1
|
Ahn CR, Ha IJ, Kim JE, Ahn KS, Park J, Baek SH. Inhibiting AGS Cancer Cell Proliferation through the Combined Application of Aucklandiae Radix and Hyperthermia: Investigating the Roles of Heat Shock Proteins and Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:564. [PMID: 38790669 PMCID: PMC11118127 DOI: 10.3390/antiox13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric adenocarcinoma (AGS) cell proliferation and apoptosis. We investigated the synergistic effects of AR and HT on cell viability, apoptosis, cell cycle progression, and reactive oxygen species (ROS)-dependent mechanisms. Our findings suggest that the combined treatment led to a notable decrease in AGS cell viability and increased apoptosis. Furthermore, cell cycle arrest at the G2/M phase contributed to the inhibition of cancer cell proliferation. Notably, the roles of heat shock proteins (HSPs) were highlighted, particularly in the context of ROS regulation and the induction of apoptosis. Overexpression of HSPs was observed in cells subjected to HT, whereas their levels were markedly reduced following AR treatment. The suppression of HSPs and the subsequent increase in ROS levels appeared to contribute to the activation of apoptosis, suggesting a potential role for HSPs in the combined therapy's anti-cancer mechanisms. These findings provide valuable insights into the potential of integrating AR and HT in cancer and HSPs.
Collapse
Affiliation(s)
- Chae Ryeong Ahn
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jai-Eun Kim
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Jinbong Park
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
2
|
Hsu CY, Rajabi S, Hamzeloo-Moghadam M, Kumar A, Maresca M, Ghildiyal P. Sesquiterpene lactones as emerging biomolecules to cease cancer by targeting apoptosis. Front Pharmacol 2024; 15:1371002. [PMID: 38529189 PMCID: PMC10961375 DOI: 10.3389/fphar.2024.1371002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Apoptosis is a programmed cell death comprising two signaling cascades including the intrinsic and extrinsic pathways. This process has been shown to be involved in the therapy response of different cancer types, making it an effective target for treating cancer. Cancer has been considered a challenging issue in global health. Cancer cells possess six biological characteristics during their developmental process known as cancer hallmarks. Hallmarks of cancer include continuous growth signals, unlimited proliferation, resistance to proliferation inhibitors, apoptosis escaping, active angiogenesis, and metastasis. Sesquiterpene lactones are one of the large and diverse groups of planet-derived phytochemicals that can be used as sources for a variety of drugs. Some sesquiterpene lactones possess many biological activities such as anti-inflammatory, anti-viral, anti-microbial, anti-malarial, anticancer, anti-diabetic, and analgesic. This review article briefly overviews the intrinsic and extrinsic pathways of apoptosis and the interactions between the modulators of both pathways. Also, the present review summarizes the potential effects of sesquiterpene lactones on different modulators of the intrinsic and extrinsic pathways of apoptosis in a variety of cancer cell lines and animal models. The main purpose of the present review is to give a clear picture of the current knowledge about the pro-apoptotic effects of sesquiterpene lactones on various cancers to provide future direction in cancer therapeutics.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Li W, Luo Y, Huang Z, Shen S, Dai C, Shen S, Qi X, Liang G, Luo W. Costunolide Protects Myocardium From Ischemia Reperfusion Injury by Inhibiting Oxidative Stress Through Nrf2/Keap1 Pathway Activation. J Cardiovasc Pharmacol 2023; 82:117-127. [PMID: 37000981 DOI: 10.1097/fjc.0000000000001422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
ABSTRACT Costunolide (Cos) is a naturally occurring sesquiterpene lactone that exhibits antioxidative properties. In this study, we demonstrate the protective mechanism of Cos against ischemia/reperfusion (I/R)-induced myocardial injury. Cos significantly decreased levels of reactive oxygen species and ameliorated apoptosis of I/R cardiomyocytes both in vitro and in vivo. Further investigation revealed that Cos increased expression of the antioxidant proteins HO-1 and NQO-1 and decreased the Bax/Bcl-2 ratio, thus protecting cardiac cells. NF-E2-related factor 2 (Nrf2) silencing significantly attenuated the protective effects of Cos in tert-butyl hydroperoxide (TBHP)-treated H9C2 cells. Additionally, Cos significantly intensified the I/R- or TBHP-induced dissociation of the Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 complex both in vitro and in vivo. These results suggest that activation of Nrf2/Keap1 using Cos may be a therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Weixin Li
- Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuqi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyuan Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengyi Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sirui Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoxiao Qi
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; and
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wu Luo
- Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Liang X, Yu C, Tian Y, Xiang X, Luo Y. Inhibition of STX17-SNAP29-VAMP8 complex formation by costunolide sensitizes ovarian cancer cells to cisplatin via the AMPK/mTOR signaling pathway. Biochem Pharmacol 2023; 212:115549. [PMID: 37060961 DOI: 10.1016/j.bcp.2023.115549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Ovarian cancer (OC) is the most common gynecological malignancy. Chemotherapy failure is a major challenge in OC treatment. Targeting autophagy is a promising strategy to enhance the cytotoxicity of chemotherapeutic agents. In this study, we found that costunolide (CTD) inhibits autophagic flux and exhibits high therapeutic efficacy for OC treatment in an in vitro model. Mechanistically, CTD inactivates AMPK/mTOR signaling to inhibit autophagy initiation at the early stage and blocks mTORC1-dependent autophagosome-lysosome fusion at the late stage during autophagy by disrupting SNARE complex (STX17-SNAP29-VAMP8) formation, resulting in lethal autophagy arrest in OC cells. Furthermore, CTD sensitizes OC cells to cisplatin (CDDP) by blocking CDDP-induced autophagy both in vitro and in vivo. Together, our data provide novel mechanistic insights into CTD-induced autophagy arrest and suggest a new autophagy inhibitor for effective treatment of OC.
Collapse
Affiliation(s)
- Xiao Liang
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Chunlei Yu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Yunhong Tian
- Department of General Surgery, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, China
| | - Xiaocong Xiang
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Institute of Tissue Engineering and Stem Cells, North Sichuan Medical College, Nanchong 637000, China.
| | - Yuexi Luo
- Department of obstetrics, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
5
|
Shams A, Ahmed A, Khan A, Khawaja S, Rehman NU, Qazi AS, Khan A, Bawazeer S, Ali SA, Al-Harrasi A. Naturally Isolated Sesquiterpene Lactone and Hydroxyanthraquinone Induce Apoptosis in Oral Squamous Cell Carcinoma Cell Line. Cancers (Basel) 2023; 15:cancers15020557. [PMID: 36672505 PMCID: PMC9856832 DOI: 10.3390/cancers15020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide, especially in Asian countries. The emergence of its drug resistance and its side effects demands alternatives, to improve prognosis. Since the majority of cancer drugs are derived from natural sources, it provides a window to look for more biocompatible alternatives. In this study, two natural compounds, costunolide (CE) and aloe emodin (AE), were isolated from the stem of Lycium shawii. The compounds were examined for their anticancer and apoptotic potentials against OSCC (CAL 27) cells, using an in vitro analysis, such as a MTT assay, scratch assay, gene, and protein expressions. Both compounds, CE and AE, were found to be cytotoxic against the cancer cells with an IC50 value of 32 and 38 µM, respectively. Moreover, the compounds were found to be non-toxic against normal NIH-3T3 cells and comparable with the standard drug i.e., 5-fluorouracil (IC50 = 97.76 µM). These compounds were active against normal cells at higher concentrations. Nuclear staining displayed the presence of apoptosis-associated morphological changes, i.e., karyopyknosis and karyorrhexis in the treated cancer cells. Flow cytometry results further confirmed that these compounds induce apoptosis rather than necrosis, as the majority of the cells were found in the late apoptotic phase. Gene and protein expression analyses showed an increased expression of apoptotic genes, i.e., BAK, caspase 3, 6, and 9. Moreover, the compounds significantly downregulated the expression of the anti-apoptotic (BCL-2 L1), metastatic (MMP-2), and pro-inflammatory (COX-2) genes. Both compounds have shown promising anticancer, apoptotic, and anti-migratory activities against the OSCC cell line (i.e., CAL-27). However, further in vivo studies are required to explore these compounds as anticancer agents.
Collapse
Affiliation(s)
- Afshan Shams
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Al-Mouz, P.O. Box 33, Nizwa 616, Oman
| | - Shariqa Khawaja
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Al-Mouz, P.O. Box 33, Nizwa 616, Oman
| | - Asma Saleem Qazi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Adnan Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Sami Bawazeer
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (S.A.A.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Al-Mouz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (S.A.A.); (A.A.-H.)
| |
Collapse
|
6
|
Kashkooli AB, van Dijk ADJ, Bouwmeester H, van der Krol A. Individual lipid transfer proteins from Tanacetum parthenium show different specificity for extracellular accumulation of sesquiterpenes. PLANT MOLECULAR BIOLOGY 2023; 111:153-166. [PMID: 36255594 PMCID: PMC9849177 DOI: 10.1007/s11103-022-01316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A highly specialized function for individual LTPs for different products from the same terpenoid biosynthesis pathway is described and the function of an LTP GPI anchor is studied. Sequiterpenes produced in glandular trichomes of the medicinal plant Tanacetum parthenium (feverfew) accumulate in the subcuticular extracellular space. Transport of these compounds over the plasma membrane is presumably by specialized membrane transporters, but it is still not clear how these hydrophobic compounds are subsequently transported over the hydrophilic cell wall. Here we identified eight so-called non-specific Lipid transfer proteins (nsLTPs) genes that are expressed in feverfew trichomes. A putative function of these eight nsLTPs in transport of the lipophilic sesquiterpene lactones produced in feverfew trichomes, was tested in an in-planta transport assay using transient expression in Nicotiana benthamiana. Of eight feverfew nsLTP candidate genes analyzed, two (TpLTP1 and TpLTP2) can specifically improve extracellular accumulation of the sesquiterpene costunolide, while one nsLTP (TpLTP3) shows high specificity towards export of parthenolide. The specificity of the nsLTPs was also tested in an assay that test for the exclusion capacity of the nsLTP for influx of extracellular substrates. In such assay, TpLTP3 was identified as most effective in blocking influx of both costunolide and parthenolide, when these substrates are infiltrated into the apoplast. The TpLTP3 is special in having a GPI-anchor domain, which is essential for the export activity of TpLTP3. However, addition of the TpLTP3 GPI-anchor domain to TpLTP1 resulted in loss of TpLTP1 export activity. These novel export and exclusion assays thus provide new means to test functionality of plant nsLTPs.
