1
|
Blanchett R, Lau KH, Pfeifer GP. Homeobox and Polycomb target gene methylation in human solid tumors. Sci Rep 2024; 14:13912. [PMID: 38886487 PMCID: PMC11183203 DOI: 10.1038/s41598-024-64569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in defining cancer phenotypes, with global hypomethylation and focal hypermethylation at CpG islands observed in tumors. These methylation marks can also be used to define tumor types and provide an avenue for biomarker identification. The homeobox gene class is one that has potential for this use, as well as other genes that are Polycomb Repressive Complex 2 targets. To begin to unravel this relationship, we performed a pan-cancer DNA methylation analysis using sixteen Illumina HM450k array datasets from TCGA, delving into cancer-specific qualities and commonalities between tumor types with a focus on homeobox genes. Our comparisons of tumor to normal samples suggest that homeobox genes commonly harbor significant hypermethylated differentially methylated regions. We identified two homeobox genes, HOXA3 and HOXD10, that are hypermethylated in all 16 cancer types. Furthermore, we identified several potential homeobox gene biomarkers from our analysis that are uniquely methylated in only one tumor type and that could be used as screening tools in the future. Overall, our study demonstrates unique patterns of DNA methylation in multiple tumor types and expands on the interplay between the homeobox gene class and oncogenesis.
Collapse
Affiliation(s)
- Reid Blanchett
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
2
|
Chatzikyriakou P, Brempou D, Quinn M, Fishbein L, Noberini R, Anastopoulos IN, Tufton N, Lim ES, Obholzer R, Hubbard JG, Moonim M, Bonaldi T, Nathanson KL, Izatt L, Oakey RJ. A comprehensive characterisation of phaeochromocytoma and paraganglioma tumours through histone protein profiling, DNA methylation and transcriptomic analysis genome wide. Clin Epigenetics 2023; 15:196. [PMID: 38124114 PMCID: PMC10734084 DOI: 10.1186/s13148-023-01598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours. Pathogenic variants have been identified in more than 15 susceptibility genes; associated tumours are grouped into three Clusters, reinforced by their transcriptional profiles. Cluster 1A PPGLs have pathogenic variants affecting enzymes of the tricarboxylic acid cycle, including succinate dehydrogenase. Within inherited PPGLs, these are the most common. PPGL tumours are known to undergo epigenetic reprograming, and here, we report on global histone post-translational modifications and DNA methylation levels, alongside clinical phenotypes. RESULTS Out of the 25 histone post-translational modifications examined, Cluster 1A PPGLs were distinguished from other tumours by a decrease in hyper-acetylated peptides and an increase in H3K4me2. DNA methylation was compared between tumours from individuals who developed metastatic disease versus those that did not. The majority of differentially methylated sites identified tended to be completely methylated or unmethylated in non-metastatic tumours, with low inter-sample variance. Metastatic tumours by contrast consistently had an intermediate DNA methylation state, including the ephrin receptor EPHA4 and its ligand EFNA3. Gene expression analyses performed to identify genes involved in metastatic tumour behaviour pin-pointed a number of genes previously described as mis-regulated in Cluster 1A tumours, as well as highlighting the tumour suppressor RGS22 and the pituitary tumour-transforming gene PTTG1. CONCLUSIONS Combined transcriptomic and DNA methylation analyses revealed aberrant pathways, including ones that could be implicated in metastatic phenotypes and, for the first time, we report a decrease in hyper-acetylated histone marks in Cluster 1 PPGLs.
Collapse
Affiliation(s)
- Prodromos Chatzikyriakou
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Comprehensive Cancer Centre, King's College London, London, SE5 8AF, UK
| | - Dimitria Brempou
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Mark Quinn
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Lauren Fishbein
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes and Metabolism in the Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Ioannis N Anastopoulos
- Department of Biomolecular Engineering, UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Nicola Tufton
- Department of Endocrinology, St. Bartholomew's Hospital, Barts Health NHS Trust, and William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Eugenie S Lim
- Department of Endocrinology, St. Bartholomew's Hospital, Barts Health NHS Trust, and William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Rupert Obholzer
- Department of ENT and Skull Base Surgery, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Johnathan G Hubbard
- Department of Endocrine Surgery, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Mufaddal Moonim
- Department of Cellular Pathology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milano, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Louise Izatt
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
3
|
Yu Q, Xia N, Zhao Y, Jin H, Chen R, Ye F, Chen L, Xie Y, Wan K, Zhou J, Zhou D, Lv X. Genome-wide methylation profiling identify hypermethylated HOXL subclass genes as potential markers for esophageal squamous cell carcinoma detection. BMC Med Genomics 2022; 15:247. [PMID: 36447287 PMCID: PMC9706897 DOI: 10.1186/s12920-022-01401-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Numerous studies have revealed aberrant DNA methylation in esophageal squamous cell carcinoma (ESCC). However, they often focused on the partial genome, which resulted in an inadequate understanding of the shaped methylation features and the lack of available methylation markers for this disease. METHODS The current study investigated the methylation profiles between ESCC and paired normal samples using whole-genome bisulfite sequencing (WGBS) data and obtained a group of differentially methylated CpGs (DMC), differentially methylated regions (DMR), and differentially methylated genes (DMG). The DMGs were then verified in independent datasets and Sanger sequencing in our custom samples. Finally, we attempted to evaluate the performance of these genes as methylation markers for the classification of ESCC. RESULTS We obtained 438,558 DMCs, 15,462 DMRs, and 1568 DMGs. The four significantly enriched gene families of DMGs were CD molecules, NKL subclass, HOXL subclass, and Zinc finger C2H2-type. The HOXL subclass homeobox genes were observed extensively hypermethylated in ESCC. The HOXL-score estimated by HOXC10 and HOXD1 methylation, whose methylation status were then confirmed by sanger sequencing in our custom ESCC samples, showed good ability in discriminating ESCC from normal samples. CONCLUSIONS We observed widespread hypomethylation events in ESCC, and the hypermethylated HOXL subclass homeobox genes presented promising applications for the early detection of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Qiuning Yu
- grid.412633.10000 0004 1799 0733Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Namei Xia
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yanteng Zhao
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Huifang Jin
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Renyin Chen
- grid.412633.10000 0004 1799 0733Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Fanglei Ye
- grid.412633.10000 0004 1799 0733Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Liyinghui Chen
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ying Xie
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Kangkang Wan
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei China
| | - Jun Zhou
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei China
| | - Dihan Zhou
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei China
| | - Xianping Lv
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
4
|
Durmus S, Gelisgen R, Uzun H. DNA Methylation Biomarkers in Cancer: Current Clinical Utility and Future Perspectives. Biomark Med 2022. [DOI: 10.2174/9789815040463122010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epigenetic alterations are related to inherited but reversible changes in
modifications that regulate gene activity beyond the DNA sequence. DNA methylation
is the best characterized epigenetic modification, controlling DNA stability, DNA
structure, transcription, and regulation, contributing to normal development and
differentiation. In this section, we first discuss the cellular functions of DNA
methylation and focus on how this fundamental biological process is impaired in
cancer. Changes in DNA methylation status in cancer have been heralded as promising
targets for the development of diagnostic, prognostic, and predictive biomarkers due to
their noninvasive accessibility in bodily fluids (such as blood, urine, stool),
reversibility, stability, and frequency. The absence of markers for definitive diagnosis
of most types of cancer and, in some cases, DNA methylation biomarkers being more
specific and sensitive than commonly used protein biomarkers indicate a strong need
for continued research to expand DNA methylation markers. Although the information
on changes in DNA methylation status in cancer and research on its clinical relevance
is rapidly increasing, the number of DNA methylation biomarkers currently available
as commercial tests is very small. Here, we focus on the importance of DNA
methylation location and target genes likely to be developed in the future for the
development of biomarkers in addition to existing commercial tests. Following a
detailed study of possible target genes, we summarize the current clinical application
status of the most studied and validated DNA methylation biomarkers, including
SEPT9, SDC2, BMP3, NDRG4, SFRP2, TFPI2, VIM and MGMT.
