1
|
Park JH, Lee H, Zheng T, Shin JK, Yoon S, Kim HS. Low-Dose Perifosine, a Phase II Phospholipid Akt Inhibitor, Selectively Sensitizes Drug-Resistant ABCB1-Overexpressing Cancer Cells. Biomol Ther (Seoul) 2025; 33:170-181. [PMID: 39632683 PMCID: PMC11704409 DOI: 10.4062/biomolther.2024.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 12/07/2024] Open
Abstract
We identified drugs or mechanisms targeting ABCB1 (or P-glycoprotein; P-gp)-overexpressing drug-resistant cancer populations, given that these cells play a key role in tumor recurrence. Specifically, we searched for Akt inhibitors that could increase cytotoxicity in P-gp-overexpressing drug-resistant cancer cells. We performed cytotoxicity assays using five cell lines: 1. MCF-7/ADR, 2. KBV20C cancer cells (P-gp overexpression, vincristine [VIC] resistance, and GSK690693-resistance), 3. MCF-7, 4. normal HaCaT cells (non-P-gp-overexpressing, VIC-sensitive, and GSK690693-sensitive), and 5. MDA-MB-231 cancer cells (non-P-gp overexpression, relatively VIC-resistance, and GSK690693-sensitive). Herein, we found that low-dose perifosine markedly and selectively sensitizes both MCF-7/ADR and KBV20C drug-resistant cancer cells exhibiting P-gp overexpression. Compared with other Akt inhibitors (AZD5363, BKM120, and GSK690693), low-dose perifosine specifically sensitized P-gp-overexpressing resistant MCF-7/ADR cancer cells. Conversely, Akt inhibitors (other than perifosine) could enhance sensitization effects in drugsensitive MCF-7 and HaCaT cells. Considering that perifosine has both an alkyl-phospholipid structure and is an allosteric inhibitor for membrane-localizing Akt-targeting, we examined structurally and functionally similar Akt inhibitors (miltefosine and MK-2206). However, we found that these inhibitors were non-specific, suggesting that the specificity of perifosine in P-gp-overexpressing resistant cancer cells is unrelated to phospholipid localizing membranes or allosteric inhibition. Furthermore, we examined the molecular mechanism of low-dose perifosine in drug-resistant MCF-7/ADR cancer cells. MCF-7/ADR cells exhibited increased apoptosis via G2 arrest and autophagy induction. However, no increase in P-gp-inhibitory activity was observed in drug-resistant MCF-7/ADR cancer cells. Single low-dose perifosine treatment exerted a sensitization effect similar to co-treatment with VIC in P-gp-overexpressing drug-resistant MCF-7/ADR cancer cells, suggesting that single treatment with low-dose perifosine is a more powerful tool against P-gp-overexpressing drug-resistant cancer cells. These findings could contribute to its clinical use as a first-line treatment, explicitly targeting P-gp-overexpressing resistant cancer populations in heterogeneous tumor populations. Therefore, perifosine may be valuable in delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant cancer cells.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Haeun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tian Zheng
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joo Kyung Shin
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Amer H, Kampan NC, Itsiopoulos C, Flanagan KL, Scott CL, Kartikasari AER, Plebanski M. Interleukin-6 Modulation in Ovarian Cancer Necessitates a Targeted Strategy: From the Approved to Emerging Therapies. Cancers (Basel) 2024; 16:4187. [PMID: 39766086 PMCID: PMC11674514 DOI: 10.3390/cancers16244187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Despite significant advances in treatments, ovarian cancer (OC) remains one of the most prevalent and lethal gynecological cancers in women. The frequent detection at the advanced stages has contributed to low survival rates, resistance to various treatments, and disease recurrence. Thus, a more effective approach is warranted to combat OC. The cytokine Interleukin-6 (IL6) has been implicated in various stages of OC development. High IL6 levels are also correlated with a lower survival rate in OC patients. In this current review, we summarized the pivotal roles of IL6 in OC, including the initiation, development, invasion, metastasis, and drug resistance mechanisms. This article systematically highlights how targeting IL6 improves OC outcomes by altering various cancer processes and reports the ongoing clinical trials that would further shape the IL6-based targeted therapies. This review also suggests how combining IL6-targeted therapies with other therapeutic strategies could further enhance their efficacy to combat OC.
Collapse
Affiliation(s)
- Hina Amer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Nirmala C. Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Katie L. Flanagan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
- School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
- The Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Apriliana E. R. Kartikasari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| |
Collapse
|
3
|
Giaccari C, Antonouli S, Anifandis G, Cecconi S, Di Nisio V. An Update on Physiopathological Roles of Akt in the ReprodAKTive Mammalian Ovary. Life (Basel) 2024; 14:722. [PMID: 38929705 PMCID: PMC11204812 DOI: 10.3390/life14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is a key signaling cascade responsible for the regulation of cell survival, proliferation, and metabolism in the ovarian microenvironment. The optimal finetuning of this pathway is essential for physiological processes concerning oogenesis, folliculogenesis, oocyte maturation, and embryo development. The dysregulation of PI3K/Akt can impair molecular and structural mechanisms that will lead to follicle atresia, or the inability of embryos to reach later stages of development. Due to its pivotal role in the control of cell proliferation, apoptosis, and survival mechanisms, the dysregulation of this molecular pathway can trigger the onset of pathological conditions. Among these, we will focus on diseases that can harm female fertility, such as polycystic ovary syndrome and premature ovarian failure, or women's general health, such as ovarian cancer. In this review, we report the functions of the PI3K/Akt pathway in both its physiological and pathological roles, and we address the existing application of inhibitors and activators for the balancing of the molecular cascade in ovarian pathological environments.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell’Aquila, 67100 L’Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| |
Collapse
|
4
|
ALEMZADEH EFFAT, ALLAHQOLI LEILA, MAZIDIMORADI AFROOZ, ALEMZADEH ESMAT, GHASEMI FAHIMEH, SALEHINIYA HAMID, ALKATOUT IBRAHIM. Deciphering resistance mechanisms and novel strategies to overcome drug resistance in ovarian cancer: a comprehensive review. Oncol Res 2024; 32:831-847. [PMID: 38686048 PMCID: PMC11055988 DOI: 10.32604/or.2024.031006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 05/02/2024] Open
Abstract
Ovarian cancer is among the most lethal gynecological cancers, primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy. Drug resistance (DR) poses the most significant challenge in treating patients with existing drugs. The Food and Drug Administration (FDA) has recently approved three new therapeutic drugs, including two poly (ADP-ribose) polymerase (PARP) inhibitors (olaparib and niraparib) and one vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) for maintenance therapy. However, resistance to these new drugs has emerged. Therefore, understanding the mechanisms of DR and exploring new approaches to overcome them is crucial for effective management. In this review, we summarize the major molecular mechanisms of DR and discuss novel strategies to combat DR.
