1
|
Huang D, Wu B, Chen G, Xing W, Xu Y, Ma F, Li H, Hu W, Huang H, Yang L, Song S. Genome-wide analysis of the passion fruit invertase gene family reveals involvement of PeCWINV5 in hexose accumulation. BMC PLANT BIOLOGY 2024; 24:836. [PMID: 39243043 PMCID: PMC11378628 DOI: 10.1186/s12870-024-05392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/05/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Invertases (INVs) are key enzymes in sugar metabolism, cleaving sucrose into glucose and fructose and playing an important role in plant development and the stress response, however, the INV gene family in passion fruit has not been systematically reported. RESULTS In this study, a total of 16 PeINV genes were identified from the passion fruit genome and named according to their subcellular location and chromosome position. These include six cell wall invertase (CWINV) genes, two vacuolar invertase (VINV) genes, and eight neutral/alkaline invertase (N/AINV) genes. The gene structures, phylogenetic tree, and cis-acting elements of PeINV gene family were predicted using bioinformatics methods. Results showed that the upstream promoter region of the PeINV genes contained various response elements; particularly, PeVINV2, PeN/AINV3, PeN/AINV5, PeN/AINV6, PeN/AINV7, and PeN/AINV8 had more response elements. Additionally, the expression profiles of PeINV genes under different abiotic stresses (drought, salt, cold temperature, and high temperature) indicated that PeCWINV5, PeCWINV6, PeVINV1, PeVINV2, PeN/AINV2, PeN/AINV3, PeN/AINV6, and PeN/AINV7 responded significantly to these abiotic stresses, which was consistent with cis-acting element prediction results. Sucrose, glucose, and fructose are main soluble components in passion fruit pulp. The contents of total soluble sugar, hexoses, and sweetness index increased significantly at early stages during fruit ripening. Transcriptome data showed that with an increase in fruit development and maturity, the expression levels of PeCWINV2, PeCWINV5, and PeN/AINV3 exhibited an up-regulated trend, especially for PeCWINV5 which showed highest abundance, this correlated with the accumulation of soluble sugar and sweetness index. Transient overexpression results demonstrated that the contents of fructose, glucose and sucrose increased in the pulp of PeCWINV5 overexpressing fruit. It is speculated that this cell wall invertase gene, PeCWINV5, may play an important role in sucrose unloading and hexose accumulation. CONCLUSION In this study, we systematically identified INV genes in passion fruit for the first time and further investigated their physicochemical properties, evolution, and expression patterns. Furthermore, we screened out a key candidate gene involved in hexose accumulation. This study lays a foundation for further study on INV genes and will be beneficial on the genetic improvement of passion fruit breeding.
Collapse
Affiliation(s)
- Dongmei Huang
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Bin Wu
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Ge Chen
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Key Laboratory of Passion fruit Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, P.R. China
| | - Wenting Xing
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Yi Xu
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Seed Industry Laboratory, Sanya, Hainan, 572025, P.R. China
| | - Funing Ma
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Seed Industry Laboratory, Sanya, Hainan, 572025, P.R. China
| | - Hongli Li
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Wenbin Hu
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Haijie Huang
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Liu Yang
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Key Laboratory of Passion fruit Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, P.R. China.
| | - Shun Song
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China.
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Seed Industry Laboratory, Sanya, Hainan, 572025, P.R. China.
| |
Collapse
|
2
|
Qiao K, Lv J, Hao J, Zhao C, Fan S, Ma Q. Identification of cotton PIP5K genes and role of GhPIP5K9a in primary root development. Gene 2024; 921:148532. [PMID: 38705423 DOI: 10.1016/j.gene.2024.148532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Phosphatidylinositol 4 phosphate 5-kinase (PIP5K) is crucial for the phosphatidylinositol (PI) signaling pathway. It plays a significant role in plant growth and development, as well as stress response. However, its effects on cotton are unknown. This study identified PIP5K genes from four cotton species and conducted bioinformatic analyses, with a particular emphasis on the functions of GhPIP5K9a in primary roots. The results showed that cotton PIP5Ks were classified into four subgroups. Analysis of gene structure and motif composition showed obvious conservation within each subgroup. Synteny analysis suggested that the PIP5K gene family experienced significant expansion due to both whole-genome duplication (WGD) and segmental duplication. Transcriptomic data analysis revealed that the majority of GhPIP5K genes had the either low or undetectable levels of expression. Moreover, GhPIP5K9a is highly expressed in the root and was located in plasmalemma. Suppression of GhPIP5K9a transcripts resulted in longer primary roots, longer primary root cells and increased auxin polar transport-related genes expression, and decreased abscisic acid (ABA) content, indicating that GhPIP5K9a negatively regulates cotton primary root growth. This study lays the foundation for further exploration of the role of the PIP5K genes in cotton.
