1
|
Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek KH, Jan AT. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr Issues Mol Biol 2024; 46:5194-5222. [PMID: 38920984 PMCID: PMC11201952 DOI: 10.3390/cimb46060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Plants being sessile are exposed to different environmental challenges and consequent stresses associated with them. With the prerequisite of minerals for growth and development, they coordinate their mobilization from the soil through their roots. Phosphorus (P) and iron (Fe) are macro- and micronutrient; P serves as an important component of biological macromolecules, besides driving major cellular processes, including photosynthesis and respiration, and Fe performs the function as a cofactor for enzymes of vital metabolic pathways. These minerals help in maintaining plant vigor via alterations in the pH, nutrient content, release of exudates at the root surface, changing dynamics of root microbial population, and modulation of the activity of redox enzymes. Despite this, their low solubility and relative immobilization in soil make them inaccessible for utilization by plants. Moreover, plants have evolved distinct mechanisms to cope with these stresses and coregulate the levels of minerals (Fe, P, etc.) toward the maintenance of homeostasis. The present study aims at examining the uptake mechanisms of Fe and P, and their translocation, storage, and role in executing different cellular processes in plants. It also summarizes the toxicological aspects of these minerals in terms of their effects on germination, nutrient uptake, plant-water relationship, and overall yield. Considered as an important and indispensable component of sustainable agriculture, a separate section covers the current knowledge on the cross-talk between Fe and P and integrates complete and balanced information of their effect on plant hormone levels.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| |
Collapse
|
2
|
DeLoose M, Cho H, Bouain N, Choi I, Prom-U-Thai C, Shahzad Z, Zheng L, Rouached H. PDR9 allelic variation and MYB63 modulate nutrient-dependent coumarin homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1716-1727. [PMID: 38361338 DOI: 10.1111/tpj.16678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Plant roots release phytochemicals into the soil environment to influence nutrient availability and uptake. Arabidopsis thaliana roots release phenylpropanoid coumarins in response to iron (Fe) deficiency, likely to enhance Fe uptake and improve plant health. This response requires sufficient phosphorus (P) in the root environment. Nonetheless, the regulatory interplay influencing coumarin production under varying availabilities of Fe and P is not known. Through genome-wide association studies, we have pinpointed the influence of the ABC transporter G family member, PDR9, on coumarin accumulation and trafficking (homeostasis) under combined Fe and P deficiency. We show that genetic variation in the promoter of PDR9 regulates its expression in a manner associated with coumarin production. Furthermore, we find that MYB63 transcription factor controls dedicated coumarin production by regulating both COUMARIN SYNTHASE (COSY) and FERULOYL-CoA 6'-HYDROXYLASE 1 (F6'H1) expression while orchestrating secretion through PDR9 genes under Fe and P combined deficiency. This integrated approach illuminates the intricate connections between nutrient signaling pathways in coumarin response mechanisms.
Collapse
Affiliation(s)
- Megan DeLoose
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Huikyong Cho
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Nadia Bouain
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48823, USA
| | - Ilyeong Choi
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | - Zaigham Shahzad
- Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
3
|
Pinit S, Ariyakulkiat L, Chaiwanon J. Rice straw-derived smoke water promotes rice root growth under phosphorus deficiency by modulating oxidative stress and photosynthetic gene expression. Sci Rep 2023; 13:14802. [PMID: 37684292 PMCID: PMC10491667 DOI: 10.1038/s41598-023-41987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
Plant-derived smoke has been shown to promote plant growth and seed germination, but its roles and mechanisms in response to nutrient deficiency stress remain unclear. Plants respond to phosphorus (P) deficiency by undergoing morphological, physiological, and transcriptional changes in order to improve nutrient uptake efficiency. Here, we showed that rice straw-derived smoke water could promote root growth in rice (Oryza sativa cv. Nipponbare) grown under P-sufficient and P-deficient conditions. Transcriptome analysis of the root tissues identified 1309 genes up-regulated and 1311 genes down-regulated by smoke water under P-deficient conditions. The GO terms 'glutathione transferase activity' and 'photosynthesis-light reaction' were found to be significantly enriched among the genes that were up- and down-regulated by smoke water, respectively. Biochemical analysis showed that smoke water reduced P-deficient-induced accumulation of H2O2 and malondialdehyde (MDA), a lipid peroxidation marker, reduced sucrose contents, but increased Fe accumulation. Furthermore, smoke water suppressed the expression of strigolactone biosynthesis genes, which were strongly induced by P deficiency as an adaptive strategy to improve root P uptake. These results revealed a potential mechanism by which smoke water promotes root growth and interacts with P deficiency-induced transcriptional regulation to mitigate P deficiency stress in rice.