Collapse
Affiliation(s)
- EFFAT ALEMZADEH
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - LEILA ALLAHQOLI
- Department of Midwifery, Ministry of Health and Medical Education, Tehran, Iran
| | - AFROOZ MAZIDIMORADI
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - ESMAT ALEMZADEH
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - FAHIMEH GHASEMI
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - HAMID SALEHINIYA
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - IBRAHIM ALKATOUT
- Kiel School of Gynaecological Endoscopy, Campus Kiel, University Hospitals Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
Yuan Y, Li Z, Wang K, Zhang S, He Q, Liu L, Tang Z, Zhu X, Chen Y, Cai W, Peng C, Xiang X. Pharmacokinetics of Novel Furoxan/Coumarin Hybrids in Rats Using LC-MS/MS Method and Physiologically Based Pharmacokinetic Model. Molecules 2023; 28:molecules28020837. [PMID: 36677893 PMCID: PMC9866629 DOI: 10.3390/molecules28020837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Novel furoxan/coumarin hybrids were synthesized, and pharmacologic studies showed that the compounds displayed potent antiproliferation activities via downregulating both the phosphatidylinositide 3-kinase (PI3K) pathway and the mitogen-activated protein kinase (MAPK) pathway. To investigate the preclinical pharmacokinetic (PK) properties of three candidate compounds (CY-14S-4A83, CY-16S-4A43, and CY-16S-4A93), liquid chromatography, in tandem with the mass spectrometry LC-MS/MS method, was developed and validated for the simultaneous determination of these compounds. The absorption, distribution, metabolism, and excretion (ADME) properties were investigated in in vitro studies and in rats. Meanwhile, physiologically based pharmacokinetic (PBPK) models were constructed using only in vitro data to obtain detailed PK information. Good linearity was observed over the concentration range of 0.01−1.0 μg/mL. The free drug fraction (fu) values of the compounds were less than 3%, and the clearance (CL) values were 414.5 ± 145.7 mL/h/kg, 2624.6 ± 648.4 mL/h/kg, and 500.6 ± 195.2 mL/h/kg, respectively. The predicted peak plasma concentration (Cmax) and the area under the concentration-time curve (AUC) were overestimated for the CY-16S-4A43 PBPK model compared with the experimental ones (fold error > 2), suggesting that tissue accumulation and additional elimination pathways may exist. In conclusion, the LC-MS/MS method was successively applied in the preclinical PK studies, and the detailed information from PBPK modeling may improve decision-making in subsequent new drug development.
Collapse
Affiliation(s)
- Yawen Yuan
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhihong Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shunguo Zhang
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lucy Liu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhijia Tang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ying Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weimin Cai
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Correspondence: (C.P.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
- Correspondence: (C.P.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| |
Collapse
|
6
|
Rinne N, Christie EL, Ardasheva A, Kwok CH, Demchenko N, Low C, Tralau-Stewart C, Fotopoulou C, Cunnea P. Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:573-595. [PMID: 35582310 PMCID: PMC9019160 DOI: 10.20517/cdr.2021.05] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
The survival rates for women with ovarian cancer have shown scant improvement in recent years, with a 5-year survival rate of less than 40% for women diagnosed with advanced ovarian cancer. High-grade serous ovarian cancer (HGSOC) is the most lethal subtype where the majority of women develop recurrent disease and chemotherapy resistance, despite over 70%-80% of patients initially responding to platinum-based chemotherapy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway regulates many vital processes such as cell growth, survival and metabolism. However, this pathway is frequently dysregulated in cancers including different subtypes of ovarian cancer, through amplification or somatic mutations of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), amplification of AKT isoforms, or deletion or inactivation of PTEN. Further evidence indicates a role for the PI3K/AKT/mTOR pathway in the development of chemotherapy resistance in ovarian cancer. Thus, targeting key nodes of the PI3K/AKT/mTOR pathway is a potential therapeutic prospect. In this review, we outline dysregulation of PI3K signaling in ovarian cancer, with a particular emphasis on HGSOC and platinum-resistant disease. We review pre-clinical evidence for inhibitors of the main components of the PI3K pathway and highlight past, current and upcoming trials in ovarian cancers for different inhibitors of the pathway. Whilst no inhibitors of the PI3K/AKT/mTOR pathway have thus far advanced to the clinic for the treatment of ovarian cancer, several promising compounds which have the potential to restore platinum sensitivity and improve clinical outcomes for patients are under evaluation and in various phases of clinical trials.
Collapse
Affiliation(s)
- Natasha Rinne
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | | | - Anastasia Ardasheva
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Chun Hei Kwok
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Nikita Demchenko
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Caroline Low
- Department of Metabolism Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Catherine Tralau-Stewart
- Takeda Academic Innovation, Center for External Innovation, Takeda California, San Diego, CA 92121, USA
| | - Christina Fotopoulou
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Paula Cunnea
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| |
Collapse
|
7
|
Zhou R, Wen Z, Liao Y, Wu J, Xi S, Zeng D, Sun H, Wu J, Shi M, Bin J, Liao Y, Liao W. Evaluation of stromal cell infiltration in the tumor microenvironment enable prediction of treatment sensitivity and prognosis in colon cancer. Comput Struct Biotechnol J 2022; 20:2153-2168. [PMID: 35615026 PMCID: PMC9118126 DOI: 10.1016/j.csbj.2022.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Current clinical factors for screening candidates that might benefit from adjuvant chemotherapy in colon cancer are inadequate. Tumor microenvironment, especially the stromal components, has the potential to determine treatment response. However, clinical translation of the tumor-associated stromal characterization into a practical biomarker for helping treatment decision has not been established. Using machine learning, we established a novel 31-gene signature, called stromal cell infiltration intensity score (SIIS), to distinguish patients characterized by the enrichment of abundant stromal cells in five colon cancer datasets from GEO (N = 990). Patients with high-SIIS were at higher risk for recurrence and mortality, and could not benefit from adjuvant chemotherapy due to their intrinsic drug resistance; however, the opposite was reported for patients with low-SIIS. The role of SIIS in detection of patients with high stromal cell infiltration and reduced drug efficiency was consistently validated in the TCGA-COAD cohort (N = 382), Sun Yat-sen University Cancer Center cohort (N = 30), and could also be observed in TCGA pan-cancer settings (N = 4898) and four independent immunotherapy cohorts (N = 467). Based on multi-omics data analysis and the CRISPR library screen, we reported that lack of gene mutation, hypomethylation in ADCY4 promoter region, activation of WNT-PCP pathway and SIAH2-GPX3 axis were potential mechanisms responsible for the chemoresistance of patients within high-SIIS group. Our findings demonstrated that SIIS provide an important reference for those making treatment decisions for such special patients.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhaowei Wen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yifu Liao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Jingjing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Corresponding author at: Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China.