Collapse
Affiliation(s)
- Sinem Durmus
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Remise Gelisgen
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Hafize Uzun
- Department of Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul,Turkey
| |
Collapse
|
5
|
Bai H, Li QZ, Qi YC, Zhai YY, Jin W. The prediction of tumor and normal tissues based on the DNA methylation values of ten key sites. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194841. [PMID: 35798200 DOI: 10.1016/j.bbagrm.2022.194841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Abnormal DNA methylation can alter the gene expression to promote or inhibit tumorigenesis in colon adenocarcinoma (COAD). However, the finding important genes and key sites of abnormal DNA methylation which result in the occurrence of COAD is still an eventful task. Here, we studied the effects of DNA methylation in the 12 types of genomic features on the changes of gene expression in COAD, the 10 important COAD-related genes and the key abnormal DNA methylation sites were identified. The effects of important genes on the prognosis were verified by survival analysis. Moreover, it was shown that the important genes were participated in cancer pathways and were hub genes in a co-expression network. Based on the DNA methylation levels in the ten sites, the least diversity increment algorithm for predicting tumor tissues and normal tissues in seventeen cancer types are proposed. The better results are obtained in jackknife test. For example, the predictive accuracies are 94.17 %, 91.28 %, 89.04 % and 88.89 %, respectively, for COAD, rectum adenocarcinoma, pancreatic adenocarcinoma and cholangiocarcinoma. Finally, by computing enrichment score of infiltrating immunocytes and the activity of immune pathways, we found that the genes are highly correlated with immune microenvironment.
Collapse
Affiliation(s)
- Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.
| | - Ye-Chen Qi
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yuan-Yuan Zhai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Wen Jin
- Inner Mongolia key laboratory of gene regulation of the metabolic disease, Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot 010010, China
| |
Collapse
|
6
|
Setti Boubaker N, Gurtner A, Trabelsi N, Manni I, Blel A, Saadi A, Chakroun M, Naimi Z, Zaghbib S, Ksontini M, Meddeb K, Rammeh S, Ayed H, Chebil M, Piaggio G, Ouerhani S. An insight into the diagnostic and prognostic value of
HOX A13
’s expression in non‐muscle invasive bladder cancer. J Clin Lab Anal 2022; 36:e24606. [PMID: 35853090 PMCID: PMC9459288 DOI: 10.1002/jcla.24606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Several studies have interrogated the molecular pathways and their interacting genes underlying bladder cancer (BCa) tumorigenesis, yet, the role of homeobox genes is still poorly understood. Specifically, HOXA13, which plays an important role as a major actor in the urogenital tract's development. Methods Immunohistochemical (IHC) staining was performed to inspect the differential expression of HOXA13 protein in non‐muscle‐invasive bladder cancer (NMIBC) and non‐tumoral tissues. A semiquantitative scoring system was adopted to evaluate the IHC labeling. Correlation to clinical parameters was performed by descriptive statistics. Overall survival was estimated by the Kaplan–Meier method and Cox regression model. The functional HOX A13 protein association networks (PPI) were obtained using String 11.0 database. Results HOX A13 exhibited cytoplasmic and nuclear staining. Its expression levels were lower in high‐grade NMIBC (HG NMIBC) compared to low‐grade ones (LG NMIBC). The expression of HOX A13 was correlated to tumor grade (LG/HG) (p = 0.036) and stage (TA/T1) (p = 0.036). Nevertheless, its expression was not correlated to clinical parameters and was not able to predict the overall survival of patients with HG NMIBC. Finally, PPI analysis revealed that HOX A13 seems to be a part of a molecular network holding mainly PBX1, MEIS, ALDH1A2, HOX A10, and HOX A11. Conclusion The deregulation of HOX A13 is not associated with the prognosis of BCa. It seems to be rather implicated in the early initiation of urothelial tumorigenesis and thus may serve as a diagnostic marker in patients with NMIBC. Further experimentations on larger validation sets are mandatory.
Collapse
Affiliation(s)
- Nouha Setti Boubaker
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP‐MB) INSAT University of Tunis Carthage Tunis Tunisia
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Aymone Gurtner
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
- Institute of Translational Pharmacology (IFT) National Research Council (CNR) Rome Italy
| | - Nesrine Trabelsi
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP‐MB) INSAT University of Tunis Carthage Tunis Tunisia
| | - Isabella Manni
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
| | - Ahlem Blel
- Pathology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis El Manar Tunis Tunisia
| | - Ahmed Saadi
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Marouene Chakroun
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Zeineb Naimi
- Medical Oncology Department Faculty of Medicine Salah Azaiez Institute University of Tunis‐El Manar Tunis Tunisia
| | - Selim Zaghbib
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Meriam Ksontini
- Pathology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis El Manar Tunis Tunisia
| | - Khedija Meddeb
- Medical Oncology Department Faculty of Medicine Salah Azaiez Institute University of Tunis‐El Manar Tunis Tunisia
| | - Soumaya Rammeh
- Pathology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis El Manar Tunis Tunisia
| | - Haroun Ayed
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Mohamed Chebil
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Giulia Piaggio
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
| | - Slah Ouerhani
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP‐MB) INSAT University of Tunis Carthage Tunis Tunisia
| |
Collapse
|
7
|
Roux B, Picou F, Debeissat C, Koubi M, Gallay N, Hirsch P, Ravalet N, Béné MC, Maigre M, Hunault M, Mosser J, Etcheverry A, Gyan E, Delhommeau F, Domenech J, Herault O. Aberrant DNA methylation impacts HOX genes expression in bone marrow mesenchymal stromal cells of myelodysplastic syndromes and de novo acute myeloid leukemia. Cancer Gene Ther 2022; 29:1263-1275. [PMID: 35194200 DOI: 10.1038/s41417-022-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/12/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022]
Abstract
DNA methylation, a major biological process regulating the transcription, contributes to the pathophysiology of hematologic malignancies, and hypomethylating agents are commonly used to treat myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML). In these diseases, bone marrow mesenchymal stromal cells (MSCs) play a key supportive role through the production of various signals and interactions. The DNA methylation status of MSCs, likely to reflect their functionality, might be relevant to understand their contribution to the pathophysiology of these diseases. Consequently, the aim of our study was to analyze the modifications of DNA methylation profiles of MSCs induced by MDS or AML. MSCs from MDS/AML patients were characterized via 5-methylcytosine quantification, gene expression profiles of key regulators of DNA methylation, identification of differentially methylated regions (DMRs) by methylome array, and quantification of DMR-coupled genes expression. MDS and AML-MSCs displayed global hypomethylation and under-expression of DNMT1 and UHRF1. Methylome analysis revealed aberrant methylation profiles in all MDS and in a subgroup of AML-MSCs. This aberrant methylation was preferentially found in the sequence of homeobox genes, especially from the HOX family (HOXA1, HOXA4, HOXA5, HOXA9, HOXA10, HOXA11, HOXB5, HOXC4, and HOXC6), and impacted on their expression. These results highlight modifications of DNA methylation in MDS/AML-MSCs, both at global and focal levels dysregulating the expression of HOX genes well known for their involvement in leukemogenesis. Such DNA methylation in MSCs could be the consequence of the malignant disease or could participate in its development through defective functionality or exosomal transfer of HOX transcription factors from MSCs to hematopoietic cells.