Collapse
Affiliation(s)
- Kaikai Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jiaoyan Lv
- Anyang Academy of Agricultural Sciences, Anyang 455000, China
| | - Juxin Hao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Chenglong Zhao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Shuli Fan
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Qifeng Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
3
|
Liu Y, Liu B, Luo K, Yu B, Li X, Zeng J, Chen J, Xia R, Xu J, Liu Y. Genomic identification and expression analysis of acid invertase (AINV) gene family in Dendrobium officinale Kimura et Migo. BMC PLANT BIOLOGY 2024; 24:396. [PMID: 38745125 PMCID: PMC11092110 DOI: 10.1186/s12870-024-05102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.
Collapse
Affiliation(s)
- Yujia Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Boting Liu
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Kefa Luo
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Baiyin Yu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China.
| | - Xiang Li
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jian Zeng
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuanlong Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Qiao K, Zeng Q, Lv J, Chen L, Hao J, Wang D, Ma Q, Fan S. Exploring the role of GhN/AINV23: implications for plant growth, development, and drought tolerance. Biol Direct 2024; 19:22. [PMID: 38486336 PMCID: PMC10938729 DOI: 10.1186/s13062-024-00465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Neutral/alkaline invertases (N/AINVs) play a crucial role in plant growth, development, and stress response, by irreversibly hydrolyzing sucrose into glucose and fructose. However, research on cotton in this area is limited. This study aims to investigate GhN/AINV23, a neutral/alkaline invertase in cotton, including its characteristics and biological functions. RESULTS In our study, we analyzed the sequence information, three-dimensional (3D) model, phylogenetic tree, and cis-elements of GhN/AINV23. The localization of GhN/AINV23 was determined to be in the cytoplasm and cell membrane. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that GhN/AINV23 expression was induced by abscisic acid (ABA), exogenous sucrose and low exogenous glucose, and inhibited by high exogenous glucose. In Arabidopsis, overexpression of GhN/AINV23 promoted vegetative phase change, root development, and drought tolerance. Additionally, the virus-induced gene silencing (VIGS) assay indicated that the inhibition of GhN/AINV23 expression made cotton more susceptible to drought stress, suggesting that GhN/AINV23 positively regulates plant drought tolerance. CONCLUSION Our research indicates that GhN/AINV23 plays a significant role in plant vegetative phase change, root development, and drought response. These findings provide a valuable foundation for utilizing GhN/AINV23 to improve cotton yield.
Collapse
Affiliation(s)
- Kaikai Qiao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, 572024, Sanya, Hainan, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), 455000, Anyang, Henan, China.
| | - Qingtao Zeng
- The 7th Division of Agricultural Sciences Institute, Xinjiang Production and Construction Corps, 833200, Kuitun, Xinjiang, China
| | - Jiaoyan Lv
- Anyang Academy of Agricultural Sciences, 455000, Anyang, Henan, China
| | - Lingling Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), 455000, Anyang, Henan, China
| | - Juxin Hao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), 455000, Anyang, Henan, China
| | - Ding Wang
- Anyang Meteorological Service, 455000, Anyang, Henan, China
| | - Qifeng Ma
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, 572024, Sanya, Hainan, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), 455000, Anyang, Henan, China.
| | - Shuli Fan
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, 572024, Sanya, Hainan, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), 455000, Anyang, Henan, China.
