1
|
Fu J, Wu X, Zhang C, Tang Y, Zhou F, Zhang X, Fan S. Genomic Analysis of Talaromyces verruculosus SJ9: An Efficient Tetracycline-, Enrofloxacin-, and Tylosin-Degrading Fungus. Genes (Basel) 2024; 15:1643. [PMID: 39766911 PMCID: PMC11675779 DOI: 10.3390/genes15121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Many fungi related to Talaromyces verruculosus can degrade a wide range of pollutants and are widely distributed globally. T. verruculosus SJ9 was enriched from fresh strawberry inter-root soil to yield fungi capable of degrading tetracycline, enrofloxacin, and tylosin. METHODS T. verruculosus SJ9 genome was sequenced, assembled, and annotated in this study utilizing bioinformatics software, PacBio, and the Illumina NovaSeq PE150 technology. RESULTS The genome size is 40.6 Mb, the N50 scaffold size is 4,534,389 bp, and the predicted number of coding genes is 8171. The T. verruculosus TS63-9 genome has the highest resemblance to the T. verruculosus SJ9 genome, according to a comparative genomic analysis of seven species. In addition, we annotated many genes encoding antibiotic-degrading enzymes in T. verruculosus SJ9 through genomic databases, which also provided strong evidence for its ability to degrade antibiotics. CONCLUSIONS Through the correlation analysis of the whole-genome data of T. verruculosus SJ9, we identified a number of genes capable of encoding antibiotic-degrading enzymes in its gene function annotation database. These antibiotic-related enzymes provide some evidence that T. verruculosus SJ9 can degrade fluoroquinolone antibiotics, tetracycline antibiotics, and macrolide antibiotics. In summary, the complete genome sequence of T. verruculosus SJ9 has now been published, and this resource constitutes a significant dataset that will inform forthcoming transcriptomic, proteomic, and metabolic investigations of this fungal species. In addition, genomic studies of other filamentous fungi can utilize it as a reference. Thanks to the discoveries made in this study, the future application of this fungus in industrial production will be more rapid.
Collapse
Affiliation(s)
- Jing Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| | - Xiaoqing Wu
- Institute of Ecology, Shandong Academy of Sciences, Jinan 250103, China; (X.W.); (F.Z.)
| | - Chi Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| | - Yuhan Tang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| | - Fangyuan Zhou
- Institute of Ecology, Shandong Academy of Sciences, Jinan 250103, China; (X.W.); (F.Z.)
| | - Xinjian Zhang
- Institute of Ecology, Shandong Academy of Sciences, Jinan 250103, China; (X.W.); (F.Z.)
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| |
Collapse
|
2
|
Ren JY, Yu HQ, Xu S, Zhou WJ, Liu ZH. Putative pathogenic factors underlying Streptococcus oralis opportunistic infections. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00159-2. [PMID: 39261123 DOI: 10.1016/j.jmii.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Streptococcus oralis, belonging to the viridans group streptococci (VGS), has been considered a component of the normal flora predominantly inhabiting the oral cavity. In recent years, a growing body of literature has revealed that dental procedures or daily tooth brushing activities can cause the spread of S. oralis from the oral cavity into various body sites leading to life-threatening opportunistic infections such as infective endocarditis (IE) and meningitis. However, very little is currently known about the pathogenicity of S. oralis. Thus, the aim of this review is to update the current understanding of the pathogenic potential of S. oralis to pave the way for the prevention and treatment of S. oralis opportunistic infections.