Collapse
Affiliation(s)
- Sompop Pinit
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Lalichat Ariyakulkiat
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Juthamas Chaiwanon
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Roychowdhury A, Srivastava R, Akash, Shukla G, Zehirov G, Mishev K, Kumar R. Metabolic footprints in phosphate-starved plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:755-767. [PMID: 37363416 PMCID: PMC10284745 DOI: 10.1007/s12298-023-01319-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Plants' requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. Besides restricting plants' primary growth, P depletion affects both primary and secondary metabolism and leads to altered levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic changes to intracellular Pi homeostasis.
Collapse
Affiliation(s)
- Abhishek Roychowdhury
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Rajat Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Akash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Gyanesh Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Grigor Zehirov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| |
Collapse
|
5
|
Wang R, Chen Y, Kaur G, Wu X, Nguyen HT, Shen R, Pandey AK, Lan P. Differentially reset transcriptomes and genome bias response orchestrate wheat response to phosphate deficiency. PHYSIOLOGIA PLANTARUM 2022; 174:e13767. [PMID: 36281840 DOI: 10.1111/ppl.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is an essential macronutrient for all organisms. Phosphate (Pi) deficiency reduces grain yield and quality in wheat. Understanding how wheat responds to Pi deficiency at the global transcriptional level remains limited. We revisited the available RNA-seq transcriptome from Pi-starved wheat roots and shoots subjected to Pi starvation. Genome-wide transcriptome resetting was observed under Pi starvation, with a total of 917 and 2338 genes being differentially expressed in roots and shoots, respectively. Chromosomal distribution analysis of the gene triplets and differentially expressed genes (DEGs) revealed that the D genome displayed genome induction bias and, specifically, the chromosome 2D might be a key contributor to Pi-limiting triggered gene expression response. Alterations in multiple metabolic pathways pertaining to secondary metabolites, transcription factors and Pi uptake-related genes were evidenced. This study provides genomic insight and the dynamic landscape of the transcriptional changes contributing to the hexaploid wheat during Pi starvation. The outcomes of this study and the follow-up experiments have the potential to assist the development of Pi-efficient wheat cultivars.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinglong Chen
- UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Gazaldeep Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Xiaoba Wu
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Henry T Nguyen
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Lay-Pruitt KS, Wang W, Prom-U-Thai C, Pandey A, Zheng L, Rouached H. A tale of two players: the role of phosphate in iron and zinc homeostatic interactions. PLANTA 2022; 256:23. [PMID: 35767117 DOI: 10.1007/s00425-022-03922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This minireview details the impact of iron-phosphate and zinc-phosphate interactions in plants and provides perspectives for further areas of research regarding nutrient homeostasis. Iron (Fe) and zinc (Zn) are among the most important micronutrients for plant growth and have numerous implications for human health and agriculture. While plants have developed efficient uptake and transport mechanisms for Fe and Zn, emerging research has shown that the availability of other nutrients in the environment influences the homeostasis of Fe and Zn within plants. In this minireview, we present the current knowledge regarding homeostatic interactions of Fe and Zn with the macronutrient phosphorous (P) and the resulting physiological responses to combined deficiencies of these nutrients. Fe and P interactions have been shown to influence root development, photosynthesis, and biological processes aiding Fe uptake. Zn and P interactions also influence root growth, and coordination of Zn-dependent transcriptional regulation contributes to phosphate (Pi) transport in the plant. Understanding homeostatic interactions among these different nutrients is of critical importance to obtain a more complete understanding of plant nutrition in complex soil environments.
Collapse
Affiliation(s)
- Katerina S Lay-Pruitt
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- The Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Wujian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chanakan Prom-U-Thai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Ajay Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Knowledge City, Mohali, S.A.S. Nagar, Punjab, 140306, India
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- The Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Kumar A, Kaur G, Singh P, Meena V, Sharma S, Tiwari M, Bauer P, Pandey AK. Strategies and Bottlenecks in Hexaploid Wheat to Mobilize Soil Iron to Grains. FRONTIERS IN PLANT SCIENCE 2022; 13:863849. [PMID: 35574143 PMCID: PMC9100831 DOI: 10.3389/fpls.2022.863849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Our knowledge of iron (Fe) uptake and mobilization in plants is mainly based on Arabidopsis and rice. Although multiple players of Fe homeostasis have been elucidated, there is a significant gap in our understanding of crop species, such as wheat. It is, therefore, imperative not only to understand the different hurdles for Fe enrichment in tissues but also to address specifically the knowns/unknowns involved in the plausible mechanism of Fe sensing, signaling, transport, and subsequent storage in plants. In the present review, a unique perspective has been described in light of recent knowledge generated in wheat, an economically important crop. The strategies to boost efficient Fe uptake, transcriptional regulation, and long-distance mobilization in grains have been discussed, emphasizing recent biotechnological routes to load Fe in grains. This article also highlights the new elements of physiological and molecular genetics that underpin the mechanistic insight for the identified Fe-related genes and discusses the bottlenecks in unloading the Fe in grains. The information presented here will provide much-needed resources and directions to overcome challenges and design efficient strategies to enhance the Fe density in wheat grains.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Gazaldeep Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Palvinder Singh
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Varsha Meena
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Shivani Sharma
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Manish Tiwari
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|