1
|
Ashmore JS, Slippers B, Duong TA, Dittrich-Schröder G. Understanding the genetics of sex determination in insects and its relevance to genetic pest management. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39739940 DOI: 10.1111/imb.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Sex determination pathways regulate male and female-specific development and differentiation and offer potential targets for genetic pest management methods. Insect sex determination pathways are comprised of primary signals, relay genes and terminal genes. Primary signals of coleopteran, dipteran, hymenopteran and lepidopteran species are highly diverse and regulate the sex-specific splicing of relay genes based on the primary signal dosage, amino acid composition or the interaction with paternally inherited genes. In coleopterans, hymenopterans and some dipterans, relay genes are Transformer orthologs from the serine-arginine protein family that regulate sex-specific splicing of the terminal genes. Alternative genes regulate the splicing of the terminal genes in dipterans that lack Transformer orthologs and lepidopterans. Doublesex and Fruitless orthologs are the terminal genes. Doublesex and Fruitless orthologs are highly conserved zinc-finger proteins that regulate the expression of downstream proteins influencing physical traits and courtship behaviours in a sex-specific manner. Genetic pest management methods can use different mechanisms to exploit or disrupt female-specific regions of different sex determination genes. Female-specific regions of sex determination genes can be exploited to produce a lethal gene only in females or disrupted to impede female development or fertility. Reducing the number of fertile females in pest populations creates a male-biased sex ratio and eventually leads to the local elimination of the pest population. Knowledge on the genetic basis of sex determination is important to enable these sex determination pathways to be exploited for genetic pest management.
Collapse
Affiliation(s)
- Jade S Ashmore
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Gudrun Dittrich-Schröder
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Pospíšilová K, Van't Hof AE, Yoshido A, Kružíková R, Visser S, Zrzavá M, Bobryshava K, Dalíková M, Marec F. Masculinizer gene controls male sex determination in the codling moth, Cydia pomonella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 160:103991. [PMID: 37536576 DOI: 10.1016/j.ibmb.2023.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
The molecular mechanisms of sex determination in moths and butterflies (Lepidoptera) with female heterogamety (WZ/ZZ) are poorly understood, except in the silkworm Bombyx mori. However, the Masculinizer (Masc) gene that controls male development and dosage compensation in B. mori, appears to be conserved in Lepidoptera, as its masculinizing function was recently confirmed in several moth species. In this work, we investigated the role of the Masc gene in sex determination of the codling moth Cydia pomonella (Tortricidae), a globally important pest of pome fruits and walnuts. The gene structure of the C. pomonella Masc ortholog, CpMasc, is similar to B. mori Masc. However, unlike B. mori, we identified 14 splice variants of CpMasc in the available transcriptomes. Subsequent screening for sex specificity and genetic variation using publicly available data and RT-PCR revealed three male-specific splice variants. Then qPCR analysis of these variants revealed sex-biased expression showing a peak only in early male embryos. Knockdown of CpMasc by RNAi during early embryogenesis resulted in a shift from male-to female-specific splicing of the C. pomonella doublesex (Cpdsx) gene, its downstream effector, in ZZ embryos, leading to a strongly female-biased sex ratio. These data clearly demonstrate that CpMasc functions as a masculinizing gene in the sex-determining cascade of C. pomonella. Our study also showed that CpMasc transcripts are provided maternally, as they were detected in unfertilized eggs after oviposition and in mature eggs dissected from virgin females. This finding is unique, as maternal provision of mRNA has rarely been studied in Lepidoptera.
Collapse
Affiliation(s)
- Kristýna Pospíšilová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Arjen E Van't Hof
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| | - Renata Kružíková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Sander Visser
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; School of Science and Engineering, University of Groningen, 9700 CC, Groningen, the Netherlands.