Collapse
Affiliation(s)
- Benjamin Roux
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Frédéric Picou
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Christelle Debeissat
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Myriam Koubi
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France
| | - Nathalie Gallay
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Pierre Hirsch
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - Noémie Ravalet
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Marie C Béné
- CHU de Nantes, Service d'Hématologie Biologique, CRCINA, Nantes, France.,FHU GOAL, Angers, France
| | | | - Mathilde Hunault
- FHU GOAL, Angers, France.,CHU d'Angers, Service d'Hématologie, Angers, France
| | - Jean Mosser
- CHU de Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France.,Cancéropôle Grand Ouest, Nantes, France
| | - Amandine Etcheverry
- CHU de Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Emmanuel Gyan
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie et Thérapie Cellulaire, Tours, France
| | - François Delhommeau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France.,CNRS GDR 3697 Micronit "Microenvironment of tumor niches", Tours, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Jorge Domenech
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Olivier Herault
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France. .,EA 7501 GICC, université de Tours, Tours, France. .,CHU de Tours, Service d'Hématologie Biologique, Tours, France. .,FHU GOAL, Angers, France. .,Cancéropôle Grand Ouest, Nantes, France. .,CNRS GDR 3697 Micronit "Microenvironment of tumor niches", Tours, France. .,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
8
|
Wu C, Song W, Wang Z, Wang B. Functions of lncRNA DUXAP8 in non-small cell lung cancer. Mol Biol Rep 2022; 49:2531-2542. [PMID: 35031926 DOI: 10.1007/s11033-021-07066-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Non-small cell lung cancer (NSCLC) poses a serious threat to public health due to its significant morbidity and mortality rates. The processes of NSCLC formation and development are quite complex and involve numerous regulatory biomolecules. Long non-coding RNAs (lncRNAs) have attracted attention since they have been found to play critical roles in the tumorigenesis of various human malignancies. Recently, double homeobox A pseudogene 8 (DUXAP8) was identified as an oncogenic lncRNA that is overexpressed in different tumor types. In NSCLC, high expression of DUXAP8 is associated with poor prognosis in patients. The regulatory mechanism underlying the oncogenic effects of DUXAP8 can be divided into transcriptional level and post-transcriptional level. DUXAP8 promotes proliferation, epithelial-mesenchymal transition, and aerobic glycolysis in NSCLC cells. Moreover, DUXAP8 shows potential for the diagnosis and treatment of NSCLC. Herein, we review the molecular mechanisms underlying the DUXAP8-mediated phenotypes of NSCLC as well as its potential clinical applications.
Collapse
Affiliation(s)
- Cui Wu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Wu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Zhongnan Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Bingmei Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| |
Collapse
|
9
|
Xu Y, Tsai CW, Chang WS, Han Y, Huang M, Pettaway CA, Bau DT, Gu J. Epigenome-Wide Association Study of Prostate Cancer in African Americans Identifies DNA Methylation Biomarkers for Aggressive Disease. Biomolecules 2021; 11:1826. [PMID: 34944472 PMCID: PMC8698937 DOI: 10.3390/biom11121826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
DNA methylation plays important roles in prostate cancer (PCa) development and progression. African American men have higher incidence and mortality rates of PCa than other racial groups in U.S. The goal of this study was to identify differentially methylated CpG sites and genes between clinically defined aggressive and nonaggressive PCa in African Americans. We performed genome-wide DNA methylation profiling in leukocyte DNA from 280 African American PCa patients using Illumina MethylationEPIC array that contains about 860K CpG sties. There was a slight increase of overall methylation level (mean β value) with the increasing Gleason scores (GS = 6, GS = 7, GS ≥ 8, P for trend = 0.002). There were 78 differentially methylated CpG sites with P < 10-4 and 9 sites with P < 10-5 in the trend test. We also found 77 differentially methylated regions/genes (DMRs), including 10 homeobox genes and six zinc finger protein genes. A gene ontology (GO) molecular pathway enrichment analysis of these 77 DMRs found that the main enriched pathway was DNA-binding transcriptional factor activity. A few representative DMRs include HOXD8, SOX11, ZNF-471, and ZNF-577. Our study suggests that leukocyte DNA methylation may be valuable biomarkers for aggressive PCa and the identified differentially methylated genes provide biological insights into the modulation of immune response by aggressive PCa.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (C.-W.T.); (W.-S.C.); (M.H.)
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (C.-W.T.); (W.-S.C.); (M.H.)
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung 404332, Taiwan;
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (C.-W.T.); (W.-S.C.); (M.H.)
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung 404332, Taiwan;
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA;
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (C.-W.T.); (W.-S.C.); (M.H.)
| | - Curtis A. Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung 404332, Taiwan;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (C.-W.T.); (W.-S.C.); (M.H.)
| |
Collapse
|
10
|
Stewart AS, Schaaf CR, Luff JA, Freund JM, Becker TC, Tufts SR, Robertson JB, Gonzalez LM. HOPX + injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia. Am J Physiol Gastrointest Liver Physiol 2021; 321:G588-G602. [PMID: 34549599 PMCID: PMC8616590 DOI: 10.1152/ajpgi.00165.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Intestinal ischemia is a life-threatening emergency with mortality rates of 50%-80% due to epithelial cell death and resultant barrier loss. Loss of the epithelial barrier occurs in conditions including intestinal volvulus and neonatal necrotizing enterocolitis. Survival depends on effective epithelial repair; crypt-based intestinal epithelial stem cells (ISCs) are the source of epithelial renewal in homeostasis and after injury. Two ISC populations have been described: 1) active ISC [aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5+)-positive or sex-determining region Y-box 9 -antigen Ki67-positive (SOX9+Ki67+)] and 2) reserve ISC [rISC; less proliferative; homeodomain-only protein X positive (HOPX+)]. The contributions of these ISCs have been evaluated both in vivo and in vitro using a porcine model of mesenteric vascular occlusion to understand mechanisms that modulate ISC recovery responses following ischemic injury. In our previously published work, we observed that rISC conversion to an activated state was associated with decreased HOPX expression during in vitro recovery. In the present study, we wanted to evaluate the direct role of HOPX on cellular proliferation during recovery after injury. Our data demonstrated that during early in vivo recovery, injury-resistant HOPX+ cells maintain quiescence. Subsequent early regeneration within the intestinal crypt occurs around 2 days after injury, a period in which HOPX expression decreased. When HOPX was silenced in vitro, cellular proliferation of injured cells was promoted during recovery. This suggests that HOPX may serve a functional role in ISC-mediated regeneration after injury and could be a target to control ISC proliferation.NEW & NOTEWORTHY This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Cecilia Renee Schaaf
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer A Luff
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - John M Freund
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Thomas C Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Sara R Tufts
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - James B Robertson
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Liara M Gonzalez
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
11
|
Eyres M, Lanfredini S, Xu H, Burns A, Blake A, Willenbrock F, Goldin R, Hughes D, Hughes S, Thapa A, Vavoulis D, Hubert A, D'Costa Z, Sabbagh A, Abraham AG, Blancher C, Jones S, Verrill C, Silva M, Soonawalla Z, Maughan T, Schuh A, Mukherjee S, O'Neill E. TET2 Drives 5hmc Marking of GATA6 and Epigenetically Defines Pancreatic Ductal Adenocarcinoma Transcriptional Subtypes. Gastroenterology 2021; 161:653-668.e16. [PMID: 33915173 DOI: 10.1053/j.gastro.2021.04.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by advanced disease stage at presentation, aggressive disease biology, and resistance to therapy, resulting in an extremely poor 5-year survival rate of <10%. PDAC is classified into transcriptional subtypes with distinct survival characteristics, although how these arise is not known. Epigenetic deregulation, rather than genetics, has been proposed to underpin progression, but exactly why is unclear and is hindered by the technical limitations of analyzing clinical samples. METHODS We performed genome-wide epigenetic mapping of DNA modifications 5-methylcytosine and 5-hydroxymethylcytosine (5hmc) using oxidative bisulfite sequencing from formalin-embedded sections. We identified overlap with transcriptional signatures in formalin-fixed, paraffin-embedded tissue from resected patients, via bioinformatics using iCluster and mutational profiling and confirmed them in vivo. RESULTS We found that aggressive squamous-like PDAC subtypes result from epigenetic inactivation of loci, including GATA6, which promote differentiated classical pancreatic subtypes. We showed that squamous-like PDAC transcriptional subtypes are associated with greater loss of 5hmc due to reduced expression of the 5-methylcytosine hydroxylase TET2. Furthermore, we found that SMAD4 directly supports TET2 levels in classical pancreatic tumors, and loss of SMAD4 expression was associated with reduced 5hmc, GATA6, and squamous-like tumors. Importantly, enhancing TET2 stability using metformin and vitamin C/ascorbic acid restores 5hmc and GATA6 levels, reverting squamous-like tumor phenotypes and WNT-dependence in vitro and in vivo. CONCLUSIONS We identified epigenetic deregulation of pancreatic differentiation as an underpinning event behind the emergence of transcriptomic subtypes in PDAC. Our data showed that restoring epigenetic control increases biomarkers of classical pancreatic tumors that are associated with improved therapeutic responses and survival.