| |
Collapse
|
5
|
Mao T, Zhang Y, Xue W, Jin Y, Zhao H, Wang Y, Wang S, Zhuo S, Gao F, Su Y, Yu C, Guo X, Sheng Y, Zhang J, Zhang H. Identification, characterisation and expression analysis of peanut sugar invertase genes reveal their vital roles in response to abiotic stress. PLANT CELL REPORTS 2024; 43:30. [PMID: 38195770 DOI: 10.1007/s00299-023-03123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE Sucrose invertase activity is positively related to osmotic and salt stress resistance in peanut. Sucrose invertases (INVs) have important functions in plant growth and response to environmental stresses. However, their biological roles in peanut are still not fully revealed. In this research, we identified 42 AhINV genes in the peanut genome. They were highly conserved and clustered into three groups with 24 segmental duplication events occurred under purifying selection. Transcriptional expression analysis exhibited that they were all ubiquitously expressed, and most of them were up-regulated by osmotic and salt stresses, with AhINV09, AhINV23 and AhINV19 showed the most significant up-regulation. Further physiochemical analysis showed that the resistance of peanut to osmotic and salt stress was positively related to the high sugar content and sucrose invertase activity. Our results provided fundamental information on the structure and evolutionary relationship of INV gene family in peanut and gave theoretical guideline for further functional study of AhINV genes in response to abiotic stress.
Collapse
Affiliation(s)
- Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yaru Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Wenwen Xue
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yu Jin
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Hongfei Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yibo Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Shengnan Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Shengjie Zhuo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Feifei Gao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yanping Su
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Xiaotong Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China.
| |
Collapse
|
6
|
Song C, Zhang Y, Zhang W, Manzoor MA, Deng H, Han B. The potential roles of acid invertase family in Dendrobium huoshanense: Identification, evolution, and expression analyses under abiotic stress. Int J Biol Macromol 2023; 253:127599. [PMID: 37871722 DOI: 10.1016/j.ijbiomac.2023.127599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Dendrobium huoshanense, a traditional Chinese medicine prized for its horticultural and medicinal properties, thrives in an unfavorable climate and is exposed to several adverse environmental conditions. Acid invertase (AINV), a widely distributed enzyme that has been demonstrated to play a significant role in response to environmental stresses. However, the identification of the AINV gene family in D. huoshanense, the collinearity between relative species, and the expression pattern under external stress have yet to be resolved. We systematically retrieved the D. huoshanense genome and screened out four DhAINV genes, which were further classified into two subfamilies by the phylogenetic analysis. The evolutionary history of AINV genes in D. huoshanense was uncovered by comparative genomics investigations. The subcellular localization predicted that the DhVINV genes may be located in the vacuole, while the DhCWINV genes may be located in the cell wall. The exon/intron structures and conserved motifs of DhAINV genes were found to be highly conserved in two subclades. The conserved amino acids and catalytic motifs in DhAINV proteins were determined to be critical to their function. Notably, the cis-acting elements in all DhAINV genes were mainly relevant to abiotic stresses and light response. In addition, the expression profile coupled with qRT-PCR revealed the typical expression patterns of DhAINV in response to diverse abiotic stresses. Our findings could be beneficial to the characterization and further investigation of AINV functions in Dendrobium plants.
Collapse
Affiliation(s)
- Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China.
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Wenwu Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Hui Deng
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan 237012, China.
| |
Collapse
|
7
|
Manivannan A, Cheeran Amal T. Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture. Mol Biol Rep 2023; 50:6937-6953. [PMID: 37349608 DOI: 10.1007/s11033-023-08565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Understanding the complex cotton genome is of paramount importance in devising a strategy for sustainable agriculture. Cotton is probably the most economically important cash crop known for its cellulose-rich fiber content. The cotton genome has become an ideal model for deciphering polyploidization due to its polyploidy, setting it apart from other major crops. However, the main challenge in understanding the functional and regulatory functions of many genes in cotton is still the complex cotton polyploidy genome, which is not limited to a single role. Cotton production is vulnerable to the sensitive effects of climate change, which can alter or aggravate soil, pests, and diseases. Thus, conventional plant breeding coupled with advanced technologies has led to substantial progress being made in cotton production. GENOMICS APPROACHES IN COTTON In the frontier areas of genomics research, cotton genomics has gained momentum accomplished by robust high-throughput sequencing platforms combined with novel computational tools to make the cotton genome more tractable. Advances in long-read sequencing have allowed for the generation of the complete set of cotton gene transcripts giving incisive scientific knowledge in cotton improvement. In contrast, the integration of the latest sequencing platforms has been used to generate multiple high-quality reference genomes in diploid and tetraploid cotton. While pan-genome and 3D genomic studies are still in the early stages in cotton, it is anticipated that rapid advances in sequencing, assembly algorithms, and analysis pipelines will have a greater impact on advanced cotton research. CONCLUSIONS This review article briefly compiles substantial contributions in different areas of the cotton genome, which include genome sequencing, genes, and their molecular regulatory networks in fiber development and stress tolerance mechanism. This will greatly help us in understanding the robust genomic organization which in turn will help unearth candidate genes for functionally important agronomic traits.