Collapse
Affiliation(s)
- Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Aalt D J van Dijk
- Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Tian X, Wang R, Gu T, Ma F, Laster KV, Li X, Liu K, Lee MH, Dong Z. Costunolide is a dual inhibitor of MEK1 and AKT1/2 that overcomes osimertinib resistance in lung cancer. Mol Cancer 2022; 21:193. [PMID: 36203195 PMCID: PMC9535870 DOI: 10.1186/s12943-022-01662-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
EGFR-TKI targeted therapy is one of the most effective treatments for lung cancer patients harboring EGFR activating mutations. However, inhibition response is easily attenuated by drug resistance, which is mainly due to bypass activation or downstream activation. Herein, we established osimertinib-resistant cells by stepwise dose-escalation in vitro and an osimertinib-resistant patient-derived xenograft model through persistent treatment in vivo. Phosphorylated proteomics identified that MEK1 and AKT1/2 were abnormally activated in resistant cells compared with parental cells. Likewise, EGFR inhibition by osimertinib induced activation of MEK1 and AKT1/2, which weakened osimertinib sensitivity in NSCLC cells. Consequently, this study aimed to identify a novel inhibitor which could suppress resistant cell growth by dual targeting of MEK1 and AKT1/2. Based on computational screening, we identified that costunolide could interact with MEK1 and AKT1/2. Further exploration using in vitro kinase assays validated that costunolide inhibited the kinase activity of MEK1 and AKT1/2, which restrained downstream ERK-RSK2 and GSK3β signal transduction and significantly induced cell apoptosis. Remarkably, the combination of osimertinib and costunolide showed synergistic or additive inhibitory effects on tumor growth in osimertinib-resistant cell lines and PDX model. Hence, this study highlights a potential therapeutic strategy for osimertinib-resistant patients through targeting of MEK1 and AKT1/2 by costunolide.
Collapse
Affiliation(s)
- Xueli Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008, Zhengzhou, Henan, China
| | - Rui Wang
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008, Zhengzhou, Henan, China
| | - Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008, Zhengzhou, Henan, China
| | - Fayang Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008, Zhengzhou, Henan, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008, Zhengzhou, Henan, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008, Zhengzhou, Henan, China. .,College of Korean Medicine, Dongshin University, 582 45, Naju, Jeonnam, Republic of Korea.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Li J, Duan B, Cheng Z, Kou M. Costunolide enhances cisplatin-induced cytotoxicity in hypopharyngeal SCC FaDu cells by increasing the production of reactive oxygen species. Pathol Res Pract 2022; 236:153966. [DOI: 10.1016/j.prp.2022.153966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
|
9
|
Fetoni AR, Paciello F, Troiani D. Cisplatin Chemotherapy and Cochlear Damage: Otoprotective and Chemosensitization Properties of Polyphenols. Antioxid Redox Signal 2022; 36:1229-1245. [PMID: 34731023 DOI: 10.1089/ars.2021.0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Cisplatin is an important component of treatment regimens for different cancers. Notwithstanding that therapeutic success often results from partial efficacy or stabilizing the disease, chemotherapy failure is driven by resistance to drug treatment and occurrence of side effects, such as progressive irreversible ototoxicity. Cisplatin's side effects, including ototoxicity, are often dose limiting. Recent Advances: Cisplatin ototoxicity results from several mechanisms, including redox imbalance caused by reactive oxygen species production and lipid peroxidation, activation of inflammation, and p53 and its downstream pathways that culminate in apoptosis. Considerable efforts in research have targeted development of molecular interventions that can be concurrently administered with cisplatin or other chemotherapies to reduce side effect toxicities while preserving or enhancing the antineoplastic effects. Evidence from studies has indicated some polyphenols, such as curcumin, can help to regulate redox signaling and inflammatory effects. Furthermore, polyphenols can exert opposing effects in different types of tissues, that is, normal cells undergoing stressful conditions versus cancer cells. Critical Issues: This review article summarizes evidence of curcumin antioxidant effect against cisplatin-induced ototoxicity that is converted to a pro-oxidant activity in cisplatin-treated cancer cells, thus providing an ideal chemosensitivity combined with otoprotection. Polyphenols can modulate the adaptive responses to stress in the cisplatin-exposed cochlea. These adaptive effects can result from the interaction/cross talk between the cell's defenses, inflammatory molecules, and the key signaling molecules of signal transducers and activators of transcription 3 (STAT-3), nuclear factor κ-B (NF-κB), p53, and nuclear factor erythroid 2-related factor 2 (Nrf-2). Future Directions: We provide molecular evidence for alternative strategies for chemotherapy with cisplatin addressing the otoprotection and chemosensitization properties of polyphenols. Antioxid. Redox Signal. 36, 1229-1245.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Department of Head and Neck Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
10
|
Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules 2022; 27:molecules27031142. [PMID: 35164406 PMCID: PMC8839508 DOI: 10.3390/molecules27031142] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 01/21/2023] Open
Abstract
Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family, are one of the major groups of secondary metabolites found in plants. Researchers from distinct research fields, including pharmacology, medicine, and agriculture, are interested in their biological potential. With new SL discovered in the last years, new biological activities have been tested, different action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure–activity relationships described. The review identifies the main sesquiterpene lactones with interconnections between immune responses and anti-inflammatory actions, within different cellular models as well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure–activity relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiterpene lactone extraction methodologies are presented, with the perspective of biological activity enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.
Collapse
|
11
|
Alhakamy NA, Badr-Eldin SM, Ahmed OAA, Aldawsari HM, Okbazghi SZ, Alfaleh MA, Abdulaal WH, Neamatallah T, Al-hejaili OD, Fahmy UA. Green Nanoemulsion Stabilized by In Situ Self-Assembled Natural Oil/Native Cyclodextrin Complexes: An Eco-Friendly Approach for Enhancing Anticancer Activity of Costunolide against Lung Cancer Cells. Pharmaceutics 2022; 14:227. [PMID: 35213960 PMCID: PMC8880633 DOI: 10.3390/pharmaceutics14020227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the second-most deadly malignancy worldwide, of which smoking is considered a major risk factor and causes 75-80% of lung cancer-related deaths. Costunolide (CTD) extracted from plant species Saussurea, Aucklandia, and Inula exhibits potent anticancer properties, specifically in lung cancer and leukemia. Several nanoemulsions were prepared and optimized using a three-factor Box-Behnken experimental design. The optimized green nanoemulsion (GNE) showed a vesicle size of 199.56 nm. The IC50 values revealed that A549 cells were significantly more sensitive to the optimized CTD formula than the plain formula and raw CTD. A cell cycle analysis revealed that the optimized CTD formula treatment resulted in significant cell cycle arrest at the S phase. The results also indicated that treatment with the CTD formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to the plain formula and CTD raw. In terms of the inflammatory markers, the optimized formula significantly reduced the activity of TNF-α and NF-κB in comparison with the plain formula and raw drug only. Overall, the findings from the study proved that a CTD GNE formulation could be a promising therapeutic approach for the treatment of lung cancer.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (M.A.A.); (O.D.A.-h.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (M.A.A.); (O.D.A.-h.); (U.A.F.)
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (M.A.A.); (O.D.A.-h.); (U.A.F.)