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Kseniya Bobryshava
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Hwang HJ, Patnaik BB, Baliarsingh S, Patnaik HH, Sang MK, Park JE, Cho HC, Song DK, Jeong JY, Hong CE, Kim YT, Sin HJ, Ziwei L, Park SY, Kang SW, Jeong HC, Park HS, Han YS, Lee YS. Transcriptome analysis of the endangered dung beetle Copris tripartitus (Coleoptera: Scarabaeidae) and characterization of genes associated to immunity, growth, and reproduction. BMC Genomics 2023; 24:94. [PMID: 36864388 PMCID: PMC9979532 DOI: 10.1186/s12864-023-09122-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/09/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Dung beetles recycle organic matter through the decomposition of feces and support ecological balance. However, these insects are threatened by the indiscriminate use of agrochemicals and habitat destruction. Copris tripartitus Waterhouse (Coleoptera: Scarabaeidae), a dung beetle, is listed as a class-II Korean endangered species. Although the genetic diversity of C. tripartitus populations has been investigated through analysis of mitochondrial genes, genomic resources for this species remain limited. In this study, we analyzed the transcriptome of C. tripartitus to elucidate functions related to growth, immunity and reproduction for the purpose of informed conservation planning. RESULTS The transcriptome of C. tripartitus was generated using next-generation Illumina sequencing and assembled de novo using a Trinity-based platform. In total, 98.59% of the raw sequence reads were processed as clean reads. These reads were assembled into 151,177 contigs, 101,352 transcripts, and 25,106 unigenes. A total of 23,450 unigenes (93.40%) were annotated to at least one database. The largest proportion of unigenes (92.76%) were annotated to the locally curated PANM-DB. A maximum of 5,512 unigenes had homologous sequences in Tribolium castaneum. Gene Ontology (GO) analysis revealed a maximum of 5,174 unigenes in the Molecular function category. Further, in Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, a total of 462 enzymes were associated with established biological pathways. Based on sequence homology to known proteins in PANM-DB, representative immunity, growth, and reproduction-related genes were screened. Potential immunity-related genes were categorized into pattern recognition receptors (PRRs), the Toll-like receptor signaling pathway, the MyD88- dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related transcripts. Among PRRs, we conducted detailed in silico characterization of TLR-2, CTL, and PGRP_SC2-like. Repetitive elements such as long terminal repeats, short interspersed nuclear elements, long interspersed nuclear elements and DNA elements were enriched in the unigene sequences. A total of 1,493 SSRs were identified among all unigenes of C. tripartitus. CONCLUSIONS This study provides a comprehensive resource for analysis of the genomic topography of the beetle C. tripartitus. The data presented here clarify the fitness phenotypes of this species in the wild and provide insight to support informed conservation planning.
Collapse
Affiliation(s)
- Hee Ju Hwang
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore-, Odisha, 756089, India.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Snigdha Baliarsingh
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore-, Odisha, 756089, India
| | - Hongray Howrelia Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Min Kyu Sang
- Research Support Center (Core-Facility) for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jie Eun Park
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hang Chul Cho
- iLAB, INSILICOGEN, INC. #2901~2904, Tower-Dong A, HEUNGDEOK IT VALLEY, 13, Heungdeok 1-Ro, Giheung-Gu, Yongin-Si, 16954, Gyeonggi-do, Korea
| | - Dae Kwon Song
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jun Yang Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Chan Eui Hong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Yong Tae Kim
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hyeon Jun Sin
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Liu Ziwei
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - So Young Park
- Biodiversity Research Team, Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, South Korea
| | - Se Won Kang
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Heon Cheon Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-Dong, Yuseong-Gu, Daejeon, 34069, Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, South Korea
| | - Yong Seok Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea. .,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea. .,Research Support Center (Core-Facility) for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea.
