1
|
Zhu G, Wang X, Wang Y, Huang T, Zhang X, He J, Shi N, Chen J, Zhang J, Zhang M, Li J. Comparative transcriptomic study on the ovarian cancer between chicken and human. Poult Sci 2024; 103:104021. [PMID: 39002367 PMCID: PMC11298922 DOI: 10.1016/j.psj.2024.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
The laying hen is the spontaneous model of ovarian tumor. A comprehensive comparison based on RNA-seq from hens and women may shed light on the molecular mechanisms of ovarian cancer. We performed next-generation sequencing of microRNA and mRNA expression profiles in 9 chicken ovarian cancers and 4 normal ovaries, which has been deposited in GSE246604. Together with 6 public datasets (GSE21706, GSE40376, GSE18520, GSE27651, GSE66957, TCGA-OV), we conducted a comparative transcriptomics study between chicken and human. In the present study, miR-451, miR-2188-5p, and miR-10b-5p were differentially expressed in normal ovaries, early- and late-stage ovarian cancers. We also disclosed 499 up-regulated genes and 1,061 down-regulated genes in chicken ovarian cancer. The molecular signals from 9 cancer hallmarks, 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 369 Gene Ontology (GO) pathways exhibited abnormalities in ovarian cancer compared to normal ovaries via Gene Set Enrichment Analysis (GSEA). In the comparative analysis across species, we have uncovered the conservation of 5 KEGG and 76 GO pathways between chicken and human including the mismatch repair and ECM receptor interaction pathways. Moreover, a total of 174 genes contributed to the core enrichment for these KEGG and GO pathways were identified. Among these genes, the 22 genes were found to be associated with overall survival in patients with ovarian cancer. In general, we revealed the microRNA profiles of ovarian cancers in hens and updated the mRNA profiles previously derived from microarrays. And we also disclosed the molecular pathways and core genes of ovarian cancer shared between hens and women, which informs model animal studies and gene-targeted drug development.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinglong Wang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun Wang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianjiao Huang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Zhang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiliang He
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ningkun Shi
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juntao Chen
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mao Zhang
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Juan Li
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Schraverus H, Larondelle Y, Page MM. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers (Basel) 2022; 14:cancers14246177. [PMID: 36551658 PMCID: PMC9776354 DOI: 10.3390/cancers14246177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer research has benefited immensely from the use of animal models. Several genetic tools accessible in rodent models have provided valuable insight into cellular and molecular mechanisms linked to cancer development or metastasis and various lines are available. However, at the same time, it is important to accompany these findings with those from alternative or non-model animals to offer new perspectives into the understanding of tumor development, prevention, and treatment. In this review, we first discuss animals characterized by little or no tumor development. Cancer incidence in small animals, such as the naked mole rat, blind mole rat and bats have been reported as almost negligible and tumor development may be inhibited by increased defense and repair mechanisms, altered cell cycle signaling and reduced rates of cell migration to avoid tumor microenvironments. On the other end of the size spectrum, large animals such as elephants and whales also appear to have low overall cancer rates, possibly due to gene replicates that are involved in apoptosis and therefore can inhibit uncontrolled cell cycle progression. While it is important to determine the mechanisms that lead to cancer protection in these animals, we can also take advantage of other animals that are highly susceptible to cancer, especially those which develop tumors similar to humans, such as carnivores or poultry. The use of such animals does not require the transplantation of malignant cancer cells or use of oncogenic substances as they spontaneously develop tumors of similar presentation and pathophysiology to those found in humans. For example, some tumor suppressor genes are highly conserved between humans and domestic species, and various tumors develop in similar ways or because of a common environment. These animals are therefore of great interest for broadening perspectives and techniques and for gathering information on the tumor mechanisms of certain types of cancer. Here we present a detailed review of alternative and/or non-model vertebrates, that can be used at different levels of cancer research to open new perspectives and fields of action.
