1
|
Soltani S, Webb SM, Kroll T, King-Jones K. Drosophila Evi5 is a critical regulator of intracellular iron transport via transferrin and ferritin interactions. Nat Commun 2024; 15:4045. [PMID: 38744835 PMCID: PMC11094094 DOI: 10.1038/s41467-024-48165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Vesicular transport is essential for delivering cargo to intracellular destinations. Evi5 is a Rab11-GTPase-activating protein involved in endosome recycling. In humans, Evi5 is a high-risk locus for multiple sclerosis, a debilitating disease that also presents with excess iron in the CNS. In insects, the prothoracic gland (PG) requires entry of extracellular iron to synthesize steroidogenic enzyme cofactors. The mechanism of peripheral iron uptake in insect cells remains controversial. We show that Evi5-depletion in the Drosophila PG affected vesicle morphology and density, blocked endosome recycling and impaired trafficking of transferrin-1, thus disrupting heme synthesis due to reduced cellular iron concentrations. We show that ferritin delivers iron to the PG as well, and interacts physically with Evi5. Further, ferritin-injection rescued developmental delays associated with Evi5-depletion. To summarize, our findings show that Evi5 is critical for intracellular iron trafficking via transferrin-1 and ferritin, and implicate altered iron homeostasis in the etiology of multiple sclerosis.
Collapse
Affiliation(s)
- Sattar Soltani
- University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Kirst King-Jones
- University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
2
|
Guo X, Sha Y, Pu X, Xu Y, Yao L, Liu X, He Y, Hu J, Wang J, Li S, Chen G. Coevolution of Rumen Epithelial circRNAs with Their Microbiota and Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep. Int J Mol Sci 2022; 23:ijms231810488. [PMID: 36142400 PMCID: PMC9499677 DOI: 10.3390/ijms231810488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study explores the effects of the coevolution of the host genome (the first genome) and gut microbiome (the second genome) on nutrition stress in Tibetan sheep during the cold season. The rumen epithelial tissue of six Tibetan sheep (Oula-type) was collected as experimental samples during the cold and warm seasons and the study lasted for half a year. The cDNA library was constructed and subjected to high-throughput sequencing. The circRNAs with significant differential expression were identified through bioinformatics analysis and functional prediction, and verified by real-time quantitative PCR (qRT-PCR). The results showed that a total of 56 differentially expressed (DE) circRNAs of rumen epithelial tissue were identified using RNA-seq technology, among which 29 were significantly upregulated in the cold season. The circRNA-miRNA regulatory network showed that DE circRNAs promoted the adaptation of Tibetan sheep in the cold season by targeting miR-150 and oar-miR-370-3p. The results of correlation analysis among circRNAs, microbiota, and metabolites showed that the circRNA NC_040275.1:28680890|28683112 had a very significant positive correlation with acetate, propionate, butyrate, and total volatile fatty acid (VFA) (p < 0.01), and had a significant positive correlation with Ruminococcus-1 (p < 0.05). In addition, circRNA NC_040256.1:78451819|78454934 and metabolites were enriched in the same KEGG pathway biosynthesis of amino acids (ko01230). In conclusion, the host genome and rumen microbiome of Tibetan sheep co-encoded a certain glycoside hydrolase (β-glucosidase) and coevolved efficient VFA transport functions and amino acid anabolic processes; thus, helping Tibetan sheep adapt to nutrient stress in the cold season in high-altitude areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiu Liu
- Correspondence: (X.L.); (G.C.)
| | | | | | | | | | | |
Collapse
|
3
|
Mazdeh M, Rahimi M, Eftekharian MM, Omrani MD, Sayad A, Taheri M, Ghafouri-Fard S. Ecotropic Viral Integration Site 5 (EVI5) expression analysis in multiple sclerosis patients. Hum Antibodies 2017; 26:113-119. [PMID: 29036808 DOI: 10.3233/hab-170328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex immune-related disorder of the central nervous system (CNS) in which dysregulation of different classes of T cells are involved. Variants in Ecotropic Viral Integration Site 5 (EVI5) gene has been shown to be significantly associated with MS in different populations. OBJECTIVES However, there is no data regarding relative expression of this gene in peripheral blood of MS patients compared with healthy controls. METHODS In the present study we assessed expression of EVI5 in 50 Iranian MS patients compared with healthy subjects by means of quantitative real time RT-PCR. RESULTS Statistical analyses showed no significant difference in EVI5 relative expression neither between total MS patients and healthy controls nor between age- and sex-based subgroups of patients and controls except for a trend toward significance in patients aged between 30 and 40 years compared with healthy subjects in both sexes (P= 0.068 and 0.075 for males and females respectively). No significant correlation was found between the expression level of this gene and disease duration, age at onset or Expanded Disability Status Scale (EDSS). CONCLUSION Future studies are needed to explore the role of EVI5 in the pathogenesis of MS.
