1
|
Qi G, Ma H, Teng K, Gai P, Gong Y, Chen J, Luo X, Kong B. SHCBP1 promotes cisplatin resistance of ovarian cancer through AKT/mTOR/Autophagy pathway. Apoptosis 2024:10.1007/s10495-024-02027-3. [PMID: 39397124 DOI: 10.1007/s10495-024-02027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Ovarian cancer caused the highest cancer-related mortality among female reproductive system malignancies. Platinum-based chemotherapy is still the footstone of the chemotherapy for ovarian cancer. However, the molecular mechanisms underlying cisplatin insensitivity and resistance remain unclear. SHC SH2 domain-binding protein 1 (SHCBP1) plays critical roles in the progression and drug resistance of different types of cancer. However, the biological function of SHCBP1 in ovarian cancer progression and cisplatin resistance remains obscure. In this study, we found that SHCBP1 was upregulated in ovarian cancer and the upregulated SHCBP1 has growth-promoting effect on ovarian cancer cells. Furthermore, SHCBP1 silencing sensitize ovarian cancer cells to cisplatin (hereafter referred to as CDDP). Mechanism analysis revealed that SHCBP1 activated the Akt/mTOR pathway and further inhibited autophagy in ovarian cancer cells. Meanwhile, autophagy inhibitors combined with SHCBP1 knockdown enhances CDDP sensitivity. In addition, knockdown of SHCBP1 restricted the proliferation of tumors and increased the cisplatin sensitivity in vivo. These findings suggested that upregulated SHCBP1 promoted the proliferation and CDDP resistance of ovarian cancer. The combination of SHCBP1 inhibition and cisplatin treatment might lead to substantial progress in ovarian cancer targeted therapy.
Collapse
Affiliation(s)
- Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Kai Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Panpan Gai
- 71217 of the Chinese People's Liberation Army, Laiyang, 265200, China
| | - Yanmin Gong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Jingying Chen
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xia Luo
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Deng S, Wu Y, Huang S, Yang X. Novel insights into the roles of migrasome in cancer. Discov Oncol 2024; 15:166. [PMID: 38748047 PMCID: PMC11096295 DOI: 10.1007/s12672-024-00942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
Cell migration, a hallmark of cancer malignancy, plays a critical role in cancers. Improperly initiated or misdirected cell migration can lead to invasive metastatic cancer. Migrasomes are newly discovered vesicular cellular organelles produced by migrating cells and depending on cell migration. Four marker proteins [NDST1 (bifunctionalheparan sulfate N-deacetylase/N-sulfotransferase 1), EOGT (Epidermal growth factor domains pecific O-linked N-acetylglucosaminetransferase), CPQ (carboxypeptidase Q), and PIGK (phosphatidylinositol glycan anchor biosynthesis, class K)] of migrasomes were successfully identified. There are three marker proteins (NDST1, PIGK, and EOGT) of migrasome expressed in cancer. In this review, we will discuss the process of migrasome discovery, the formation of migrasome, the possible functions of migrasome, and the differences between migrasomes and exosomes, especially, the biological functions of migrasome marker proteins in cancer, and discuss some possible roles of migrasomes in cancer. We speculate that migrasomes and migracytosis can play key roles in regulating the development of cancer.
Collapse
Affiliation(s)
- Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Sheng Huang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Tsukamoto Y, Tsukamoto N, Saiki W, Tashima Y, Furukawa JI, Kizuka Y, Narimatsu Y, Clausen H, Takeuchi H, Okajima T. Characterization of galactosyltransferase and sialyltransferase genes mediating the elongation of the extracellular O-GlcNAc glycans. Biochem Biophys Res Commun 2024; 703:149610. [PMID: 38359610 DOI: 10.1016/j.bbrc.2024.149610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
O-GlcNAc is a unique post-translational modification found in cytoplasmic, nuclear, and mitochondrial proteins. In a limited number of extracellular proteins, O-GlcNAc modifications occur through the action of EOGT, which specifically modifies subsets of epidermal growth factor-like (EGF) domain-containing proteins such as Notch receptors. The abnormalities due to EOGT mutations in mice and humans and the increased EOGT expression in several cancers signify the importance of EOGT pathophysiology and extracellular O-GlcNAc. Unlike intracellular O-GlcNAc monosaccharides, extracellular O-GlcNAc extends to form elongated glycan structures. However, the enzymes involved in the O-GlcNAc glycan extension have not yet been reported. In our study, we comprehensively screened potential galactosyltransferase and sialyltransferase genes related to the canonical O-GlcNAc glycan pathway and revealed the essential roles of B4GALT1 and ST3GAL4 in O-GlcNAc glycan elongation in human HEK293 cells. These findings were confirmed by sequential glycosylation of Drosophila EGF20 in vitro by EOGT, β4GalT-1, and ST3Gal-IV. Thus, the findings from our study throw light on the specific glycosyltransferases that mediate O-GlcNAc glycan elongation in human HEK293 cells.
Collapse
Affiliation(s)
- Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natsumi Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wataru Saiki
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan.