| |
Collapse
|
8
|
Lapke N, Chen CH, Chang TC, Chao A, Lu YJ, Lai CH, Tan KT, Chen HC, Lu HY, Chen SJ. Genetic alterations and their therapeutic implications in epithelial ovarian cancer. BMC Cancer 2021; 21:499. [PMID: 33947352 PMCID: PMC8097933 DOI: 10.1186/s12885-021-08233-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/21/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Genetic alterations for epithelial ovarian cancer are insufficiently characterized. Previous studies are limited regarding included histologies, gene numbers, copy number variant (CNV) detection, and interpretation of pathway alteration patterns of individual patients. METHODS We sequenced 410 genes to analyze mutations and CNV of 82 ovarian carcinomas, including high-grade serous (n = 37), endometrioid (n = 22) and clear cell (n = 23) histologies. Eligibility for targeted therapy was determined for each patient by a pathway-based approach. The analysis covered DNA repair, receptor tyrosine kinase, PI3K/AKT/MTOR, RAS/MAPK, cell cycle, and hedgehog pathways, and included 14 drug targets. RESULTS Postulated PARP, MTOR, and CDK4/6 inhibition sensitivity were most common. BRCA1/2 alterations, PTEN loss, and gain of PIK3CA and CCND1 were characteristic for high-grade serous carcinomas. Mutations of ARID1A, PIK3CA, and KRAS, and ERBB2 gain were enriched in the other histologies. PTEN mutations and high tumor mutational burden were characteristic for endometrioid carcinomas. Drug target downstream alterations impaired actionability in all histologies, and many alterations would not have been discovered by key gene mutational analysis. Individual patients often had more than one actionable drug target. CONCLUSIONS Genetic alterations in ovarian carcinomas are complex and differ among histologies. Our results aid the personalization of therapy and biomarker analysis for clinical studies, and indicate a high potential for combinations of targeted therapies.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/therapy
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma/therapy
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Carcinoma, Endometrioid/therapy
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/therapy
- Cell Cycle/genetics
- DNA Copy Number Variations
- DNA Mutational Analysis/methods
- DNA Repair/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/genetics
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Mutation
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Precision Medicine
- Retrospective Studies
Collapse
Affiliation(s)
- Nina Lapke
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
- ACT Genomics, Co. Ltd., Units 803 - 807, 8F, Building 15W, No.15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok. NT, Hong Kong, Hong Kong
| | - Chien-Hung Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Yen-Jung Lu
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan.
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Kien Thiam Tan
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Hua-Chien Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Hsiao-Yun Lu
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Shu-Jen Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| |
Collapse
|
9
|
Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Cancer Manag Res 2021; 13:3081-3100. [PMID: 33854378 PMCID: PMC8041604 DOI: 10.2147/cmar.s292992] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a common and complex malignancy with poor prognostic outcome. Most women with ovarian cancer are diagnosed with advanced stage disease due to a lack of effective detection strategies in the early stage. Traditional treatment with cytoreductive surgery and platinum-based combination chemotherapy has not significantly improved prognosis and 5-year survival rates are still extremely poor. Therefore, novel treatment strategies are needed to improve the treatment of ovarian cancer patients. Recent advances of next generation sequencing technologies have both confirmed previous known mutated genes and discovered novel candidate genes in ovarian cancer. In this review, we illustrate recent advances in identifying ovarian cancer gene mutations, including those of TP53, BRCA1/2, PIK3CA, and KRAS genes. In addition, we discuss advances in targeting therapies for ovarian cancer based on these mutated genes in ovarian cancer. Further, we associate between detection of mutation genes by liquid biopsy and the potential early diagnostic value in ovarian cancer.
Collapse
Affiliation(s)
- Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Dong
- Department of Gynecology, Cheng Du Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shanli Xie
- First People's Hospital of Guangyuan, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lin Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
10
|
Tran AQ, Sullivan SA, Chan LLY, Yin Y, Sun W, Fang Z, Dugar S, Zhou C, Bae-Jump V. SPR965, a Dual PI3K/mTOR Inhibitor, as a Targeted Therapy in Ovarian Cancer. Front Oncol 2021; 10:624498. [PMID: 33659215 PMCID: PMC7919852 DOI: 10.3389/fonc.2020.624498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022] Open
Abstract
SPR965 is an inhibitor of PI3K and mTOR C1/C2 and has demonstrated anti-tumorigenic activity in a variety of solid tumors. We sought to determine the effects of SPR965 on cell proliferation and tumor growth in human serous ovarian cancer cell lines and a transgenic mouse model of high grade serous ovarian cancer (KpB model) and identify the underlying mechanisms by which SPR965 inhibits cell and tumor growth. SPR965 showed marked anti-proliferative activity by causing cell cycle arrest and inducing cellular stress in ovarian cancer cells. Treatment with SPR965 significantly inhibited tumor growth in KpB mice, accompanied by downregulation of Ki67 and VEGF and upregulation of Bip expression in ovarian tumors. SPR965 also inhibited adhesion and invasion through induction of the epithelial–mesenchymal transition process. As expected, downregulation of phosphorylation of AKT and S6 was observed in SPR965-treated ovarian cancer cells and tumors. Our results suggest that SPR965 has significant anti-tumorigenic effects in serous ovarian cancer in vitro and in vivo. Thus, SPR965 should be evaluated as a promising targeted agent in future clinical trials of ovarian cancer.