Collapse
Affiliation(s)
- Jing-Yi Ren
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China; School of Stomatology, Binzhou Medical University, Yantai, China
| | - Hong-Qiang Yu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Xu
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China
| | - Wen-Juan Zhou
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China; Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, China; Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, China.
| | - Zhong-Hao Liu
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China; School of Stomatology, Binzhou Medical University, Yantai, China; Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, China; Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, China
| |
Collapse
|
3
|
Nissen L, Casciano F, Chiarello E, Di Nunzio M, Bordoni A, Gianotti A. Sourdough process and spirulina-enrichment can mitigate the limitations of colon fermentation performances of gluten-free breads in non-celiac gut model. Food Chem 2024; 436:137633. [PMID: 37839115 DOI: 10.1016/j.foodchem.2023.137633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
In this work, the impact of gluten free (GF) breads enriched with spirulina on the ecology of the colon microbiota of non-celiac volunteers was investigated. Simulation of digestion of GF breads was conducted with an in vitro gut model. Microbiomics and metabolomics analyses were done during colon fermentations to study the modulation of the microbiota. From the results, a general increase in Proteobacteria and no reduction of detrimental microbial metabolites were observed in any conditions. Notwithstanding, algae enriched sourdough breads showed potential functionalities, as the improvement of some health-related ecological indicators, like i) microbiota eubiosis; ii) production of bioactive volatile organic fatty acids; iii) production of bioactives terpenes. Our results indicate that a sourdough fermentation and algae enrichment can mitigate the negative effect of GF breads on gut microbiota of non-celiac consumers.
Collapse
Affiliation(s)
- Lorenzo Nissen
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy; CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| | - Flavia Casciano
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| | - Elena Chiarello
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy.
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Alessandra Bordoni
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy; CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy.
| | - Andrea Gianotti
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy; CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, Bologna 40100, Italy.
| |
Collapse
|
4
|
Zheng M, Kang Y, Shen Y, Xu Y, Xu F, Chen Y. Genomic Features and Comparative Genomic Analysis of Streptococcus sp. v1. nov., Isolated from an Endophthalmitis Patient. Curr Microbiol 2023; 80:378. [PMID: 37861738 DOI: 10.1007/s00284-023-03460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023]
Abstract
Endophthalmitis is an acute inflammatory intraocular condition that can cause permanent vision loss. The treatment strategy and visual outcome partly depend on the identification of the agents of pathogens. In this study, metagenomic sequencing was conducted to investigate the microbial and antibiotic resistance genes (ARGs) composition in the vitreous (intraocular body fluid) of an endophthalmitis patient, who progressed rapidly and accompanied by severe pain. Metagenomic sequencing data revealed that the vitreous sample was predominated by Streptococcus, with a low-diversity microbiome in the vitreous. This strain harbor's the ARGs mainly against beta-lactam, macrolide-lincosamide-streptogramin, and multidrug. Additionally, metagenome-assembled genome sequence of Streptococcus sp. v1. nov. was identified. The Tetra Correlation Search (TCS) analysis uncovered that the closest relative of the Streptococcus sp. v1. nov. was Streptococcus mitis SK321. Pan/core genome analysis for Streptococcus sp. v1. nov. and TCS top 25 hits strains revealed that most unique genes of Streptococcus sp. v1. nov. were linked to ATP-binding cassette transport system, which could indicate unique virulence and pathogenic potentials of Streptococcus sp. v1. nov. In addition, a total of 7 virulence factors were identified, and the overwhelming of them were classified into "offensive virulence factors". The high pathogenicity of Streptococcus sp. v1. nov. could be a reason for the patient's rapid disease progression. Our study was first isolated an ocular pathogen with highly virulent based on metagenomic sequencing and bioinformatics analysis, which has important reference value for revealing the composition and genome characteristics of pathogens in endophthalmitis patient in the future.
Collapse
Affiliation(s)
- Meiqin Zheng
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, People's Republic of China
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yutong Kang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yangyang Shen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Yi Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Fangyi Xu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, People's Republic of China.