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
4
|
Li L, Zhao H, Li Z, Shi W, Jiao Z. SHCBP1 Overexpression Aggravates Pancreatitis by Triggering the Loss of Primary Cilia. DNA Cell Biol 2024; 43:141-151. [PMID: 38215233 DOI: 10.1089/dna.2023.0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Primary cilia are microtubule-based organelles that mediate various biological processes. Pancreatic cells are typically ciliated; however, the role of primary cilia in acute pancreatitis (AP) is largely unknown. Here, we report that the loss of primary cilia, mediated by SHCBP1 (SHC1 binding protein), exerted a provocative effect on AP. Primary cilia are extensively lost in inflamed pancreatic cells in vitro and in mouse tissues with AP in vivo. Abrogation of primary cilia aggravated lipopolysaccharide (LPS)-induced inflammation in pancreatic cells. Mechanistically, AP induced the overexpression of SHCBP1 mitotic factor, which is localized to the base of primary cilia. SHCBP1 deficiency relieved LPS- and cerulein-induced pancreatitis by preventing the loss of primary cilia in vitro and in vivo. Collectively, we reveal that inflammation-induced loss of primary cilia aggravates AP. Furthermore, abrogating SHCBP1 to prevent primary cilia loss is an efficient strategy to combat AP.
Collapse
Affiliation(s)
- Lianshun Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Huiming Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhengyang Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Zuoyi Jiao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
5
|
Ma Z, Gu Q, Dai Y, Wang Q, Shi W, Jiao Z. Therapeutic potential of SHCBP1 inhibitor AZD5582 in pancreatic cancer treatment. Cancer Sci 2024; 115:820-835. [PMID: 38151993 PMCID: PMC10921007 DOI: 10.1111/cas.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive and deadly malignancy with limited treatment options and poor prognosis. Identifying new therapeutic targets and developing effective strategies for PC treatment is of utmost importance. Here, we revealed that SHCBP1 is significantly overexpressed in PC and negatively correlated with patient prognosis. Knockout of SHCBP1 inhibits the proliferation and migration of PC cells in vitro, and suppresses the tumor growth in vivo. In addition, we identified AZD5582 as a novel inhibitor of SHCBP1, which efficiently restrains the growth of PC in cell lines, organoids, and patient-derived xenografts. Mechanistically, we found that AZD5582 induced the apoptosis of PC cells by inhibiting the activity of PI3K/AKT signaling and preventing the degradation of TP53. Collectively, our study highlights SHCBP1 as a potential therapeutic target and its inhibitor AZD5582 as a viable agent for PC treatment strategies.
Collapse
Affiliation(s)
- Zhijian Ma
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Qianlin Gu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Yiwei Dai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Qiaoyan Wang
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Wengui Shi
- Cuiying Biomedical Research CenterLanzhou University Second HospitalLanzhouChina
| | - Zuoyi Jiao
- The Department of General SurgeryLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
6
|
Huang Y, Pan W, Bao H, Sun X, Xu C, Ma J. HSF1 Increases EOGT-Mediated Glycosylation of Notch1 to Promote IL-1β-Induced Inflammatory Injury of Chondrocytes. Cartilage 2024:19476035241229211. [PMID: 38366389 DOI: 10.1177/19476035241229211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common arthritic disease in humans. Nevertheless, the pathogenic mechanism of OA remains unclear. This study aimed to explore that heat-shock transcription factor 1 (HSF1) facilitated interleukin-1 beta (IL-1β) chondrocyte injury by increasing Notch1 O-linked N-acetylglucosamine (O-GlcNAc) modification level. DESIGN Human chondrocytes were incubated with 5 ng/ml interleukin-1 beta (IL-1β) for 24 h to establish OA cell model. The messenger RNA (mRNA) or protein expressions were assessed using reverse transcription-quantitative polymerase chain reaction, western blot, or immunofluorescence. Chondrocyte viability was examined by Cell Counting Kit-8 assay. Enzyme-linked immunosorbent assay was employed to detect the secretion levels of interleukin-6 (IL-6) and interleukin-8 (IL-8). Immunoprecipitation was adopted to detect Notch1 O-GlcNAc modification level. The interaction between HSF1 and epidermal growth factor-like (EGF) domain-specific O-GlcNAc transferase (EOGT) promoter was analyzed by dual-luciferase reporter gene and chromatin immunoprecipitation assays. RESULTS Herein, our results demonstrated that HSF1, EOGT, Notch1, and Notch1 intracellular domain (NICD1) expressions in chondrocytes were markedly increased by IL-1β stimulation. EOGT elevated Notch1 expression in IL-1β-treated chondrocytes by increasing Notch1 O-GlcNAc modification level. EOGT silencing reduced IL-1β-induced chondrocyte inflammatory injury. In addition, HSF1 knockdown relieved IL-1β-induced chondrocyte inflammatory injury. Molecular interaction experiment proved that HSF1 transcriptionally activated EOGT expression in IL-1β-treated chondrocytes. CONCLUSIONS HSF1 promoted IL-1β-induced inflammatory injury in chondrocytes by increasing EOGT-mediated glycosylation of Notch1.