Collapse
Affiliation(s)
- Arthur-Quan Tran
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie A Sullivan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, United States
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ziwei Fang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Sundeep Dugar
- Sphaera Pharma Singapore Pte Ltd., Singapore, Singapore
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Fabi F, Adam P, Parent S, Tardif L, Cadrin M, Asselin E. Pharmacologic inhibition of Akt in combination with chemotherapeutic agents effectively induces apoptosis in ovarian and endometrial cancer cell lines. Mol Oncol 2021; 15:2106-2119. [PMID: 33338300 PMCID: PMC8334290 DOI: 10.1002/1878-0261.12888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 01/03/2023] Open
Abstract
The PI3K/Akt signaling pathway, the most frequently altered signaling system in human cancer, is a crucial inducer of dysregulated proliferation and neoplastic processes; however, few therapeutic strategies using PI3K/Akt inhibitors singly have been shown to be effective. The purpose of this paper was to underline the potential benefit of pharmacological modulation of the PI3K/Akt pathway when combined with specific chemotherapeutic regimens. We have studied the ability of NVP‐BEZ235 (PI3K/mTOR inhibitor) and AZD5363 (Akt inhibitor) in the sensitization of cancer cells to cisplatin and doxorubicin. Our results show that NVP‐BEZ235 sensitizes cells preferentially to cisplatin while AZD5363 sensitizes cells to doxorubicin. At equal concentrations (5 μm), both inhibitors reduce ribosomal protein S6 phosphorylation, but AZD5363 is more effective in reducing GSK3β phosphorylation as well as S6 phosphorylation. Additionally, AZD5363 is capable of inducing FOXO1 and p53 nuclear localization and reduces BAD phosphorylation, which is generally increased by cisplatin and doxorubicin. Finally, the combination of AZD5363 and doxorubicin induces apoptosis in cells and robustly reduces cell ability to clonally replicate, which underlines a potential cooperative effect of the studied compounds.
Collapse
Affiliation(s)
- François Fabi
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Pascal Adam
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Sophie Parent
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Laurence Tardif
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Monique Cadrin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Eric Asselin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| |
Collapse
|
12
|
Gaillard B, Remy JS, Pons F, Lebeau L. Dual Gene Delivery Reagents From Antiproliferative Alkylphospholipids for Combined Antitumor Therapy. Front Chem 2020; 8:581260. [PMID: 33134279 PMCID: PMC7566913 DOI: 10.3389/fchem.2020.581260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Alkylphospholipids (APLs) have elicited great interest as antitumor agents due to their unique mode of action on cell membranes. However, their clinical applications have been limited so far by high hemolytic activity. Recently, cationic prodrugs of erufosine, a most promising APL, have been shown to mediate efficient intracellular gene delivery, while preserving the antiproliferative properties of the parent APL. Here, cationic prodrugs of the two APLs that are currently used in the clinic, miltefosine, and perifosine, are investigated and compared to the erufosine prodrugs. Their synthesis, stability, gene delivery and self-assembly properties, and hemolytic activity are discussed in detail. Finally, the potential of the pro-miltefosine and pro-perifosine compounds ME12 and PE12 in combined antitumor therapy is demonstrated using pUNO1-hTRAIL, a plasmid DNA encoding TRAIL, a member of the TNF superfamily. With these pro-APL compounds, we provide a proof of concept for a new promising strategy for cancer therapy combining gene therapy and APL-based chemotherapy.
Collapse
Affiliation(s)
- Boris Gaillard
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Jean-Serge Remy
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
13
|
Gaillard B, Seguin C, Remy JS, Pons F, Lebeau L. Erufosine (ErPC3) Cationic Prodrugs as Dual Gene Delivery Reagents for Combined Antitumor Therapy. Chemistry 2019; 25:15662-15679. [PMID: 31549752 DOI: 10.1002/chem.201903976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Indexed: 12/14/2022]
Abstract
Sixteen cationic prodrugs of the antitumor alkylphospholipid (APL) erufosine were rationally synthesized to provide original gene delivery reagents with improved cytotoxicity profile. The DNA complexation properties of these cationic lipids were determined and associated transfection rates were measured. Furthermore, the self-assembly properties of the pro-erufosine compounds were investigated and their critical aggregation concentration was determined. Their hydrolytic stability under pH conditions mimicking the extracellular environment and the late endosome milieu was measured. Hemolytic activity and cytotoxicity of the compounds were investigated. The results obtained in various cell lines demonstrate that the prodrugs of erufosine display antineoplastic activity similar to that of the parent antitumor drug but are not associated with hemolytic toxicity, which is a dose-limiting side effect of APLs and a major obstacle to their use in anticancer therapeutic regimen. Furthermore, by using lipoplexes prepared from a prodrug of erufosine and a plasmid DNA encoding a pro-apoptotic protein (TRAIL), evidence was provided for selective cytotoxicity towards tumor cells while nontumor cells were resistant. This study demonstrates that the combination approach involving well tolerated erufosine cationic prodrugs and cancer gene therapy holds significant promise in tumor therapy.
Collapse
Affiliation(s)
- Boris Gaillard
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin-BP 60024, 67401, Illkirch, France
| | - Cendrine Seguin
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin-BP 60024, 67401, Illkirch, France
| | - Jean-Serge Remy
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin-BP 60024, 67401, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin-BP 60024, 67401, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin-BP 60024, 67401, Illkirch, France
| |
Collapse
|
14
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Shariati M, Meric-Bernstam F. Targeting AKT for cancer therapy. Expert Opin Investig Drugs 2019; 28:977-988. [PMID: 31594388 PMCID: PMC6901085 DOI: 10.1080/13543784.2019.1676726] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022]
Abstract
Introduction: Targeted therapies in cancer aim to inhibit specific molecular targets responsible for enhanced tumor growth. AKT/PKB (protein kinase B) is a serine threonine kinase involved in several critical cellular pathways, including survival, proliferation, invasion, apoptosis, and angiogenesis. Although phosphatidylinositol-3 kinase (PI3K) is the key regulator of AKT activation, numerous stimuli and kinases initiate pro-proliferative AKT signaling which results in the activation of AKT pathway to drive cellular growth and survival. Activating mutations and amplification of components of the AKT pathway are implicated in the pathogenesis of many cancers including breast and ovarian. Given its importance, AKT, it has been validated as a promising therapeutic target.Areas covered: This article summarizes AKT's biological function and different classes of AKT inhibitors as anticancer agents. We also explore the efficacy of AKT inhibitors as monotherapies and in combination with cytotoxic and other targeted therapies.Expert opinion: The complex mechanism following AKT inhibition requires the addition of other therapies to prevent resistance and improve clinical response. Further studies are necessary to determine additional rational combinations that can enhance efficacy of AKT inhibitors, potentially by targeting compensatory mechanisms, and/or enhancing apoptosis. The identification of biomarkers of response is essential for the development of successful therapeutics.
