1
|
Unnikrishnan P, Grzesik S, Trojańska M, Klimek B, Plesnar-Bielak A. 6Pgdh polymorphism in wild bulb mite populations: prevalence, environmental correlates and life history trade-offs. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:115-132. [PMID: 38597987 PMCID: PMC11182828 DOI: 10.1007/s10493-024-00909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Genetic polymorphism in key metabolic genes plays a pivotal role in shaping phenotypes and adapting to varying environments. Polymorphism in the metabolic gene 6-phosphogluconate dehydrogenase (6Pgdh) in bulb mites, Rhizoglyphus robini is characterized by two alleles, S and F, that differ by a single amino acid substitution and correlate with male reproductive fitness. The S-bearing males demonstrate a reproductive advantage. Although the S allele rapidly fixes in laboratory settings, the persistence of polymorphic populations in the wild is noteworthy. This study examines the prevalence and stability of 6Pgdh polymorphism in natural populations across Poland, investigating potential environmental influences and seasonal variations. We found widespread 6Pgdh polymorphism in natural populations, with allele frequencies varying across locations and sampling dates but without clear geographical or seasonal clines. This widespread polymorphism and spatio-temporal variability may be attributed to population demography and gene flow between local populations. We found some correlation between soil properties, particularly cation content (Na, K, Ca, and Mg) and 6Pgdh allele frequencies, showcasing the connection between mite physiology and soil characteristics and highlighting the presence of environment-dependent balancing selection. We conducted experimental fitness assays to determine whether the allele providing the advantage in male-male competition has antagonistic effects on life-history traits and if these effects are temperature-dependent. We found that temperature does not differentially influence development time or juvenile survival in different 6Pgdh genotypes. This study reveals the relationship between genetic variation, environmental factors, and reproductive fitness in natural bulb mite populations, shedding light on the dynamic mechanisms governing 6Pgdh polymorphism.
Collapse
Affiliation(s)
- Pranav Unnikrishnan
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | - Szymon Grzesik
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Magdalena Trojańska
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
- Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Beata Klimek
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Agata Plesnar-Bielak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
2
|
Hu Y, Dai Z, Huang J, Han M, Wang Z, Jiao W, Gao Z, Liu X, Liu L, Ma Z. Genome-wide identification and expression analysis of the glutamate receptor gene family in sweet potato and its two diploid relatives. FRONTIERS IN PLANT SCIENCE 2023; 14:1255805. [PMID: 38179475 PMCID: PMC10764598 DOI: 10.3389/fpls.2023.1255805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Plant glutamate receptor (GLR) homologs are crucial calcium channels that play an important role in plant development, signal transduction, and response to biotic and abiotic stresses. However, the GLR gene family has not yet been thoroughly and systematically studied in sweet potato. In this study, a total of 37 GLR genes were identified in the cultivated hexaploid sweet potato (Ipomoea batatas), and 32 GLR genes were discovered in each of the two diploid relatives (Ipomoea trifida and Ipomoea triloba) for the first time. Based on their evolutionary relationships to those of Arabidopsis, these GLRs were split into five subgroups. We then conducted comprehensive analysis to explore their physiological properties, protein interaction networks, promoter cis-elements, chromosomal placement, gene structure, and expression patterns. The results indicate that the homologous GLRs of the cultivated hexaploid sweet potato and its two relatives are different. These variations are reflected in their functions related to plant growth, hormonal crosstalk, development of tuberous roots, resistance to root rot, and responses to abiotic stress factors, all of which are governed by specific individual GLR genes. This study offers a comprehensive analysis of GLR genes in sweet potato and its two diploid relatives. It also provides a theoretical basis for future research into their regulatory mechanisms, significantly influencing the field of molecular breeding in sweet potatoes.