Collapse
Affiliation(s)
- Yuanchi Huang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Wenjie Pan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Huanli Bao
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiangxiang Sun
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Chao Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
7
|
Ran Z, Zhang L, Dong M, Zhang Y, Chen L, Song Q. O-GlcNAcylation: A Crucial Regulator in Cancer-Associated Biological Events. Cell Biochem Biophys 2023; 81:383-394. [PMID: 37392316 DOI: 10.1007/s12013-023-01146-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
O-GlcNAcylation, a recently discovered post-translational modification of proteins, plays a crucial role in regulating protein structure and function, and is closely associated with multiple diseases. Research has shown that O-GlcNAcylation is abnormally upregulated in most cancers, promoting disease progression. To elucidate the roles of O-GlcNAcylation in cancer, this review summarizes various cancer-associated biological events regulated by O-GlcNAcylation and the corresponding signaling pathways. This work may provide insights for future studies on the function or underlying mechanisms of O-GlcNAcylation in cancer.
Collapse
Affiliation(s)
- Zhihong Ran
- Medical College, Three Gorges University, Yichang, 443000, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Lei Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Ming Dong
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Yu Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
He XF, Hu X, Wen GJ, Wang Z, Lin WJ. O-GlcNAcylation in cancer development and immunotherapy. Cancer Lett 2023; 566:216258. [PMID: 37279852 DOI: 10.1016/j.canlet.2023.216258] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
O-linked β-D-N-acetylglucosamine (O-GlcNAc), as a posttranslational modification (PTM), is a reversible reaction that attaches β-N-GlcNAc to Ser/Thr residues on specific proteins by O-GlcNAc transferase (OGT). O-GlcNAcase (OGA) removes the O-GlcNAc from O-GlcNAcylated proteins. O-GlcNAcylation regulates numerous cellular processes, including signal transduction, the cell cycle, metabolism, and energy homeostasis. Dysregulation of O-GlcNAcylation contributes to the development of various diseases, including cancers. Accumulating evidence has revealed that higher expression levels of OGT and hyper-O-GlcNAcylation are detected in many cancer types and governs glucose metabolism, proliferation, metastasis, invasion, angiogenesis, migration and drug resistance. In this review, we describe the biological functions and molecular mechanisms of OGT- or O-GlcNAcylation-mediated tumorigenesis. Moreover, we discuss the potential role of O-GlcNAcylation in tumor immunotherapy. Furthermore, we highlight that compounds can target O-GlcNAcylation by regulating OGT to suppress oncogenesis. Taken together, targeting protein O-GlcNAcylation might be a promising strategy for the treatment of human malignancies.
Collapse
Affiliation(s)
- Xue-Fen He
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Xiaoli Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gao-Jing Wen
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wen-Jing Lin
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
9
|
Deng B, Li A, Zhu Y, Zhou Y, Fei J, Miao Y. SHCBP1 contributes to the proliferation and self‑renewal of cervical cancer cells and activation of the NF‑κB signaling pathway through EIF5A. Oncol Lett 2023; 25:246. [PMID: 37153055 PMCID: PMC10161342 DOI: 10.3892/ol.2023.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/24/2023] [Indexed: 05/09/2023] Open
Abstract
Cervical cancer (CC) is the most common human papillomavirus-related disease. Continuous activation of the NF-κB signaling pathway has been observed in CC. SHC binding and spindle associated 1 (SHCBP1) contributes to tumorigenesis and activation of the NF-κB pathway in multiple cancer types, while its function in CC remains unclear. In the present study, three Gene Expression Omnibus datasets were used to identify differentially expressed genes (DEGs) in CC. Loss- and gain-of-function experiments were performed using stable SHCBP1-silenced and SHCBP1-overexpressing CC cells. To further explore the molecular mechanism of SHCBP1 in CC, small interfering RNA targeting eukaryotic translation initiation factor 5A (EIF5A) was transfected into stable SHCBP1-overexpressing CC cells. The results demonstrated that SHCBP1 was an upregulated DEG in CC tissues compared with healthy control cervical tissues. Functional experiments revealed the pro-proliferative and pro-stemness role of SHCBP1 in CC cells (CaSki and SiHa cells), in vitro. Furthermore, the NF-κB signaling pathway in CC cells was activated by SHCBP1. Increases in cell proliferation, stemness and activation of NF-κB, induced by SHCBP1 overexpression in CC cells, were reversed by EIF5A knockdown. Taken together, the results indicated that SHCBP1 serves an important role in regulation of CC cell proliferation, self-renewal and activation of NF-κB via EIF5A. The present study demonstrated a potential molecular mechanism underlying the progression of CC.
Collapse
Affiliation(s)
- Boya Deng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Correspondence to: Dr Boya Deng, Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Shangcheng, Hangzhou, Zhejiang 310009, P.R. China, E-mail:
| | - Ailin Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Zhu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jing Fei
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yuan Miao
- Department of Pathology, The College of Basic Medicine Science and The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
10
|
Biological functions and therapeutic potential of SHCBP1 in human cancer. Biomed Pharmacother 2023; 160:114362. [PMID: 36739763 DOI: 10.1016/j.biopha.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of cancer is increasing globally, and it is the most common cause of death. The identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. SHCSH2 domain-binding protein 1 (SHCBP1) is a protein that specifically binds to the SH2 domain of Src homology-collagen. It participates in the regulation of a variety of signal transduction pathways and can activate a variety of signaling molecules to perform a series of physiological functions. SHCBP1 is expressed in a variety of human tissues, but its abnormal expression in various systems is associated with cancer. SHCBP1 is abnormally expressed in a variety of tumors, and plays roles in almost all aspects of cancer biology (such as cell proliferation, apoptosis prevention, invasion, and metastasis) through various possible mechanisms. Its expression level is related to the clinicopathological characteristics of patients. In addition, the SHCBP1 expression pattern is closely related to cancer type, stage, and other clinical variables. Therefore, SHCBP1 is a promising tumor biomarker for cancer diagnosis and prognosis and a potential therapeutic target. This article reviews the expression, biological functions, mechanisms, and potential clinical significance of SHCBP1 in various human tumors to provide a new theoretical basis for clinical molecular diagnosis, molecular targeted therapy, and scientific research on cancer.