Collapse
|
3
|
Pal P, Starkweather KN, Hales KH, Hales DB. A Review of Principal Studies on the Development and Treatment of Epithelial Ovarian Cancer in the Laying Hen Gallus gallus. Comp Med 2021; 71:271-284. [PMID: 34325771 DOI: 10.30802/aalas-cm-20-000116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Often referred to as the silent killer, ovarian cancer is the most lethal gynecologic malignancy. This disease rarely shows any physical symptoms until late stages and no known biomarkers are available for early detection. Because ovarian cancer is rarely detected early, the physiology behind the initiation, progression, treatment, and prevention of this disease remains largely unclear. Over the past 2 decades, the laying hen has emerged as a model that naturally develops epithelial ovarian cancer that is both pathologically and histologically similar to that of the human form of the disease. Different molecular signatures found in human ovarian cancer have also been identified in chicken ovarian cancer including increased CA125 and elevated E-cadherin expression, among others. Chemoprevention studies conducted in this model have shown that decreased ovulation and inflammation are associated with decreased incidence of ovarian cancer development. The purpose of this article is to review the major studies performed in laying hen model of ovarian cancer and discuss how these studies shape our current understanding of the pathophysiology, prevention, and treatment of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology, Southern Illinois University, Carbondale, Illinois
| | | | - Karen Held Hales
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Dale Buchanan Hales
- Department of Physiology, Southern Illinois University, Carbondale, Illinois; Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois;,
| |
Collapse
|
4
|
Histology of the Ovary of the Laying Hen (Gallus domesticus). Vet Sci 2017; 4:vetsci4040066. [PMID: 29232906 PMCID: PMC5753646 DOI: 10.3390/vetsci4040066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 11/23/2022] Open
Abstract
The laying hen (Gallus domesticus) is a robust animal model for epithelial ovarian cancer. The use of animal models is critical in identifying early disease markers and developing and testing chemotherapies. We describe the microscopic characteristics of the normally functioning laying hen ovary and proximal oviduct to establish baselines from which lesions associated with ovarian cancer can be more readily identified. Ovaries and oviducts were collected from 18-month-old laying hens (n = 18) and fixed in 10% neutral buffered formalin. Hematoxylin- and eosin-stained sections were examined by light microscopy. Both post-ovulatory follicular regression and atresia of small follicles produce remnant clusters of vacuolated cells with no histological evidence that scar tissue persists. Infiltrates of heterophils are associated with atresia of small follicles, a relationship not previously documented in laying hen ovaries. Because these tissues can be mistaken for cancerous lesions, we present a detailed histological description of remnant Wolffian tissues in the laying hen ovary. Immunohistochemical staining for pancytokeratin produced a positive response in ovarian surface epithelium and staining for vimentin produced a positive response in granulosa cells of follicles. Epithelial cells lining glands of the remnant epoöphoron had a positive response to both pancytokeratin and vimentin, a result also observed in women.