Collapse
Affiliation(s)
- Yaya Hu
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Jinan Huang
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Meikun Han
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhiwei Wang
- Department of Agriculture Forestry and Biological Engineering, Baoding Vocational and Technical College, Baoding, Hebei, China
| | - Weijing Jiao
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhiyuan Gao
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xinliang Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Lanfu Liu
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhimin Ma
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Zhou H, Ma J, Liu H, Zhao P. Genome-Wide Identification of the CBF Gene Family and ICE Transcription Factors in Walnuts and Expression Profiles under Cold Conditions. Int J Mol Sci 2023; 25:25. [PMID: 38203199 PMCID: PMC10778614 DOI: 10.3390/ijms25010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Cold stress impacts woody tree growth and perennial production, especially when the temperature rapidly changes in late spring. To address this issue, we conducted the genome-wide identification of two important transcription factors (TFs), CBF (C-repeat binding factors) and ICE (inducers of CBF expression), in three walnut (Juglans) genomes. Although the CBF and ICE gene families have been identified in many crops, very little systematic analysis of these genes has been carried out in J. regia and J. sigillata. In this study, we identified a total of 16 CBF and 12 ICE genes in three Juglans genomes using bioinformatics analysis. Both CBF and ICE had conserved domains, motifs, and gene structures, which suggests that these two TFs were evolutionarily conserved. Most ICE genes are located at both ends of the chromosomes. The promoter cis-regulatory elements of CBF and ICE genes are largely involved in light and phytohormone responses. Based on 36 RNA sequencing of leaves from four walnut cultivars ('Zijing', 'Lvling', 'Hongren', and 'Liao1') under three temperature conditions (8 °C, 22 °C, and 5 °C) conditions in late spring, we found that the ICE genes were expressed more highly than CBFs. Both CBF and ICE proteins interacted with cold-related proteins, and many putative miRNAs had interactions with these two TFs. These results determined that CBF1 and ICE1 play important roles in the tolerance of walnut leaves to rapid temperature changes. Our results provide a useful resource on the function of the CBF and ICE genes related to cold tolerance in walnuts.
Collapse
Affiliation(s)
- Huijuan Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China;
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| |
Collapse
|
4
|
Raja TV, Alex R, Singh U, Kumar S, Das AK, Sengar G, Singh AK. Genome wide mining of SNPs and INDELs through ddRAD sequencing in Sahiwal cattle. Anim Biotechnol 2023; 34:4885-4899. [PMID: 37093232 DOI: 10.1080/10495398.2023.2200517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The study was conducted in Sahiwal cattle for genome wide identification and annotation of single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) in Sahiwal cattle. The double digest restriction-site associated DNA (ddRAD) sequencing, a reduced representation method was used for the identification of variants at nucleotide level. A total of 1,615,211 variants were identified at RD10 and Q30 consisting of 1,480,930 SNPs and 134,281 INDELs with respect to the Bos taurus reference genome. The SNPs were annotated for their location, impact and functional class. The SNPs identified in Sahiwal cattle were found to be associated with a total of 26,229 genes. A total of 1819 SNPs were annotated for 209 candidate genes associated with different production and reproduction traits. The variants identified in the present study may be useful to strengthen the existing bovine SNP chips for reducing the biasness over the taurine cattle breeds. The diversity analysis provides the insight of the genetic architecture of the Sahiwal population Studied. The large genetic variations identified at the nucleotide level provide ample scope for implementing an effective and efficient breed improvement programme for increasing the productivity of Sahiwal cattle.
Collapse
Affiliation(s)
- Thiruvothur Venkatesan Raja
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut Cantt, Uttar Pradesh, India
| | - Rani Alex
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Umesh Singh
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut Cantt, Uttar Pradesh, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut Cantt, Uttar Pradesh, India
| | - Achintya Kumar Das
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut Cantt, Uttar Pradesh, India
| | - Gyanendra Sengar
- National Research Centre on Pigs, Rani (Near Airport), Guwahati, Assam, India
| | - Amit Kumar Singh
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut Cantt, Uttar Pradesh, India
| |
Collapse
|
5
|
Abraham LN, Croll D. Genome-wide expression QTL mapping reveals the highly dynamic regulatory landscape of a major wheat pathogen. BMC Biol 2023; 21:263. [PMID: 37981685 PMCID: PMC10658818 DOI: 10.1186/s12915-023-01763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND In agricultural ecosystems, outbreaks of diseases are frequent and pose a significant threat to food security. A successful pathogen undergoes a complex and well-timed sequence of regulatory changes to avoid detection by the host immune system; hence, well-tuned gene regulation is essential for survival. However, the extent to which the regulatory polymorphisms in a pathogen population provide an adaptive advantage is poorly understood. RESULTS We used Zymoseptoria tritici, one of the most important pathogens of wheat, to generate a genome-wide map of regulatory polymorphism governing gene expression. We investigated genome-wide transcription levels of 146 strains grown under nutrient starvation and performed expression quantitative trait loci (eQTL) mapping. We identified cis-eQTLs for 65.3% of all genes and the majority of all eQTL loci are within 2kb upstream and downstream of the transcription start site (TSS). We also show that polymorphism in different gene elements contributes disproportionally to gene expression variation. Investigating regulatory polymorphism in gene categories, we found an enrichment of regulatory variants for genes predicted to be important for fungal pathogenesis but with comparatively low effect size, suggesting a separate layer of gene regulation involving epigenetics. We also show that previously reported trait-associated SNPs in pathogen populations are frequently cis-regulatory variants of neighboring genes with implications for the trait architecture. CONCLUSIONS Overall, our study provides extensive evidence that single populations segregate large-scale regulatory variation and are likely to fuel rapid adaptation to resistant hosts and environmental change.