| |
Collapse
|
5
|
Yuan JW, Song HX, Chang YW, Yang F, Du YZ. Transcriptome analysis and screening of putative sex-determining genes in the invasive pest, Frankliniella occidentalis (Thysanoptera: Thripidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101008. [PMID: 35752128 DOI: 10.1016/j.cbd.2022.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The invasive insect pest, Frankliniella occidentalis, is a well-known vector that transmits a variety of ornamental and vegetable viruses. The mechanistic basis of sex determination in F. occidentalis is not well understood, and this hinders our ability to deploy sterile insect technology as an integrated pest management strategy. In this study, six cDNA libraries from female and male adults of F. occidentalis (three biological replicates each) were constructed and transcriptomes were sequenced. A total of 6000 differentially-expressed genes were identified in the two sexes including 2355 up- and 3645 down-regulated genes. A total of 149 sex-related genes were identified based on GO enrichment data and included transformer-2 (tra2), fruitless (fru), male-specific lethal (msl) and sex lethal (sxl); several of these exhibited sex-specific and/or sex-biased expression in F. occidentalis. This study contributes to our understanding of the sex-determined cascade in F. occidentalis and other members of the Thysanoptera.
Collapse
Affiliation(s)
- Jia-Wen Yuan
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Xia Song
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Visser S, Voleníková A, Nguyen P, Verhulst EC, Marec F. A conserved role of the duplicated Masculinizer gene in sex determination of the Mediterranean flour moth, Ephestia kuehniella. PLoS Genet 2021; 17:e1009420. [PMID: 34339412 PMCID: PMC8360546 DOI: 10.1371/journal.pgen.1009420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/12/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Sex determination in the silkworm, Bombyx mori, is based on Feminizer (Fem), a W-linked Fem piRNA that triggers female development in WZ individuals, and the Z-linked Masculinizer (Masc), which initiates male development and dosage compensation in ZZ individuals. While Fem piRNA is missing in a close relative of B. mori, Masc determines sex in several representatives of distant lepidopteran lineages. We studied the molecular mechanisms of sex determination in the Mediterranean flour moth, Ephestia kuehniella (Pyralidae). We identified an E. kuehniella Masc ortholog, EkMasc, and its paralog resulting from a recent duplication, EkMascB. Both genes are located on the Z chromosome and encode a similar Masc protein that contains two conserved domains but has lost the conserved double zinc finger domain. We developed PCR-based genetic sexing and demonstrated a peak in the expression of EkMasc and EkMascB genes only in early male embryos. Simultaneous knock-down experiments of both EkMasc and EkMascB using RNAi during early embryogenesis led to a shift from male- to female-specific splicing of the E. kuehniella doublesex gene (Ekdsx), their downstream effector, in ZZ embryos and resulted in a strong female-biased sex-ratio. Our results thus confirmed the conserved role of EkMasc and/or EkMascB in masculinization. We suggest that the C-terminal proline-rich domain, we have identified in all functionally confirmed Masc proteins, in conjunction with the masculinizing domain, is important for transcriptional regulation of sex determination in Lepidoptera. The function of the Masc double zinc finger domain is still unknown, but appears to have been lost in E. kuehniella. The sex-determining cascade in the silkworm, Bombyx mori, differs greatly from those of other insects. In B. mori, female development is initiated by Fem piRNA expressed from the W chromosome during early embryogenesis. Fem piRNA silences Masculinizer (Masc) thereby blocking the male pathway resulting in female development. It is currently unknown whether this cascade is conserved across Lepidoptera. In the Mediterranean flour moth, Ephestia kuehniella, we identified an ortholog of Masc and discovered its functional duplication on the Z chromosome, which has not yet been found in any other lepidopteran species. We provide two lines of evidence that the EkMasc and/or EkMascB genes play an essential role in masculinization: (i) they show a peak of expression during early embryogenesis in ZZ but not in WZ embryos and (ii) their simultaneous silencing by RNAi results in female-specific splicing of the E. kuehniella doublesex gene (Ekdsx) in ZZ embryos and in a female-biased sex ratio. Our results suggest a conserved role of the duplicated Masc gene in sex determination of E. kuehniella.