Collapse
|
5
|
Sahin K, Orhan C, Tuzcu M, Sahin N, Tastan H, Özercan İH, Güler O, Kahraman N, Kucuk O, Ozpolat B. Chemopreventive and Antitumor Efficacy of Curcumin in a Spontaneously Developing Hen Ovarian Cancer Model. Cancer Prev Res (Phila) 2017; 11:59-67. [PMID: 29089332 DOI: 10.1158/1940-6207.capr-16-0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/26/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
Abstract
We investigated the effect of daily dietary curcumin intake on the development and progression of spontaneous ovarian cancer in a galline (hen) model, as the chicken is the only nonhuman animal in which ovarian cancer spontaneously develops with a high prevalence. At the end of 12 months, ovarian cancer had spontaneously developed in 39% (35/90) of control hens not fed curcumin (n = 90). In comparison, it spontaneously developed in 27% (24/90) and 17% (15/90) of hens given curcumin at 25.8 (n = 90) and 53.0 mg/day (n = 90), respectively (P = 0.004). This represented significant dose-dependent reductions in overall ovarian cancer incidence in the 25.8 and 53.0 mg/day curcumin-fed groups (31% and 57%, respectively). Daily curcumin intake also reduced ovarian tumor sizes (P = 0.04) and number of tumors (P = 0.006). Evaluation of the molecular mechanisms underlying the chemopreventive and antitumor effects of curcumin revealed that NF-κB and STAT3 signaling pathways were significantly inhibited but that the nuclear factor erythroid 2/heme oxygenase 1 antioxidant pathway was induced by curcumin intake in a dose-dependent manner in ovarian tissues (P < 0.05). Sequencing of the Ras family genes (KRAS, NRAS, and HRAS) revealed less frequent KRAS and HRAS mutations in ovarian tumors in the curcumin-fed animals. In conclusion, our results demonstrated for the first time that daily curcumin intake leads to a significant and dose-dependent reduction in spontaneous ovarian cancer incidence and tumor growth, indicating a tremendous role for curcumin as a chemopreventive strategy for ovarian cancer. Cancer Prev Res; 11(1); 59-67. ©2017 AACR.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Hakkı Tastan
- Department of Genetics Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Osman Güler
- Department of Pharmacology, Veterinary Control Research and Institute, Firat University, Elazig, Turkey
| | - Nermin Kahraman
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas. .,Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Yu-Rice Y, Edassery SL, Urban N, Hellstrom I, Hellstrom KE, Deng Y, Li Y, Luborsky JL. Selenium-Binding Protein 1 (SBP1) autoantibodies in ovarian disorders and ovarian cancer. Reproduction 2016; 153:277-284. [PMID: 27965399 DOI: 10.1530/rep-16-0265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022]
Abstract
Infertility is a risk factor for ovarian cancer (OvCa). The goal was to determine if antibodies to selenium-binding protein 1 (SBP1), an autoantibody we identified in patients with premature ovarian failure (POF), occurs in both infertility and OvCa patients, and thus could be associated with preneoplasia. Anti-SBP1 was measured by immunoassay against recombinant SBP1, in sera from OvCa (n = 41), infertility (n = 92) and control (n = 87) patients. Infertility causes were POF, unexplained, irregular ovulation or endometriosis. The percent of anti-SBP1-positive sera was higher in POF (P = 0.02), irregular ovulation (P = 0.001), unexplained causes (P = 0.02), late (III-IV)-stage OvCa (P = 0.02) but was not significant in endometriosis, benign ovarian tumors/cysts, early stage (I-II) OvCa or uterine cancer compared to healthy controls. Anti-SBP1 was significantly higher in women with serous (P = 0.04) but not non-serous (P = 0.33) OvCa compared to controls. Also, we determined if anti-SBP1 was associated with CA125 or anti-TP53, markers often studied in OvCa. Anti-TP53 and CA125 were measured by established immunoassays. The ability of anti-SBP1 alone to discriminate infertility or OvCa from controls or when combined with anti-TP53 and CA125, to identify OvCa was evaluated by comparing the area under the curve (AUC) in ROC analysis. Anti-SBP1 alone discriminated infertility (AUC = 0.7; P = 0.001) or OvCa (AUC = 0.67; P = 0.03) from controls. The sensitivity and specificity of OvCa identification was increased by combining CA125, anti-TP53 and anti-SBP1 (AUC = 0.96). Therefore, anti-SBP1 occurs in infertile women with POF, ovulatory disturbances or unexplained infertility and in serous OvCa. This suggests an autoimmune process is associated with the development of serous OvCa.