Collapse
Affiliation(s)
- Leen Nanchira Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
- Present address: Institute of Plant Sciences, University of Cologne, Cologne, Germany
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
6
|
Xia S, Zhang H, He S. Genome-Wide Identification and Expression Analysis of ACTIN Family Genes in the Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2023; 24:10930. [PMID: 37446107 DOI: 10.3390/ijms241310930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
ACTINs are structural proteins widely distributed in plants. They are the main components of microfilaments and participate in many crucial physiological activities, including the maintenance of cell shape and cytoplasmic streaming. Meanwhile, ACTIN, as a housekeeping gene, is widely used in qRT-PCR analyses of plants. However, ACTIN family genes have not been explored in the sweet potato. In this study, we identified 30, 39, and 44 ACTINs in the cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively, via analysis of their genome structure and by phylogenetic characterization. These ACTINs were divided into six subgroups according to their phylogenetic relationships with Arabidopsis thaliana. The physiological properties of the protein, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction networks, and expression patterns of these 113 ACTINs were systematically investigated. The results suggested that homologous ACTINs are differentiated in the sweet potato and its two diploid relatives, and play various vital roles in plant growth, tuberous root development, hormone crosstalk, and abiotic stress responses. Some stable ACTINs that could be used as internal reference genes were found in the sweet potato and its two diploid relatives, e.g., IbACTIN18, -20, and -16.2; ItfACTIN2.2, -16, and -10; ItbACTIN18 and -19.1. This work provides a comprehensive comparison and furthers our understanding of the ACTIN genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potatoes.
Collapse
Affiliation(s)
- Shuanghong Xia
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
7
|
Gao S, Wang Y, Zeng Z, Zhang M, Yi N, Liu B, Wang R, Long S, Gong J, Liu T, Xu Y. Integrated bioinformatic and physiological analyses reveal the pivotal role of hydrogen sulfide in enhancing low-temperature tolerance in alfalfa. PHYSIOLOGIA PLANTARUM 2023; 175:e13885. [PMID: 36852715 DOI: 10.1111/ppl.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2 S) is an important gaseous signal molecule that regulates plant growth and stress resistance. However, research on the H2 S synthase (HSase) genes is still limited in the model legume plant Medicago truncatula Gaertn. In the present study, a total of 40 HSase family members were first identified and analyzed in the M. truncatula genome, and these genes distributed across eight chromosomes and were clustered into five groups (I-V) based on their conserved gene structures and protein motifs. Expression analysis revealed that the MtHSase genes were expressed in all the tested abiotic stresses, albeit with expression level differences. This study also showed that H2 S improves low temperature tolerance of alfalfa seedlings by regulating the antioxidant defense system and enhancing photosynthetic capacity. Thus, the study provides new insights into how the H2 S signal regulates tolerance to low-temperature stress and provides the basis for further gene function and detection.
Collapse
Affiliation(s)
- Shuanghong Gao
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Yifan Wang
- College of Agronomy, Northwest A&F University, Yangling, People's Republic of China
| | - Zhen Zeng
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Menglei Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Na Yi
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Bowen Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Ruijia Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Jiongjiong Gong
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Tieyuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
8
|
Dai Z, Yan P, He S, Jia L, Wang Y, Liu Q, Zhai H, Zhao N, Gao S, Zhang H. Genome-Wide Identification and Expression Analysis of SWEET Family Genes in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2022; 23:ijms232415848. [PMID: 36555491 PMCID: PMC9785306 DOI: 10.3390/ijms232415848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Sugar Will Eventually be Exported Transporter (SWEET) proteins are key transporters in sugar transportation. They are involved in the regulation of plant growth and development, hormone crosstalk, and biotic and abiotic stress responses. However, SWEET family genes have not been explored in the sweet potato. In this study, we identified 27, 27, and 25 SWEETs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These SWEETs were divided into four subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationships, gene structures, promoter cis-elements, protein interaction networks, and expression patterns of these 79 SWEETs were systematically investigated. The results suggested that homologous SWEETs are differentiated in sweet potato and its two diploid relatives and play various vital roles in plant growth, tuberous root development, carotenoid accumulation, hormone crosstalk, and abiotic stress response. This work provides a comprehensive comparison and furthers our understanding of the SWEET genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potato.