Collapse
MESH Headings
- 5-Methylcytosine/analogs & derivatives
- 5-Methylcytosine/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Ascorbic Acid/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Differentiation
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dioxygenases/genetics
- Dioxygenases/metabolism
- Epigenesis, Genetic/drug effects
- Epigenome
- Epigenomics
- GATA6 Transcription Factor/genetics
- GATA6 Transcription Factor/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Metformin/pharmacology
- Mice, Nude
- Mice, Transgenic
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Retrospective Studies
- Smad4 Protein/genetics
- Smad4 Protein/metabolism
- Transcription, Genetic/drug effects
- Transcriptome
- Wnt Signaling Pathway/genetics
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Michael Eyres
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Haonan Xu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Adam Burns
- Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew Blake
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Robert Goldin
- Centre for Pathology, Imperial College, London, United Kingdom
| | - Daniel Hughes
- Department of Oncology, University of Oxford, Oxford, UK; Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Sophie Hughes
- Department of Oncology, University of Oxford, Oxford, UK
| | - Asmita Thapa
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Aline Hubert
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Ahmad Sabbagh
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Christine Blancher
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Stephanie Jones
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Nuffield Department of Surgical Sciences and Oxford National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Silva
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Zahir Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | | | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Poirion OB, Jing Z, Chaudhary K, Huang S, Garmire LX. DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data. Genome Med 2021; 13:112. [PMID: 34261540 PMCID: PMC8281595 DOI: 10.1186/s13073-021-00930-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Multi-omics data are good resources for prognosis and survival prediction; however, these are difficult to integrate computationally. We introduce DeepProg, a novel ensemble framework of deep-learning and machine-learning approaches that robustly predicts patient survival subtypes using multi-omics data. It identifies two optimal survival subtypes in most cancers and yields significantly better risk-stratification than other multi-omics integration methods. DeepProg is highly predictive, exemplified by two liver cancer (C-index 0.73-0.80) and five breast cancer datasets (C-index 0.68-0.73). Pan-cancer analysis associates common genomic signatures in poor survival subtypes with extracellular matrix modeling, immune deregulation, and mitosis processes. DeepProg is freely available at https://github.com/lanagarmire/DeepProg.
Collapse
Affiliation(s)
- Olivier B Poirion
- Current address: Computational Sciences, The Jackson Laboratory, 10 Discovery Drive Farmington, Farmington, Connecticut, 06032, USA
- University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Zheng Jing
- Current address: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Kumardeep Chaudhary
- University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
- Current address: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Sijia Huang
- University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
- Current address: Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lana X Garmire
- University of Hawaii Cancer Center, Honolulu, HI, 96813, USA.
- Current address: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
13
|
Rodrigues MFSD, Xavier FCA, Esteves CD, Nascimento RB, Nobile JS, Severino P, de Cicco R, Toporcov TN, Tajara EH, Nunes FD. Homeobox gene amplification and methylation in oral squamous cell carcinoma. Arch Oral Biol 2021; 129:105195. [PMID: 34126417 DOI: 10.1016/j.archoralbio.2021.105195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Investigate the DNA copy number and the methylation profile of the homeobox genes HOXA5, HOXA7, HOXA9, HOXB5, HOXB13, HOXC12, HOXC13, HOXD10, HOXD11, IRX4 and ZHX1, and correlate them with clinicopathological parameters and overall survival. MATERIAL AND METHODS DNA from OSCC samples and surgical margins were submitted to DNA amplification by qPCR and to DNA methylation analysis using a DNA Methylation PCR Array System. RESULTS HOXA5, HOXB5 and HOXD10 were amplified in surgical margins while HOXA9, HOXB13 and IRX4 were amplified in OSCC. HOXD10 demonstrated hypermethylation in half of the tumor while ZHX1 did not show hypermethylation. No correlation of DNA copy number or methylation with clinicopathological parameters or survival was observed. CONCLUSION HOXA9, HOXB13 and IRX4 genes appears to be regulated by amplification and HOXD10 by methylation in OSCC. Further studies are needed to determine the role of these events in OSCC development.
Collapse
Affiliation(s)
| | - Flávia Caló Aquino Xavier
- Laboratory of Oral Surgical Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Carina Duarte Esteves
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Rebeca Barros Nascimento
- Laboratory of Oral Surgical Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Juliana Stephan Nobile
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove De Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Patrícia Severino
- Center for Experimental Research, Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | | | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Fábio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Zhu B, Wu Y, Luo J, Zhang Q, Huang J, Li Q, Xu L, Lu E, Ren B. MNX1 Promotes Malignant Progression of Cervical Cancer via Repressing the Transcription of p21 cip1. Front Oncol 2020; 10:1307. [PMID: 32850410 PMCID: PMC7431913 DOI: 10.3389/fonc.2020.01307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
Motor neuron and pancreas homeobox 1 (MNX1) is a development-related genes and has been found to be highly expressed in several cancers. However, its biological function in cervical cancer remains largely unexplored. QRT-PCR, western blot, and IHC showed that MNX1 was abnormally overexpressed in cervical cancer tissues and cell lines. The high expression level of MNX1 correlated with poorer clinicopathologic characteristics in cervical cancer patients. Evaluated by RTCA (Real Time Cellular Analysis) proliferation assay, colony formation assay, EdU assay, transwell assay, and matrigel assay, we found that knockdown of MNX1 inhibited proliferation, migration and invasion of cervical cancer in vitro, while overexpression of MNX1 promoted malignant phenotype of cervical cancer. And subcutaneous xenograft model confirmed the malignant phenotype of MNX1 in vivo. Furthermore, flow cytometry, chromatin immunoprecipitation, and luciferase reporter assay indicated that MNX1 accelerated cell cycle transition by transcriptionally downregulating cyclin-dependent kinases p21cip1. In summary, our study revealed that MNX1 exerted an oncogenic role in cervical cancer via repressing the transcription of p21cip1 and thus accelerating cell cycle progression. Our results suggested that MNX1 was a potential diagnostic marker and therapeutic target for cervical cancer patients.