Collapse
Affiliation(s)
- Yi Yu-Rice
- Department of PharmacologyRush University Medical Center, Chicago, Illinois, USA
| | - Seby L Edassery
- Department of PharmacologyRush University Medical Center, Chicago, Illinois, USA
| | - Nicole Urban
- Fred Hutchinson Cancer Research CenterSeattle, Washington, USA
| | - Ingegerd Hellstrom
- Department of PathologyHarborview Medical Center, University of Washington, Seattle, Washington, USA
| | - Karl Erik Hellstrom
- Department of PathologyHarborview Medical Center, University of Washington, Seattle, Washington, USA
| | - Youping Deng
- Department of Bioinformatics and BiostatisticsRush University Medical Center, Chicago, Illinois, USA
| | - Yan Li
- Department of Bioinformatics and BiostatisticsRush University Medical Center, Chicago, Illinois, USA
| | - Judith L Luborsky
- Department of PharmacologyRush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Endsley MP, Moyle-Heyrman G, Karthikeyan S, Lantvit DD, Davis DA, Wei JJ, Burdette JE. Spontaneous Transformation of Murine Oviductal Epithelial Cells: A Model System to Investigate the Onset of Fallopian-Derived Tumors. Front Oncol 2015; 5:154. [PMID: 26236688 PMCID: PMC4505108 DOI: 10.3389/fonc.2015.00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs) are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOE(LOW)) was developed and continuously passaged in culture to mimic cellular aging (MOE(HIGH)). The MOE(HIGH) cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOE(HIGH) cells proliferated significantly faster than MOE(LOW), and the MOE(HIGH) cells produced more 2D foci and 3D soft agar colonies as compared to MOE(LOW) MOE(HIGH) were xenografted into athymic female nude mice both in the subcutaneous and the intraperitoneal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers, such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOE(HIGH) and MOE(LOW) were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOE(HIGH) had enhanced protein expression of c-myc, Cyclin E, p53, and FOXM1 with reduced expression of p21. MOE(HIGH) were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans.
Collapse
Affiliation(s)
- Michael P Endsley
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Georgette Moyle-Heyrman
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Subbulakshmi Karthikeyan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Daniel D Lantvit
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - David A Davis
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University , Chicago, IL , USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| |
Collapse
|
8
|
Nepomuceno AI, Shao H, Jing K, Ma Y, Petitte JN, Idowu MO, Muddiman DC, Fang X, Hawkridge AM. In-depth LC-MS/MS analysis of the chicken ovarian cancer proteome reveals conserved and novel differentially regulated proteins in humans. Anal Bioanal Chem 2015; 407:6851-63. [PMID: 26159569 DOI: 10.1007/s00216-015-8862-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OVC) remains the most lethal gynecological malignancy in the world due to the combined lack of early-stage diagnostics and effective therapeutic strategies. The development and application of advanced proteomics technology and new experimental models has created unique opportunities for translational studies. In this study, we investigated the ovarian cancer proteome of the chicken, an emerging experimental model of OVC that develops ovarian tumors spontaneously. Matched plasma, ovary, and oviduct tissue biospecimens derived from healthy, early-stage OVC, and late-stage OVC birds were quantitatively characterized by label-free proteomics. Over 2600 proteins were identified in this study, 348 of which were differentially expressed by more than twofold (p ≤ 0.05) in early- and late-stage ovarian tumor tissue specimens relative to healthy ovarian tissues. Several of the 348 proteins are known to be differentially regulated in human cancers including B2M, CLDN3, EPCAM, PIGR, S100A6, S100A9, S100A11, and TPD52. Of particular interest was ovostatin 2 (OVOS2), a novel 165-kDa protease inhibitor found to be strongly upregulated in chicken ovarian tumors (p = 0.0005) and matched plasma (p = 0.003). Indeed, RT-quantitative PCR and Western blot analysis demonstrated that OVOS2 mRNA and protein were also upregulated in multiple human OVC cell lines compared to normal ovarian epithelia (NOE) cells and immunohistochemical staining confirmed overexpression of OVOS2 in primary human ovarian cancers relative to non-cancerous tissues. Collectively, these data provide the first evidence for involvement of OVOS2 in the pathogenesis of both chicken and human ovarian cancer.