Collapse
Affiliation(s)
- Alagarsamy Manivannan
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641 003, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
8
|
Qiao K, Lv J, Chen L, Wang Y, Ma L, Wang J, Wang Z, Wang L, Ma Q, Fan S. GhSTP18, a member of sugar transport proteins family, negatively regulates salt stress in cotton. PHYSIOLOGIA PLANTARUM 2023; 175:e13982. [PMID: 37616007 DOI: 10.1111/ppl.13982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
The sugar transporter protein (STP) family has been shown to play important roles in plant growth, development, and stress response. However, it has not been studied in cotton compared to other major crops. In this study, we identified 90 STP genes from four cotton species, performed bioinformatic analysis, and focused on the role of GhSTP18 in salt stress. According to our results, cotton STP proteins were divided into four subgroups according to the phylogenetic tree. A synteny analysis suggested that whole-genome duplication (WGD) and segmental duplication were key drivers in the expansion of the STP gene family. The transcriptomic data analysis showed that 29 GhSTP genes exhibited sink-specific expression. Quantitative real time-polymerase chain reaction (qRT-PCR) analyses revealed that expression of GhSTP18 was induced by salt treatment, heat treatment, cold treatment, and drought treatment, and continuously increased during a salt stress time course. Notably, GhSTP18 encodes a plasma membrane-localized galactose transporter. Suppression of GhSTP18 transcription by a virus-induced gene silencing (VIGS) assay reduced sensitivity to salt stress in cotton, indicating that GhSTP18 negatively regulates plant salt tolerance. These results provide an important reference and resource for further studying and deploying STP genes for cotton improvement.
Collapse
Affiliation(s)
- Kaikai Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Jiaoyan Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lingling Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yanwen Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lina Ma
- Hebei Agricultural University, Hebei Base of National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Baoding, Hebei, China
| | - Jin Wang
- Hebei Agricultural University, Hebei Base of National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Baoding, Hebei, China
| | - Zhe Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Long Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Qifeng Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuli Fan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| |
Collapse
|
9
|
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan YL, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. THE NEW PHYTOLOGIST 2022; 236:2172-2188. [PMID: 36104957 DOI: 10.1111/nph.18490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Faithful meiotic progression ensures the generation of viable gametes. Studies suggested the male meiosis of plants is sensitive to ambient temperature, but the underlying molecular mechanisms remain elusive. Here, we characterized a maize (Zea mays ssp. mays L.) dominant male sterile mutant Mei025, in which the meiotic process of pollen mother cells (PMCs) was arrested after pachytene. An Asp-to-Asn replacement at position 276 of INVERTASE ALKALINE NEUTRAL 6 (INVAN6), a cytosolic invertase (CIN) that predominantly exists in PMCs and specifically hydrolyses sucrose, was revealed to cause meiotic defects in Mei025. INVAN6 interacts with itself as well as with four other CINs and seven 14-3-3 proteins. Although INVAN6Mei025 , the variant of INVAN6 found in Mei025, lacks hydrolytic activity entirely, its presence is deleterious to male meiosis, possibly in a dominant negative repression manner through interacting with its partner proteins. Notably, heat stress aggravated meiotic defects in invan6 null mutant. Further transcriptome data suggest INVAN6 has a fundamental role for sugar homeostasis and stress tolerance of male meiocytes. In summary, this work uncovered the function of maize CIN in male meiosis and revealed the role of CIN-mediated sugar metabolism and signalling in meiotic progression under heat stress.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Du
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
10
|
