1
|
Song H, Wang M, Shen J, Wang X, Qin C, Wei P, Niu Y, Ren J, Pan X, Liu A. Physiological and transcriptomic profiles reveal key regulatory pathways involved in cold resistance in sunflower seedlings. Genomics 2024; 116:110926. [PMID: 39178997 DOI: 10.1016/j.ygeno.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of MYB44a, MYB44b, MYB12, bZIP2 and bZIP4 continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.
Collapse
Affiliation(s)
- Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Mingyang Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Cheng Qin
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Peipei Wei
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Yaojun Niu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| | - Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing 401329, China.
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| |
Collapse
|
2
|
Zhang Y, Cao M, Li Q, Yu F. Genome-wide identification and expression analysis of TPP gene family under salt stress in peanut (Arachis hypogaea L.). PLoS One 2024; 19:e0305730. [PMID: 39024233 PMCID: PMC11257338 DOI: 10.1371/journal.pone.0305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Trehalose-6-phosphate phosphatase (TPP), a key enzyme for trehalose biosynthesis in plants, plays a pivotal role in the growth and development of higher plants, as well as their adaptations to various abiotic stresses. Employing bioinformatics techniques, 45 TPP genes distributed across 17 chromosomes were identified with conserved Trehalose-PPase domains in the peanut genome, aiming to screen those involved in salt tolerance. Collinearity analysis showed that 22 TPP genes from peanut formed homologous gene pairs with 9 TPP genes from Arabidopsis and 31 TPP genes from soybean, respectively. Analysis of cis-acting elements in the promoters revealed the presence of multiple hormone- and abiotic stress-responsive elements in the promoter regions of AhTPPs. Expression pattern analysis showed that members of the TPP gene family in peanut responded significantly to various abiotic stresses, including low temperature, drought, and nitrogen deficiency, and exhibited certain tissue specificity. Salt stress significantly upregulated AhTPPs, with a higher number of responsive genes observed at the seedling stage compared to the podding stage. The intuitive physiological effect was reflected in the significantly higher accumulation of trehalose content in the leaves of plants under salt stress compared to the control. These findings indicate that the TPP gene family plays a crucial role in peanut's response to abiotic stresses, laying the foundation for further functional studies and utilization of these genes.
Collapse
Affiliation(s)
- Yanfeng Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minxuan Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiuzhi Li
- Liaocheng Academy of Agricultural Sciences, Liaocheng, Shandong, China
| | - Fagang Yu
- Liaocheng Academy of Agricultural Sciences, Liaocheng, Shandong, China
| |
Collapse
|
3
|
Dong J, Zhang H, Ai X, Dong Q, Shi X, Zhao X, Zhong C, Yu H. Improving chilling tolerance of peanut seedlings by enhancing antioxidant-modulated ROS scavenging ability, alleviating photosynthetic inhibition, and mobilizing nutrient absorption. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:532-543. [PMID: 38597809 DOI: 10.1111/plb.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Peanut production is threatened by climate change. Damage to seedlings from low temperatures in early spring can limit yield. Plant adaptations to chilling stress remain unclear in peanut seedlings. It is essential to understand how peanut acquires chilling tolerance. We evaluated effects of chilling stress on growth and recovery of peanut seedlings. We compared and analysed biological characteristics, antioxidants, photosynthesis, biochemical and physiological responses, and nutrient absorption at varying levels of chilling. Compared with chilling-sensitive FH18, the reduced impact of chilling stress on chilling-tolerant NH5 was associated with reduced ROS accumulation, higher ascorbate peroxidase activity and soluble sugar content, lower soluble protein content, and smaller reductions in nutrient content during stress. After removal of chilling stress, FH18 had significant accumulation of O2 •- and H2O2, which decreased photosynthesis, nutrient absorption, and transport. ROS-scavenging reduced damage from chilling stress, allowed remobilization of nutrients, improved chilling tolerance, and restored plant functioning after chilling stress removal. These findings provide a reference for targeted research on peanut seedling tolerance to chilling and lay the foundation for bioinformatics-based research on peanut chilling tolerance mechanisms.