Collapse
Affiliation(s)
- Angelito I Nepomuceno
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Box 8204, Raleigh, NC, 27695, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hawkridge AM. The chicken model of spontaneous ovarian cancer. Proteomics Clin Appl 2015; 8:689-99. [PMID: 25130871 DOI: 10.1002/prca.201300135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/24/2014] [Accepted: 08/07/2014] [Indexed: 12/24/2022]
Abstract
The chicken is a unique experimental model for studying the spontaneous onset and progression of ovarian cancer (OVC). The prevalence of OVC in chickens can range from 5 to 35% depending on age, genetic strain, reproductive history, and diet. Furthermore, the chicken presents epidemiological, morphological, and molecular traits that are similar to human OVC making it a relevant experimental model for translation research. Similarities to humans include associated increased risk of OVC with the number of ovulations, common histopathological subtypes including high-grade serous, and molecular-level markers or pathways such as CA-125 expression and p53 mutation frequency. Collectively, the similarities between chicken and human OVC combined with a tightly controlled genetic background and predictable onset window provides an outstanding experimental model for studying the early events and progression of spontaneous OVC tumors under controlled environmental conditions. This review will cover the existing literature on OVC in the chicken and highlight potential opportunities for further exploitation (e.g. biomarkers, prevention, treatment, and genomics).
Collapse
Affiliation(s)
- Adam M Hawkridge
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Harris EA, Fletcher OJ, Anderson KE, Petitte JN, Kopelovich L, Mozdziak PE. Epithelial cell tumors of the hen reproductive tract. Avian Dis 2014; 58:95-101. [PMID: 24758120 DOI: 10.1637/10643-082313-reg.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is a paucity of preclinical models that simulate the development of ovarian tumors in humans. At present, the egg-laying hen appears to be the most promising model to study the spontaneous occurrence of ovarian tumors in the clinical setting. Although gross classification and histologic grade of tumors have been used prognostically in women with ovarian tumors, there is currently no single system that is universally used to classify reproductive tumors in the hen. Four hundred and one 192-wk-old egg-laying hens were necropsied to determine the incidence of reproductive tumors using both gross pathology and histologic classification. Gross pathologic classifications were designated as follows: birds presenting with ovarian tumors only (class 1), those presenting with oviductal and ovarian tumors (class 2), those with ovarian and oviductal tumors that metastasized to the gastrointestinal tract (class 3), those with ovarian and oviductal tumors that metastasized to the gastrointestinal tract and other distant organs (class 4), those with oviductal tumors only (class 5), those with oviductal tumors that metastasized to other organs with no ovarian involvement (class 6), and those with ovarian tumors that metastasized to other organs with no oviductal involvement (class 7), including birds with gastrointestinal tumors and no reproductive involvement (GI only) and those with no tumors (normal). Histopathologic classifications range from grades 1 to 3 and are based on mitotic developments and cellular differentiation. An updated gross pathology and histologic classification systems for the hen reproductive malignancies provides a method to report the range of reproductive tumors revealed in a flock of aged laying hens.