Collapse
Affiliation(s)
- Biqing Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Yaqin Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Quanli Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jian Huang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Qian Li
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Emei Lu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Binhui Ren
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| |
Collapse
|
15
|
Jung J, Jeong S, Jeong H, Oh HE, Choi JW, Lee ES, Kim YS, Kwak Y, Kim WH, Lee JH. Increased HOXC6 mRNA expression is a novel biomarker of gastric cancer. PLoS One 2020; 15:e0236811. [PMID: 32745141 PMCID: PMC7398522 DOI: 10.1371/journal.pone.0236811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
In this study, we aimed to investigate the molecular biomarkers that are pivotal for the development and progression of gastric cancer (GC). We analyzed clinical specimens using RNA sequencing to identify the target genes. We found that the expression of HOXC6 mRNA was upregulated with the progression of cancer, which was validated by quantitative real time PCR and RNA in-situ hybridization. To compare the protein expression of HOXC6, we evaluated GC and normal gastric tissue samples using western blot analysis and immunohistochemistry. We detected significantly higher levels of HOXC6 in the GC tissues than in the normal controls at both mRNA and protein levels. The expression levels of HOXC6 mRNA in patients with advanced gastric cancer (AGC) were significantly higher than those in patients with early gastric cancer (EGC). Kaplan-Meier curves showed that high expression of HOXC6 mRNA is significantly associated with poor clinical prognosis. Our findings suggest that HOXC6 mRNA may be a novel biomarker and can be potentially valuable in predicting the prognosis of GC patients. Especially, HOXC6 mRNA in-situ hybridization may be a diagnostic tool for predicting prognosis of individual GC patients.
Collapse
Affiliation(s)
- Jiyoon Jung
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-Si, Gyeonggi-Do, Republic of Korea
| | - Sanghoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi-Do, Republic of Korea
| | - Hoiseon Jeong
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-Si, Gyeonggi-Do, Republic of Korea
| | - Hwa Eun Oh
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-Si, Gyeonggi-Do, Republic of Korea
| | - Jung-Woo Choi
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-Si, Gyeonggi-Do, Republic of Korea
| | - Eung Seok Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-Si, Gyeonggi-Do, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-Si, Gyeonggi-Do, Republic of Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-Si, Gyeonggi-Do, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
The Impact of Transcription Factor Prospero Homeobox 1 on the Regulation of Thyroid Cancer Malignancy. Int J Mol Sci 2020; 21:ijms21093220. [PMID: 32370142 PMCID: PMC7247360 DOI: 10.3390/ijms21093220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription factor Prospero homeobox 1 (PROX1) is continuously expressed in the lymphatic endothelial cells, playing an essential role in their differentiation. Many reports have shown that PROX1 is implicated in cancer development and acts as an oncoprotein or suppressor in a tissue-dependent manner. Additionally, the PROX1 expression in many types of tumors has prognostic significance and is associated with patient outcomes. In our previous experimental studies, we showed that PROX1 is present in the thyroid cancer (THC) cells of different origins and has a high impact on follicular thyroid cancer (FTC) phenotypes, regulating migration, invasion, focal adhesion, cytoskeleton reorganization, and angiogenesis. Herein, we discuss the PROX1 transcript and protein structures, the expression pattern of PROX1 in THC specimens, and its epigenetic regulation. Next, we emphasize the biological processes and genes regulated by PROX1 in CGTH-W-1 cells, derived from squamous cell carcinoma of the thyroid gland. Finally, we discuss the interaction of PROX1 with other lymphatic factors. In our review, we aimed to highlight the importance of vascular molecules in cancer development and provide an update on the functionality of PROX1 in THC biology regulation.
Collapse
|
17
|
Ohta H, Yamazaki J, Jelinek J, Ishizaki T, Kagawa Y, Yokoyama N, Nagata N, Sasaki N, Takiguchi M. Genome-wide DNA methylation analysis in canine gastrointestinal lymphoma. J Vet Med Sci 2020; 82:632-638. [PMID: 32213750 PMCID: PMC7273592 DOI: 10.1292/jvms.19-0547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA methylation is the covalent modification of methyl groups to DNA mostly at CpG dinucleotides and one of the most studied epigenetic mechanisms that leads to gene expression variability
without affecting the DNA sequence. Genome-wide analysis of DNA methylation identified the signatures that could define subtypes of human lymphoma patients. The objective of this study was
to conduct the genome-wide analysis of DNA methylation in dogs with gastrointestinal lymphoma (GIL). Genomic DNA was extracted from endoscopic biopsies from 10 dogs with GIL. We performed
Digital Restriction Enzyme Assay of DNA Methylation (DREAM) for genome-wide DNA methylation analysis that could provide highly quantitative information on DNA methylation levels of CpG sites
across the dog genome. We successfully obtained data of quantitative DNA methylation level for 148,601–162,364 CpG sites per GIL sample. Next, we analyzed 83,132 CpG sites to dissect the
differences in DNA methylation between GIL and normal peripheral blood mononuclear cells (PBMCs). We found 383–3,054 CpG sites that were hypermethylated in GIL cases compared to PBMCs.
Interestingly, 773 CpG sites including promoter regions of 61 genes were identified to be commonly hypermethylated in more than half of the cases, suggesting conserved DNA methylation
patterns that are abnormal in GIL. This study revealed that there was a large number of hypermethylated sites that are common in most of canine GIL. These abnormal DNA methylation could be
involved in tumorigenesis of the canine GIL.
Collapse
Affiliation(s)
- Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Jumpei Yamazaki
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Jaroslav Jelinek
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103, USA
| | - Teita Ishizaki
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,North Lab, Hokkaido, Hondori 2-chome, Kita 8-35, Shiroishi-ku, Sapporo, Hokkaido 003-0027, Japan
| | - Yumiko Kagawa
- North Lab, Hokkaido, Hondori 2-chome, Kita 8-35, Shiroishi-ku, Sapporo, Hokkaido 003-0027, Japan
| | - Nozomu Yokoyama
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Noriyuki Nagata
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
18
|
de Bessa Garcia SA, Araújo M, Pereira T, Mouta J, Freitas R. HOX genes function in Breast Cancer development. Biochim Biophys Acta Rev Cancer 2020; 1873:188358. [PMID: 32147544 DOI: 10.1016/j.bbcan.2020.188358] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer develops in the mammary glands during mammalian adulthood and is considered the second most common type of human carcinoma and the most incident and mortal in the female population. In contrast to other human structures, the female mammary glands continue to develop after birth, undergoing various modifications during pregnancy, lactation and involution under the regulation of hormones and transcription factors, including those encoded by the HOX clusters (A, B, C, and D). Interestingly, HOX gene deregulation is often associated to breast cancer development. Within the HOXB cluster, 8 out of the 10 genes present altered expression levels in breast cancer with an impact in its aggressiveness and resistance to hormone therapy, which highlights the importance of HOXB genes as potential therapeutic targets used to overcome the limitations of tamoxifen-resistant cancer treatments. Here, we review the current state of knowledge on the role of HOX genes in breast cancer, specially focus on HOXB, discussing the causes and consequences of HOXB gene deregulation and their relevance as prognostic factors and therapeutic targets.
Collapse
Affiliation(s)
- Simone Aparecida de Bessa Garcia
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Mafalda Araújo
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Tiago Pereira
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - João Mouta
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Renata Freitas
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal.; ICBAS- Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Portugal..
| |
Collapse
|
19
|
Koroknai V, Szász I, Hernandez-Vargas H, Fernandez-Jimenez N, Cuenin C, Herceg Z, Vízkeleti L, Ádány R, Ecsedi S, Balázs M. DNA hypermethylation is associated with invasive phenotype of malignant melanoma. Exp Dermatol 2020; 29:39-50. [PMID: 31602702 DOI: 10.1111/exd.14047] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/29/2019] [Accepted: 10/06/2019] [Indexed: 01/01/2023]
Abstract
Tumor cell invasion is one of the key processes during cancer progression, leading to life-threatening metastatic lesions in melanoma. As methylation of cancer-related genes plays a fundamental role during tumorigenesis and may lead to cellular plasticity which promotes invasion, our aim was to identify novel epigenetic markers on selected invasive melanoma cells. Using Illumina BeadChip assays and Affymetrix Human Gene 1.0 microarrays, we explored the DNA methylation landscape of selected invasive melanoma cells and examined the impact of DNA methylation on gene expression patterns. Our data revealed predominantly hypermethylated genes in the invasive cells affecting the neural crest differentiation pathway and regulation of the actin cytoskeleton. Integrative analysis of the methylation and gene expression profiles resulted in a cohort of hypermethylated genes (IL12RB2, LYPD6B, CHL1, SLC9A3, BAALC, FAM213A, SORCS1, GPR158, FBN1 and ADORA2B) with decreased expression. On the other hand, hypermethylation in the gene body of the EGFR and RBP4 genes was positively correlated with overexpression of the genes. We identified several methylation changes that can have role during melanoma progression, including hypermethylation of the promoter regions of the ARHGAP22 and NAV2 genes that are commonly altered in locally invasive primary melanomas as well as during metastasis. Interestingly, the down-regulation of the methylcytosine dioxygenase TET2 gene, which regulates DNA methylation, was associated with hypermethylated promoter region of the gene. This can probably lead to the observed global hypermethylation pattern of invasive cells and might be one of the key changes during the development of malignant melanoma cells.