Collapse
Affiliation(s)
- Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahnoosh Rahimi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Tang J, Ou J, Xu C, Yi C, Xue F, Xu L, Lai F, Tang J, Li S, Kang T, Ding W, Wang B. EVI5 is a novel independent prognostic predictor in hepatocellular carcinoma after radical hepatectomy. Oncol Rep 2017; 38:2251-2258. [PMID: 28765910 DOI: 10.3892/or.2017.5862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/21/2017] [Indexed: 11/06/2022] Open
Abstract
The present study explored the correlation of ecotropic viral integration site 5 (EVI5) expression with clinicopathological features and prognosis in hepatocellular carcinoma (HCC). A total of 205 HCC patients were included retrospectively. Quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting were performed to detect the profile of EVI5 expression in HCC cell lines and fresh tissues. Archived paraffin-embedded specimens were investigated for EVI5 expression by immunohistochemistry (IHC). Both the mRNA and protein levels of EVI5 were obviously upregulated in HCC cell lines and tumor tissues. EVI5 protein level was closely associated with the clinicopathological characteristics, including liver function (P=0.013), venous invasion (P=0.015) and TNM stage (P=0.014). Furthermore, univariate analysis showed that the patients with high EVI5 expression indicated shorter overall survival (OS, P<0.001) and recurrence-free survival (RFS, P=0.001) than those with low EVI5 expression. Importantly, high EVI5 expression also exerts predictive power for higher postoperative recurrence rate by stratified analysis. Multivariate Cox regression analysis demonstrated that OS was correlated with both tumor number (P=0.046) and EVI5 expression (P<0.001) and that RFS was correlated with serum AFP (P=0.023), tumor number (P=0.036) and EVI5 expression (P<0.001). Taken together, EVI5 is an useful independent prognostic marker of survival and recurrence in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jintian Tang
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Jianghua Ou
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Chunyan Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Chao Yi
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Feng Xue
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Lin Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Fenju Lai
- College of Bioscience and Engineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, Jiangxi, P.R. China
| | - Jianjun Tang
- Department of Gastroenterology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi, P.R. China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Wei Ding
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Boqing Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
5
|
Didonna A, Isobe N, Caillier SJ, Li KH, Burlingame AL, Hauser SL, Baranzini SE, Patsopoulos NA, Oksenberg JR. A non-synonymous single-nucleotide polymorphism associated with multiple sclerosis risk affects the EVI5 interactome. Hum Mol Genet 2015; 24:7151-8. [PMID: 26433934 DOI: 10.1093/hmg/ddv412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
Despite recent progress in the characterization of genetic loci associated with multiple sclerosis (MS) risk, the ubiquitous linkage disequilibrium operating across the genome has stalled efforts to distinguish causative variants from proxy single-nucleotide polymorphisms (SNPs). Here, we have identified through fine mapping and meta-analysis EVI5 as the most plausible disease risk gene within the 1p22.1 locus. We further show that an exonic SNP associated with risk induces changes in superficial hydrophobicity patterns of the coiled-coil domain of EVI5, which, in turns, affects the EVI5 interactome. Immunoprecipitation of wild-type and mutated EVI5 followed by mass spectrometry generated a roster of disease-specific interactors functionally linked to lipid metabolism. Among the exclusive binding partners of the risk variant, we describe the novel interaction with sphingosine 1-phosphate lyase (SGPL1)-a key enzyme for the creation of the sphingosine-1 phosphate gradient, which is relevant to the pathogenic process and therapeutic management of MS.