Collapse
Affiliation(s)
- Maryam Shariati
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Garziera M, Roncato R, Montico M, De Mattia E, Gagno S, Poletto E, Scalone S, Canzonieri V, Giorda G, Sorio R, Cecchin E, Toffoli G. New Challenges in Tumor Mutation Heterogeneity in Advanced Ovarian Cancer by a Targeted Next-Generation Sequencing (NGS) Approach. Cells 2019; 8:cells8060584. [PMID: 31197119 PMCID: PMC6627128 DOI: 10.3390/cells8060584] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) technology has advanced knowledge of the genomic landscape of ovarian cancer, leading to an innovative molecular classification of the disease. However, patient survival and response to platinum-based treatments are still not predictable based on the tumor genetic profile. This retrospective study characterized the repertoire of somatic mutations in advanced ovarian cancer to identify tumor genetic markers predictive of platinum chemo-resistance and prognosis. Using targeted NGS, 79 primary advanced (III-IV stage, tumor grade G2-3) ovarian cancer tumors, including 64 high-grade serous ovarian cancers (HGSOCs), were screened with a 26 cancer-genes panel. Patients, enrolled between 1995 and 2011, underwent primary debulking surgery (PDS) with optimal residual disease (RD < 1 cm) and platinum-based chemotherapy as first-line treatment. We found a heterogeneous mutational landscape in some uncommon ovarian histotypes and in HGSOC tumor samples with relevance in predicting platinum sensitivity. In particular, we identified a poor prognostic signature in patients with HGSOC harboring concurrent mutations in two driver actionable genes of the panel. The tumor heterogeneity described, sheds light on the translational potential of targeted NGS approach for the identification of subgroups of patients with distinct therapeutic vulnerabilities, that are modulated by the specific mutational profile expressed by the ovarian tumor.
Collapse
Affiliation(s)
- Marica Garziera
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Marcella Montico
- Scientific Directorate, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Elena Poletto
- Medical Oncology, "Santa Maria della Misericordia" University Hospital, ASUIUD, 33100 Udine, Italy.
| | - Simona Scalone
- Medical Oncology Unit C, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Giorgio Giorda
- Gynecological Oncology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Roberto Sorio
- Medical Oncology Unit C, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| |
Collapse
|
17
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol 2019; 59:147-160. [PMID: 31128298 DOI: 10.1016/j.semcancer.2019.05.012] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023]
Abstract
Ovarian cancer (OC) is a lethal gynecological cancer. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway plays an important role in the regulation of cell survival, growth, and proliferation. Irregularities in the major components of the PI3K/AKT/mTOR signaling pathway are common in human cancers. Despite the availability of strong pre-clinical and clinical data of PI3K/AKT/mTOR pathway inhibitors in OC, there is no FDA approved inhibitor available for the treatment of OC. Here, we outline the importance of PI3K/AKT/mTOR signaling pathway in OC tumorigenesis, proliferation and progression, and pre-clinical and clinical experience with several PI3K/AKT/mTOR pathway inhibitors in OC.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Sameera Ranganath Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| |
Collapse
|
18
|
Rodriguez-Freixinos V, Ruiz-Pace F, Fariñas-Madrid L, Garrido-Castro AC, Villacampa G, Nuciforo P, Vivancos A, Dienstmann R, Oaknin A. Genomic heterogeneity and efficacy of PI3K pathway inhibitors in patients with gynaecological cancer. ESMO Open 2019. [PMID: 30962959 DOI: 10.1136/esmoopen-2018-000444] [] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objectives Aberrant PI3K/AKT/mTOR activation is common in gynaecological malignancies. However, predictive biomarkers of response to PI3K pathway inhibitors (PAMi) have yet to be identified. Methods We analysed the outcomes of patients with advanced gynaecological cancer with available genomic data, treated with PAMi as single agents or in combination in phase I clinical trials. Clinical relevance of the PIK3CA mutant allele fraction (MAF) was investigated. MAF of each variant was normalised for tumour purity in the sample (adjMAFs) to infer clonality of PIK3CA mutations, defined as clonal (≥0.4) or subclonal (<0.4). Results A total of 50 patients with gynaecological cancer (24 ovarian; 15 endometrial; 11 cervical) with available targeted mutation profiling were selected. PAMi therapy was matched to PIK3CA/PTEN mutation in 30 patients (60%). The overall response rate, median time to progression (mTTP) and clinical benefit rate (CBR) of the entire population were 10% (N=5), 3.57 months (2.57-4.4) and 40% (N=18), respectively. Genotype-matched therapy did not lead to a favourable CBR (OR 0.91, p=1 (0.2-3.7)) or mTTP (3.57 months (2.6-4.4) vs 3.73 months (1.9-13.2); HR 1.41; p=0.29). We did not detect differences in mTTP according to therapy or PIK3CA codon mutation (HR 1.71, p=0.24). Overall, 41% of patients had a TTP ratio (TTP PAMi/TTP on immediately prior or subsequent palliative chemotherapy) ≥1.3, without statistically significant differences according to tumour type (p=0.39), molecular alteration status (p=0.13) or therapy (p=0.54). In univariate analysis, genotype-matched therapy in patients with PIK3CA clonal events was associated with improved mTTP (HR 3.6; p=0.03). Conclusions Our study demonstrates that patients with advanced gynaecological cancer, refractory to standard therapies, achieved meaningful clinical benefit from PAMi. The impact of PI3KCA clonality on response to selected PAMi in patients with gynaecological cancer deserves further investigation.