Collapse
Affiliation(s)
- Viktória Koroknai
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - István Szász
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | | | | | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Laura Vízkeleti
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - Szilvia Ecsedi
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Margit Balázs
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Paço A, Freitas R. HOX genes as transcriptional and epigenetic regulators during tumorigenesis and their value as therapeutic targets. Epigenomics 2019; 11:1539-1552. [PMID: 31556724 DOI: 10.2217/epi-2019-0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several HOX genes are aberrantly expressed in a wide range of cancers interfering with their development and resistance to treatment. This seems to be often caused by alterations in the methylation profiles of their promoters. The role of HOX gene products in cancer is highly 'tissue specific', relying ultimately on their ability to regulate oncogenes or tumor-suppressor genes, directly as transcriptional regulators or indirectly interfering with the levels of epigenetic regulators. Nowadays, different strategies have been tested the use of HOX genes as therapeutic targets for cancer diagnosis and treatment. Here, we trace the history of the research concerning the involvement of HOX genes in cancer, their connection with epigenetic regulation and their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Ana Paço
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, 7006-554 Évora, Portugal
| | - Renata Freitas
- I3S - Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal.,IBMC - Institute for Molecular & Cell Biology, University of Porto, 4200-135 Porto, Portugal.,ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
21
|
Jin W, Li QZ, Liu Y, Zuo YC. Effect of the key histone modifications on the expression of genes related to breast cancer. Genomics 2019; 112:853-858. [PMID: 31170440 DOI: 10.1016/j.ygeno.2019.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
Abnormal histone modifications (HMs) and transcription factors (TFs) can alter the expression of cancer-related genes to promote tumorigenesis. We studied the variations of 11 HMs and 2 TFs in human breast cancer cells (MCF-7) compared to human normal mammary epithelial cells (HMEC), and the effects of HMs/TFs in various regions of the genome on the expression changes of breast cancer-related genes. Based on HMs and TFs signals' differences between MCF-7 and HMEC flanking TSSs, the up- and down-regulated genes in MCF-7 were predicted by Random Forest, and important HMs and regions were found. Results indicate that H3K79me2, H3K27ac, and H3K4me1 are particularly important for the changes of gene expression in MCF-7. Especially, H3K79me2 around the 60-th bin flanking TSSs may be the key for regulating gene expression. Our studies reveal H3K79me2 may be a core HM for breast cancer.
Collapse
Affiliation(s)
- Wen Jin
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.
| | - Yuan Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yong-Chun Zuo
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
22
|
Mahmoudian RA, Bahadori B, Rad A, Abbaszadegan MR, Forghanifard MM. MEIS1 knockdown may promote differentiation of esophageal squamous carcinoma cell line KYSE-30. Mol Genet Genomic Med 2019; 7:e00746. [PMID: 31090196 PMCID: PMC6625128 DOI: 10.1002/mgg3.746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/01/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background MEIS1 (Myeloid ecotropic viral integration site 1), as a homeobox (HOX) transcription factor, has a dual function in different types of cancer. Although numerous roles are proposed for MEIS1 in differentiation, stem cell function, gastrointestinal development and tumorigenesis, the involved molecular mechanisms are poor understood. Our aim in this study was to elucidate the functional correlation between MEIS1, as regulator of differentiation process, and the involved genes in cell differentiation in human esophageal squamous carcinoma (ESC) cell line KYSE‐30. Methods The KYSE‐30 cells were transduced using recombinant retroviral particles containing specific shRNA sequence against MEIS1 to knockdown MEIS1 gene expression. Following RNA extraction and cDNA synthesis, mRNA expression of MEIS1 and the selected genes including TWIST1, EGF, CDX2, and KRT4 was examined using relative comparative real‐time PCR. Results Retroviral transduction caused a significant underexpression of MEIS1 in GFP‐hMEIS1 compared to control GFP cells approximately 5.5‐fold. While knockdown of MEIS1 expression caused a significant decrease in EGF and TWIST1 mRNA expression, nearly ‐8‐ and ‐12‐fold respectively, it caused a significant increase in mRNA expression of differentiation markers including KRT4 and CDX2, approximately 34‐ and 1.14‐fold, correspondingly. Conclusion MEIS1 gene silencing in KYSE‐30 cells increased expression of epithelial markers and decreased expression of epithelial‐mesenchymal transition (EMT) marker TWIST1. It may highlight the role of MEIS1 in differentiation process of KYSE‐30 cells. These results may confirm that MEIS1 silencing promotes differentiation and decreases EMT capability of ESC cell line KYSE‐30.
Collapse
Affiliation(s)
| | - Bahareh Bahadori
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research center, Sabzevar Univeristy of Medical Sciences, Sabzevar, Iran
| | | | | |
Collapse
|
23
|
Georgiadis P, Gavriil M, Rantakokko P, Ladoukakis E, Botsivali M, Kelly RS, Bergdahl IA, Kiviranta H, Vermeulen RCH, Spaeth F, Hebbels DGAJ, Kleinjans JCS, de Kok TMCM, Palli D, Vineis P, Kyrtopoulos SA. DNA methylation profiling implicates exposure to PCBs in the pathogenesis of B-cell chronic lymphocytic leukemia. ENVIRONMENT INTERNATIONAL 2019; 126:24-36. [PMID: 30776747 PMCID: PMC7063446 DOI: 10.1016/j.envint.2019.01.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 05/03/2023]
Abstract
OBJECTIVES To characterize the impact of PCB exposure on DNA methylation in peripheral blood leucocytes and to evaluate the corresponding changes in relation to possible health effects, with a focus on B-cell lymphoma. METHODS We conducted an epigenome-wide association study on 611 adults free of diagnosed disease, living in Italy and Sweden, in whom we also measured plasma concentrations of 6 PCB congeners, DDE and hexachlorobenzene. RESULTS We identified 650 CpG sites whose methylation correlates strongly (FDR < 0.01) with plasma concentrations of at least one PCB congener. Stronger effects were observed in males and in Sweden. This epigenetic exposure profile shows extensive and highly statistically significant overlaps with published profiles associated with the risk of future B-cell chronic lymphocytic leukemia (CLL) as well as with clinical CLL (38 and 28 CpG sites, respectively). For all these sites, the methylation changes were in the same direction for increasing exposure and for higher disease risk or clinical disease status, suggesting an etiological link between exposure and CLL. Mediation analysis reinforced the suggestion of a causal link between exposure, changes in DNA methylation and disease. Disease connectivity analysis identified multiple additional diseases associated with differentially methylated genes, including melanoma for which an etiological link with PCB exposure is established, as well as developmental and neurological diseases for which there is corresponding epidemiological evidence. Differentially methylated genes include many homeobox genes, suggesting that PCBs target stem cells. Furthermore, numerous polycomb protein target genes were hypermethylated with increasing exposure, an effect known to constitute an early marker of carcinogenesis. CONCLUSIONS This study provides mechanistic evidence in support of a link between exposure to PCBs and the etiology of CLL and underlines the utility of omic profiling in the evaluation of the potential toxicity of environmental chemicals.