Collapse
Affiliation(s)
| | | | | | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158, USA
| | | | | | - Nikolaos A Patsopoulos
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Institute for the Neurosciences and Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02142, USA
| | | |
Collapse
|
6
|
Kirkegaard K, Villesen P, Jensen JM, Hindkjær JJ, Kølvraa S, Ingerslev HJ, Lykke-Hartmann K. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth. Gene 2015; 571:212-20. [PMID: 26117173 DOI: 10.1016/j.gene.2015.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Results from animal models points towards the existence of a gene expression profile that is distinguishably different in viable embryos compared with non-viable embryos. Knowledge of human embryo transcripts is however limited, in particular with regard to how gene expression is related to clinical outcome. The purpose of the present study was therefore to determine the global gene expression profiles of human blastocysts. Next Generation Sequencing was used to identify genes that were differentially expressed in non-implanted embryos and embryos resulting in live birth. Three trophectoderm biopsies were obtained from morphologically high quality blastocysts resulting in live birth and three biopsies were obtained from non-implanting blastocysts of a comparable morphology. Total RNA was extracted from all samples followed by complete transcriptome sequencing. Using a set of filtering criteria, we obtained a list of 181 genes that were differentially expressed between trophectoderm biopsies from embryos resulting in either live birth or no implantation (negative hCG), respectively. We found that 37 of the 181 genes displayed significantly differential expression (p<0.05), e.g. EFNB1, CYTL1 and TEX26 and TESK1, MSL1 and EVI5 in trophectoderm biopsies associated with live birth and non-implanting, respectively. Out of the 181 genes, almost 80% (145 genes) were up-regulated in biopsies from un-implanted embryos, whereas only 20% (36 genes) showed an up-regulation in the samples from embryos resulting in live birth. Our findings suggest the presence of molecular differences visually undetectable between implanted and non-implanted embryos, and represent a proof of principle study.
Collapse
Affiliation(s)
- Kirstine Kirkegaard
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark.
| | - Palle Villesen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Jacob Malte Jensen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Johnny Juhl Hindkjær
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Steen Kølvraa
- Department of Clinical Genetics, Vejle Hospital, DK-7100 Vejle, Denmark; Institute of Regional Health Services Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Hans Jakob Ingerslev
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
7
|
Malekzadeh A, Teunissen C. Recent progress in omics-driven analysis of MS to unravel pathological mechanisms. Expert Rev Neurother 2014; 13:1001-16. [PMID: 24053344 DOI: 10.1586/14737175.2013.835602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At present, the pathophysiology and specific biological markers reflecting pathology of multiple sclerosis (MS) remain undetermined. The risk of developing MS is considered to depend on genetic susceptibility and environmental factors. The interaction of environmental factors with epigenetic mechanisms could affect the transcriptional level and therefore also the translational level. In the last decade, growing amount of hypothesis-free 'omics' studies have shed light on the potential MS mechanisms and raised potential biomarker targets. To understand MS pathophysiology and discover a subset of biomarkers, it is becoming essential to take a step forward and integrate the findings of the different fields of 'omics' into a systems biology network. In this review, we will discuss the recent findings of the genomic, transcriptomic and proteomic fields for MS and aim to make a unifying model.
Collapse
Affiliation(s)
- Arjan Malekzadeh
- Department of Clinical Chemistry, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 2014; 39:458-84. [PMID: 23336971 DOI: 10.1111/nan.12020] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
Abstract
Vitamin D and its metabolites have pleomorphic roles in both nervous system health and disease. Animal models have been paramount in contributing to our knowledge and understanding of the consequences of vitamin D deficiency on brain development and its implications for adult psychiatric and neurological diseases. The conflation of in vitro, ex vivo, and animal model data provide compelling evidence that vitamin D has a crucial role in proliferation, differentiation, neurotrophism, neuroprotection, neurotransmission, and neuroplasticity. Vitamin D exerts its biological function not only by influencing cellular processes directly, but also by influencing gene expression through vitamin D response elements. This review highlights the epidemiological, neuropathological, experimental and molecular genetic evidence implicating vitamin D as a candidate in influencing susceptibility to a number of psychiatric and neurological diseases. The strength of evidence varies for schizophrenia, autism, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, and is especially strong for multiple sclerosis.