Collapse
Affiliation(s)
- Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Pengyu Yan
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Licong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yannan Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
- Correspondence: ; Tel./Fax: +86-010-6273-2559
| |
Collapse
|
9
|
Mukherjee D, Saha D, Acharya D, Mukherjee A, Ghosh TC. Interplay between gene expression and gene architecture as a consequence of gene and genome duplications: evidence from metabolic genes of Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1091-1108. [PMID: 35722515 PMCID: PMC9203644 DOI: 10.1007/s12298-022-01188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 05/03/2023]
Abstract
Gene and genome duplications have been widespread during the evolution of flowering plant which resulted in the increment of biological complexity as well as creation of plasticity of a genome helping the species to adapt to changing environments. Duplicated genes with higher evolutionary rates can act as a mechanism of generating novel functions in secondary metabolism. In this study, we explored duplication as a potential factor governing the expression heterogeneity and gene architecture of Primary Metabolic Genes (PMGs) and Secondary Metabolic Genes (SMGs) of Arabidopsis thaliana. It is remarkable that different types of duplication processes controlled gene expression and tissue specificity differently in PMGs and SMGs. A complex relationship exists between gene architecture and expression patterns of primary and secondary metabolic genes. Our study reflects, expression heterogeneity and gene structure variation of primary and secondary metabolism in Arabidopsis thaliana are partly results of duplication events of different origins. Our study suggests that duplication has differential effect on PMGs and SMGs regarding expression pattern by controlling gene structure, epigenetic modifications, multifunctionality and subcellular compartmentalization. This study provides an insight into the evolution of metabolism in plants in the light of gene and genome scale duplication. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01188-2.
Collapse
Affiliation(s)
- Dola Mukherjee
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata, 700 054 India
| | - Deeya Saha
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata, 700 054 India
| | - Debarun Acharya
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata, 700 054 India
| | - Ashutosh Mukherjee
- Department of Botany, Vivekananda College, 269, Diamond Harbour Road, Thakurpukur, Kolkata, West Bengal 700063 India
| | - Tapash Chandra Ghosh
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata, 700 054 India
| |
Collapse
|
10
|
Li M, Wang F, Ma J, Liu H, Ye H, Zhao P, Wang J. Comprehensive Evolutionary Analysis of CPP Genes in Brassica napus L. and Its Two Diploid Progenitors Revealing the Potential Molecular Basis of Allopolyploid Adaptive Advantage Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:873071. [PMID: 35548281 PMCID: PMC9085292 DOI: 10.3389/fpls.2022.873071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Allopolyploids exist widely in nature and have strong environmental adaptability. The typical allopolyploid Brassica napus L. is a widely cultivated crop, but whether it is superior to its diploid progenitors in abiotic stress resistance and the key genes that may be involved are not fully understood. Cystein-rich polycomb-like protein (CPP) genes encode critical transcription factors involved in the response of abiotic stress, including salt stress. To explore the potential molecular basis of allopolyploid adaptation to salt stress, we comprehensively analyzed the characteristics and salt stress response of the CPP genes in B. napus and its two diploid progenitors in this study. We found some molecular basis that might be associated with the adaptability of B. napus, including the expansion of the CPP gene family, the acquisition of introns by some BnCPPs, and abundant cis-acting elements upstream of BnCPPs. We found two duplication modes (whole genome duplication and transposed duplication) might be the main reasons for the expansion of CPP gene family in B. napus during allopolyploidization. CPP gene expression levels and several physiological indexes were changed in B. napus and its diploid progenitors after salt stress, suggesting that CPP genes might play important roles in the response of salt stress. We found that some BnCPPs might undergo new functionalization or subfunctionalization, and some BnCPPs also show biased expression, which might contribute to the adaptation of B. napus under saline environment. Compared with diploid progenitors, B. napus showed stronger physiological responses, and BnCPP gene expression also showed higher changes after salt stress, indicating that the allopolyploid B. napus had an adaptive advantage under salt stress. This study could provide evidence for the adaptability of polyploid and provide important clues for the study of the molecular mechanism of salt stress resistance in B. napus.