Collapse
|
11
|
Jiang F, Shi Y, Wang Y, Ge C, Zhu J, Fang H, Zhang Y, Zhang Y, Jian H, Lei T, Lan S, Cao L, Yu H, Fang D. Characterization of SHCBP1 to prognosis and immunological landscape in pan-cancer: novel insights to biomarker and therapeutic targets. Aging (Albany NY) 2023; 15:2066-2081. [PMID: 36920183 PMCID: PMC10085602 DOI: 10.18632/aging.204591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Previous studies have revealed the significant roles of SHC SH2 domain-binding protein 1 (SHCBP1) in occurrence and progression of cancers, but there is no pan-cancer analysis of SHCBP1. METHODS In this study, we explored the potential carcinogenic role of SHCBP1 across 33 tumors from the TCGA and GTEx databases. We investigated SHCBP1 expression, prognosis, genetic alterations, tumor mutational burden (TMB) score, microsatellite instability (MSI) and tumor microenvironment from TIMER2, GEPIA2, UALCAN and cBioPortal databases. Moreover, the cellular functions and potential mechanisms were evaluated by GO and KEGG analysis. Besides, the mRNA expression of SHCBP1 was examined using qRT-PCR assay in gastrointestinal cancers. RESULTS SHCBP1 was significantly upregulated in various cancers, and apparent relationship existed between SHCBP1 and survival prognosis in patients. The TMB, MSI, and tumor microenvironment analysis indicated that SHCBP1 was closely related to immune checkpoints, immune targets, as well as CD4+ naive T cell, CD8+ T cell, and neutrophil. Moreover, the cellular functions of SHCBP1 were mainly in regulating cell cycle motor protein activity. In addition, we validated that SHCBP1 mRNA expression was over-expressed in gastrointestinal cancers. CONCLUSIONS This study was the first to systematically determine the prognostic value of SHCBP1, providing a forward-looking perspective on immunotherapy and cellular processes in pan-cancer.
Collapse
Affiliation(s)
- Fei Jiang
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Chang Ge
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Jun Zhu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Hanlu Fang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yixiao Zhang
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haokun Jian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tong Lei
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Sheng Lan
- The Second Clinical College Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liyu Cao
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Hongzhu Yu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Debao Fang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
12
|
Chung WC, Xu K. Notch signaling pathway in pancreatic tumorigenesis. Adv Cancer Res 2023. [DOI: 10.1016/bs.acr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
13
|
Qin Y, Yang J, Liang C, Liu J, Deng Z, Yan B, Fu Y, Luo Y, Li X, Wei X, Li W. Pan-cancer analysis identifies migrasome-related genes as a potential immunotherapeutic target: A bulk omics research and single cell sequencing validation. Front Immunol 2022; 13:994828. [PMID: 36405728 PMCID: PMC9669594 DOI: 10.3389/fimmu.2022.994828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The migrasome is a newly discovered organelle that resembles extracellular vesicles in structure. However, the function of the migrasome in tumors, particularly in relation to tumor immunity and tumor microenvironment, is unclear. Methods Gene expression data, copy number variation raw data, and methylation data of 33 cancer types were downloaded from The Cancer Genome Atlas database. Immunohistochemistry (IHC) based on 114 case of colorectal cancer was used to validate the expression of the migrasome hub-gene. We analyzed the expression, prognosis, genetic variation, and drug sensitivity profiles of migrasome-related genes (MRGs) in pan-cancer datasets. A migrasome score was constructed based on gene set enrichment analysis, and the correlation of migrasomes with the tumor microenvironment was assessed. The CancerSEA was used to perform a single-cell level functional analysis of the migrasome. Additionally, we also analyzed the correlation between migrasomes and tumor mutational burden (TMB), microsatellite instability (MSI), and tumor immune dysfunction and exclusion scores. Single-cell transcriptome sequencing (scRNA-seq) data was used to assess the activation state of migrasomes in the tumor microenvironment. Results PIGK expression was significantly up-regulated in 22 of 33 tumors, and high expression of migrasome was estimated to have contributed to poor prognosis. Missense mutations are the most common type of mutation in MRGs. We identified piperlongumine as a potential drug targeting migrasomes. The migrasome score was significantly and positively correlated with the tumor immunity score and the stroma score. In most tumors, the abundance of macrophages in the tumor microenvironment was significantly and positively correlated with the migrasome score. Additionally, the migrasome scores were significantly correlated with the immune checkpoint genes in pan-cancer as well as immune checkpoint therapy-related markers including TMB and MSI. According to scRNA-seq analysis, migrasome differed significantly among cells of the tumor microenvironment. IHC confirmed low expression of ITGA5 and PIGK in colorectal cancer. Discussion We performed the first pan-cancer analysis of migrasomes and discovered that they play an important role in tumor development and immune escape. Our study provides new insights into the role of migrasomes in tumor prognosis and immunotherapy.