Collapse
Affiliation(s)
- G C DeLuca
- Nuffield Department of Clinical Neurosciences (Clinical Neurology), University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
9
|
Girotto G, Vuckovic D, Buniello A, Lorente-Cánovas B, Lewis M, Gasparini P, Steel KP. Expression and replication studies to identify new candidate genes involved in normal hearing function. PLoS One 2014; 9:e85352. [PMID: 24454846 PMCID: PMC3891868 DOI: 10.1371/journal.pone.0085352] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/25/2013] [Indexed: 11/25/2022] Open
Abstract
Considerable progress has been made in identifying deafness genes, but still little is known about the genetic basis of normal variation in hearing function. We recently carried out a Genome Wide Association Study (GWAS) of quantitative hearing traits in southern European populations and found several SNPs with suggestive but none with significant association. In the current study, we followed up these SNPs to investigate which of them might show a genuine association with auditory function using alternative approaches. Firstly, we generated a shortlist of 19 genes from the published GWAS results. Secondly, we carried out immunocytochemistry to examine expression of these 19 genes in the mouse inner ear. Twelve of them showed distinctive cochlear expression patterns. Four showed expression restricted to sensory hair cells (Csmd1, Arsg, Slc16a6 and Gabrg3), one only in marginal cells of the stria vascularis (Dclk1) while the others (Ptprd, Grm8, GlyBP, Evi5, Rimbp2, Ank2, Cdh13) in multiple cochlear cell types. In the third step, we tested these 12 genes for replication of association in an independent set of samples from the Caucasus and Central Asia. Nine out of them showed nominally significant association (p<0.05). In particular, 4 were replicated at the same SNP and with the same effect direction while the remaining 5 showed a significant association in a gene-based test. Finally, to look for genotype-phenotype relationship, the audiometric profiles of the three genotypes of the most strongly associated gene variants were analyzed. Seven out of the 9 replicated genes (CDH13, GRM8, ANK2, SLC16A6, ARSG, RIMBP2 and DCLK1) showed an audiometric pattern with differences between different genotypes further supporting their role in hearing function. These data demonstrate the usefulness of this multistep approach in providing new insights into the molecular basis of hearing and may suggest new targets for treatment and prevention of hearing impairment.
Collapse
Affiliation(s)
- Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Annalisa Buniello
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King’s College, London, United Kingdom
| | - Beatriz Lorente-Cánovas
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King’s College, London, United Kingdom
| | - Morag Lewis
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King’s College, London, United Kingdom
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Karen P. Steel
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King’s College, London, United Kingdom
| |
Collapse
|
10
|
Lim YS, Tang BL. The Evi5 family in cellular physiology and pathology. FEBS Lett 2013; 587:1703-10. [PMID: 23669355 DOI: 10.1016/j.febslet.2013.04.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/23/2013] [Accepted: 04/28/2013] [Indexed: 02/03/2023]
Abstract
The Ecotropic viral integration site 5 (Evi5) and Evi5-like (Evi5L) belong to a small subfamily of the Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins with enigmatically divergent roles as modulators of cell cycle progression, cytokinesis, and cellular membrane traffic. First recognized as a potential oncogene and a cell cycle regulator, Evi5 acts as a GTPase Activating Protein (GAP) for Rab11 in cytokinesis. On the other hand, its homologue Evi5L has Rab-GAP activity towards Rab10 as well as Rab23, and has been implicated in primary cilia formation. Recent genetic susceptibility analysis points to Evi5 as an important factor in susceptibility to multiple sclerosis. We discuss below the myriad of cellular functions exhibited by the Evi5 family members, and their associations with disease conditions.