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (M.A.A.); (O.D.A.-h.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Solomon Z. Okbazghi
- Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, CT 06510, USA;
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (M.A.A.); (O.D.A.-h.); (U.A.F.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Omar D. Al-hejaili
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (M.A.A.); (O.D.A.-h.); (U.A.F.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (M.A.A.); (O.D.A.-h.); (U.A.F.)
| |
Collapse
|
12
|
Chung KS, Yoo CB, Lee JH, Lee HH, Park SE, Han HS, Lee SY, Kwon BM, Choi JH, Lee KT. Regulation of ROS-Dependent JNK Pathway by 2'-Hydroxycinnamaldehyde Inducing Apoptosis in Human Promyelocytic HL-60 Leukemia Cells. Pharmaceutics 2021; 13:pharmaceutics13111794. [PMID: 34834209 PMCID: PMC8618870 DOI: 10.3390/pharmaceutics13111794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
The present study demonstrated that 2'-hydroxycinnamaldehyde (2'-HCA) induced apoptosis in human promyelocytic leukemia HL-60 cells through the activation of mitochondrial pathways including (1) translocation of Bim and Bax from the cytosol to mitochondria, (2) downregulation of Bcl-2 protein expression, (3) cytochrome c release into the cytosol, (4) loss of mitochondrial membrane potential (ΔΨm), and (5) caspase activation. 2'-HCA also induced the activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase1/2 (ERK1/2) in HL-60 cells. The pharmacological and genetic inhibition of JNK effectively prevented 2'-HCA-induced apoptosis and activator protein-1 (AP-1)-DNA binding. In addition, 2'-HCA resulted in the accumulation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH) and protein thiols (PSH) in HL-60 cells. NAC treatment abrogated 2'-HCA-induced JNK phosphorylation, AP-1-DNA binding, and Bim mitochondrial translocation, suggesting that oxidative stress may be required for 2'-HCA-induced intrinsic apoptosis. Xenograft mice inoculated with HL-60 leukemia cells demonstrated that the intraperitoneal administration of 2'-HCA inhibited tumor growth by increasing of TUNEL staining, the expression levels of nitrotyrosine and pro-apoptotic proteins, but reducing of PCNA protein expression. Taken together, our findings suggest that 2'-HCA induces apoptosis via the ROS-dependent JNK pathway and could be considered as a potential therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Chae-Bin Yoo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
| | - Sang-Eun Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmarcy, Kyung Hee University, Seoul 02447, Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Su-Yeon Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmarcy, Kyung Hee University, Seoul 02447, Korea
| | - Byoung-Mok Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (K.-S.C.); (C.-B.Y.); (J.-H.L.); (H.-H.L.); (S.-E.P.); (H.-S.H.); (S.-Y.L.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|
13
|
Mani V, Park S, Kim JA, Lee SI, Lee K. Metabolic Perturbation and Synthetic Biology Strategies for Plant Terpenoid Production-An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:2179. [PMID: 34685985 PMCID: PMC8539415 DOI: 10.3390/plants10102179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Terpenoids represent one of the high-value groups of specialized metabolites with vast structural diversity. They exhibit versatile human benefits and have been successfully exploited in several sectors of day-to-day life applications, including cosmetics, foods, and pharmaceuticals. Historically, the potential use of terpenoids is challenging, and highly hampered by their bioavailability in their natural sources. Significant progress has been made in recent years to overcome such challenges by advancing the heterologous production platforms of hosts and metabolic engineering technologies. Herein, we summarize the latest developments associated with analytical platforms, metabolic engineering, and synthetic biology, with a focus on two terpenoid classes: monoterpenoids and sesquiterpenoids. Accumulated data showed that subcellular localization of both the precursor pool and the introduced enzymes were the crucial factors for increasing the production of targeted terpenoids in plants. We believe this timely review provides a glimpse of current state-of-the-art techniques/methodologies related to terpenoid engineering that would facilitate further improvements in terpenoids research.
Collapse
Affiliation(s)
| | | | | | | | - Kijong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (S.P.); (J.A.K.); (S.I.L.)
| |
Collapse
|
14
|
El-Far AH, Godugu K, Salaheldin TA, Darwish NHE, Saddiq AA, Mousa SA. Nanonutraceuticals: Anti-Cancer Activity and Improved Safety of Chemotherapy by Costunolide and Its Nanoformulation against Colon and Breast Cancer. Biomedicines 2021; 9:990. [PMID: 34440193 PMCID: PMC8391151 DOI: 10.3390/biomedicines9080990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Costunolide (COS) is a sesquiterpene lactone with anticancer properties. The present study investigated the anticancer effects of COS against the human colon (HCT116) and breast (MDA-MB-231-Luc) cancer cell lines. Inhibition of cell lines viability and IC50 of COS were assessed via an MTT assay. Furthermore, the apoptotic rate was detected by assessment of Bcl2-associated X (Bax) and B-cell lymphoma 2 (Bcl2) protein levels by flow cytometry. Xenograft mice model of HCT116 and MDA-MB-231-Luc were carried out to determine the effect of COS and its nanoparticles (COS-NPs). The results demonstrated that COS inhibited the viability of HCT116 and MDA-MB-231-Luc cells, with a half maximal inhibitory concentration value (IC50) of 39.92 µM and 100.57 µM, respectively. COS significantly increased Bax and decreased Bcl2 levels in treated cells. COS and COS-NPs, in combination with doxorubicin (DOX), significantly decreased the tumor growth of HCT116 and MDA-MB-231-Luc implants in mice. Furthermore, oral administration of COS and COS-NPs significantly decreased the viable cells and increased necrotic/apoptotic cells of HCT116 and MDA-MB-231-Luc implants. Interestingly, both COS and COS-NPs protected the cardiac muscles against DOX's cardiotoxicity. The current results indicated the promising anticancer and cardiac muscles protection of COS and COS-NPs when administered with chemotherapy.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Taher A. Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Noureldien H. E. Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Amna A. Saddiq
- Department of Biology, College of Sciences, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| |
Collapse
|
15
|
Sesquiterpene lactones of Aucklandia lappa: Pharmacology, pharmacokinetics, toxicity, and structure–activity relationship. CHINESE HERBAL MEDICINES 2021; 13:167-176. [PMID: 36117502 PMCID: PMC9476744 DOI: 10.1016/j.chmed.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
|
16
|
Kim Y, Sengupta S, Sim T. Natural and Synthetic Lactones Possessing Antitumor Activities. Int J Mol Sci 2021; 22:ijms22031052. [PMID: 33494352 PMCID: PMC7865919 DOI: 10.3390/ijms22031052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer is one of the leading causes of death globally, accounting for an estimated 8 million deaths each year. As a result, there have been urgent unmet medical needs to discover novel oncology drugs. Natural and synthetic lactones have a broad spectrum of biological uses including anti-tumor, anti-helminthic, anti-microbial, and anti-inflammatory activities. Particularly, several natural and synthetic lactones have emerged as anti-cancer agents over the past decades. In this review, we address natural and synthetic lactones focusing on their anti-tumor activities and synthetic routes. Moreover, we aim to highlight our journey towards chemical modification and biological evaluation of a resorcylic acid lactone, L-783277 (4). We anticipate that utilization of the natural and synthetic lactones as novel scaffolds would benefit the process of oncology drug discovery campaigns based on natural products.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Sandip Sengupta
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-0797
| |
Collapse
|
17
|
Zhang X, Zhao Q, Ma H, Zhu Y, Zhang Z. Costunolide attenuates oxygen-glucose deprivation/reoxygenation-induced apoptosis in mouse brain slice through inhibiting caspase expression. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_360_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Benot-Dominguez R, Tupone MG, Castelli V, d'Angelo M, Benedetti E, Quintiliani M, Cinque B, Forte IM, Cifone MG, Ippoliti R, Barboni B, Giordano A, Cimini A. Olive leaf extract impairs mitochondria by pro-oxidant activity in MDA-MB-231 and OVCAR-3 cancer cells. Biomed Pharmacother 2020; 134:111139. [PMID: 33360155 DOI: 10.1016/j.biopha.2020.111139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Breast and ovarian cancers are the leading and fifth reason for tumor death among females, respectively. Recently, many studies demonstrated antiproliferative activities of natural aliments in cancer. In this study, we investigated the antitumor potential of Olive Leaf Extract (OLE) in triple-negative breast and ovarian cancer cells. A HPLC/DAD analysis on OLE has been performed to assess the total polyphenolics and other secondary metabolites content. HCEpiC, MDA-MB-231, and OVCAR-3 cell lines were used. MTS, Cytofluorimetric, Western Blot analysis were performed to analyze cell viability, cell proliferation, apoptosis, and oxidative stress. Fluorimetric and IncuCyte® analyses were carried out to evaluate apoptosis and mitochondrial function. We confirmed that OLE, containing a quantity of oleuropein of 87 % of the total extract, shows anti-proliferative and pro-apoptotic activity on MDA-MB-231 cells. For the first time, our results indicate that OLE inhibits OVCAR-3 cell viability inducing cell cycle arrest, and it also increases apoptotic cell death up-regulating the protein level of cleaved-PARP and caspase 9. Moreover, our data show that OLE treatment causes a significant decrease in mitochondrial functionality, paralleled by a reduction of mitochondrial membrane potential. Interestingly, OLE increased the level of intracellular and mitochondrial reactive oxygen species (ROS) together with a decreased activity of ROS scavenging enzymes, confirming oxidative stress in both models. Our data demonstrate that mitochondrial ROS generation represented the primary mechanism of OLE antitumor activity, as pretreatment with antioxidant N-acetylcysteine prevented OLE-induced cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Center for Microscopy, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; S.I.R.E. srl, 80129, Napoli, Italy.
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131, Napoli, Italy.
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, 19122, USA.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
19
|
Anticancer potential of myricetin bulk and nano forms in vitro in lymphocytes from myeloma patients. Arch Toxicol 2020; 95:337-343. [PMID: 33128380 PMCID: PMC7811500 DOI: 10.1007/s00204-020-02938-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023]
Abstract
Evading apoptosis and chemo-resistance are considered as very important factors which help tumour progression and metastasis. Hence, to overcome chemo-resistance, there is an urgent requirement for emergence of more effective treatment options. Myricetin, a naturally occurring flavonoid, is present in various plant-derived foods and shows antitumour potential in different cancers. In the present in vitro study, results from the comet assay demonstrated that myricetin bulk (10 µM) and nano (20 µM) forms exhibited a non-significant level of genotoxicity in lymphocytes from multiple myeloma patients when compared to those from healthy individuals. Western blot results showed a decrease in Bcl-2/Bax ratio and an increase in P53 protein levels in lymphocytes from myeloma patients, but not in lymphocytes from healthy individuals. A significant increase in intracellular reactive oxygen species level was also observed, suggesting that regulation of apoptotic proteins triggered by myricetin exposure in lymphocytes from myeloma patients occurred through P53 and oxidative stress-dependent pathways. The potency of myricetin against lymphocytes from myeloma patients marks it a potential candidate to be considered as an alternative to overcome chemo-resistance in cancer therapies.