Collapse
Affiliation(s)
- Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Xiao Y, Li M, Wang J. The impacts of allopolyploidization on Methyl-CpG-Binding Domain (MBD) gene family in Brassica napus. BMC PLANT BIOLOGY 2022; 22:103. [PMID: 35255818 PMCID: PMC8900393 DOI: 10.1186/s12870-022-03485-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polyploidization promotes species formation and is widespread in angiosperms. Genome changes dramatically bring opportunities and challenges to plants after polyploidy. Methyl-CpG-Binding Domain (MBD) proteins can recognize and bind to methylation sites and they play an important role in the physiological process related to methylation in animals and plants. However, research on the influence of the allopolyploidization process on the MBD gene family is still lacking, so it is necessary to conduct a comprehensive analysis. RESULTS In this study, twenty-two, ten and eleven MBD genes were identified in the genome of allotetraploid B. napus and its diploid ancestors, B. rapa and B. oleracea, respectively. Based on the clades of the MBD gene in Arabidopsis, rice and maize, we divided the new phylogenetic tree into 8 clades. Among them, the true MBD genes in Brassica existed in only 5 clades. Clade IV and Clade VI were unique in term of MBD genes in dicotyledons. Ka/Ks calculations showed that MBD genes underwent purifying selection in Brassica and may retain genes through sequence or functional differentiation early in evolution. In the process of allopolyploidization, the number of MBD gene introns increased, and the protein motifs changed. The MBD proteins had their own special motifs in each clade, and the MBD domains were only conserved in their clades. At the same time, the MBD genes were expressed in flower, leaf, silique, and stem tissues, and the expression levels of the different genes were significantly different, while the tissue specificity was not obvious. The allopolyploidization process may increase the number of cis-acting elements and activate the transposable elements. During allopolyploidization, the expression pattern of the MBD gene changes, which may be regulated by cis-acting elements and transposable elements. The number imbalance of cis-acting elements and transposable elements in An and Cn subgenomes may also lead to biased An subgenome expression of the MBD gene in B. napus. CONCLUSIONS In this study, by evaluating the number, structure, phylogeny and expression of the MBD gene in B. napus and its diploid ancestors, we increased the understanding of MBD genes in allopolyploids and provided a reference for future analysis of allopolyploidization.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
12
|
Li M, Ma J, Liu H, Ou M, Ye H, Zhao P. Identification and Characterization of Wall-Associated Kinase (WAK) and WAK-like (WAKL) Gene Family in Juglans regia and Its Wild Related Species Juglans mandshurica. Genes (Basel) 2022; 13:genes13010134. [PMID: 35052474 PMCID: PMC8775259 DOI: 10.3390/genes13010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Wall-associated kinase (WAK) and WAK-like kinase (WAKL) are receptor-like kinases (RLKs), which play important roles in signal transduction between the cell wall and the cytoplasm in plants. WAK/WAKLs have been studied in many plants, but were rarely studied in the important economic walnut tree. In this study, 27 and 14 WAK/WAKL genes were identified in Juglans regia and its wild related species Juglans mandshurica, respectively. We found tandem duplication might play a critical role in the expansion of WAK/WAKL gene family in J. regia, and most of the WAK/WAKL homologous pairs underwent purified selection during evolution. All WAK/WAKL proteins have the extracellular WAK domain and the cytoplasmic protein kinase domain, and the latter was more conserved than the former. Cis-acting elements analysis showed that WAK/WAKL might be involved in plant growth and development, plant response to abiotic stress and hormones. Gene expression pattern analysis further indicated that most WAK/WAKL genes in J. regia might play a role in the development of leaves and be involved in plant response to biotic stress. Our study provides a new perspective for the evolutionary analysis of gene families in tree species and also provides potential candidate genes for studying WAK/WAKL gene function in walnuts.