Collapse
Affiliation(s)
- Victor Rodriguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lorena Fariñas-Madrid
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Christina Garrido-Castro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Guillermo Villacampa
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
19
|
Rodriguez-Freixinos V, Ruiz-Pace F, Fariñas-Madrid L, Garrido-Castro AC, Villacampa G, Nuciforo P, Vivancos A, Dienstmann R, Oaknin A. Genomic heterogeneity and efficacy of PI3K pathway inhibitors in patients with gynaecological cancer. ESMO Open 2019. [PMID: 30962959 DOI: 10.1136/esmoopen-2018-000444]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Aberrant PI3K/AKT/mTOR activation is common in gynaecological malignancies. However, predictive biomarkers of response to PI3K pathway inhibitors (PAMi) have yet to be identified. METHODS We analysed the outcomes of patients with advanced gynaecological cancer with available genomic data, treated with PAMi as single agents or in combination in phase I clinical trials. Clinical relevance of the PIK3CA mutant allele fraction (MAF) was investigated. MAF of each variant was normalised for tumour purity in the sample (adjMAFs) to infer clonality of PIK3CA mutations, defined as clonal (≥0.4) or subclonal (<0.4). RESULTS A total of 50 patients with gynaecological cancer (24 ovarian; 15 endometrial; 11 cervical) with available targeted mutation profiling were selected. PAMi therapy was matched to PIK3CA/PTEN mutation in 30 patients (60%). The overall response rate, median time to progression (mTTP) and clinical benefit rate (CBR) of the entire population were 10% (N=5), 3.57 months (2.57-4.4) and 40% (N=18), respectively. Genotype-matched therapy did not lead to a favourable CBR (OR 0.91, p=1 (0.2-3.7)) or mTTP (3.57 months (2.6-4.4) vs 3.73 months (1.9-13.2); HR 1.41; p=0.29). We did not detect differences in mTTP according to therapy or PIK3CA codon mutation (HR 1.71, p=0.24). Overall, 41% of patients had a TTP ratio (TTP PAMi/TTP on immediately prior or subsequent palliative chemotherapy) ≥1.3, without statistically significant differences according to tumour type (p=0.39), molecular alteration status (p=0.13) or therapy (p=0.54). In univariate analysis, genotype-matched therapy in patients with PIK3CA clonal events was associated with improved mTTP (HR 3.6; p=0.03). CONCLUSIONS Our study demonstrates that patients with advanced gynaecological cancer, refractory to standard therapies, achieved meaningful clinical benefit from PAMi. The impact of PI3KCA clonality on response to selected PAMi in patients with gynaecological cancer deserves further investigation.
Collapse
Affiliation(s)
- Victor Rodriguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lorena Fariñas-Madrid
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Christina Garrido-Castro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Guillermo Villacampa
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
20
|
Rodriguez-Freixinos V, Ruiz-Pace F, Fariñas-Madrid L, Garrido-Castro AC, Villacampa G, Nuciforo P, Vivancos A, Dienstmann R, Oaknin A. Genomic heterogeneity and efficacy of PI3K pathway inhibitors in patients with gynaecological cancer. ESMO Open 2019; 4:e000444. [PMID: 30962959 PMCID: PMC6435251 DOI: 10.1136/esmoopen-2018-000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Aberrant PI3K/AKT/mTOR activation is common in gynaecological malignancies. However, predictive biomarkers of response to PI3K pathway inhibitors (PAMi) have yet to be identified. METHODS We analysed the outcomes of patients with advanced gynaecological cancer with available genomic data, treated with PAMi as single agents or in combination in phase I clinical trials. Clinical relevance of the PIK3CA mutant allele fraction (MAF) was investigated. MAF of each variant was normalised for tumour purity in the sample (adjMAFs) to infer clonality of PIK3CA mutations, defined as clonal (≥0.4) or subclonal (<0.4). RESULTS A total of 50 patients with gynaecological cancer (24 ovarian; 15 endometrial; 11 cervical) with available targeted mutation profiling were selected. PAMi therapy was matched to PIK3CA/PTEN mutation in 30 patients (60%). The overall response rate, median time to progression (mTTP) and clinical benefit rate (CBR) of the entire population were 10% (N=5), 3.57 months (2.57-4.4) and 40% (N=18), respectively. Genotype-matched therapy did not lead to a favourable CBR (OR 0.91, p=1 (0.2-3.7)) or mTTP (3.57 months (2.6-4.4) vs 3.73 months (1.9-13.2); HR 1.41; p=0.29). We did not detect differences in mTTP according to therapy or PIK3CA codon mutation (HR 1.71, p=0.24). Overall, 41% of patients had a TTP ratio (TTP PAMi/TTP on immediately prior or subsequent palliative chemotherapy) ≥1.3, without statistically significant differences according to tumour type (p=0.39), molecular alteration status (p=0.13) or therapy (p=0.54). In univariate analysis, genotype-matched therapy in patients with PIK3CA clonal events was associated with improved mTTP (HR 3.6; p=0.03). CONCLUSIONS Our study demonstrates that patients with advanced gynaecological cancer, refractory to standard therapies, achieved meaningful clinical benefit from PAMi. The impact of PI3KCA clonality on response to selected PAMi in patients with gynaecological cancer deserves further investigation.
Collapse
Affiliation(s)
- Victor Rodriguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lorena Fariñas-Madrid
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Christina Garrido-Castro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Guillermo Villacampa
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
21
|
Deng K, Zhang F, Song W, Zhao W, Rong Z, Cai Y, Xu H, Lu M, Wang W, Li A, Hou Y, Li Z, Li K. Identification of pathway-based recurrence-associated signatures in optimally debulked patients with serous ovarian cancer. J Cell Biochem 2018; 119:8564-8573. [PMID: 30126000 DOI: 10.1002/jcb.27098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/26/2018] [Indexed: 11/06/2022]
Abstract
Serous ovarian cancer (SOC) is the most common form of the histological subtype of epithelial ovarian cancer, with the worst clinical outcome. Despite improvements in surgery and chemotherapy, most patients with SOC experience recurrence within 12-18 months of first-line treatment. Current studies are unable to robustly predict the recurrence of SOC, and more accurate predictive models are urgently required. We have, therefore, developed a novel pathway-structured model to predict the recurrence of SOC. We trained the model on a set of 333 patients and validated it in 3 diversified validation datasets of 403 patients. Genes significantly associated with recurrence within each pathway were identified using a Cox proportional hazards model based on LASSO estimation in the training dataset. Next, a pathway-structured scoring matrix was obtained after computation of the prognostic score for each pathway by fitting to the Cox proportional hazards model. With the pathway-structure scoring matrix as an input, the pathway-based recurrent signatures were identified using the Cox proportional hazards model based on LASSO estimation and the significant pathway-based signatures were externally validated in 3 independent datasets. Meanwhile, our pathway-structured model was compared with a commonly used gene-based model. Our results revealed that our 12 pathway-based signatures successfully predicted the recurrence of SOC with high accuracy in the training dataset and in the 3 validation datasets. Moreover, our pathway-structured model was superior to the gene-based model in 4 datasets. The pathways selected in our study will provide new insights into the pathogenesis and clinical treatments of SOC.