| |
Collapse
|
5
|
Whole Genome Sequencing and Annotation of Naematelia aurantialba (Basidiomycota, Edible-Medicinal Fungi). J Fungi (Basel) 2021; 8:jof8010006. [PMID: 35049946 PMCID: PMC8777972 DOI: 10.3390/jof8010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Naematelia aurantialba is a rare edible fungus with both nutritional and medicinal values and especially rich in bioactive polysaccharides. However, due to the lack of genomic information, researches on the mining of active compounds, artificial breeding and cultivation, genetics, and molecular biology are limited. To facilitate the medicinal and food applications of N. aurantialba, we sequenced and analyzed the whole genome of N. aurantialba for the first time. The 21-Mb genome contained 15 contigs, and a total of 5860 protein-coding genes were predicted. The genome sequence shows that 296 genes are related to polysaccharide synthesis, including 15 genes related to nucleoside-activated sugar synthesis and 11 genes related to glucan synthesis. The genome also contains genes and gene clusters for the synthesis of other active substances, including terpenoids, unsaturated fatty acids, and bioactive proteins. In addition, it was also found that N. aurantialba was more closely related to Naematelia encephala than to Tremella fuciformis. In short, this study provides a reference for molecular cognition of N. aurantialba and related researches.
Collapse
|
6
|
Esmail GA, Al-Dhabi NA, AlDawood B, Somily AM. Shotgun whole genome sequencing of drug-resistance Streptococcus anginosus strain 47S1 isolated from a patient with pharyngitis in Saudi Arabia. J Infect Public Health 2021; 14:1740-1749. [PMID: 34836797 DOI: 10.1016/j.jiph.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Streptococcus anginosus is an emergence opportunistic pathogen that colonize the human upper respiratory tract (URT), S. anginosus alongside with S. intermedius and S. constellatus, members of S. anginosus group, are implicated in several human infections. However, our understanding this bacterium to the genotype level with determining the genes associated with pathogenicity and antimicrobial resistance (AMR) is scarce. S. anginosus 47S1 strain was isolated from sore throat infection, the whole genome was characterized and the virulence & AMR genes contributing in pathogenicity were investigated. METHODOLOGY The whole genome of 47S1 was sequenced by Illumina sequencing technology. Strain 47S1 genome was de novo assembled with different strategies and annotated via PGAP, PROKKA and RAST pipelines. Identifying the CRISPR-Cass system and prophages sequences was performed using CRISPRloci and PhiSpy tools respectively. Prediction the virulence genes were performed with the VFDB database. AMR genes were detected in silico using NCBI AMRFinderPlus pipeline and CARD database and compared with in vitro AST findings. RESULTS β-hemolytic strain 47S1 was identified with conventional microbiology techniques and confirmed by the sequences of 16S rRNA gene. Genome of 47S1 comprised of 1981512 bp. Type I-C CRISPR-Cas system and 4 prophages were detected among the genome of 47S1. Several virulence genes were predicted, most of these genes are found in other pathogenic streptococci, mainly lmb, pavA, htrA/degP, eno, sagA, psaA and cpsI which play a significant role in colonizing, invading host tissues and evade form immune system. In silico AMR findings showed that 47S1 gnome harbors (tetA, tetB &tet32), (aac(6')-I, aadK &aph(3')-IVa), fusC, and PmrA genes that mediated-resistance to tetracyclines, aminoglycosides, fusidic acid, and fluoroquinolone respectively which corresponds with in vitro AST obtained results. In conclusion, WGS is a key approach to predict the virulence and AMR genes, results obtained in this study may contribute for a better understanding of the opportunistic S. anginosus pathogenicity.
Collapse
Affiliation(s)
- Galal Ali Esmail
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Badr AlDawood
- Department of Emergency Medicine, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia
| | - Ali Mohammed Somily
- Department of Pathology and Laboratory Medicine/Microbiology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
7
|
Draft Genome Sequences of Viridans Streptococci Causing Bacterial Endophthalmitis in Humans. Microbiol Resour Announc 2021; 10:e0083521. [PMID: 34672696 PMCID: PMC8530026 DOI: 10.1128/mra.00835-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viridans streptococci are a group of bacteria that are commensals of the oral cavity and pharynx. These species tend to cause severe cases of bacterial endophthalmitis with poor prognoses but remain largely uncharacterized in this context. Here, we report the whole-genome sequences of 21 strains of viridans streptococci isolated from endophthalmitis in humans.
Collapse
|