Collapse
|
13
|
Huang Z, Wang Z, Li X, He S, Liu Q, Zhai H, Zhao N, Gao S, Zhang H. Genome-Wide Identification and Expression Analysis of JAZ Family Involved in Hormone and Abiotic Stress in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2021; 22:ijms22189786. [PMID: 34575953 PMCID: PMC8468994 DOI: 10.3390/ijms22189786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins are key repressors of a jasmonic acid signaling pathway. They play essential roles in the regulation of plant growth and development, as well as environmental stress responses. However, this gene family has not been explored in sweet potato. In this study, we identified 14, 15, and 14 JAZs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), and its two diploid relatives Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These JAZs were divided into five subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network, and expression pattern of these 43 JAZs were systematically investigated. The results suggested that there was a differentiation between homologous JAZs, and each JAZ gene played different vital roles in growth and development, hormone crosstalk, and abiotic stress response between sweet potato and its two diploid relatives. Our work provided comprehensive comparison and understanding of the JAZ genes in sweet potato and its two diploid relatives, supplied a theoretical foundation for their functional study, and further facilitated the molecular breeding of sweet potato.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huan Zhang
- Correspondence: ; Tel./Fax: +86-010-6273-2559
| |
Collapse
|
14
|
Auboeuf D. The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:121-139. [PMID: 34097984 DOI: 10.1016/j.pbiomolbio.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The physics-biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the coupling between nucleic acid and protein synthesis during which proteins (or proto-phenotypes) maintained the physicochemical parameter equilibria (or proto-homeostasis) in the proximity of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical constraints, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome maintaining homeostasis (i.e., internal physicochemical parameter equilibria), despite and in response to environmental fluctuations, maintains its physicochemical integrity and has therefore a higher probability to be reproduced without variation. Consequently, descendants have a higher probability to share the same phenotype than their parents. Otherwise, the genome is modified during replication as a consequence of the imbalance of the internal physicochemical parameters it generates, until new mutation-deriving biological activities maintain homeostasis in offspring. In summary, evolution depends on feedforward and feedback loops between genome and phenotype, as the internal physicochemical conditions that a genome generates ─ through its derived phenotype in response to environmental fluctuations ─ in turn either guarantee its stability or direct its variation. Evolution may not be explained by the Darwinism-derived, unidirectional principle (random mutations-phenotypes-natural selection) but rather by the bidirectional relationship between genome and phenotype, in which the phenotype in interaction with the environment directs the evolution of the genome it derives from.
Collapse
Affiliation(s)
- Didier Auboeuf
- ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée D'Italie, Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
15
|
Cruz MAD, Lund D, Szekeres F, Karlsson S, Faresjö M, Larsson D. Cis-regulatory elements in conserved non-coding sequences of nuclear receptor genes indicate for crosstalk between endocrine systems. Open Med (Wars) 2021; 16:640-650. [PMID: 33954257 PMCID: PMC8051167 DOI: 10.1515/med-2021-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression when bound to specific DNA sequences. Crosstalk between steroid NR systems has been studied for understanding the development of hormone-driven cancers but not to an extent at a genetic level. This study aimed to investigate crosstalk between steroid NRs in conserved intron and exon sequences, with a focus on steroid NRs involved in prostate cancer etiology. For this purpose, we evaluated conserved intron and exon sequences among all 49 members of the NR Superfamily (NRS) and their relevance as regulatory sequences and NR-binding sequences. Sequence conservation was found to be higher in the first intron (35%), when compared with downstream introns. Seventy-nine percent of the conserved regions in the NRS contained putative transcription factor binding sites (TFBS) and a large fraction of these sequences contained splicing sites (SS). Analysis of transcription factors binding to putative intronic and exonic TFBS revealed that 5 and 16%, respectively, were NRs. The present study suggests crosstalk between steroid NRs, e.g., vitamin D, estrogen, progesterone, and retinoic acid endocrine systems, through cis-regulatory elements in conserved sequences of introns and exons. This investigation gives evidence for crosstalk between steroid hormones and contributes to novel targets for steroid NR regulation.