Collapse
|
11
|
Rodriguez GC, Barnes HJ, Anderson KE, Whitaker RS, Berchuck A, Petitte JN, Lancaster JM, Wenham RM, Turbov JM, Day R, Maxwell GL, Carver DK. Evidence of a chemopreventive effect of progestin unrelated to ovulation on reproductive tract cancers in the egg-laying hen. Cancer Prev Res (Phila) 2013; 6:1283-92. [PMID: 24136864 DOI: 10.1158/1940-6207.capr-12-0426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiologic, laboratory, and animal evidence suggests that progestins and vitamin D may be potent ovarian cancer preventives. Our objectives were to evaluate progestins as reproductive tract cancer chemopreventives in the chicken, determine whether restricted ovulation affected the incidence of reproductive tract tumors, and assess whether vitamin D would confer cancer protection either alone or in addition to progestin. A total of 2,400 two-year-old Single Comb White Leghorns were randomized into six groups (400 each) with hormonal and dietary manipulation for 2 years as follows: (i) no intervention, regular feed/caloric intake, (ii) control, (iii) vitamin D, (iv) the progestin levonorgestrel, (v) vitamin D plus levonorgestrel, and (vi) the progestin Provera (medroxyprogesterone acetate). Groups 2 to 6 were caloric restricted to inhibit ovulation. Our results indicated that caloric restriction decreased egg production by more than 60%, and was associated with a greater than 70% decrease in reproductive tract cancers. Ovulatory events did not differ among the caloric-restricted groups (groups 2-6), except for the group receiving levonorgestrel, which had fewer ovulatory events than controls (P = 0.046). After correcting for egg production, birds receiving progestins had significantly fewer reproductive tract cancers [OR, 0.61; confidence interval (CI), 0.39-0.95; P = 0.03], with similar proportionate reductions in tumors arising in either the ovary or oviduct. Vitamin D did not significantly affect cancer incidence overall, or add to the cancer preventive effect of progestins. This study suggests a protective effect of progestins against ovarian and oviductal cancers. These data support the concept that progestins provide a chemopreventive effect unrelated to ovulation.
Collapse
Affiliation(s)
- Gustavo C Rodriguez
- Suite 1507, Walgreen Building, Evanston Hospital, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bradaric MJ, Penumatsa K, Barua A, Edassery SL, Yu Y, Abramowicz JS, Bahr JM, Luborsky JL. Immune cells in the normal ovary and spontaneous ovarian tumors in the laying hen (Gallus domesticus) model of human ovarian cancer. PLoS One 2013; 8:e74147. [PMID: 24040191 PMCID: PMC3767673 DOI: 10.1371/journal.pone.0074147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022] Open
Abstract
Background Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Methods Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. Results T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. Conclusions The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials.
Collapse
Affiliation(s)
- Michael J. Bradaric
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Krishna Penumatsa
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Animesh Barua
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Obstetrics & Gynecology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Seby L. Edassery
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Yi Yu
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jacques S. Abramowicz
- Department of Obstetrics & Gynecology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Janice M. Bahr
- Department of Animal Science, University of Illinois Urbana-Champaign, Illinois, United States of America
| | - Judith L. Luborsky
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Obstetrics & Gynecology, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lengyel E, Burdette JE, Kenny HA, Matei D, Pilrose J, Haluska P, Nephew KP, Hales DB, Stack MS. Epithelial ovarian cancer experimental models. Oncogene 2013; 33:3619-33. [PMID: 23934194 DOI: 10.1038/onc.2013.321] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (OvCa) is associated with high mortality and, as the majority (>75%) of women with OvCa have metastatic disease at the time of diagnosis, rates of survival have not changed appreciably over 30 years. A mechanistic understanding of OvCa initiation and progression is hindered by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell(s) or tissue(s) of origin. Metastasis of OvCa involves direct extension or exfoliation of cells and cellular aggregates into the peritoneal cavity, survival of matrix-detached cells in a complex ascites fluid phase and subsequent adhesion to the mesothelium lining covering abdominal organs to establish secondary lesions containing host stromal and inflammatory components. Development of experimental models to recapitulate this unique mechanism of metastasis presents a remarkable scientific challenge, and many approaches used to study other solid tumors (for example, lung, colon and breast) are not transferable to OvCa research given the distinct metastasis pattern and unique tumor microenvironment (TME). This review will discuss recent progress in the development and refinement of experimental models to study OvCa. Novel cellular, three-dimensional organotypic, and ex vivo models are considered and the current in vivo models summarized. The review critically evaluates currently available genetic mouse models of OvCa, the emergence of xenopatients and the utility of the hen model to study OvCa prevention, tumorigenesis, metastasis and chemoresistance. As these new approaches more accurately recapitulate the complex TME, it is predicted that new opportunities for enhanced understanding of disease progression, metastasis and therapeutic response will emerge.