Collapse
|
20
|
Fu D, Wu D, Cheng W, Gao J, Zhang Z, Ge J, Zhou W, Xu Z. Costunolide Induces Autophagy and Apoptosis by Activating ROS/MAPK Signaling Pathways in Renal Cell Carcinoma. Front Oncol 2020; 10:582273. [PMID: 33194716 PMCID: PMC7649430 DOI: 10.3389/fonc.2020.582273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Although costunolide (Cos), a natural sesquiterpene compound isolated from various medicinal plants, exhibits antiproliferative and pro-apoptotic effects in diverse types of cancers, the mechanism associated with the anticancer property of Cos has not been elucidated. The present investigation was carried out to study the anticarcinogenic influence of Cos on kidney cancer cells. Several human renal cancer cell lines were used and biological and molecular studies were conducted. It was found that Cos significantly suppressed renal carcinoma cell growth via stimulation of apoptosis and autophagy in a concentration-dependent manner. Further studies revealed that Cos increased Bax/Bcl-2 ratio, decreased mitochondrial transmembrane potential (MMP), and enhanced cytoplasmic levels of cytochrome c, and activation of caspase-9, caspase-3, and cleaved PARP, resulting in cell apoptosis. The autophagy induced by Cos resulted from the formation of GFP-LC3 puncta and upregulation of LC3B II and Beclin-1 proteins. Compared with Cos treatment, the autophagy inhibitor 3-MA or ROS scavenger NAC significantly inhibited apoptosis and autophagy. Moreover, NAC and JNK-specific inhibitor SP600125 attenuated the effect of Cos. Taken together, Cos exerted autophagic and apoptotic effects on renal cancer through the ROS/JNK-dependent signal route. These findings suggest that Cos could be a beneficial anticarcinogenic agent.
Collapse
Affiliation(s)
- Dian Fu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ding Wu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Cheng
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianping Gao
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengyu Zhang
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhenyu Xu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Ren N, Chen L, Li B, Rankin GO, Chen YC, Tu Y. Purified Tea ( Camellia sinensis (L.) Kuntze) Flower Saponins Induce the p53-Dependent Intrinsic Apoptosis of Cisplatin-Resistant Ovarian Cancer Cells. Int J Mol Sci 2020; 21:E4324. [PMID: 32560563 PMCID: PMC7352341 DOI: 10.3390/ijms21124324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023] Open
Abstract
Ovarian cancer is currently ranked at fifth in cancer deaths among women. Patients who have undergone cisplatin-based chemotherapy can experience adverse effects or become resistant to treatment, which is a major impediment for ovarian cancer treatment. Natural products from plants have drawn great attention in the fight against cancer recently. In this trial, purified tea (Camellia sinensis (L.) Kuntze) flower saponins (PTFSs), whose main components are Chakasaponin I and Chakasaponin IV, inhibited the growth and proliferation of ovarian cancer cell lines A2780/CP70 and OVCAR-3. Flow cytometry, caspase activity and Western blotting analysis suggested that such inhibitory effects of PTFSs on ovarian cancer cells were attributed to the induction of cell apoptosis through the intrinsic pathway rather than extrinsic pathway. The p53 protein was then confirmed to play an important role in PTFS-induced intrinsic apoptosis, and the levels of its downstream proteins such as caspase families, Bcl-2 families, Apaf-1 and PARP were regulated by PTFS treatment. In addition, the upregulation of p53 expression by PTFSs were at least partly induced by DNA damage through the ATM/Chk2 pathway. The results help us to understand the mechanisms underlying the effects of PTFSs on preventing and treating platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Ning Ren
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Lianfu Chen
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Bo Li
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
| | - Gary O. Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Yi Charlie Chen
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Youying Tu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
| |
Collapse
|
22
|
DaHuangWan targets EGF signaling to inhibit the proliferation of hepatoma cells. PLoS One 2020; 15:e0231466. [PMID: 32298294 PMCID: PMC7161984 DOI: 10.1371/journal.pone.0231466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
DaHuangWan (DHW) is a traditional herbal medicine used by Mongolian to treat liver cancer for many years. Clinical application of the drug has been shown to help control tumor progression, prolong survival and improve quality of life. However, the underlying mechanisms and side effects of this drug remain unclear, which greatly limits the clinical application and further optimization of DHW. In this study, we found that DHW inhibits the proliferation of hepatoma cells by modulating the epithelial growth factor (EGF) signaling pathway. Berberine and Costunolide are the main active ingredients in DHW. Interestingly, the combination of Berberine and Costunolide has a dramatic synergistic effect on inhibiting the proliferation of hepatoma cells. Neither Berberine nor Costunolide directly block EGFR phosphorylation. Berberine promotes endocytosis of activated EGFR, while as Costunolide increases ubiquitination of EGFR and reduces EGFR recycling to cell membrane distribution, thereby inhibiting EGF signaling. Berberine and Costunolide target two different steps in regulating the EGF signaling, which explains the synergistic anti-cancer effect of DHW. Since Berberine and Costunolide do not directly target EGFR phosphorylation, DHW could be a supplementary medicine to tyrosine kinase inhibitors in cancer therapy.
Collapse
|
23
|
Huang H, Chen AY, Ye X, Guan R, Rankin GO, Chen YC. Galangin, a Flavonoid from Lesser Galangal, Induced Apoptosis via p53-Dependent Pathway in Ovarian Cancer Cells. Molecules 2020; 25:molecules25071579. [PMID: 32235536 PMCID: PMC7180956 DOI: 10.3390/molecules25071579] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Among women worldwide, ovarian cancer is one of the most dangerous cancers. Patients undergoing platinum-based chemotherapy might get adverse side effects and develop resistance to drugs. In recent years, natural compounds have aroused growing attention in cancer treatment. Galangin inhibited the growth of two cell lines, A2780/CP70 and OVCAR-3, more strongly than the growth of a normal ovarian cell line, IOSE 364. The IC50 values of galangin on proliferation of A2780/CP70, OVCAR-3 and IOSE 364 cells were 42.3, 34.5, and 131.3 μM, respectively. Flow cytometry analysis indicated that galangin preferentially induced apoptosis in both ovarian cancer cells with respect to normal ovarian cells. Galangin treatment increased the level of cleaved caspase-3 and -7 via the p53-dependent intrinsic apoptotic pathway by up-regulating Bax protein and via the p53-dependent extrinsic apoptotic pathway by up-regulating DR5 protein. By down-regulating the level of p53 with 20 μM pifithrin-α (PFT-α), the apoptotic rates of OVCAR-3 cells induced by galangin treatment (40 μM) were significantly decreased from 18.2% to 10.2%, indicating that p53 is a key regulatory protein in galangin-induced apoptosis in ovarian cancer cells. Although galangin up-regulated the expression of p21, it had little effect on the cell cycle of the two ovarian cancer cell lines. Furthermore, the levels of phosphorylated Akt and phosphorylated p70S6K were decreased through galangin treatment, suggesting that the Akt/p70S6K pathways might be involved in the apoptosis. Our results suggested that galangin is selective against cancer cells and can be used for the treatment of platinum-resistant ovarian cancers in humans.
Collapse
Affiliation(s)
- Haizhi Huang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
- College of Science, Technology & Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Allen Y. Chen
- Department of Pharmacy Informatics, Seattle Children’s Hospital, Seattle, WA 98101, USA;
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China;
| | - Rongfa Guan
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Gary O. Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Yi Charlie Chen
- College of Science, Technology & Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
- Correspondence: ; Tel.: +1-304-457-6277; Fax: +1-304-457-6239
| |
Collapse
|
24
|
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20903555] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Terpenoids, the most abundant compounds in natural products, are a set of important secondary metabolites in plants with diverse structures. Terpenoids play key roles in plant growth and development, response to the environment, and physiological processes. As raw materials, terpenoids were also widely used in pharmaceuticals, food, and cosmetics industries. Terpenoids possess antitumor, anti-inflammatory, antibacterial, antiviral, antimalarial effects, promote transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. In addition, previous studies have also found that terpenoids have many potential applications, such as insect resistance, immunoregulation, antioxidation, antiaging, and neuroprotection. Terpenoids have a complex structure with diverse effects and different mechanisms of action. Activities and mechanisms of terpenoids were reviewed in this paper. The development and application prospect of terpenoid compounds were also prospected, which provides a useful reference for new drug discovery and drug design based on terpenoids.
Collapse
Affiliation(s)
| | - Xu Chen
- School of Pharmacy, Linyi University, P. R. China
| | - Yanli Li
- School of Pharmacy, Linyi University, P. R. China
| | - Shaofen Guo
- School of Pharmacy, Linyi University, P. R. China
| | - Zhen Wang
- School of Pharmacy, Linyi University, P. R. China
| | - Xiuling Yu
- School of Pharmacy, Linyi University, P. R. China
| |
Collapse
|
25
|
Antitumor activity and mechanism of costunolide and dehydrocostus lactone: Two natural sesquiterpene lactones from the Asteraceae family. Biomed Pharmacother 2020; 125:109955. [PMID: 32014691 DOI: 10.1016/j.biopha.2020.109955] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Costunolide (COS) and dehydrocostus lactone (DEH) are two natural sesquiterpene lactones with potential antitcancer activity against a range of cancer cell types both in vitro and in vivo, particularly for breast cancer and leukemia. There are many researches that have been taken to characterize these pathways and to reveal their anticancer mechanisms of action of COS and DEH. However, while there is a great deal of evidence detailing the effects of COS and DEH on considerable signaling pathways and cellular functions, a global view of their mechanism of action remains elusive. This review systematically summarizes the antitumor activity and mechanism of COS and DEH in the recent reports, and discusses the effect of the key active part (α-methylene-γ-butyrolactone) of COS and DEH against cancer. Moreover, we also discuss the antineoplastic activity of COS and DEH derivatives to improve the cytotoxicity and safety index. We believe this review can provide a systemic reference to develop COS and DEH as anticancer agents.