Collapse
Affiliation(s)
- Maria Araceli Diaz Cruz
- Research School of Health and Welfare, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Dan Lund
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Ferenc Szekeres
- Department of Biomedicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Sandra Karlsson
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Maria Faresjö
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Dennis Larsson
- Sahlgrenska University Hospital, Gothia Forum for Clinical Research, Gothenburg, Sweden
| |
Collapse
|
16
|
Niu L, Li H, Song Z, Dong B, Cao H, Liu T, Du T, Yang W, Amin R, Wang L, Yang Q, Meng D, Fu Y. The functional analysis of ABCG transporters in the adaptation of pigeon pea ( Cajanus cajan) to abiotic stresses. PeerJ 2021; 9:e10688. [PMID: 33552725 PMCID: PMC7821757 DOI: 10.7717/peerj.10688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are a class of proteins found in living organisms that mediate transmembrane transport by hydrolyzing ATP. They play a vital role in the physiological processes of growth and development in plants. The most numerous sub-type transporter in the ABC transporter family is the ABCG group and which have the most complex function in a plant’s response to abiotic stresses. Our study focused on the effect of ABCG transporters in the adaptation of the pigeon pea to adverse environments (such as drought, salt, temperature, etc.). We conducted a functional analysis of ABCG transporters in the pigeon pea and their role in response to abiotic stresses. A total of 51 ABCG genes (CcABCGs) were identified, and phylogenetic analysis was conducted. We also identified the physicochemical properties of the encoded proteins, predicted their subcellular localization, and identified of the conserved domains. Expression analysis showed that ABCG genes have different expression profiles with tissues and abiotic stresses. Our results showed that CcABCG28 was up-regulated at low temperatures, and CcABCG7 was up-regulated with drought and aluminum stress. The initial results revealed that ABCG transporters are more effective in the abiotic stress resistance of pigeon peas, which improves our understanding of their application in abiotic stress resistance.
Collapse
Affiliation(s)
- Lili Niu
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Hanghang Li
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Zhihua Song
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Biying Dong
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Hongyan Cao
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Tengyue Liu
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Tingting Du
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Wanlong Yang
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Rohul Amin
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Qing Yang
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Dong Meng
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China.,Key Laboratory of Forestry Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
17
|
Genome-wide and expression pattern analysis of JAZ family involved in stress responses and postharvest processing treatments in Camellia sinensis. Sci Rep 2020; 10:2792. [PMID: 32066857 PMCID: PMC7026426 DOI: 10.1038/s41598-020-59675-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
The JASMONATE-ZIM DOMAIN (JAZ) family genes are key repressors in the jasmonic acid signal transduction pathway. Recently, the JAZ gene family has been systematically characterized in many plants. However, this gene family has not been explored in the tea plant. In this study, 13 CsJAZ genes were identified in the tea plant genome. Phylogenetic analysis showed that the JAZ proteins from tea and other plants clustered into 11 sub-groups. The CsJAZ gene transcriptional regulatory network predictive and expression pattern analyses suggest that these genes play vital roles in abiotic stress responses, phytohormone crosstalk and growth and development of the tea plant. In addition, the CsJAZ gene expression profiles were associated with tea postharvest processing. Our work provides a comprehensive understanding of the CsJAZ family and will help elucidate their contributions to tea quality during tea postharvest processing.
Collapse
|
18
|
Słomińska-Durdasiak KM, Kollers S, Korzun V, Nowara D, Schweizer P, Djamei A, Reif JC. Association mapping of wheat Fusarium head blight resistance-related regions using a candidate-gene approach and their verification in a biparental population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:341-351. [PMID: 31646363 DOI: 10.1007/s00122-019-03463-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Markers, located in Dicer1 and Ara6 genes, which are likely involved in cross-kingdom RNA trafficking, are associated with FHB resistance in GABI wheat population and were validated in biparental population. Association studies are a common approach to detect marker-trait associations for Fusarium head blight (FHB) resistance in wheat (Triticum aestivum), although verification of detected associations is exceptional. In the present study, candidate-gene association mapping (CG) of genes from silencing and secretory pathways, which may be involved in wheat resistance against FHB and cross-kingdom RNA trafficking, was performed. Fourteen markers, located in nine genes, were tested for association with FHB resistance in 356 lines from the GABI (genome analysis of the biological system of plants) wheat population. Three markers located in the genes Dicer1 and Ara6 were shown to be significantly associated with the studied trait. Verification of this finding was performed using the recombinant inbred lines (RILs) population 'Apache × Biscay', segregating for four of our 14 selected markers. We could show association of the Ara6 marker with plant height as well as association with FHB resistance for three markers located in Rab5-like GTPase gene Ara6 and Dicer1. These results confirmed the trait-marker associations detected also in the CG approach. Gene products of the associated genes are involved in response of the plant to pathogens, plant metabolism and may be involved in cross-kingdom RNA trafficking efficiency. The markers detected in the GABI wheat population, which were also validated in the biparental population, can potentially be used in wheat breeding.