Collapse
Affiliation(s)
- E Lengyel
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - J E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois/Chicago, Chicago, IL, USA
| | - H A Kenny
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - D Matei
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Pilrose
- Medical Sciences, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - P Haluska
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - K P Nephew
- Medical Sciences, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - D B Hales
- Department of Physiology, Southern Illinois University, Carbondale, IL, USA
| | - M S Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| |
Collapse
|
14
|
Mete A, Giannitti F, Barr B, Woods L, Anderson M. Causes of Mortality in Backyard Chickens in Northern California: 2007–2011. Avian Dis 2013; 57:311-5. [DOI: 10.1637/10382-092312-case.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Andrews Kingon GL, Petitte JN, Muddiman DC, Hawkridge AM. Multi-peptide nLC-PC-IDMS-SRM-based assay for the quantification of biomarkers in the chicken ovarian cancer model. Methods 2013; 61:323-30. [PMID: 23603217 DOI: 10.1016/j.ymeth.2013.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 03/06/2013] [Accepted: 04/08/2013] [Indexed: 11/28/2022] Open
Abstract
A novel form of ovomacroglobulin/ovostatin (OVOS2) predicted from EST data was previously identified in the chicken ovarian cancer model using a mass spectrometry-based shotgun label-free proteomics strategy. The quantitative label-free data from plasma showed a significant increase over time with the spontaneous onset and progression of ovarian cancer making it a potential protein biomarker for further study. Two other proteins of interest identified from this initial study included vitellogenin-1 (Vit-1), a lipid-transport protein tied to egg production, and transthyretin (TTR), a retinol binding transport protein currently used in the clinical management of ovarian cancer. A multiplexed protein cleavage isotope dilution mass spectrometry (PC-IDMS) assay was developed to quantify OVOS2, Vit-1, and TTR by selected reaction monitoring (SRM). A total of 6 stable isotope labeled (SIL) peptide standards were used in the assay with three tryptic peptides from OVOS2, one for Vit-1, and two for TTR. The assay was developed for use with un-depleted raw plasma combined with the filter assisted sample preparation (FASP) method and its use was also demonstrated for matched ovary tissue samples. The PC-IDMS data for the two TTR peptides did not correlate with each other with more than a 10-fold difference in concentration for all 5 time points measured. The PC-IDMS data from the longitudinal plasma samples correlated well for OVOS2 and Vit-1 whereas TTR was inconclusive. Interestingly, the absolute amount for one of the OVOS2 SIL peptides was 2-fold less compared with the other two SIL peptides. These data illustrate the successes and challenges of qualifying quantitative levels of proteins from an in-gel digestion sample preparation followed by LC-MS/MS (GeLC) label-free discovery-based approach to a targeted SRM-based quantitative assay in plasma and tissues.