Collapse
Affiliation(s)
- Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Jie Yang
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Cao Liang
- Department of Surgical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jun Liu
- Department of Surgical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhixing Deng
- Department of Surgical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Binli Yan
- Department of Surgical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ying Fu
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Yinghua Luo
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Xiaozhen Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- *Correspondence: Wei Li, ; Xiaoying Wei, ; Xiaozhen Li,
| | - Xiaoying Wei
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- *Correspondence: Wei Li, ; Xiaoying Wei, ; Xiaozhen Li,
| | - Wei Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- *Correspondence: Wei Li, ; Xiaoying Wei, ; Xiaozhen Li,
| |
Collapse
|
14
|
Yang D, Liu H, Cai Y, Lu K, Zhong X, Xing S, Song W, Zhang Y, Ye L, Zhu X, Wang T, Zhang P, Li ST, Feng J, Jia W, Zhang H, Gao P. Branched-chain amino acid catabolism breaks glutamine addiction to sustain hepatocellular carcinoma progression. Cell Rep 2022; 41:111691. [DOI: 10.1016/j.celrep.2022.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
|
15
|
Liu YH, Hu CM, Hsu YS, Lee WH. Interplays of glucose metabolism and KRAS mutation in pancreatic ductal adenocarcinoma. Cell Death Dis 2022; 13:817. [PMID: 36151074 PMCID: PMC9508091 DOI: 10.1038/s41419-022-05259-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide. The primary reasons for this are the lack of early detection methods and targeted therapy. Emerging evidence highlights the metabolic addiction of cancer cells as a potential target to combat PDAC. Oncogenic mutations of KRAS are the most common triggers that drive glucose uptake and utilization via metabolic reprogramming to support PDAC growth. Conversely, high glucose levels in the pancreatic microenvironment trigger genome instability and de novo mutations, including KRASG12D, in pancreatic cells through metabolic reprogramming. Here, we review convergent and diverse metabolic networks related to oncogenic KRAS mutations between PDAC initiation and progression, emphasizing the interplay among oncogenic mutations, glucose metabolic reprogramming, and the tumor microenvironment. Recognizing cancer-related glucose metabolism will provide a better strategy to prevent and treat the high risk PDAC population.
Collapse
Affiliation(s)
- Yu-Huei Liu
- grid.254145.30000 0001 0083 6092Drug Development Center, China Medical University, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan ,grid.411508.90000 0004 0572 9415Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Mei Hu
- grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yuan-Sheng Hsu
- grid.254145.30000 0001 0083 6092Drug Development Center, China Medical University, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Hwa Lee
- grid.254145.30000 0001 0083 6092Drug Development Center, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Genomics Research Center, Academia Sinica, Taipei, Taiwan ,grid.266093.80000 0001 0668 7243Department of Biological Chemistry, University of California, Irvine, CA USA
| |
Collapse
|
16
|
Zhou F, Ma J, Zhu Y, Wang T, Yang Y, Sun Y, Chen Y, Song H, Huo X, Zhang J. The role and potential mechanism of O-Glycosylation in gastrointestinal tumors. Pharmacol Res 2022; 184:106420. [PMID: 36049664 DOI: 10.1016/j.phrs.2022.106420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 10/15/2022]
Abstract
Glycosylation is a critical post-translational modification (PTM) that affects the function of proteins and regulates cell signaling, thereby regulating various biological processes. Protein oxygen-N-acetylglucosamine (O-GlcNAc) glycosylation modifications are glycochemical modifications that occur within cells in the signal transduction and are frequently found in the cytoplasm and nucleus. Due to the rapid and reversible addition and removal, O-GlcNAc modifications are able to reversibly compete with certain phosphorylation modifications, immediately regulate the activity of proteins, and participate in kinds of cellular metabolic and signal transduction pathways, playing a pivotal role in the regulation of tumors, diabetes, and other diseases. This article provided a brief overview of O-GlcNAc glycosylation modification, introduced its role in altering the progression and immune response regulation of gastrointestinal tumors, and discussed its potential use as a marker of tumor neogenesis.
Collapse
Affiliation(s)
- Feinan Zhou
- The department of Spleen and Stomach Diseases of Cadres Healthcare Centre, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Jia Ma
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yongfu Zhu
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Tianming Wang
- Laboratory of Infection and Immunity, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yue Yang
- Laboratory of Infection and Immunity, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yehan Sun
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Youmou Chen
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Xingxing Huo
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong Province 510799, China.