Collapse
|
26
|
Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9240426. [PMID: 31583051 PMCID: PMC6754955 DOI: 10.1155/2019/9240426] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Recently, reactive oxygen species (ROS), a class of highly bioactive molecules, have been extensively studied in cancers. Cancer cells typically exhibit higher levels of basal ROS than normal cells, primarily due to their increased metabolism, oncogene activation, and mitochondrial dysfunction. This moderate increase in ROS levels facilitates cancer initiation, development, and progression; however, excessive ROS concentrations can lead to various types of cell death. Therefore, therapeutic strategies that either increase intracellular ROS to toxic levels or, conversely, decrease the levels of ROS may be effective in treating cancers via ROS regulation. Chinese herbal medicine (CHM) is a major type of natural medicine and has greatly contributed to human health. CHMs have been increasingly used for adjuvant clinical treatment of tumors. Although their mechanism of action is unclear, CHMs can execute a variety of anticancer effects by regulating intracellular ROS. In this review, we summarize the dual roles of ROS in cancers, present a comprehensive analysis of and update the role of CHM—especially its active compounds and ingredients—in the prevention and treatment of cancers via ROS regulation and emphasize precautions and strategies for the use of CHM in future research and clinical trials.
Collapse
|
27
|
Zalewski M, Kulbacka J, Saczko J, Drag-Zalesinska M, Choromanska A. Valspodar-modulated chemotherapy in human ovarian cancer cells SK-OV-3 and MDAH-2774. Bosn J Basic Med Sci 2019; 19:234-241. [PMID: 30957724 DOI: 10.17305/bjbms.2019.4073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/24/2019] [Indexed: 11/16/2022] Open
Abstract
Overcoming drug resistance in ovarian cancer is the overarching goal in gynecologic oncology. One way to increase drug cytotoxicity without increasing the drug dose is to simultaneously apply multidrug resistance modulator. Valspodar is the second generation P-glycoprotein 1 modulator capable of reversing multidrug resistance in different cancers. In this study, we evaluated the effect of valspodar and cisplatin co-treatment on cell viability, cell death and oxidative status in ovarian cancer cells. Two human ovarian cancer cell lines SK-OV-3 and MDAH-2774 were treated with cisplatin, valspodar, or cisplatin + valspodar for 24 or 48 hours. Untreated cells were used as control group. Cell viability was evaluated by MTT assay. Cell death was assessed by TUNEL and comet assay. Lipid peroxidation (malondialdehyde) and protein thiol groups were analyzed as oxidative stress markers. The expression of mitochondrial superoxide dismutase (MnSOD) was assessed by immunocytochemistry. Valspodar effectively reduced the resistance of SK-OV-3 cells to cisplatin, as demonstrated by increased oxidative stress, decreased cell viability and increased apoptosis in SK-OV-3 cells co-treated with valspodar and cisplatin compared to other groups. However, valspodar did not significantly affect the resistance of MDAH-2774 cells to cisplatin. Stronger staining for MnSOD in MDAH-2774 vs. SK-OV-3 cells after co-treatment with cisplatin and valspodar may determine the resistance of MDAH-2774 cell line to cisplatin.
Collapse
Affiliation(s)
- Maciej Zalewski
- Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
28
|
Costunolide alleviates HKSA-induced acute lung injury via inhibition of macrophage activation. Acta Pharmacol Sin 2019; 40:1040-1048. [PMID: 30644422 DOI: 10.1038/s41401-018-0192-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infection leads to a severe inflammatory response and causes acute lung injury (ALI), eventually threatening human life. Therefore, it is of importance to find an agent to inhibit inflammation and reduce ALI. Here, we found that costunolide, a sesquiterpene lactone, displays anti-inflammatory effects and ameliorates heat-killed S. aureus (HKSA)-induced pneumonia. Costunolide treatment attenuated HKSA-induced murine ALI in which pulmonary neutrophil infiltration was inhibited, lung edema was decreased, and the production of pro-inflammatory cytokines was significantly reduced. In addition, costunolide dose-dependently inhibited the generation of IL-6, TNF-α, IL-1β, and keratinocyte-derived cytokine (KC), as well as the expression of iNOS, in HKSA-induced macrophages. Furthermore, costunolide attenuated the phosphorylation of p38 MAPK and cAMP response element-binding protein (CREB). Collectively, our findings suggested that costunolide is a promising agent for alleviating bacterial-induced ALI via the inhibition of the MAPK signaling pathways.
Collapse
|
29
|
Costunolide induces mitochondria-mediated apoptosis in human gastric adenocarcinoma BGC-823 cells. Altern Ther Health Med 2019; 19:151. [PMID: 31242894 PMCID: PMC6595696 DOI: 10.1186/s12906-019-2569-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Background Costunolide, a sesquiterpene lactone extracted from Radix Aucklandiae, has the activity against multiple cancers. However, the effect of costunolide on gastric cancer (GC) have remained to be ambiguous. In this study, we investigated the underlying mechanisms of apoptosis induced by costunolide in human gastric adenocarcinoma BGC-823 cells in vitro and in vivo. Methods The viability of BGC-823 cells was detected by MTT assay. The apoptosis and mitochondrial membrane potential (ΔΨm) of BGC-823 cells induced by costunolide were analyzed by flow cytometry. The inhibiton of costunolide on human gastric adenocarcinoma was estimated in xenografts in nude mice. Apoptosis related proteins and genes were detected by Western blot and Q-PCR. Results Costunolide inhibited the viability of BGC-823 cells in a time and concentration dependent manner. Costunolide induced the apoptosis and lowered the ΔΨm of BGC-823 cells significantly. Costunolide increased the expression of Bax, cleaved caspase 9, cleaved caspase 7, cleaved caspase 3 and cleaved poly ADP ribose polymerase (PARP) proteins and decreased the expression of Bcl-2, pro-caspase 9, pro-caspase 7, pro-caspase 3 and PARP proteins. Costunolide upregulated the expression of puma, Bak1 and Bax mRNA and downregulated the expression of Bcl-2 mRNA. In addition, we demonstrated that costunolide inhibited the growth and induced apoptosis of BGC-823 cells xenografted in athymic nude mice. Costunolide increased the expression of cleaved caspase 9, cleaved caspase 3 and Bax proteins and decreased the expression of Bcl-2 protein in xenografted tumor. Costunolide upregulated the expression of puma and Bax mRNA and decreased the expression of Bcl-2 mRNA in xenografted tumor. Conclusions Collectively, our results suggested that costunolide induced mitochondria-mediated apoptosis in human gastric adenocarcinoma BGC-823 cells and could be the candidate drug against GC in clinical practice.
Collapse
|
30
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
31
|
Costunolide-A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20122926. [PMID: 31208018 PMCID: PMC6627852 DOI: 10.3390/ijms20122926] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Sesquiterpene lactones constitute a major class of bioactive natural products. One of the naturally occurring sesquiterpene lactones is costunolide, which has been extensively investigated for a wide range of biological activities. Multiple lines of preclinical studies have reported that the compound possesses antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Many of these bioactivities are supported by mechanistic details, such as the modulation of various intracellular signaling pathways involved in precipitating tissue inflammation, tumor growth and progression, bone loss, and neurodegeneration. The key molecular targets of costunolide include, but are not limited to, intracellular kinases, such as mitogen-activated protein kinases, Akt kinase, telomerase, cyclins and cyclin-dependent kinases, and redox-regulated transcription factors, such as nuclear factor-kappaB, signal transducer and activator of transcription, activator protein-1. The compound also diminished the production and/expression of proinflammatory mediators, such as cyclooxygenase-2, inducible nitric oxide synthase, nitric oxide, prostaglandins, and cytokines. This review provides an overview of the therapeutic potential of costunolide in the management of various diseases and their underlying mechanisms.
Collapse
|
32
|
Fang Y, Li J, Wu Y, Gui J, Shen Y. Costunolide Inhibits the Growth of OAW42-A Multidrug-Resistant Human Ovarian Cancer Cells by Activating Apoptotic and Autophagic Pathways, Production of Reactive Oxygen Species (ROS), Cleaved Caspase-3 and Cleaved Caspase-9. Med Sci Monit 2019; 25:3231-3237. [PMID: 31043579 PMCID: PMC6512352 DOI: 10.12659/msm.914029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Worldwide, ovarian cancer has a high mortality rate due to the difficulty in diagnosing early-stage disease and resistance to chemotherapy agents. Costunolide is a plant-derived sesquiterpene lactone with anti-oxidant properties. This study aimed to investigate the effects of costunolide on cell growth, apoptosis, autophagy, the production of reactive oxygen species (ROS), cleaved caspase-3, and cleaved caspase-9 on the multidrug-resistant ovarian cancer cell line, OAW42-A. Material/Methods The MTT assay determined the proliferation rate of OAW42-A multidrug-resistant ovarian cancer cells and the apoptosis rate was determined using propidium iodide (PI) staining. Autophagy was detected by measuring the expression of LC3 II. Fluorescence flow cytometry was used to measure the levels of reactive oxygen species (ROS) and the mitochondrial membrane potential. Protein expression of LC3 II, beclin 1, cleaved caspase-3, and cleaved caspase-9 were measured by Western blot. Results Costunolide treatment inhibited the growth of OAW42-A cells with an IC50 of 25 μM, resulted in apoptotic cell death, increased the expression of Bax, and decreased the expression of Bcl-2. Confocal electron microscopy showed that costunolide induced autophagy in the OAW42-A cells. Western blot showed that costunolide treatment of OAW42-A cells increased the expression of the LC3 II, beclin 1, cleaved caspase-3, and cleaved caspase-9. Costunolide treatment significantly increased the levels of ROS and reduced the OAW42-A cell mitochondrial membrane potential. Conclusions Costunolide inhibited growth, apoptosis, ROS generation, and was associated with loss of mitochondrial membrane potential of OAW42-A multidrug-resistant ovarian cancer cells.