Xia L, He X, Huang X, Yu H, Lu T, Xie X, Zeng X, Zhu J, Luo C. Genome-Wide Identification and Expression Analysis of the 14-3-3 Gene Family in Mango ( Mangifera indica L.). Int J Mol Sci 2022; 23:ijms23031593. [PMID: 35163516 PMCID: PMC8835932 DOI: 10.3390/ijms23031593] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Members of the Mi14-3-3 gene family interact with target proteins that are widely involved in plant hormone signal transduction and physiology-related metabolism and play important roles in plant growth, development and stress responses. In this study, 14-3-3s family members are identified by the bioinformatic analysis of the mango (Mangifera indica L.) genome. The gene structures, chromosomal distributions, genetic evolution, and expression patterns of these genes and the physical and chemical properties and conserved motifs of their proteins are analysed systematically. The results identified 16 members of the 14-3-3 genes family in the mango genome. The members were not evenly distributed across the chromosomes, and the gene structure analysis showed that the gene sequence length and intron number varied greatly among the different members. Protein sequence analysis showed that the Mi14-3-3 proteins had similar physical and chemical properties and secondary and tertiary structures, and protein subcellular localization showed that the Mi14-3-3 family proteins were localized to the nucleus. The sequence analysis of the Mi14-3-3s showed that all Mi14-3-3 proteins contain a typical conserved PFAM00244 domain, and promoter sequence analysis showed that the Mi14-3-3 promoters contain multiple hormone-, stress-, and light-responsive cis-regulatory elements. Expression analysis showed that the 14-3-3 genes were expressed in all tissues of mango, but that their expression patterns were different. Drought, salt and low temperature stresses affected the expression levels of 14-3-3 genes, and different 14-3-3 genes had different responses to these stresses. This study provides a reference for further studies on the function and regulation of Mi14-3-3 family members.
Collapse
|
11
|
Lv J, Chen B, Ma C, Qiao K, Fan S, Ma Q. Identification and characterization of the AINV genes in five Gossypium species with potential functions of GhAINVs under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 173:2091-2102. [PMID: 34537974 DOI: 10.1111/ppl.13559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/26/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Acid invertase (AINV) is a kind of sucrose hydrolase with an important role in plants. Currently, the AINV genes have not been systematically studied in cotton. In this study, a total of 92 AINV genes were identified in five cotton species. The phylogenetic analysis revealed that the AINV proteins were divided into two subgroups in cotton: vacuolar invertase (VINV) and cell wall invertase (CWINV). The analysis of gene structures, conserved motifs, and three-dimensional protein structures suggested that GhAINVs were significantly conserved. The synteny analysis showed that whole-genome duplication was the main force promoting the expansion of the AINV gene family. The cis-element, transcriptome, and quantitative real time-polymerase chain reaction (qRT-PCR) showed that some GhAINVs were possibly associated with stress response. GhCWINV4, highly expressed in PEG treatment, was cloned, and subsequent virus-induced gene silencing assay confirmed that this gene was involved in the drought stress response. Overall, this study might be helpful for further analyzing the biological function of AINVs and provide clues for improving the resistance of cotton to stress.
Collapse
Affiliation(s)
- Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Baizhi Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Changkai Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| |
Collapse
|
12
|
Pei X, Wang X, Fu G, Chen B, Nazir MF, Pan Z, He S, Du X. Identification and functional analysis of 9-cis-epoxy carotenoid dioxygenase (NCED) homologs in G. hirsutum. Int J Biol Macromol 2021; 182:298-310. [PMID: 33811933 DOI: 10.1016/j.ijbiomac.2021.03.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/20/2022]
Abstract
9-cis-epoxy carotenoid dioxygenase (NCED) is a fundamental enzyme, which plays an essential role in the process of organ development and stress resistance by regulating abscisic acid (ABA) synthesis in plant. In this study, a total of 7, 7, 14 and 14 NCED genes were identified from the genomes of G. arboreum, G. raimondii, G. barbadense and G. hirsutum, respectively. Phylogenetic tree showed that all forty-two NCED genes could be classified into three groups in cotton genus. Collinear analysis revealed that the NCED genes in G. hirsutum were not amplified by tandem repeats after polyploidy events. The function of NCED genes was evaluated between two accessions with contrasting plant height. The results showed that expression of the NCED genes in dwarf accession was higher than that in taller ones. GhNCED1-silenced cotton plants confirmed that suppression of NCED genes could increase the plant height, but reduce the resistance abilities to drought and salt stress. Our study systematically identified the homologs of NCED genes and their functions in cotton, which could provide new genetic resources for improving plant height and stress in future cotton breeding.
Collapse
Affiliation(s)
- Xinxin Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| |
Collapse
|