| |
Collapse
|
17
|
Fang X, Zhu Y, Zhang T, Li Q, Fan L, Li X, Jiang D, Lin J, Zou L, Ren J, Huang Z, Ye H, Liu Y. Fucoxanthin Inactivates the PI3K/Akt Signaling Pathway to Mediate Malignant Biological Behaviors of Non-Small Cell Lung Cancer. Nutr Cancer 2022; 74:3747-3760. [PMID: 35838029 DOI: 10.1080/01635581.2022.2091149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although lung cancer treatment strategies have improved in recent years, the 5-year overall survival of non-small cell lung cancer (NSCLC) remains less than 15%. Chemotherapy is considered the most promising option in the comprehensive treatment of NSCLC. Fucoxanthin (FX) is a natural product derived from brown algae and has extensive applications in medicine. Previous studies reported that FX effectively inhibits the growth of NSCLC cells in vitro and in vivo. However, the mechanism underlying the anti-NSCLC effect of FX remains unknown. In this study, NSCLC cell lines and a xenograft nude mouse model were used to examine the anti-NSCLC activities of FX in vitro and in vivo. Network pharmacology analysis and inhibitors or activators of the PI3K/Akt signaling pathway were used to explore the anti-NSCLC mechanisms of FX. The results indicated that FX could inhibit proliferation, migration, and invasion, arrest cell cycle at the G0/G1 phase, and induce apoptosis of NSCLC cells in vitro. Additionally, FX suppressed tumor growth in vivo. The PI3K/Akt signaling pathway was found to be involved in the anti-NSCLC activity of FX. In conclusion, FX inhibits malignant biological behaviors of NSCLC by suppressing the phosphorylation of both PI3K and AKT, and subsequently inactivating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xuehong Fang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Taomin Zhang
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qian Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Lvhua Fan
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Xiaodan Li
- People's Hospital of Longhua District, Shenzhen, Guangdong, China
| | - Daishun Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Jie Lin
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Liyi Zou
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jianwei Ren
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, Guangdong, China
| | - Zunnan Huang
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| |
Collapse
|
18
|
Identification of Recurrent Chromosome Breaks Underlying Structural Rearrangements in Mammary Cancer Cell Lines. Genes (Basel) 2022; 13:genes13071228. [PMID: 35886011 PMCID: PMC9319013 DOI: 10.3390/genes13071228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer genomes are characterized by the accumulation of small-scale somatic mutations as well as large-scale chromosomal deletions, amplifications, and complex structural rearrangements. This characteristic is at least partially dependent on the ability of cancer cells to undergo recurrent chromosome breakage. In order to address the extent to which chromosomal structural rearrangement breakpoints correlate with recurrent DNA double-strand breaks (DSBs), we simultaneously mapped chromosome structural variation breakpoints (using whole-genome DNA-seq) and spontaneous DSB formation (using Break-seq) in the estrogen receptor (ER)-positive breast cancer cell line MCF-7 and a non-cancer control breast epithelium cell line MCF-10A. We identified concurrent DSBs and structural variation breakpoints almost exclusively in the pericentromeric region of chromosome 16q in MCF-7 cells. We fine-tuned the identification of copy number variation breakpoints on 16q. In addition, we detected recurrent DSBs that occurred in both MCF-7 and MCF-10A. We propose a model for DSB-driven chromosome rearrangements that lead to the translocation of 16q, likely with 10q, and the eventual 16q loss that does not involve the pericentromere of 16q. We present evidence from RNA-seq data that select genes, including SHCBP1, ORC6, and MYLK3, which are immediately downstream from the 16q pericentromere, show heightened expression in MCF-7 cell line compared to the control. Data published by The Cancer Genome Atlas show that all three genes have increased expression in breast tumor samples. We found that SHCBP1 and ORC6 are both strong poor prognosis and treatment outcome markers in the ER-positive breast cancer cohort. We suggest that these genes are potential oncogenes for breast cancer progression. The search for tumor suppressor loss that accompanies the 16q loss ought to be augmented by the identification of potential oncogenes that gained expression during chromosomal rearrangements.
Collapse
|
19
|
Zhang Y, Gao Q, Liu SS, Tang L, Li XG, Sun H. Hormetic dose-response of halogenated organic pollutants on Microcystis aeruginosa: Joint toxic action and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154581. [PMID: 35304143 DOI: 10.1016/j.scitotenv.2022.154581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Quinolones (QNs), dechloranes (DECs), and chlorinated paraffins (CPs) are three kinds of new halogenated organic pollutants (HOPs), which originate from the use of flame retardants, lubricants and pesticides. Since QNs, DECs, and CPs are frequently detected in waters and sediments, it is necessary to investigate the toxic effects of these HOPs with dwelling phytoplankton, especially for cyanobacteria, to explore their potential hormetic effects and contributions to algal blooms. In the present study, we investigate single and joint toxicity of QNs, DECs and CPs on Microcystis aeruginosa (M. aeruginosa), a cyanobacterium that is frequently implicated with algal blooms. The results indicate single QNs and DECs induce marked hormetic effects on the proliferation of M. aeruginosa but CPs do not. The stimulatory effect of hormesis is linked with accelerated replication of DNA, which is considered to stem from the moderate rise in intracellular reactive oxygen species (ROS). Joint toxicity tests reveal that both QNs & CPs mixtures and DECs & CPs mixtures show hormetic effects on M. aeruginosa, but QNs & DECs mixtures show no hormetic effect. QNs & DECs mixtures exhibit synergistic toxic actions, which may be caused by a sharp rise in intracellular ROS simultaneously produced by the agents. Joint toxic actions of both QNs & CPs, and DECs & CPs shift from addition to antagonism as concentration increases, and this shift may mainly depend on the influence of CPs on cell membrane hydrophobicity of M. aeruginosa. This study provides data and toxic mechanisms for the hormetic phenomenon of single and joint HOPs on M. aeruginosa. The hormetic effects of HOPs may benefit the proliferation of M. aeruginosa in the aquatic environment, aggravating the formation of algal blooms. This study also reflects the important role of hormesis in environmental risk assessment of pollutants.