Collapse
Affiliation(s)
- Yi Shan Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | | |
Collapse
|
11
|
Hehnly H, Chen CT, Powers CM, Liu HL, Doxsey S. The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol 2012; 22:1944-50. [PMID: 22981775 DOI: 10.1016/j.cub.2012.08.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/16/2012] [Accepted: 08/13/2012] [Indexed: 12/19/2022]
Abstract
The recycling endosome localizes to a pericentrosomal region via microtubule-dependent transport. We previously showed that Sec15, an effector of the recycling endosome component, Rab11-GTPase, interacts with the mother centriole appendage protein, centriolin, suggesting an interaction between endosomes and centrosomes. Here we show that the recycling endosome associates with the appendages of the mother (older) centriole. We show that two mother centriole appendage proteins, centriolin and cenexin/ODF2, regulate association of the endosome components Rab11, the Rab11 GTP-activating protein Evi5, and the exocyst at the mother centriole. Development of an in vitro method for reconstituting endosome protein complexes onto isolated membrane-free centrosomes demonstrates that purified GTP-Rab11 but not GDP-Rab11 binds to mother centriole appendages in the absence of membranes. Moreover, centriolin depletion displaces the centrosomal Rab11 GAP, Evi5, and increases mother-centriole-associated Rab11; depletion of Evi5 also increases centrosomal Rab11. This indicates that centriolin localizes Evi5 to centriolar appendages to turn off centrosomal Rab11 activity. Finally, centriolin depletion disrupts recycling endosome organization and function, suggesting a role for mother centriole proteins in the regulation of Rab11 localization and activity at the mother centriole.
Collapse
Affiliation(s)
- Heidi Hehnly
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech 2, Suite 206, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
12
|
DUF1220-domain copy number implicated in human brain-size pathology and evolution. Am J Hum Genet 2012; 91:444-54. [PMID: 22901949 DOI: 10.1016/j.ajhg.2012.07.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/17/2012] [Accepted: 07/25/2012] [Indexed: 02/04/2023] Open
Abstract
DUF1220 domains show the largest human-lineage-specific increase in copy number of any protein-coding region in the human genome and map primarily to 1q21, where deletions and reciprocal duplications have been associated with microcephaly and macrocephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate lineages (R(2) = 0.98; p = 1.8 × 10(-6)), DUF1220 sequences represent plausible candidates for underlying 1q21-associated brain-size pathologies. To investigate this possibility, we used specialized bioinformatics tools developed for scoring highly duplicated DUF1220 sequences to implement targeted 1q21 array comparative genomic hybridization on individuals (n = 42) with 1q21-associated microcephaly and macrocephaly. We show that of all the 1q21 genes examined (n = 53), DUF1220 copy number shows the strongest association with brain size among individuals with 1q21-associated microcephaly, particularly with respect to the three evolutionarily conserved DUF1220 clades CON1(p = 0.0079), CON2 (p = 0.0134), and CON3 (p = 0.0116). Interestingly, all 1q21 DUF1220-encoding genes belonging to the NBPF family show significant correlations with frontal-occipital-circumference Z scores in the deletion group. In a similar survey of a nondisease population, we show that DUF1220 copy number exhibits the strongest correlation with brain gray-matter volume (CON1, p = 0.0246; and CON2, p = 0.0334). Notably, only DUF1220 sequences are consistently significant in both disease and nondisease populations. Taken together, these data strongly implicate the loss of DUF1220 copy number in the etiology of 1q21-associated microcephaly and support the view that DUF1220 domains function as general effectors of evolutionary, pathological, and normal variation in brain size.
Collapse
|
13
|
Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 2012; 13:67-73. [PMID: 22251903 DOI: 10.1038/nrm3267] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-specific GTPase-activating proteins (TBC/RABGAPs) are characterized by the presence of highly conserved TBC domains and act as negative regulators of RABs. The importance of TBC/RABGAPs in the regulation of specific intracellular trafficking routes is now emerging, as is their role in different diseases. Importantly, TBC/RABGAPs act as key regulatory nodes, integrating signalling between RABs and other small GTPases and ensuring the appropriate retrieval, transport and delivery of different intracellular vesicles.