Collapse
Affiliation(s)
- Yichen Fang
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jie Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China (mainland)
| | - Yinan Wu
- Department of Pathology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jing Gui
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China (mainland)
| | - Yang Shen
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
33
|
Mao J, Yi M, Tao Y, Huang Y, Chen M. Costunolide isolated from Vladimiria souliei inhibits the proliferation and induces the apoptosis of HepG2 cells. Mol Med Rep 2018; 19:1372-1379. [PMID: 30569137 DOI: 10.3892/mmr.2018.9736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/05/2018] [Indexed: 11/05/2022] Open
Abstract
Costunolide (cos) is one of the major sesquiterpenes isolated from the ethyl acetate soluble fraction of the roots of Vladimiria souliei. In order to explore the effects and molecular mechanism of cos, the anti‑proliferative and apoptotic effects of cos against the human hepatoblastoma HepG2 cell line was examined in vitro in the current study. Cell viability was measured using an MTT assay, and IC50 values (indicating the concentration required to achieve half‑maximal inhibition) were calculated to detect the inhibitory effect of cos on HepG2 cell growth. Cell morphology was subsequently observed under an inverted microscope, and cell cycle distribution and apoptosis were detected using flow cytometric analysis. In addition, changes in the protein expression levels of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax), and caspases‑3, ‑8 and ‑9 were detected by western blotting. The results of cell analyses indicated that cos treatment inhibited the proliferation and promoted the apoptosis of HepG2 cells in vitro. Cos markedly induced HepG2 cell apoptosis by arresting the cell cycle at the G2/M phase in a dose‑dependent manner. In terms of the underlying mechanism, cos was revealed to inhibit the anti‑apoptotic capacity of the cells, possibly via upregulating the expression levels of Bax protein and caspases‑3, ‑8 and ‑9, and downregulating the expression of Bcl‑2 protein. Taken together, the results of the present study indicate that cos may be a promising candidate for liver cancer therapy, and have provided an insight into the mechanism of action involved in its anti‑cancer properties.
Collapse
Affiliation(s)
- Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Man Yi
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Yunyi Tao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Yuanshe Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
34
|
Narita N, Ito Y, Takabayashi T, Okamoto M, Imoto Y, Ogi K, Tokunaga T, Matsumoto H, Fujieda S. Suppression of SESN1 reduces cisplatin and hyperthermia resistance through increasing reactive oxygen species (ROS) in human maxillary cancer cells. Int J Hyperthermia 2018; 35:269-278. [PMID: 30300027 DOI: 10.1080/02656736.2018.1496282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Cisplatin is used as a standard chemotherapeutic agent for head and neck cancer treatment. However, some head and neck cancers have cisplatin resistance, leading to difficulty in treatment and poor prognosis. Overcoming cisplatin resistance remains an important strategy to improve prognoses for head and neck cancer patients. OBJECTIVE Elucidation of the mechanisms underlying cisplatin resistance can suggest novel targets to enhance the anticancer effects of cisplatin for treating head and neck cancers. MATERIAL AND METHODS We used a cisplatin-resistant human maxillary cancer cell line, IMC-3CR to analyse the cisplatin resistance mechanisms. Cisplatin-induced genes were analysed in IMC-3CR cells using PCR array. Among the genes with expression increased by cisplatin, we specifically examined SESN1. SESN family reportedly regenerates peroxiredoxin and suppresses oxidative DNA injury by reactive oxygen species (ROS), which can be induced by chemotherapeutic agents such as cisplatin, radiation, and hyperthermia. The function of SESN1 in cisplatin resistance and ROS generation were analysed using specific RNAi. RESULTS Results show that SESN1 was induced by cisplatin treatment in IMC-3CR cells. Suppression of SESN1 by RNAi induced apoptosis and reduced cell viability through enhancement of ROS after cisplatin treatment. Moreover, suppression of SESN1 enhanced the cell-killing effects of hyperthermia with increased ROS, but did not affect the cell-killing effects of radiation. CONCLUSIONS This study demonstrated the participation of SESN1 in cisplatin and hyperthermia resistance of human head and neck cancers. SESN1 is a novel molecular target to overcome cisplatin resistance and hyperthermia resistance and improve head and neck cancer treatment.
Collapse
Affiliation(s)
- Norihiko Narita
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Yumi Ito
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Tetsuji Takabayashi
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Masayuki Okamoto
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Yoshimasa Imoto
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Kazuhiro Ogi
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Takahiro Tokunaga
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Hideki Matsumoto
- b Department of Experimental Radiology and Health Physics, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Shigeharu Fujieda
- a Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| |
Collapse
|
35
|
Serum concentrations of soluble (s)L- and (s)P-selectins in women with ovarian cancer. MENOPAUSE REVIEW 2018; 17:11-17. [PMID: 29725279 PMCID: PMC5925195 DOI: 10.5114/pm.2018.74897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
Introduction The aim of the study was to compare serum concentration of soluble L- and P-selectins in women with ovarian cancer (OC) and healthy controls, and to investigate sL- and sP-selectin levels with regard to clinical and pathological parameters. Correlation analysis was used to measure the following: sL- and sP-selectin concentration and Ca125; sP-selectin and platelet concentrations; and sL-selectin and serum leukocyte levels in women with OC. Material and methods The study included 29 patients with OC and 23 healthy controls. Serum concentrations of sL- and sP-selectins were measured in all subjects. Routine diagnostic tests: CBC and USG (both groups) and Ca125 (study group) were performed. Results Significantly higher serum concentrations of sL- and sP-selectins were found in the study group as compared to controls. Lower levels of serum sL-selectin were observed in women with poorly-differentiated OC (G3) and advanced stages of the disease (FIGO III, IV), but the results were statistically insignificant. No statistically significant relationship was detected between sP-selectin serum concentration in women with OC and tumour differentiation, histological type, and stage of the disease. No significant correlation was found between sL- and sP-selectins and Ca125 levels. A weak correlation was found between serum concentration of sP-selectin in women with OC and platelet count. No statistically significant correlation was observed between sL-selectin concentration and serum leukocyte levels in women with OC. Conclusions The analysis of sL- and sP-selectin concentrations may be a useful tool in the diagnosis of OC. The levels of sL-selectin decrease with disease progression.
Collapse
|
36
|
Dehydrocostus lactone induces prominent apoptosis in kidney distal tubular epithelial cells and interstitial fibroblasts along with cell cycle arrest in ovarian epithelial cells. Biomed Pharmacother 2018; 99:956-969. [DOI: 10.1016/j.biopha.2018.01.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 11/24/2022] Open
|
37
|
Zhang Y, Chen S, Wei C, Rankin GO, Rojanasakul Y, Ren N, Ye X, Chen YC. Dietary Compound Proanthocyanidins from Chinese bayberry ( Myrica rubra Sieb. et Zucc.) leaves inhibit angiogenesis and regulate cell cycle of cisplatin-resistant ovarian cancer cells via targeting Akt pathway. J Funct Foods 2018; 40:573-581. [PMID: 29576805 PMCID: PMC5863932 DOI: 10.1016/j.jff.2017.11.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecological malignancy and natural products have drawn great attention for cancer treatment. Chinese bayberry leaves proanthocyanidin (BLPs) with epigallocatechin-3-O-gallate (EGCG) as its terminal and major extension units is unusual in the plant kingdom. In the present study, BLPs showed strong growth inhibitory effects on cisplatin-resistant A2780/CP70 cells by inhibiting angiogenesis and inducing G1 cell cycle arrest. BLPs reduced the tube formation in HUVECs and attenuated the wound healing ability in A2780/CP70 cells. BLPs further reduced the level of ROS and targeted Akt/mTOR/p70S6K/4E-BP-1 pathway to reduce the expression of HIF-1α and VEGF, and thus inhibited angiogenesis. Furthermore, BLPs induced G1 cell cycle arrest by reducing the expressions of c-Myc, cyclin D1 and CDK4, which was also in accordance with the flow cytometry analysis. Overall, these results indicated that BLPs could be a valuable resource of natural compounds for cancer treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV, 26416, USA
| | - Shiguo Chen
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Chaoyang Wei
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Gary O. Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Ning Ren
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV, 26416, USA
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Yi Charlie Chen
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV, 26416, USA
| |
Collapse
|
38
|
Costunolide enhances doxorubicin-induced apoptosis in prostate cancer cells via activated mitogen-activated protein kinases and generation of reactive oxygen species. Oncotarget 2017; 8:107701-107715. [PMID: 29296199 PMCID: PMC5746101 DOI: 10.18632/oncotarget.22592] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/04/2017] [Indexed: 01/02/2023] Open
Abstract
The management of castration-resistant prostate cancer (CRPC) is challenging, attributable to a lack of efficacious therapies. Chemotherapy is one of the most important treatments for CRPC. Doxorubicin has been extensively used in many different tumors and is often combined with other drugs to enhance effects and reduce toxicity. Costunolide is a natural sesquiterpene lactone with anti-cancer properties. In this study, we first demonstrated that the combination of costunolide and doxorubicin induced apoptosis significantly more than either drug alone in prostate cancer cell lines. Costunolide combined with doxorubicin induced mitochondria-mediated apoptosis through a loss of mitochondrial membrane potential and modulation of Bcl-2 family proteins. We found that this drug combination significantly increased the production of reactive oxygen species (ROS), as well as phosphorylation of c-jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases, which play upstream roles in mitochondria-mediated apoptosis. Further studies showed that N-acetyl cysteine blocked JNK and p38 phosphorylation, suggesting that ROS were upstream activators of JNK and p38. However, a JNK inhibitor, but not a p38 inhibitor, blocked the increase in ROS observed in cells treated with a combination of costunolide and doxorubicin, suggesting that ROS and JNK could activate each other. In vivo, inhibition of tumor growth and induction of apoptosis were greater in mice treated with the costunolide and doxorubicin combination than in mice treated with either drug alone, without an increase in toxicity. Therefore, we suggested that costunolide in combination with doxorubicin was a new potential chemotherapeutic strategy for treating prostate cancer.
