Choi W, Zibaee S, Jakes R, Serpell LC, Davletov B, Crowther RA, Goedert M. Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein. FEBS Lett 2004; 576:363-8. [PMID: 15498564 DOI: 10.1016/j.febslet.2004.09.038] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 09/02/2004] [Accepted: 09/02/2004] [Indexed: 11/17/2022]
Abstract
Missense mutations (A30P and A53T) in alpha-synuclein and the overproduction of the wild-type protein cause familial forms of Parkinson's disease and dementia with Lewy bodies. Alpha-synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define these diseases at a neuropathological level. Recently, a third missense mutation (E46K) in alpha-synuclein was described in an inherited form of dementia with Lewy bodies. Here, we have investigated the functional effects of this novel mutation on phospholipid binding and filament assembly of alpha-synuclein. When compared to the wild-type protein, the E46K mutation caused a significantly increased ability of alpha-synuclein to bind to negatively charged liposomes, unlike the previously described mutations. The E46K mutation increased the rate of filament assembly to the same extent as the A53T mutation. Filaments formed from E46K alpha-synuclein often had a twisted morphology with a cross-over spacing of 43 nm. The observed effects on lipid binding and filament assembly may explain the pathogenic nature of the E46K mutation in alpha-synuclein.
Collapse
Affiliation(s)
- Woong Choi
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|