Collapse
|
14
|
Risk conferring genes in multiple sclerosis. FEBS Lett 2011; 585:3789-97. [DOI: 10.1016/j.febslet.2011.03.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/25/2022]
|
15
|
Alcina A, Fernández O, Gonzalez JR, Catalá-Rabasa A, Fedetz M, Ndagire D, Leyva L, Guerrero M, Arnal C, Delgado C, Lucas M, Izquierdo G, Matesanz F. Tag-SNP analysis of the GFI1-EVI5-RPL5-FAM69 risk locus for multiple sclerosis. Eur J Hum Genet 2010; 18:827-31. [PMID: 20087403 DOI: 10.1038/ejhg.2009.240] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A recent genome-wide association study conducted by the International Multiple Sclerosis Genetic Consortium (IMSGC) identified, among others, a number of putative multiple sclerosis (MS) susceptibility variants at position 1p22. Twenty-one SNPs positively associated with MS were located at the GFI-EVI5-RPL5-FAM69A locus. In this study, we performed an analysis and fine mapping of this locus, genotyping eight Tag-SNPs in 732 MS patients and 974 controls from Spain. We observed an association with MS in three of eight Tag-SNPs: rs11804321 (P=0.008, OR=1.29; 95% CI=1.08-1.54), rs11808092 (P=0.048, OR=1.19; 95% CI=1.03-1.39) and rs6680578 (P=0.0082, OR=1.23; 95% CI=1.07-1.41). After correcting for multiple comparisons and using logistic regression analysis to test the addition of each SNP to the most associated SNPs, we observed that rs11804321 alone was sufficient to model the association. This Tag-SNP captures two SNPs in complete linkage disequilibrium (r(2)=1), both located within the 17th intron of the EVI5 gene. Our findings agree with the corresponding data of the recent IMSGC study and present new genetic evidence that points to EVI5 as a factor of susceptibility to MS.
Collapse
Affiliation(s)
- Antonio Alcina
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Westlake CJ, Junutula JR, Simon GC, Pilli M, Prekeris R, Scheller RH, Jackson PK, Eldridge AG. Identification of Rab11 as a small GTPase binding protein for the Evi5 oncogene. Proc Natl Acad Sci U S A 2007; 104:1236-41. [PMID: 17229837 PMCID: PMC1773056 DOI: 10.1073/pnas.0610500104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Indexed: 01/15/2023] Open
Abstract
The Evi5 oncogene has recently been shown to regulate the stability and accumulation of critical G(1) cell cycle factors including Emi1, an inhibitor of the anaphase-promoting complex/cyclosome, and cyclin A. Sequence analysis of the amino terminus of Evi5 reveals a Tre-2, Bub2, Cdc16 domain, which has been shown to be a binding partner and GTPase-activating protein domain for the Rab family of small Ras-like GTPases. Here we describe the identification of Evi5 as a candidate binding protein for Rab11, a GTPase that regulates intracellular transport and has specific roles in endosome recycling and cytokinesis. By yeast two-hybrid analysis, immunoprecipitation, and Biacore analysis, we demonstrate that Evi5 binds Rab11a and Rab11b in a GTP-dependent manner. However, Evi5 displays no activation of Rab11 GTPase activity in vitro. Evi5 colocalizes with Rab11 in vivo, and overexpression of Rab11 perturbs the localization of Evi5, redistributing it into Rab11-positive recycling endosomes. Interestingly, in vitro binding studies show that Rab11 effector proteins including FIP3 compete with Evi5 for binding to Rab11, suggesting a partitioning between Rab11-Evi5 and Rab11 effector complexes. Indeed, ablation of Evi5 by RNA interference causes a mislocalization of FIP3 at the abscission site during cytokinesis. These data demonstrate that Evi5 is a Rab11 binding protein and that Evi5 may cooperate with Rab11 to coordinate vesicular trafficking, cytokinesis, and cell cycle control independent of GTPase-activating protein function.
Collapse
Affiliation(s)
| | | | - Glenn C. Simon
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Manohar Pilli
- *Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080; and
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Health Sciences Center, Aurora, CO 80045
| | | | | | | |
Collapse
|
17
|
Dabbeekeh JTS, Faitar SL, Dufresne CP, Cowell JK. The EVI5 TBC domain provides the GTPase-activating protein motif for RAB11. Oncogene 2006; 26:2804-8. [PMID: 17099728 DOI: 10.1038/sj.onc.1210081] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human EVI5 gene was originally isolated through its involvement with a constitutional chromosome translocation in a patient with stage 4S neuroblastoma. Recently, it has been shown that EVI5 is a centrosomal protein in interphase cells, which relocalizes to the midbody during late phases of mitosis. Disruption of its function leads to incomplete cell division and the formation of multinucleate cells. The EVI5 protein contains a TBC (TRE2/BUB/CDC16 homology) motif located in the N-terminal region. Proteins containing a TBC domain have been shown in some cases to act as GTPase-activating proteins (GAPs) and function through the interaction with Rab-like small G proteins. Despite the identification of over 50 TBC-containing proteins, and over 70 Rab-like proteins, only three combinations have been shown to have Rab/GAP activity to date. In this study, using linear ion trap mass spectroscopy, we have demonstrated that EVI5 exists in a protein complex with Rab11. Further, using a specific Rab-binding assay, we have shown that EVI5 preferentially interacts with the guanosine triphosphate-bound form of Rab11, and in a GAP activity assay, we have confirmed that EVI5 functions as a GAP for the Rab11 GTPase.