Collapse
Affiliation(s)
- J Dong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - H Zhang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - X Ai
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Q Dong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - X Shi
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - X Zhao
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - C Zhong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - H Yu
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Kumar D, Kirti PB. The genus Arachis: an excellent resource for studies on differential gene expression for stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1275854. [PMID: 38023864 PMCID: PMC10646159 DOI: 10.3389/fpls.2023.1275854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Peanut Arachis hypogaea is a segmental allotetraploid in the section Arachis of the genus Arachis along with the Section Rhizomataceae. Section Arachis has several diploid species along with Arachis hypogaea and A. monticola. The section Rhizomataceae comprises polyploid species. Several species in the genus are highly tolerant to biotic and abiotic stresses and provide excellent sets of genotypes for studies on differential gene expression. Though there were several studies in this direction, more studies are needed to identify more and more gene combinations. Next generation RNA-seq based differential gene expression study is a powerful tool to identify the genes and regulatory pathways involved in stress tolerance. Transcriptomic and proteomic study of peanut plants under biotic stresses reveals a number of differentially expressed genes such as R genes (NBS-LRR, LRR-RLK, protein kinases, MAP kinases), pathogenesis related proteins (PR1, PR2, PR5, PR10) and defense related genes (defensin, F-box, glutathione S-transferase) that are the most consistently expressed genes throughout the studies reported so far. In most of the studies on biotic stress induction, the differentially expressed genes involved in the process with enriched pathways showed plant-pathogen interactions, phenylpropanoid biosynthesis, defense and signal transduction. Differential gene expression studies in response to abiotic stresses, reported the most commonly expressed genes are transcription factors (MYB, WRKY, NAC, bZIP, bHLH, AP2/ERF), LEA proteins, chitinase, aquaporins, F-box, cytochrome p450 and ROS scavenging enzymes. These differentially expressed genes are in enriched pathways of transcription regulation, starch and sucrose metabolism, signal transduction and biosynthesis of unsaturated fatty acids. These identified differentially expressed genes provide a better understanding of the resistance/tolerance mechanism, and the genes for manipulating biotic and abiotic stress tolerance in peanut and other crop plants. There are a number of differentially expressed genes during biotic and abiotic stresses were successfully characterized in peanut or model plants (tobacco or Arabidopsis) by genetic manipulation to develop stress tolerance plants, which have been detailed out in this review and more concerted studies are needed to identify more and more gene/gene combinations.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pulugurtha Bharadwaja Kirti
- Agri Biotech Foundation, Professor Jayashankar Telangana State (PJTS) Agricultural University, Hyderabad, Telangana, India
| |
Collapse
|
5
|
El-Temsah ME, Abd-Elkrem YM, El-Gabry YA, Abdelkader MA, Morsi NAA, Taha NM, Abd-Elrahman SH, Hashem FAE, Shahin MG, Abd El-Samad GA, Boudiar R, Silvar C, El-Hendawy S, Mansour E, El-Hady MAA. Response of Diverse Peanut Cultivars to Nano and Conventional Calcium Forms under Alkaline Sandy Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:2598. [PMID: 37514213 PMCID: PMC10384398 DOI: 10.3390/plants12142598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Calcium is one of the most limiting factors for the growth and reproduction of peanut, which ultimately affects pod and seed yields. A two-year field experiment was carried out to assess the impact of five calcium applications, including nano-calcium and conventional forms, on growth, leaf nutrient content, yield traits, and quality parameters of three diverse peanut cultivars (Ismailia-1, Giza-5, and Giza-6). The applied calcium applications were calcium sulfate, which is recommended for commercial peanut cultivation and commonly referred to as gypsum (coded as Ca-1), calcium nitrate (Ca-2), nano-calcium nitrate (Ca-3), 50% calcium nitrate + 50% nano-calcium (Ca-4), and 50% calcium sulfate + 50% nano-calcium (Ca-5). Calcium sulfate (gypsum, Ca-1) was soil-supplied during the seedbed preparation as recommended, while the other calcium applications (Ca-2, Ca-3, Ca-4, and Ca-5) were exogenously sprayed three times at 30, 45, and 60 days after sowing. The soil of the experimental site was alkaline, with a high pH of 8.6. The results revealed significant differences among cultivars, calcium applications, and their interactions. The soil-supplied gypsum Ca-1 displayed lower agronomic performance on all recorded growth, leaf nutrient content, yield traits, and quality parameters. On the other hand, the foliar-supplied calcium, particularly Ca-4 and Ca-5, displayed superior effects compared to the other simple calcium forms. Ca-4 and Ca-5 produced significantly higher seed yield (3.58 and 3.38 t/ha) than the simple recommended form (Ca-1, 2.34 t/ha). This could be due to the difficulty of calcium uptake from soil-supplied calcium under high soil pH compared to the exogenously sprayed nano-calcium form. Moreover, the superior performance of Ca-4 and Ca-5 could be caused by the mixture of fertilizers from the synergistic effect of calcium and nitrate or sulfate. Furthermore, the effect of nitrate was applied in nano form in the Ca4 and Ca-5 treatments, which contributed to improving nutrient uptake efficiency and plant growth compared to the other treatments. The peanut cultivar Giza-6 showed superiority for most measured traits over the other two cultivars. The interaction effect between the assessed cultivars and calcium applications was significant for various traits. The cultivar Giza-6 showed a significant advantage for most measured traits with the mixture of 50% calcium nitrate + 50% nano-calcium (Ca-4). Conclusively, the results pointed out the advantage of the exogenously sprayed nano-calcium form combined with calcium nitrate or calcium sulfate for promoting growth, leaf nutrient content, yield, and quality traits of peanut, particularly with high-yielding cultivars under sandy soil with high pH.