Collapse
Affiliation(s)
- Sander Visser
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Anna Voleníková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Nguyen
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eveline C. Verhulst
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- * E-mail:
| |
Collapse
|
7
|
Wang Y, Wang X, Ge J, Wang G, Li J. Identification and Functional Analysis of the Sex-Determiner Transformer-2 Homologue in the Freshwater Pearl Mussel, Hyriopsis cumingii. Front Physiol 2021; 12:704548. [PMID: 34305654 PMCID: PMC8298206 DOI: 10.3389/fphys.2021.704548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Transformer-2 (Tra-2) is an upstream regulatory element of the sex regulation mechanism in insects and plays a critical role in sex formation. To understand the role of tra-2 in Hyriopsis cumingii, the full-length Hctra-2 (1867 bp) was obtained from the gonads, and sequence alignment with other species showed that HCTRA-2 protein had a highly conserved RRM domain. Phylogenetic analysis showed that the HCTRA-2 protein was a close relative to of the mollusks TRA-2 protein. The qRT-PCR of tissue-specific expression pattern showed that the Hctra-2 was abundant in gonads, and the expression in testes was higher than that in ovaries (p < 0.01). It suggests that Hctra-2 may play a potential regulatory role in gonadal development of H. cumingii. In the early gonadal development, the Hctra-2 expression was the highest on the third day after fertilization and increased slightly from 4 months to 5 months, which may be related to the embryonic sex determination and early gonadal development. In situ hybridization showed that Hctra-2 mRNA signals were present in both male and female gonads. After silencing Hctra-2 by RNAi, the expression levels of Hcfem-1b and Hcdmrt were changed. It is speculated that there may be a certain relationship between them, which plays an important role in the sex regulation of H. cumingii. Our research will help to deepen our understanding of the shellfish sex determination mechanisms.
Collapse
Affiliation(s)
- Yayu Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, China
| | - Xiaoqiang Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, China
| | - Jingyuan Ge
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai, China
| |
Collapse
|
8
|
Zhou Y, Yang P, Xie S, Shi M, Huang J, Wang Z, Chen X. Comparative Transcriptome Analysis Reveals Sex-Based Differences during the Development of the Adult Parasitic Wasp Cotesia vestalis (Hymenoptera: Braconidae). Genes (Basel) 2021; 12:genes12060896. [PMID: 34200644 PMCID: PMC8228208 DOI: 10.3390/genes12060896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
The endoparasitic wasp Cotesia vestalis is an important biological agent for controlling the population of Plutella xylostella, a major pest of cruciferous crops worldwide. Though the genome of C. vestalis has recently been reported, molecular mechanisms associated with sexual development have not been comprehensively studied. Here, we combined PacBio Iso-Seq and Illumina RNA-Seq to perform genome-wide profiling of pharate adult and adult development of male and female C. vestalis. Taking advantage of Iso-Seq full-length reads, we identified 14,466 novel transcripts as well as 8770 lncRNAs, with many lncRNAs showing a sex- and stage-specific expression pattern. The differentially expressed gene (DEG) analyses showed 2125 stage-specific and 326 sex-specific expressed genes. We also found that 4819 genes showed 11,856 alternative splicing events through combining the Iso-Seq and RNA-Seq data. The results of comparative analyses showed that most genes were alternatively spliced across developmental stages, and alternative splicing (AS) events were more prevalent in females than in males. Furthermore, we identified six sex-determining genes in this parasitic wasp and verified their sex-specific alternative splicing profiles. Specifically, the characterization of feminizer and doublesex splicing between male and female implies a conserved regulation mechanism of sexual development in parasitic wasps.
Collapse
Affiliation(s)
- Yuenan Zhou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
| | - Pei Yang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
| | - Shuang Xie
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
| | - Min Shi
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
| | - Jianhua Huang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Zhizhi Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Z.W.); (X.C.)
| | - Xuexin Chen
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (P.Y.); (S.X.); (M.S.); (J.H.)
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Z.W.); (X.C.)
| |
Collapse
|