Collapse
|
39
|
Costunolide specifically binds and inhibits thioredoxin reductase 1 to induce apoptosis in colon cancer. Cancer Lett 2017; 412:46-58. [PMID: 29037867 DOI: 10.1016/j.canlet.2017.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022]
Abstract
Colon cancer is one of the leading causes of cancer-related deaths. A natural sesquiterpene lactone, costunolide (CTD), showed inhibition of cancer development. However, the underlying mechanisms are not known. Here, we have examined the therapeutic activity and novel mechanisms of the anti-cancer activities of CTD in colon cancer cells. Using SPR analysis and enzyme activity assay on recombinant TrxR1 protein, our results show that CTD directly binds and inhibits the activity of TrxR1, which caused enhanced generation of ROS and led to ROS-dependent endoplasmic reticulum stress and cell apoptosis in colon cancer cells. Overexpression of TrxR1 in HCT116 cells reversed CTD-induced cell apoptosis and ROS increase. CTD treatment of mice implanted with colon cancer cells showed tumor growth inhibition and reduced TrxR1 activity and ROS level. In addition, it was observed that TrxR1 was significantly up-regulated in existing colon cancer gene database and clinically obtained colon cancer tissues. Our studies have uncovered the mechanism underlying the biological activity of CTD in colon cancer and suggest that targeting TrxR1 may prove to be beneficial as a treatment option.
Collapse
|
40
|
Inhibitory Effects of Total Triterpenoid Saponins Isolated from the Seeds of the Tea Plant (Camellia sinensis) on Human Ovarian Cancer Cells. Molecules 2017; 22:molecules22101649. [PMID: 28974006 PMCID: PMC6151552 DOI: 10.3390/molecules22101649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/17/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is regarded as one of the most severe malignancies for women in the world. Death rates have remained steady over the past five decades, due to the undeniable inefficiency of the current treatment in preventing its recurrence and death. The development of new effective alternative agents for ovarian cancer treatment is becoming increasingly critical. Tea saponins (TS) are triterpenoidsaponins composed of sapogenins, glycosides, and organic acids, which possess a variety of pharmacological activities, and have shown promise in the anti-cancer field. Through cell CellTiter 96® Aqueous One Solution Cell Proliferation assay (MTS) assay, colony formation, Hoechst 33342 staining assay, caspase-3/7 activities, flow cytometry for apoptosis analysis, and Western blot, we observed that TS isolated from the seeds of tea plants, Camellia sinensis, exhibited strong anti-proliferation inhibitory effects on OVCAR-3 and A2780/CP70 ovarian cancer cell lines. Our results indicate that TS may selectivity inhibit human ovarian cancer cells by mediating apoptosis through the extrinsic pathway, and initiating anti-angiogenesis via decreased VEGF protein levels in a HIF-1α-dependent pathway. Our data suggests that, in the future, TS could be incorporated into a potential therapeutic agent against human ovarian cancer.
Collapse
|
41
|
Singireesu SSNR, Misra S, Mondal SK, Yerramsetty S, Sahu N, K SB. Costunolide induces micronuclei formation, chromosomal aberrations, cytostasis, and mitochondrial-mediated apoptosis in Chinese hamster ovary cells. Cell Biol Toxicol 2017; 34:125-142. [PMID: 28914393 DOI: 10.1007/s10565-017-9411-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022]
Abstract
Costunolide (CE) is a sesquiterpene lactone well-known for its antihepatotoxic, antiulcer, and anticancer activities. The present study focused on the evaluation of the cytogenetic toxicity and cellular death-inducing potential of CE in CHO cells, an epithelial cell line derived from normal ovary cells of Chinese hamster. The cytotoxic effect denoting MTT assay has shown an IC50 value of 7.56 μM CE, where 50% proliferation inhibition occurs. The oxidative stress caused by CE was confirmed based on GSH depletion induced cell death, conspicuously absent in N-acetylcysteine (GSH precursor) pretreated cells. The evaluation of genotoxic effects of CE using cytokinesis block micronucleus assay and chromosomal aberration test has shown prominent induction of binucleated micronucleated cells and aberrant metaphases bearing chromatid and chromosomal breaks, indicating CE's clastogenic and aneugenic potential. The apoptotic death in CE treated cells was confirmed by an increase in the number of cells in subG1 phase, exhibiting chromatin condensation and membranous phosphatidylserine translocation. The apoptosis induction follows mitochondrial mediation, evident from an increase in the BAX/Bcl-2 ratio, caspase-3/7 activity, and mitochondrial membrane permeability. CE also induces cytostasis in addition to apoptosis, substantiated by the reduced cytokinetic (replicative indices) and mitotic (mitotic indices and histone H3 Ser-10 phosphorylation) activities. Overall, the cellular GSH depletion and potential genotoxic effects by CE led the CHO cells to commit apoptosis and lowered cell division. The observed sensitivity of CHO cells doubts unintended adverse effects of CE on normal healthy cells, suggesting higher essentiality of further studies in order to establish its safety efficacy in therapeutic explorations.
Collapse
Affiliation(s)
| | - Sunil Misra
- Genetic Toxicology Laboratory, Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sujan Kumar Mondal
- Biomaterials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Suresh Yerramsetty
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Nivedita Sahu
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Suresh Babu K
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| |
Collapse
|
42
|
Huang G, Tong Y, He Q, Wang J, Chen Z. Aucklandia lappa DC. extract enhances gefitinib efficacy in gefitinib-resistance secondary epidermal growth factor receptor mutations. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:353-362. [PMID: 28619365 DOI: 10.1016/j.jep.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/06/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aucklandia lappa DC. is a widely used medicinal plant in China, India and Pakistan for a long time. Previously, a number of different pharmacological experiments in vitro and in vivo have convincingly demonstrated the abilities of it to exhibit anticancer activities. Reynoutria japonica Houtt. has also been widely used as traditional Chinese medicinal plant. Previous studies have demonstrated that it is bioactive to exhibit anticancer activities. AIM OF THE STUDY This study aims to investigate whether the extracts of Aucklandia lappa DC. and Reynoutria japonica Houtt. are capable of treating drug-resistant non-small cell lung cancer (NSCLC), providing support for novel usage beyond traditional uses. MATERIALS AND METHODS Extracts combined with gefitinib have been tested taking the vulval development of transgenic C. elegans (jgIs25) as an effective and simple in vivo model system, evaluating their efficacy against acquired NSCLC. Synchronous larval 1 (L1) larvae were treated with extracts plus gefitinib and cultured to obtain mainly L4 larvae. The multivulva (Muv) phenotype was recorded at the adult stage. RESULTS Our data showed that Aucklandia lappa DC. extract could significantly enhance the efficacy of gefitinib, suppressing the Muv phenotype of jgIs25. Meanwhile, it could also down-regulate the mRNA and protein expression of EGFR in jgIs25. Collectively, our results verified that the capability of Aucklandia lappa DC. to inhibit Muv phenotype may be based on the EGFR signaling pathway inhibition. CONCLUSION We demonstrated that the co-administration of Aucklandia lappa DC. with gefitinib may provide an effective strategy for the therapy of EGFR inhibitor resistant NSCLCs.
Collapse
Affiliation(s)
- Guan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanli Tong
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Qidi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
43
|
Ren Y, Yu J, Kinghorn AD. Development of Anticancer Agents from Plant-Derived Sesquiterpene Lactones. Curr Med Chem 2017; 23:2397-420. [PMID: 27160533 DOI: 10.2174/0929867323666160510123255] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
Sesquiterpene lactones are of considerable interest due to their potent bioactivities, including cancer cell cytotoxicity and antineoplastic efficacy in in vivo studies. Among these compounds, artesunate, dimethylaminoparthenolide, and L12ADT peptide prodrug, a derivative of thapsigargin, are being evaluated in the current cancer clinical or preclinical trials. Based on the structures of several antitumor sesquiterpene lactones, a number of analogues showing greater potency have been either isolated as natural products or partially synthesized, and some potential anticancer agents that have emerged from this group of lead compounds have been investigated extensively. The present review focuses on artemisinin, parthenolide, thapsigargin, and their naturally occurring or synthetic analogues showing potential anticancer activity. This provides an overview of the advances in the development of these types of sesquiterpene lactones as potential anticancer agents, including their structural characterization, synthesis and synthetic modification, and antitumor potential, with the mechanism of action and structure-activity relationships also discussed. It is hoped that this will be helpful in stimulating the further interest in developing sesquiterpene lactones and their derivatives as new anticancer agents.