Collapse
Affiliation(s)
- Panagiotis Georgiadis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Marios Gavriil
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Health Security, Environmental Health unit, P.O. Box 95, Kuopio, Finland
| | - Efthymios Ladoukakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Maria Botsivali
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Rachel S Kelly
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Ingvar A Bergdahl
- Department of Biobank Research, and Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Sweden
| | - Hannu Kiviranta
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Florentin Spaeth
- Department of Radiation Sciences, Oncology, Umeå University, Sweden
| | | | | | | | - Domenico Palli
- The Institute for Cancer Research and Prevention, Florence, Italy
| | - Paolo Vineis
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Soterios A Kyrtopoulos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece.
| |
Collapse
|
24
|
A Case of Identity: HOX Genes in Normal and Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11040512. [PMID: 30974862 PMCID: PMC6521190 DOI: 10.3390/cancers11040512] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells are undifferentiated cells that have the unique ability to self-renew and differentiate into many different cell types. Their function is controlled by core gene networks whose misregulation can result in aberrant stem cell function and defects of regeneration or neoplasia. HOX genes are master regulators of cell identity and cell fate during embryonic development. They play a crucial role in embryonic stem cell differentiation into specific lineages and their expression is maintained in adult stem cells along differentiation hierarchies. Aberrant HOX gene expression is found in several cancers where they can function as either oncogenes by sustaining cell proliferation or tumor-suppressor genes by controlling cell differentiation. Emerging evidence shows that abnormal expression of HOX genes is involved in the transformation of adult stem cells into cancer stem cells. Cancer stem cells have been identified in most malignancies and proved to be responsible for cancer initiation, recurrence, and metastasis. In this review, we consider the role of HOX genes in normal and cancer stem cells and discuss how the modulation of HOX gene function could lead to the development of novel therapeutic strategies that target cancer stem cells to halt tumor initiation, progression, and resistance to treatment.
Collapse
|
25
|
de Almeida BP, Apolónio JD, Binnie A, Castelo-Branco P. Roadmap of DNA methylation in breast cancer identifies novel prognostic biomarkers. BMC Cancer 2019; 19:219. [PMID: 30866861 PMCID: PMC6416975 DOI: 10.1186/s12885-019-5403-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer is a highly heterogeneous disease resulting in diverse clinical behaviours and therapeutic responses. DNA methylation is a major epigenetic alteration that is commonly perturbed in cancers. The aim of this study is to characterize the relationship between DNA methylation and aberrant gene expression in breast cancer. METHODS We analysed DNA methylation and gene expression profiles from breast cancer tissue and matched normal tissue in The Cancer Genome Atlas (TCGA). Genome-wide differential methylation analysis and methylation-gene expression correlation was performed. Gene expression changes were subsequently validated in the METABRIC dataset. The Oncoscore tool was used to identify genes that had previously been associated with cancer in the literature. A subset of genes that had not previously been studied in cancer was chosen for further analysis. RESULTS We identified 368 CpGs that were differentially methylated between tumor and normal breast tissue (∆β > 0.4). Hypermethylated CpGs were overrepresented in tumor tissue and were found predominantly (56%) in upstream promoter regions. Conversely, hypomethylated CpG sites were found primarily in the gene body (66%). Expression analysis revealed that 209 of the differentially-methylated CpGs were located in 169 genes that were differently expressed between normal and breast tumor tissue. Methylation-expression correlations were predominantly negative (70%) for promoter CpG sites and positive (74%) for gene body CpG sites. Among these differentially-methylated and differentially-expressed genes, we identified 7 that had not previously been studied in any form of cancer. Three of these, TDRD10, PRAC2 and TMEM132C, contained CpG sites that showed diagnostic and prognostic value in breast cancer, particularly in estrogen-receptor (ER)-positive samples. A pan-cancer analysis confirmed differential expression of these genes together with diagnostic and prognostic value of their respective CpG sites in multiple cancer types. CONCLUSION We have identified 368 DNA methylation changes that characterize breast cancer tumor tissue, of which 209 are associated with genes that are differentially-expressed in the same samples. Novel DNA methylation markers were identified, of which cg12374721 (PRAC2), cg18081940 (TDRD10) and cg04475027 (TMEM132C) show promise as diagnostic and prognostic markers in breast cancer as well as other cancer types.
Collapse
Affiliation(s)
- Bernardo P. de Almeida
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Present address: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Joana Dias Apolónio
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, 8005-139 Faro, Portugal
| | - Alexandra Binnie
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, 8005-139 Faro, Portugal
- William Osler Health System, Brampton, ON Canada
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
26
|
Teixeira VH, Pipinikas CP, Pennycuick A, Lee-Six H, Chandrasekharan D, Beane J, Morris TJ, Karpathakis A, Feber A, Breeze CE, Ntolios P, Hynds RE, Falzon M, Capitanio A, Carroll B, Durrenberger PF, Hardavella G, Brown JM, Lynch AG, Farmery H, Paul DS, Chambers RC, McGranahan N, Navani N, Thakrar RM, Swanton C, Beck S, George PJ, Spira A, Campbell PJ, Thirlwell C, Janes SM. Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions. Nat Med 2019; 25:517-525. [PMID: 30664780 PMCID: PMC7614970 DOI: 10.1038/s41591-018-0323-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/05/2018] [Indexed: 01/10/2023]
Abstract
The molecular alterations that occur in cells before cancer is manifest are largely uncharted. Lung carcinoma in situ (CIS) lesions are the pre-invasive precursor to squamous cell carcinoma. Although microscopically identical, their future is in equipoise, with half progressing to invasive cancer and half regressing or remaining static. The cellular basis of this clinical observation is unknown. Here, we profile the genomic, transcriptomic, and epigenomic landscape of CIS in a unique patient cohort with longitudinally monitored pre-invasive disease. Predictive modeling identifies which lesions will progress with remarkable accuracy. We identify progression-specific methylation changes on a background of widespread heterogeneity, alongside a strong chromosomal instability signature. We observed mutations and copy number changes characteristic of cancer and chart their emergence, offering a window into early carcinogenesis. We anticipate that this new understanding of cancer precursor biology will improve early detection, reduce overtreatment, and foster preventative therapies targeting early clonal events in lung cancer.
Collapse
Affiliation(s)
- Vitor H Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Christodoulos P Pipinikas
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Research Department of Cancer Biology and Medical Genomics Laboratory, UCL Cancer Institute, University College London, London, UK
| | - Adam Pennycuick
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Henry Lee-Six
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Deepak Chandrasekharan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Jennifer Beane
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Tiffany J Morris
- Research Department of Cancer Biology and Medical Genomics Laboratory, UCL Cancer Institute, University College London, London, UK
| | - Anna Karpathakis
- Research Department of Cancer Biology and Medical Genomics Laboratory, UCL Cancer Institute, University College London, London, UK
| | - Andrew Feber
- Research Department of Cancer Biology and Medical Genomics Laboratory, UCL Cancer Institute, University College London, London, UK
| | - Charles E Breeze
- Research Department of Cancer Biology and Medical Genomics Laboratory, UCL Cancer Institute, University College London, London, UK
| | - Paschalis Ntolios
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mary Falzon
- Department of Pathology, University College London Hospitals NHS Trust, London, UK
| | - Arrigo Capitanio
- Department of Pathology, University College London Hospitals NHS Trust, London, UK
| | - Bernadette Carroll
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - Pascal F Durrenberger
- Center for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Georgia Hardavella
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - James M Brown
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Andy G Lynch
- Computational Biology and Statistics Laboratory, Cancer Research UK Cambridge Institute, Cambridge, UK
- School of Medicine/School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | - Henry Farmery
- Computational Biology and Statistics Laboratory, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Dirk S Paul
- Research Department of Cancer Biology and Medical Genomics Laboratory, UCL Cancer Institute, University College London, London, UK
| | - Rachel C Chambers
- Center for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | | | - Neal Navani
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - Ricky M Thakrar
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Stephan Beck
- Research Department of Cancer Biology and Medical Genomics Laboratory, UCL Cancer Institute, University College London, London, UK
| | | | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Johnson and Johnson Innovation, Cambridge, MA, USA
| | - Peter J Campbell
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Christina Thirlwell
- Research Department of Cancer Biology and Medical Genomics Laboratory, UCL Cancer Institute, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
- Department of Thoracic Medicine, University College London Hospital, London, UK.