Collapse
Affiliation(s)
- Genna L Andrews Kingon
- W.M. Keck FT-ICR Mass Spectrometry Laboratory and Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
16
|
Tiwari A, Hadley JA, Hendricks GL, Elkin RG, Cooper T, Ramachandran R. Characterization of ascites-derived ovarian tumor cells from spontaneously occurring ovarian tumors of the chicken: evidence for E-cadherin upregulation. PLoS One 2013; 8:e57582. [PMID: 23460878 PMCID: PMC3583847 DOI: 10.1371/journal.pone.0057582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/23/2013] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer, a highly metastatic disease, is the fifth leading cause of cancer-related deaths in women. Chickens are widely used as a model for human ovarian cancer as they spontaneously develop epithelial ovarian tumors similar to humans. The cellular and molecular biology of chicken ovarian cancer (COVCAR) cells, however, have not been studied. Our objectives were to culture COVCAR cells and to characterize their invasiveness and expression of genes and proteins associated with ovarian cancer. COVCAR cell lines (n = 13) were successfully maintained in culture for up to19 passages, cryopreserved and found to be viable upon thawing and replating. E-cadherin, cytokeratin and α-smooth muscle actin were localized in COVCAR cells by immunostaining. COVCAR cells were found to be invasive in extracellular matrix and exhibited anchorage-independent growth forming colonies, acini and tube-like structures in soft agar. Using RT-PCR, COVCAR cells were found to express E-cadherin, N-cadherin, cytokeratin, vimentin, mesothelin, EpCAM, steroidogenic enzymes/proteins, inhibin subunits-α, βA, βB, anti-müllerian hormone, estrogen receptor [ER]-α, ER-β, progesterone receptor, androgen receptor, and activin receptors. Quantitative PCR analysis revealed greater N-cadherin, vimentin, and VEGF mRNA levels and lesser cytokeratin mRNA levels in COVCAR cells as compared with normal ovarian surface epithelial (NOSE) cells, which was suggestive of epithelial-mesenchymal transformation. Western blotting analyses revealed significantly greater E-cadherin levels in COVCAR cell lines compared with NOSE cells. Furthermore, cancerous ovaries and COVCAR cell lines expressed higher levels of an E-cadherin cleavage product when compared to normal ovaries and NOSE cells, respectively. Cancerous ovaries were found to express significantly higher ovalbumin levels whereas COVCAR cell lines did not express ovalbumin thus suggesting that the latter did not originate from oviduct. Taken together, COVCAR cell lines are likely to improve our understanding of the cellular and molecular biology of ovarian tumors and its metastasis.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jill A. Hadley
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gilbert L. Hendricks
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert G. Elkin
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Timothy Cooper
- Department of Comparative Medicine, Penn State College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Ramesh Ramachandran
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Yu Y, Edassery SL, Barua A, Abramowicz JS, Bahr JM, Hellstrom I, Luborsky JL. The hen model of human ovarian cancer develops anti-mesothelin autoantibodies in response to mesothelin expressing tumors. J Ovarian Res 2011; 4:12. [PMID: 21801396 PMCID: PMC3163210 DOI: 10.1186/1757-2215-4-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022] Open
Abstract
Objective Study of the hen immune system led to seminal contributions to basic immunological principles. Recent studies of spontaneous ovarian cancer in the laying hen show strikingly similar tumor types and antigen expression compared to human ovarian cancer, suggesting hens would be valuable for studies of tumor immunology and pre-clinical vaccine development. Circulating mesothelin is a relatively specific marker for human ovarian cancer and autoantibodies to mesothelin were reported. We hypothesized that hen tumors express mesothelin and that circulating anti-mesothelin antibodies occur in response to tumors. Methods Mesothelin mRNA expression was analyzed by RT-PCR in hen ovarian tumors and normal ovaries. Mesothelin protein expression was evaluated by immunohistochemistry (IHC) and two-dimensional SDS-PAGE Western blots. Anti-mesothelin antibodies were assessed by immunoassay of sera from hens with normal ovaries and with ovarian tumors. Results Significant mesothelin mRNA expression was observed in 57% (12/21) of hen ovarian tumors but not in normal ovaries and was found predominantly in serous tumors as in humans. Mesothelin protein was detected in tumors with mesothelin mRNA by IHC and 2D Western blots, but not in normal ovaries or tumors without mesothelin mRNA. Circulating anti-mesothelin antibodies occurred in 44% (n = 4/9) of hens with ovarian tumors which express mesothelin mRNA and were not found in hens with tumors that did not express mesothelin (n = 0/5) or normal ovaries (n = 0/5). Conclusion The results support the utility of the hen as a novel model for preclinical studies of mesothelin as a biomarker and a target for immunotherapy.
Collapse
Affiliation(s)
- Yi Yu
- Department of Pharmacology, Rush University Medical Center, 1735 W Harrison Street, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|