Collapse
Affiliation(s)
- Mohamed E El-Temsah
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yasser M Abd-Elkrem
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yasser A El-Gabry
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Mohamed A Abdelkader
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Nahid A A Morsi
- Cell Research Department (CRD), Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Noura M Taha
- Horticulture Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Shaimaa H Abd-Elrahman
- Soil and Water Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Fadl A E Hashem
- Central Laboratory for Agricultural Climate, Agricultural Research Center, Giza 12411, Egypt
| | - Mostafa G Shahin
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Gomaa A Abd El-Samad
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Ridha Boudiar
- Biotechnology Research Center-C.R.Bt Constantine, UV 03, Nouvelle Ville Ali Mendjeli, P.O. Box E73, Constantine 25016, Algeria
| | - Cristina Silvar
- Grupo de Investigación en Bioloxía Evolutiva, CICA-Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, 15071 A Coruña, Spain
| | - Salah El-Hendawy
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A Abd El-Hady
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| |
Collapse
|
6
|
Liu Y, Lu J, Cui L, Tang Z, Ci D, Zou X, Zhang X, Yu X, Wang Y, Si T. The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and cold stress. BMC PLANT BIOLOGY 2023; 23:36. [PMID: 36642709 PMCID: PMC9841720 DOI: 10.1186/s12870-023-04053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Arbuscular Mycorrhizal Fungi (AMF) are beneficial microorganisms in soil-plant interactions; however, the underlying mechanisms regarding their roles in legumes environmental stress remain elusive. Present trials were undertaken to study the effect of AMF on the ameliorating of salt, drought, and cold stress in peanut (Arachis hypogaea L.) plants. A new product of AMF combined with Rhizophagus irregularis SA, Rhizophagus clarus BEG142, Glomus lamellosum ON393, and Funneliformis mosseae BEG95 (1: 1: 1: 1, w/w/w/w) was inoculated with peanut and the physiological and metabolomic responses of the AMF-inoculated and non-inoculated peanut plants to salt, drought, and cold stress were comprehensively characterized, respectively. RESULTS AMF-inoculated plants exhibited higher plant growth, leaf relative water content (RWC), net photosynthetic rate, maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), activities of antioxidant enzymes, and K+: Na+ ratio while lower leaf relative electrolyte conductivity (REC), concentration of malondialdehyde (MDA), and the accumulation of reactive oxygen species (ROS) under stressful conditions. Moreover, the structures of chloroplast thylakoids and mitochondria in AMF-inoculated plants were less damaged by these stresses. Non-targeted metabolomics indicated that AMF altered numerous pathways associated with organic acids and amino acid metabolisms in peanut roots under both normal-growth and stressful conditions, which were further improved by the osmolytes accumulation data. CONCLUSION This study provides a promising AMF product and demonstrates that this AMF combination could enhance peanut salt, drought, and cold stress tolerance through improving plant growth, protecting photosystem, enhancing antioxidant system, and regulating osmotic adjustment.
Collapse
Affiliation(s)
- Yuexu Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinhao Lu
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Cui
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, 250100, China
| | - Zhaohui Tang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, 250100, China
| | - Dunwei Ci
- Shandong Peanut Research Institute, Qingdao, 266199, China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuefu Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Song Q, Zhang S, Bai C, Shi Q, Wu D, Liu Y, Han X, Li T, Yong JWH. Exogenous Ca 2+ priming can improve peanut photosynthetic carbon fixation and pod yield under early sowing scenarios in the field. FRONTIERS IN PLANT SCIENCE 2022; 13:1004721. [PMID: 36247552 PMCID: PMC9557924 DOI: 10.3389/fpls.2022.1004721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Harnessing cold-resilient and calcium-enriched peanut production technology are crucial for high-yielding peanut cultivation in high-latitude areas. However, there is limited field data about how exogenous calcium (Ca2+) application would improve peanut growth resilience during exposure to chilling stress at early sowing (ES). To help address this problem, a two-year field study was conducted to assess the effects of exogenous foliar Ca2+ application on photosynthetic carbon fixation and pod yield in peanuts under different sowing scenarios. We measured plant growth indexes, leaf photosynthetic gas exchange, photosystems activities, and yield in peanuts. It was indicated that ES chilling stress at the peanut seedling stage led to the reduction of Pn, gs, Tr, Ls, WUE, respectively, and the excessive accumulation of non-structural carbohydrates in leaves, which eventually induced a chilling-dependent feedback inhibition of photosynthesis due mainly to weaken growth/sink demand. While exogenous Ca2+ foliar application improved the export of nonstructural carbohydrates, and photosynthetic capacity, meanwhile activated cyclic electron flow, thereby enhancing growth and biomass accumulation in peanut seedlings undergoing ES chilling stress. Furthermore, ES combined with exogenous Ca2+ application can significantly enhance plant chilling resistance and peanut yield ultimately in the field. In summary, the above results demonstrated that exogenous foliar Ca2+ application restored the ES-linked feedback inhibition of photosynthesis, enhancing the growth/sink demand and the yield of peanuts.
Collapse
Affiliation(s)
- Qiaobo Song
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Research Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Qingwen Shi
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Di Wu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|