Collapse
Affiliation(s)
- J T S Dabbeekeh
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
18
|
Faitar SL, Sossey-Alaoui K, Ranalli TA, Cowell JK. EVI5 protein associates with the INCENP-aurora B kinase-survivin chromosomal passenger complex and is involved in the completion of cytokinesis. Exp Cell Res 2006; 312:2325-35. [PMID: 16764853 DOI: 10.1016/j.yexcr.2006.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 03/29/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
EVI5 has been shown to be a novel centrosomal protein in interphase cells. In this report, we demonstrate using immunofluorescence microscopy that EVI5 has a dynamic distribution during mitosis, being associated with the mitotic spindle through anaphase and remaining within the midzone and midbody until completion of cytokinesis. Knockdown of EVI5 using siRNA results in a multinucleate phenotype, which is consistent with an essential role for this protein in the completion of cytokinesis. The EVI5 protein also undergoes posttranslational modifications during the cell cycle, which involve phosphorylation in early mitosis and proteolytic cleavage during late mitosis and cytokinesis. Since the subcellular distribution of the EVI5 protein was similar to that characteristic of chromosomal passenger proteins during the terminal stages of cytokinesis, we used immunoprecipitation and GST pull-down approaches to demonstrate that EVI5 is associated with the aurora B kinase protein complex (INCENP, aurora B kinase and survivin). Together, these data provide evidence that EVI5 is an essential component of the protein machinery facilitating the final stages of cell septation at the end of mitosis.
Collapse
Affiliation(s)
- Silviu L Faitar
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Various destabilizing factors of the ubiquitin system contribute to the synchrony and unidirectionality of the cell cycle clock by finely tuning the activity of various CDKs. The recent findings of hierarchical and connected waves of cyclin stabilizers highlight the complexity of this network.
Collapse
Affiliation(s)
- Daniele Guardavaccaro
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
20
|
Eldridge AG, Loktev AV, Hansen DV, Verschuren EW, Reimann JDR, Jackson PK. The evi5 oncogene regulates cyclin accumulation by stabilizing the anaphase-promoting complex inhibitor emi1. Cell 2006; 124:367-80. [PMID: 16439210 DOI: 10.1016/j.cell.2005.10.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/18/2005] [Accepted: 10/21/2005] [Indexed: 01/13/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 controls progression to S phase and mitosis by stabilizing key APC/C ubiquitination substrates, including cyclin A. Examining Emi1 binding proteins, we identified the Evi5 oncogene as a regulator of Emi1 accumulation. Evi5 antagonizes SCF(betaTrCP)-dependent Emi1 ubiquitination and destruction by binding to a site adjacent to Emi1's DSGxxS degron and blocking both degron phosphorylation by Polo-like kinases and subsequent betaTrCP binding. Thus, Evi5 functions as a stabilizing factor maintaining Emi1 levels in S/G2 phase. Evi5 protein accumulates in early G1 following Plk1 destruction and is degraded in a Plk1- and ubiquitin-dependent manner in early mitosis. Ablation of Evi5 induces precocious degradation of Emi1 by the Plk/SCF(betaTrCP) pathway, causing premature APC/C activation; cyclin destruction; cell-cycle arrest; centrosome overduplication; and, finally, mitotic catastrophe. We propose that the balance of Evi5 and Polo-like kinase activities determines the timely accumulation of Emi1 and cyclin, ensuring mitotic fidelity.
Collapse
Affiliation(s)
- Adam G Eldridge
- Department of Cancer Biology, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | | | |
Collapse
|