| |
Collapse
|
27
|
Dietz S, Lifshitz A, Kazdal D, Harms A, Endris V, Winter H, Stenzinger A, Warth A, Sill M, Tanay A, Sültmann H. Global DNA methylation reflects spatial heterogeneity and molecular evolution of lung adenocarcinomas. Int J Cancer 2018; 144:1061-1072. [DOI: 10.1002/ijc.31939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Steffen Dietz
- Division of Cancer Genome Research; German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT); Heidelberg Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL); Heidelberg Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
- Medical Faculty Heidelberg; University of Heidelberg; Heidelberg Germany
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics; Weizmann Institute of Science; Rehovot Israel
- Department of Biological Regulation; Weizmann Institute of Science; Rehovot Israel
| | - Daniel Kazdal
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL); Heidelberg Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Alexander Harms
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL); Heidelberg Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Hauke Winter
- Department of Thoracic Surgery; Thoraxklinik at the University Hospital Heidelberg; Heidelberg Germany
| | - Albrecht Stenzinger
- German Cancer Consortium (DKTK); Heidelberg Germany
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
- Institute of Pathology, Cytopathology, and Molecular Pathology; ÜGP Gießen; Wetzlar Limburg Germany
| | - Martin Sill
- Division of Pediatric Neurooncology; Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ) and German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics; Weizmann Institute of Science; Rehovot Israel
- Department of Biological Regulation; Weizmann Institute of Science; Rehovot Israel
| | - Holger Sültmann
- Division of Cancer Genome Research; German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT); Heidelberg Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL); Heidelberg Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
| |
Collapse
|
28
|
Feltes BC. Architects meets Repairers: The interplay between homeobox genes and DNA repair. DNA Repair (Amst) 2018; 73:34-48. [PMID: 30448208 DOI: 10.1016/j.dnarep.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Homeobox genes are widely considered the major protagonists of embryonic development and tissue formation. For the past decades, it was established that the deregulation of these genes is intimately related to developmental abnormalities and a broad range of diseases in adults. Since the proper regulation and expression of homeobox genes are necessary for a successful developmental program and tissue function, their relation to DNA repair mechanisms become a necessary discussion. However, important as it is, studies focused on the interplay between homeobox genes and DNA repair are scarce, and there is no critical discussion on the subject. Hence, in this work, I aim to provide the first review of the current knowledge of the interplay between homeobox genes and DNA repair mechanisms, and offer future perspectives on this, yet, young ground for new researches. Critical discussion is conducted, together with a careful assessment of each reviewed topic.
Collapse
Affiliation(s)
- Bruno César Feltes
- Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
29
|
Yang X, Han SW, Liu H, Zhu L, Chen YX, Ji ZN. Secreted frizzled-related protein 1 (SFRP1) gene methylation changes in the human lung adenocarcinoma cells treated with L-securinine. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:163-171. [PMID: 28545308 DOI: 10.1080/10286020.2017.1329828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. It is important to explore the biomarkers of diagnosis and prognosis in lung cancer. To evaluate the cytotoxicity of L-securinine and the expression and methylation of secreted frizzled-related proteins (SFRPs) genes in the human lung adenocarcinoma cells, cell counting kit-8 (CCK-8) assay was used to assess the proliferation of lung adenocarcinoma cells treated with L-securinine. Quantitative real-time PCR (qRT-PCR) and bisulfite sequencing PCR were used to detect the expression and the DNA methylation of SFRPs genes, respectively. L-securinine inhibited the proliferation of lung adenocarcinoma cells and induced the upregulation of SFRP1 gene expression and the methylation changes at CpG sites in the SFRP1 promoter region. L-securinine was a potential agent in the treatment of lung cancer by upregulation of SFRP1 gene expression and changing the SFRP1 gene methylation.
Collapse
Affiliation(s)
- Xi Yang
- a Department of Intervention and Radiotherapy , Huzhou Central Hospital , Huzhou 313000 , China
| | - Shu-Wen Han
- b Department of Medical Oncology , Huzhou Central Hospital , Huzhou 313000 , China
| | - Hui Liu
- c Department of Medical Oncology , Wuxi No.5 People's Hospital , Wuxi 214000 , China
| | - Ling Zhu
- d Department of Oncology , Wannan Medical College , Wuhu 241000 , China
| | - Yu-Xin Chen
- e The Cancer Center , Yijishan Hospital of Wannan Medical College , Wuhu 241001 , China
| | - Zhao-Ning Ji
- e The Cancer Center , Yijishan Hospital of Wannan Medical College , Wuhu 241001 , China
| |
Collapse
|
30
|
Bonfim-Silva R, Ferreira Melo FU, Thomé CH, Abraham KJ, De Souza FAL, Ramalho FS, Machado HR, De Oliveira RS, Cardoso AA, Covas DT, Fontes AM. Functional analysis of HOXA10 and HOXB4 in human medulloblastoma cell lines. Int J Oncol 2017; 51:1929-1940. [PMID: 29039487 DOI: 10.3892/ijo.2017.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Medulloblastoma (MB) is a malignant childhood brain tumor which at molecular level is classified into at least four major subtypes: WNT, SHH, group C and group D differing in response to treatment. Previous studies have associated changes in expression levels and activation of certain HOX genes with MB development. In the present study, we investigate the role of HOX genes in two attributes acquired by tumor cells: migration and proliferation potential, as well as, in vivo tumorigenic potential. We analyzed UW402, UW473, DAOY and ONS-76 human pediatric MB cell lines and cerebellum primary cultures. Two-color microarray-based gene expression analysis was used to identify differentially expressed HOX genes. Among the various HOX genes significantly overexpressed in DAOY and ONS-76 cell lines compared to UW402 and UW473 cell lines, HOXA10 and HOXB4 were selected for further analysis. The expression levels of these HOX genes were validated by real-time PCR. A mouse model was used to study the effect of the HOXA10 and HOXB4 genes on the in vivo tumorigenic potential and the in vitro proliferative and migration potential of MB cell lines. Our results show that the inhibition of HOXA10 in DAOY cell line led to increased in vitro cell migration while in vitro cell proliferation or in vivo tumorigenic potential were unaffected. We also observed that induced expression of HOXB4 in the UW473 cell line significantly reduced in vitro cell proliferation and migration capability of UW473 cells with no effect on the in vivo tumorigenicity. This suggests that HOXA10 plays a role in migration events and the HOXB4 gene is involved in proliferation and migration processes of medulloblastoma cells, however, it appears that these genes are not essential for the tumorigenic process of these cells.
Collapse
Affiliation(s)
- Ricardo Bonfim-Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda Ursoli Ferreira Melo
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Hassibe Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Kuruvilla Joseph Abraham
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Fábio Augusto Labre De Souza
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Silva Ramalho
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery of the Department of Surgery and Anatomy, University Hospital of Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Santos De Oliveira
- Division of Pediatric Neurosurgery of the Department of Surgery and Anatomy, University Hospital of Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Angelo A Cardoso
- Center for Gene Therapy, City of Hope Alpha Stem Cell Clinic, Duarte, CA 91010, USA
| | - Dimas Tadeu Covas
- Department of Internal Medicine, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Aparecida Maria Fontes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|