Collapse
Affiliation(s)
- Yueheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qing Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin-Gui Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
20
|
Shi H, Xu H, Chai C, Qin Z, Zhou W. Integrated bioinformatics analysis of potential biomarkers for pancreatic cancer. J Clin Lab Anal 2022; 36:e24381. [PMID: 35403252 PMCID: PMC9102654 DOI: 10.1002/jcla.24381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDA), is an aggressive malignancy associated with a low 5-year survival rate. Poor outcomes associated with PDA are attributable to late detection and inoperability. Most patients with PDA are diagnosed with locally advanced and metastatic disease. Such cases are primarily treated with chemotherapy and radiotherapy. Because of the lack of effective molecular targets, early diagnosis and successful therapies are limited. The purpose of this study was to screen key candidate genes for PDA using a bioinformatic approach and to research their potential functional, pathway mechanisms associated with PDA progression. It may help to understand the role of associated genes in the development and progression of PDA and identify relevant molecular markers with value for early diagnosis and targeted therapy. MATERIALS AND METHODS To identify novel genes associated with carcinogenesis and progression of PDA, we analyzed the microarray datasets GSE62165, GSE125158, and GSE71989 from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, and the Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A protein-protein interaction (PPI) network was constructed using STRING, and module analysis was performed using Cytoscape. Gene Expression Profiling Interactive Analysis (GEPIA) was used to evaluate the differential expression of hub genes in patients with PDA. In addition, we verified the expression of these genes in PDA cell lines and normal pancreatic epithelial cells. RESULTS A total of 202 DEGs were identified and these were found to be enriched for various functions and pathways, including cell adhesion, leukocyte migration, extracellular matrix organization, extracellular region, collagen trimer, membrane raft, fibronectin-binding, integrin binding, protein digestion, and absorption, and focal adhesion. Among these DEGs, 12 hub genes with high degrees of connectivity were selected. Survival analysis showed that the hub genes (HMMR, CEP55, CDK1, UHRF1, ASPM, RAD51AP1, DLGAP5, KIF11, SHCBP1, PBK, and HMGB2) may be involved in the tumorigenesis and development of PDA, highlighting their potential as diagnostic and therapeutic factors in PDA. CONCLUSIONS In summary, the DEGs and hub genes identified in the present study not only contribute to a better understanding of the molecular mechanisms underlying the carcinogenesis and progression of PDA but may also serve as potential new biomarkers and targets for PDA.
Collapse
Affiliation(s)
- Huaqing Shi
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Hao Xu
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Changpeng Chai
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Zishun Qin
- School of StomatologyLanzhou UniversityLanzhouChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
21
|
Wang W, Okajima T, Takeuchi H. Significant Roles of Notch O-Glycosylation in Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061783. [PMID: 35335147 PMCID: PMC8950332 DOI: 10.3390/molecules27061783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Notch signaling, which was initially identified in Drosophila wing morphogenesis, plays pivotal roles in cell development and differentiation. Optimal Notch pathway activity is essential for normal development and dysregulation of Notch signaling leads to various human diseases, including many types of cancers. In hematopoietic cancers, such as T-cell acute lymphoblastic leukemia, Notch plays an oncogenic role, while in acute myeloid leukemia, it has a tumor-suppressive role. In solid tumors, such as hepatocellular carcinoma and medulloblastoma, Notch may have either an oncogenic or tumor-suppressive role, depending on the context. Aberrant expression of Notch receptors or ligands can alter the ligand-dependent Notch signaling and changes in trafficking can lead to ligand-independent signaling. Defects in any of the two signaling pathways can lead to tumorigenesis and tumor progression. Strikingly, O-glycosylation is one such process that modulates ligand–receptor binding and trafficking. Three types of O-linked modifications on the extracellular epidermal growth factor-like (EGF) repeats of Notch receptors are observed, namely O-glucosylation, O-fucosylation, and O-N-acetylglucosamine (GlcNAc) modifications. In addition, O-GalNAc mucin-type O-glycosylation outside the EGF repeats also appears to occur in Notch receptors. In this review, we first briefly summarize the basics of Notch signaling, describe the latest information on O-glycosylation of Notch receptors classified on a structural basis, and finally describe the regulation of Notch signaling by O-glycosylation in cancer.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Correspondence:
| |
Collapse
|
22
|
Pandi J, Arulprakasam A, Dhandapani R, Ramanathan S, Thangavelu S, Chinnappan J, Vidhya Rajalakshmi V, Alghamdi S, Shesha NT, Prasath S. Biomarkers for Breast Adenocarcinoma Using In Silico Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7825272. [PMID: 35280505 PMCID: PMC8913068 DOI: 10.1155/2022/7825272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/28/2022] [Indexed: 12/01/2022]
Abstract
This work elucidates the idea of finding probable critical genes linked to breast adenocarcinoma. In this study, the GEO database gene expression profile data set (GSE70951) was retrieved to look for genes that were expressed variably across breast adenocarcinoma samples and healthy tissue samples. The genes were confirmed to be part of the PPI network for breast cancer pathogenesis and prognosis. In Cytoscape, the CytoHubba module was used to discover the hub genes. For correlation analysis, the predictive biomarker of these hub genes, as well as GEPIA, was used. A total of 155 (85 upregulated genes and 70 downregulated genes) were identified. By integrating the PPI and CytoHubba data, the major key/hub genes were selected from the results. The KM plotter is employed to find the prognosis of those major pivot genes, and the outcome shows worse prognosis in breast adenocarcinoma patients. Further experimental validation will show the predicted expression levels of those hub genes. The overall result of our study gives the consequences for the identification of a critical gene to ease the molecular targeting therapy for breast adenocarcinoma. It could be used as a prognostic biomarker and could lead to therapy options for breast adenocarcinoma.