Collapse
Affiliation(s)
- Kui Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Fan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Wei Song
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Weiwei Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhiwei Rong
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Yuqing Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Huan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Mingliang Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Wenjie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Yan Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhenzi Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Kang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Severi L, Losi L, Fonda S, Taddia L, Gozzi G, Marverti G, Magni F, Chinello C, Stella M, Sheouli J, Braicu EI, Genovese F, Lauriola A, Marraccini C, Gualandi A, D'Arca D, Ferrari S, Costi MP. Proteomic and Bioinformatic Studies for the Characterization of Response to Pemetrexed in Platinum Drug Resistant Ovarian Cancer. Front Pharmacol 2018; 9:454. [PMID: 29867465 PMCID: PMC5952181 DOI: 10.3389/fphar.2018.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Proteomics and bioinformatics are a useful combined technology for the characterization of protein expression level and modulation associated with the response to a drug and with its mechanism of action. The folate pathway represents an important target in the anticancer drugs therapy. In the present study, a discovery proteomics approach was applied to tissue samples collected from ovarian cancer patients who relapsed after the first-line carboplatin-based chemotherapy and were treated with pemetrexed (PMX), a known folate pathway targeting drug. The aim of the work is to identify the proteomic profile that can be associated to the response to the PMX treatment in pre-treatement tissue. Statistical metrics of the experimental Mass Spectrometry (MS) data were combined with a knowledge-based approach that included bioinformatics and a literature review through ProteinQuest™ tool, to design a protein set of reference (PSR). The PSR provides feedback for the consistency of MS proteomic data because it includes known validated proteins. A panel of 24 proteins with levels that were significantly different in pre-treatment samples of patients who responded to the therapy vs. the non-responder ones, was identified. The differences of the identified proteins were explained for the patients with different outcomes and the known PMX targets were further validated. The protein panel herein identified is ready for further validation in retrospective clinical trials using a targeted proteomic approach. This study may have a general relevant impact on biomarker application for cancer patients therapy selection.
Collapse
Affiliation(s)
- Leda Severi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Fonda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Taddia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaia Gozzi
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Martina Stella
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Jalid Sheouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elena I Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Lauriola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Marraccini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Gualandi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico D'Arca
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria P Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Linnerth-Petrik NM, Santry LA, Moorehead R, Jücker M, Wootton SK, Petrik J. Akt isoform specific effects in ovarian cancer progression. Oncotarget 2018; 7:74820-74833. [PMID: 27533079 PMCID: PMC5342704 DOI: 10.18632/oncotarget.11204] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer remains a significant therapeutic problem and novel, effective therapies are needed. Akt is a serine-threonine kinase that is overexpressed in numerous cancers, including ovarian. Mammalian cells express three Akt isoforms which are encoded by distinct genes. Although there are several Akt inhibitors in clinical trials, most indiscriminately target all isoforms. Current in vitro data and animal knockout experiments suggest that the Akt isoforms may have divergent roles. In this paper, we determined the isoform-specific functions of Akt in ovarian cancer cell proliferation in vitro and in ovarian cancer progression in vivo. For in vitro experiments, murine and human ovarian cancer cells were treated with Akt inhibitors and cell viability was assessed. We used two different in vivo approaches to identify the roles of Akt isoforms in ovarian cancer progression and their influence on the primary tumor and tumor microenvironment. In one experiment, wild-type C57Bl6 mice were orthotopically injected with ID8 cells with stable knockdown of Akt isoforms. In a separate experiment, mice null for Akt 1-3 were orthotopically injected with WT ID8 cells (Figure 1). Our data show that inhibition of Akt1 significantly reduced ovarian cancer cell proliferation and inhibited tumor progression in vivo. Conversely, disruption of Akt2 increased tumor growth. Inhibition of Akt3 had an intermediate phenotype, but also increased growth of ovarian cancer cells. These data suggest that there is minimal redundancy between the Akt isoforms in ovarian cancer progression. These findings have important implications in the design of Akt inhibitors for the effective treatment of ovarian cancer.
Collapse
Affiliation(s)
| | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Roger Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Manfred Jücker
- Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
24
|
Abstract
OBJECTIVE Ovarian cancer recurs in most patients, with a 5-year survival rate less than 30%. Quality of life is an increasingly important issue in patients with cancer, but there are limited data in women with recurrent ovarian cancer in this regard. MATERIALS AND METHODS We used an ad hoc questionnaire to compare changes in health perceptions, burden of disease, and expectations for the future quality of life in women with and without recurrence of ovarian cancer. A total of 173 women were included, 116 with relapse and 57 without, undergoing follow-up in a routine clinical setting. RESULTS Substantial differences were seen in self-assessed health status between women with and without recurrence; 33.6% and 82.4% of women with and without recurrence rated their health as good to excellent, respectively. More patients with recurrence of disease reported limitations in moderate activity than those without. Furthermore, 79.0% of women without recurrence reported that pain did not affect or only slightly affected daily activities, compared with 28.2% with recurrence. Most women with recurrence (59.5%) reported that they were able to do less than they wanted to because of their emotional status compared with only 15.8% of women without recurrence. In addition, 66.4% of women with recurrence referred that they had problems concentrating at work and home versus 26.3% of women without recurrence. CONCLUSIONS From this survey, it is clear that relapse of disease has a negative psychological and physical impact, highlighting the importance of time without recurrence and the need for effective treatment in the long term.
Collapse
|
25
|
Hou MM, Wang Z, Janku F, Piha-Paul S, Naing A, Hong D, Westin S, Coleman RL, Sood AK, Tsimberidou AM, Subbiah V, Wheler J, Zinner R, Lu K, Meric-Bernstam F, Fu S. Continuous anti-angiogenic therapy after tumor progression in patients with recurrent high-grade epithelial ovarian cancer: phase I trial experience. Oncotarget 2018; 7:35132-43. [PMID: 27147567 PMCID: PMC5085215 DOI: 10.18632/oncotarget.9048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/10/2016] [Indexed: 01/04/2023] Open
Abstract
High-grade epithelial ovarian cancer (HG-EOC) is the most lethal gynecologic malignancy worldwide Once patients develop chemoresistance, effective novel strategies are required to improve prognosis We analyzed characteristics and outcomes of 242 consecutive patients with HG-EOC participating in 94 phase I clinical trials at The University of Texas MD Anderson Cancer Center. Baseline lactate dehydrogenase levels, albumin levels, and number of metastatic sites were independent predictors of overall survival (OS). Receiving more than 1 phase I protocol was associated with improved OS (p < 0.001). Regimens including a chemotherapeutic agent plus bevacizumab or Aurora A kinase inhibitor led to a median progression-free survival (PFS) duration of more than 6 months. Although patients receiving bevacizumab-based regimens in the phase I clinical trials had significantly longer PFS than those receiving other anti-angiogenic therapies (p = 0.017), patients treated with vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs) had significantly longer OS (12.2 months) than those not treated with VEGFR-TKIs (8.6 months, p = 0.015). In conclusion, anti-angiogenic therapy is one of the most important strategies for the treatment of HG-EOC, even in those who have already experienced tumor progression. Therefore, eligible patients with HG-EOC should be encouraged to participate in novel phase I studies of anti-angiogenic therapies, even after disease progression.