Collapse
Affiliation(s)
- Karolina Maria Słomińska-Durdasiak
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany.
| | - Sonja Kollers
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Viktor Korzun
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Daniela Nowara
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Patrick Schweizer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Armin Djamei
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Jochen Christoph Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
19
|
Li M, Wang R, Liang Z, Wu X, Wang J. Genome-wide identification and analysis of the EIN3/EIL gene family in allotetraploid Brassica napus reveal its potential advantages during polyploidization. BMC PLANT BIOLOGY 2019; 19:110. [PMID: 30898097 PMCID: PMC6429743 DOI: 10.1186/s12870-019-1716-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/12/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Polyploidization is a common event in the evolutionary history of angiosperms, and there will be some changes in the genomes of plants other than a simple genomic doubling after polyploidization. Allotetraploid Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are a good group for studying the problems associated with polyploidization. On the other hand, the EIN3/EIL gene family is an important gene family in plants, all members of which are key genes in the ethylene signaling pathway. Until now, the EIN3/EIL gene family in B. napus and its diploid progenitors have been largely unknown, so it is necessary to comprehensively identify and analyze this gene family. RESULTS In this study, 13, 7 and 7 EIN3/EIL genes were identified in B. napus (2n = 4x = 38, AnCn), B. rapa (2n = 2x = 20, Ar) and B. oleracea (2n = 2x = 18, Co). All of the identified EIN3/EIL proteins were divided into 3 clades and further divided into 8 sub-clades. Ka/Ks analysis showed that all identified EIN3/EIL genes underwent purifying selection after the duplication events. Moreover, gene structure analysis showed that some EIN3/EIL genes in B. napus acquired introns during polyploidization, and homolog expression bias analysis showed that B. napus was biased towards its diploid progenitor B. rapa. The promoters of the EIN3/EIL genes in B. napus contained more cis-acting elements, which were mainly involved in endosperm gene expression and light responsiveness, than its diploid progenitors. Thus, B. napus might have potential advantages in some biological aspects. CONCLUSIONS The results indicated allotetraploid B. napus might have potential advantages in some biological aspects. Moreover, our results can increase the understanding of the evolution of the EIN3/EIL gene family in B. napus, and provided more reference for future research about polyploidization.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ziwei Liang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
20
|
Pucker B, Brockington SF. Genome-wide analyses supported by RNA-Seq reveal non-canonical splice sites in plant genomes. BMC Genomics 2018; 19:980. [PMID: 30594132 PMCID: PMC6310983 DOI: 10.1186/s12864-018-5360-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Most eukaryotic genes comprise exons and introns thus requiring the precise removal of introns from pre-mRNAs to enable protein biosynthesis. U2 and U12 spliceosomes catalyze this step by recognizing motifs on the transcript in order to remove the introns. A process which is dependent on precise definition of exon-intron borders by splice sites, which are consequently highly conserved across species. Only very few combinations of terminal dinucleotides are frequently observed at intron ends, dominated by the canonical GT-AG splice sites on the DNA level. RESULTS Here we investigate the occurrence of diverse combinations of dinucleotides at predicted splice sites. Analyzing 121 plant genome sequences based on their annotation revealed strong splice site conservation across species, annotation errors, and true biological divergence from canonical splice sites. The frequency of non-canonical splice sites clearly correlates with their divergence from canonical ones indicating either an accumulation of probably neutral mutations, or evolution towards canonical splice sites. Strong conservation across multiple species and non-random accumulation of substitutions in splice sites indicate a functional relevance of non-canonical splice sites. The average composition of splice sites across all investigated species is 98.7% for GT-AG, 1.2% for GC-AG, 0.06% for AT-AC, and 0.09% for minor non-canonical splice sites. RNA-Seq data sets of 35 species were incorporated to validate non-canonical splice site predictions through gaps in sequencing reads alignments and to demonstrate the expression of affected genes. CONCLUSION We conclude that bona fide non-canonical splice sites are present and appear to be functionally relevant in most plant genomes, although at low abundance.
Collapse
Affiliation(s)
- Boas Pucker
- Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Samuel F. Brockington
- Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|