Collapse
Affiliation(s)
- Jhansi Pandi
- Medical Microbiology Unit, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | - Saikishore Ramanathan
- Medical Microbiology Unit, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sathiamoorthi Thangavelu
- Medical Microbiology Unit, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - S. Prasath
- Department of Mechanical Engineering, College of Engineering and Technology, Mizan Tepi University, Ethiopia
| |
Collapse
|
23
|
Lo PW, Okajima T. Eogt-catalyzed O-GlcNAcylation. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2033.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Institute for Glyco-core Research (iGCORE), Nagoya University
| |
Collapse
|
24
|
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| |
Collapse
|
25
|
Shu Y, He L, Gao M, Xiao F, Yang J, Wang S, Wei H, Zhang F, Wei H. EOGT Correlated With Immune Infiltration: A Candidate Prognostic Biomarker for Hepatocellular Carcinoma. Front Immunol 2022; 12:780509. [PMID: 35069551 PMCID: PMC8766744 DOI: 10.3389/fimmu.2021.780509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background A preliminary study by our group revealed that the deficiency of EGF domain-specific O-linked N-acetylglucosamine transferase (EOGT) impaired regulatory T-cell differentiation in autoimmune hepatitis. Nevertheless, the prognostic value of EOGT in advanced hepatocellular carcinoma (HCC) and its relationship with immune infiltration remain obscured. Methods Initially, EOGT expression was evaluated by Oncomine, TIMER, GEO, and UALCAN databases. Besides, the prognostic potential of EOGT expression was analyzed using GEPIA, Kaplan-Meier plotter, CPTAC, Cox regression, and nomogram in HCC samples. Furthermore, we investigated the association between EOGT expression and tumor mutation burden, DNA methylation, and immune infiltration in addition to its possible mechanism via cBioPortal, TIMER, GEPIA, ESTIMATE, CIBERSORT, GSEA, STRING, and Cytoscape. Results The expression of EOGT in HCC was significantly higher than that in normal tissues. Additionally, elevated EOGT expression was correlated with advanced tumor staging and linked to poor overall survival and relapse-free survival, serving as a significant unfavorable prognostic indicator in HCC patients. Remarkably, our results revealed that high-EOGT expression subgroups with elevated TP53 or low CTNNB1 mutations have worse clinical outcomes than the others. Regarding immune infiltration, immunofluorescent staining showed that immune cells in HCC were positive for EOGT. Besides, elevated EOGT expression was linked to exhausted T cells and immune suppressor cells in HCC samples. More importantly, the proportion of CD8+ T cells was reduced in HCC samples with a high level of EOGT expression, but EOGT did not exhibit prognostic potential in HCC samples with increased CD8+ T cells. Conclusions EOGT may hold great potential as a novel biomarker to distinguish prognosis and immune profiles of HCC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune microenvironment across multiple cancers. Comput Struct Biotechnol J 2022; 20:3106-3119. [PMID: 35782736 PMCID: PMC9233189 DOI: 10.1016/j.csbj.2022.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Shc SH2-domain binding protein 1 (SHCBP1), a protein specific binding to SH2 domain of Src homolog and collagen homolog (Shc), takes part in the regulation of various signal transduction pathways, which has been reported to be associated with tumorigenesis and progression. However, the pathological mechanisms are not completely investigated. Thus, this study aimed to comprehensively elucidate the potential functions of SHCBP1 in multiple cancer types. The comprehensive analyses for SHCBP1 in various tumors, including gene expression, diagnosis, prognosis, immune-related features, genetic alteration, and function enrichment, were conducted based on multiple databases and analysis tools. SHCBP1 was upregulated in most types of cancers. The results of qRT-PCR had confirmed that SHCBP1 mRNA was significantly upregulated in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC) cell lines. Based on the receiver operating characteristic (ROC) and survival analysis, SHCBP1 was considered as a potential diagnostic and prognostic biomarker. Furthermore, SHCBP1 expression was linked with tumor immunity and immunosuppressive microenvironment according to the correlation analysis of SHCBP1 expression with immune cells infiltration, immune checkpoint genes, and immune-related genes (MHC genes, chemokines, and chemokines receptors). Moreover, SHCBP1 expression correlated with tumor mutational burden (TMB), microsatellite instability (MSI), and neoantigens. The feature of SHCBP1 mutational landscape in pan-cancer was identified. Finally, we focused on investigating the clinical significance and the potential biological role of SHCBP1 in LUAD. Our study comprehensively uncovered that SHCBP1 could be identified as an immune-related biomarker for cancer diagnosis and prognosis, and a potential therapeutic target for tumor immunotherapy.
Collapse
|