Collapse
Affiliation(s)
| | | | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
44
|
Costunolide and dehydrocostuslactone combination treatment inhibit breast cancer by inducing cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 pathway. Sci Rep 2017; 7:41254. [PMID: 28117370 PMCID: PMC5259746 DOI: 10.1038/srep41254] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/19/2016] [Indexed: 11/10/2022] Open
Abstract
Our previous studies demonstrated that volatile oil from saussurea lappa root (VOSL), rich in two natural sesquiterpene lactones, costunolide (Cos) and dehydrocostuslactone (Dehy), exerts better anti-breast cancer efficacy and lower side effects than Cos or Dehy alone in vivo, however, their anti-cancer molecular mechanisms were still unknown. In this study, we investigated the underlying mechanisms of Cos and Dehy combination treatment (CD) on breast cancer cells through proteomics technology coupled with Western blot validation. Ingenuity Pathways Analysis (IPA) results based on the differentially expressed proteins revealed that both VOSL and CD affect the 14-3-3-mediated signaling, c-Myc mediated apoptosis signaling and protein kinase A (PKA) signaling. Western blot coupled with cell cycle and apoptosis analysis validated the results of proteomics analysis. Cell cycle arrest and apoptosis were induced in a dose-dependent manner, and the expressions of p53 and p-14-3-3 were significantly up-regulated, whereas the expressions of c-Myc, p-AKT, p-BID were significantly down-regulated, furthermore, the ratio of BAX/BCL-2 were significantly increased in breast cancer cells after CD and VOSL treatment. The findings indicated that VOSL and CD could induce breast cancer cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 signaling pathways and may be novel effective candidates for breast cancer treatment.
Collapse
|
45
|
Zhang C, Lu T, Wang GD, Ma C, Zhou YF. Costunolide, an active sesquiterpene lactone, induced apoptosis via ROS-mediated ER stress and JNK pathway in human U2OS cells. Biomed Pharmacother 2016; 80:253-259. [DOI: 10.1016/j.biopha.2016.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 12/20/2022] Open
|
46
|
Hua P, Sun M, Zhang G, Zhang Y, Song G, Liu Z, Li X, Zhang X, Li B. Costunolide Induces Apoptosis through Generation of ROS and Activation of P53 in Human Esophageal Cancer Eca-109 Cells. J Biochem Mol Toxicol 2016; 30:462-9. [PMID: 27078502 DOI: 10.1002/jbt.21810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
Costunolide is a sesquiterpene lactone, which possesses potent anti-cancer properties. However, there is little report about its effects on esophageal cancer. In our study, we investigated the effects of costunolide on the cell viability, cell cycle, and apoptosis in human esophageal cancer Eca-109 cells. It was found that costunolide inhibited the growth of Eca-109 cells in a dose-dependent manner, which was associated with the loss of mitochondrial membrane potential (Δψm ) and the production of ROS. Costunolide induced apoptosis of Eca-109 cells as well as cell cycle arrest in G1/S phase by upregulation of P53 and P21. Costunolide triggered apoptosis in esophageal cancer cells via the upregulation of Bax, downregulation of Bcl-2, and significant activation of caspase-3 and poly ADP-ribose polymerase. These effects were markedly abrogated when cells were pretreated with N-acetylcysteine, a specific reactive oxygen specie inhibitor. These results suggest that costunolide is a potential candidate for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Peiyan Hua
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Mei Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yifan Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Ge Song
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Zhenyu Liu
- Department of Breast surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Xingyi Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| |
Collapse
|
47
|
Tu Y, Kim E, Gao Y, Rankin GO, Li B, Chen YC. Theaflavin-3, 3'-digallate induces apoptosis and G2 cell cycle arrest through the Akt/MDM2/p53 pathway in cisplatin-resistant ovarian cancer A2780/CP70 cells. Int J Oncol 2016; 48:2657-65. [PMID: 27082635 PMCID: PMC4863729 DOI: 10.3892/ijo.2016.3472] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/11/2016] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer among women worldwide. Adverse side effects and acquired resistance to conventional platinum based chemotherapy are major impediments in ovarian cancer treatment, and drive the development of more selective anticancer drugs that target cancer-specific defects. In this study, theaflavin-3, 3′-digallate (TF3), the major theaflavin monomer in black tea, exhibited a potent growth inhibitory effect on the cisplatin-resistant ovarian cancer A2780/CP70 cells (IC50, 23.81 μM), and was less cytotoxic to a normal ovarian IOSE-364 cells (IC50, 59.58 μM) than to the cancer cells. Flow cytometry analysis indicated that TF3 induced preferential apoptosis and G2 cell cycle arrest in A2780/CP70 cells with respect to IOSE-364 cells. TF3 induced apoptosis through both the intrinsic and extrinsic apoptotic pathways, and caused G2 cell cycle arrest via cyclin B1 in A2780/CP70 cells. The p53 protein played an important role in TF3-induced apoptosis and G2 cell cycle arrest. TF3 might upregulate the p53 expression via the Akt/MDM2 pathway. Our findings help elucidate the mechanisms by which TF3 may contribute to the prevention and treatment of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Eunhye Kim
- Department of Tea Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Ying Gao
- Department of Tea Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yi Charlie Chen
- Department of Tea Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
48
|
HUA PEIYAN, ZHANG GUANGXIN, ZHANG YIFAN, SUN MEI, CUI RANJI, LI XIN, LI BINGJIN, ZHANG XINGYI. Costunolide induces G1/S phase arrest and activates mitochondrial-mediated apoptotic pathways in SK-MES 1 human lung squamous carcinoma cells. Oncol Lett 2016; 11:2780-2786. [PMID: 27073552 PMCID: PMC4812560 DOI: 10.3892/ol.2016.4295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 01/26/2016] [Indexed: 11/06/2022] Open
Abstract
Despite the availability of several therapeutic options, a safer and more effective modality strategy is required for the treatment of lung cancer. Costunolide, a sesquiterpene lactone which isolated from the Saussurea lappa, has potent anticancer properties. In the present study, the effects of costunolide on cell viability, the cell cycle and apoptosis in SK-MES-1 human lung squamous carcinoma cells were investigated. Costunolide induced morphological changes and inhibited growth of SK-MES-1 cells growth. Flow cytometric analysis data demonstrated that costunolide significantly induced apoptosis of SK-MES-1 cells and induced cell cycle arrest at G1/S phase in a dose-dependent manner. Through upregulation in the expression of p53 and Bax, and downregulation in the expression of Bcl-2 and activation of caspase-3, costunolide-induced apoptosis was confirmed by western blot analysis. In addition, the significant loss of mitochondrial membrane potential indicated that costunolide may induce apoptosis via the mitochondria-dependent pathway in SK-MES-1 cells. These results highlight the potential effects of costunolide as an anti-cancer agent in a human lung squamous carcinoma cell line.
Collapse
Affiliation(s)
- PEIYAN HUA
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - GUANGXIN ZHANG
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - YIFAN ZHANG
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - MEI SUN
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - RANJI CUI
- Jilin Provincial Key Laboratory of Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - XIN LI
- Jilin Provincial Key Laboratory of Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - BINGJIN LI
- Jilin Provincial Key Laboratory of Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - XINGYI ZHANG
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
49
|
Huang H, Chen AY, Ye X, Li B, Rojanasakul Y, Rankin GO, Chen YC. Myricetin inhibits proliferation of cisplatin-resistant cancer cells through a p53-dependent apoptotic pathway. Int J Oncol 2015; 47:1494-502. [PMID: 26315556 PMCID: PMC4583523 DOI: 10.3892/ijo.2015.3133] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022] Open
Abstract
Cisplatin is a commonly used drug for cancer treatment by crosslinking DNA, leading to apoptosis of cancer cells, resistance to cisplatin treatment often occurs, leading to relapse. Therefore, there is a need for the development of more effective treatment strategies that can overcome chemoresistance. Myricetin is a flavonoid from fruits and vegetables, showing anticancer activity in various cancer cells. In this study, we found myricetin exhibited greater cytotoxicity than cisplatin in two cisplatin-resistant ovarian cancer cell lines, OVCAR-3 and A2780/CP70, and it was less cytotoxic to the normal ovarian cell line IOSE-364. Myricetin selectively induced apoptosis in both cisplatin-resistant cancer cell lines, but did not induce apoptosis in the normal ovarian cell line. It induced both Bcl-2 family-dependent intrinsic and DR5 dependent extrinsic apoptosis in OVCAR-3 cells. P53, a multifunctional tumor suppressor, regulated apoptosis in OVCAR-3 cells through a Bcl-2 family protein-dependent pathway. Myricetin did not induce cell cycle arrest in either ovarian cancer cell line. Because of its potency and selectivity against cisplatin-resistant cancer cells, myricetin could potentially be used to overcome cancer chemoresistance against platinum-based therapy.
Collapse
Affiliation(s)
- Haizhi Huang
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Allen Y Chen
- Department of Pharmaceutical Science, West Virginia University, Morgantown, WV 26506, USA
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Science, West Virginia University, Morgantown, WV 26506, USA
| | - Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Yi Charlie Chen
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| |
Collapse
|
50
|
Lin X, Peng Z, Su C. Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone. Int J Mol Sci 2015; 16:10888-906. [PMID: 25984608 PMCID: PMC4463681 DOI: 10.3390/ijms160510888] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/10/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
Costunolide (CE) and dehydrocostuslactone (DE) are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application.
Collapse
Affiliation(s)
- Xuejing Lin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China.
| | - Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China.
| |
Collapse
|