Collapse
Affiliation(s)
- Ming-Mo Hou
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Division of Hematology-Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Zhijie Wang
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute for Cancer Research, Beijing, China
| | - Filip Janku
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarina Piha-Paul
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Hong
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shannon Westin
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert L Coleman
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Apostolia M Tsimberidou
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Subbiah
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer Wheler
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ralph Zinner
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Lu
- Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Funda Meric-Bernstam
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Siqing Fu
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Previs RA, Sood AK, Mills GB, Westin SN. The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn 2017; 16:1337-1351. [PMID: 27828713 DOI: 10.1080/14737159.2016.1259069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
27
|
Phase II basket trial of perifosine monotherapy for recurrent gynecologic cancer with or without PIK3CA mutations. Invest New Drugs 2017; 35:800-812. [PMID: 28864978 DOI: 10.1007/s10637-017-0504-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022]
Abstract
Objective Perifosine exhibits anti-tumor activity by inhibiting AKT phosphorylation. The purpose of this phase II basket trial was to evaluate the efficacy and safety of perifosine monotherapy for ovarian, endometrial, and cervical cancers. Methods Recurrent or persistent ovarian, endometrial, or cervical cancer patients were assigned to PIK3CA wild-type or mutant groups. Each patient received 600 mg oral perifosine on day 1 followed by a maintenance dose of 100 mg daily. The primary endpoint was disease control rate; secondary endpoints included response rate, progression-free survival, overall survival, and safety. Immunohistochemical staining and targeted sequencing were used to explore new biomarkers in such patients. Results Sixteen and 5 ovarian, 17 and 7 endometrial, and 18 and 8 cervical cancer patients with PIK3CA wild-type and mutant, respectively, were enrolled. Disease control rates (wild-type/mutant) were 12.5/40.0%, 47.1/14.3%, and 11.1/25.0% in ovarian, endometrial, and cervical cancer, respectively. The most common grade 3/4 toxicities were anemia (22.5%) and anorexia (11.3%). Immunohistochemical staining revealed that the disease control rate in patients with negative phosphatase and tensin homolog (PTEN) expression was 50.0%, and the odds ratio of positive to negative patients was 0.24 in all patients. Conclusions Perifosine monotherapy showed good tolerability but expected efficacy was not achieved. Modest efficacy was demonstrated in ovarian cancer patients with PIK3CA mutations and endometrial cancer patients with PIK3CA wild-type; no difference was observed between PIK3CA wild-type and mutant in cervical cancer. Absence of PTEN expression may be predictive of clinical efficacy with perifosine monotherapy.
Collapse
|
28
|
Abstract
PI3K/AKT signalling is commonly disrupted in human cancers, with AKT being a central component of the pathway, influencing multiple processes that are directly involved in tumourigenesis. Targeting AKT is therefore a highly attractive anti-cancer strategy with multiple AKT inhibitors now in various stages of clinical development. In this review, we summarise the role and regulation of AKT signalling in normal cellular physiology. We highlight the mechanisms by which AKT signalling can be hyperactivated in cancers and discuss the past, present and future clinical strategies for AKT inhibition in oncology.
Collapse
Affiliation(s)
| | - Udai Banerji
- Royal Marsden NHS Foundation Trust, London SM2 5PT, UK; The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
29
|
Brasseur K, Gévry N, Asselin E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget 2017; 8:4008-4042. [PMID: 28008141 PMCID: PMC5354810 DOI: 10.18632/oncotarget.14021] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Gynecological cancers are known for being very aggressive at their advanced stages. Indeed, the survival rate of both ovarian and endometrial cancers is very low when diagnosed lately and the success rate of current chemotherapy regimens is not very efficient. One of the main reasons for this low success rate is the acquired chemoresistance of these cancers during their progression. The mechanisms responsible for this acquired chemoresistance are numerous, including efflux pumps, repair mechanisms, survival pathways (PI3K/AKT, MAPK, EGFR, mTOR, estrogen signaling) and tumor suppressors (P53 and Par-4). To overcome these resistances, a new type of therapy has emerged named targeted therapy. The principle of targeted therapy is simple, taking advantage of changes acquired in malignant cancer cells (receptors, proteins, mechanisms) by using compounds specifically targeting these, thus limiting their action on healthy cells. Targeted therapies are emerging and many clinical trials targeting these pathways, frequently involved in chemoresistance, have been tested on gynecological cancers. Despite some targets being less efficient than expected as mono-therapies, the combination of compounds seems to be the promising avenue. For instance, we demonstrate using ChIP-seq analysis that estrogen downregulate tumor suppressor Par-4 in hormone-dependent cells by directly binding to its DNA regulatory elements and inhibiting estrogen signaling could reinstate Par-4 apoptosis-inducing abilities. This review will focus on the chemoresistance mechanisms and the clinical trials of targeted therapies associated with these, specifically for endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Boulevard de l’Université, Sherbrooke, QC, Canada
| | - Eric Asselin
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
30
|
Rojas V, Hirshfield KM, Ganesan S, Rodriguez-Rodriguez L. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. Int J Mol Sci 2016; 17:E2113. [PMID: 27983698 PMCID: PMC5187913 DOI: 10.3390/ijms17122113] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/27/2022] Open
Abstract
Epithelial ovarian cancer is a highly heterogeneous disease characterized by multiple histological subtypes. Molecular diversity has been shown to occur within specific histological subtypes of epithelial ovarian cancer, between different tumors of an individual patient, as well as within individual tumors. Recent advances in the molecular characterization of epithelial ovarian cancer tumors have provided the basis for a simplified classification scheme in which these cancers are classified as either type I or type II tumors, and these two categories have implications regarding disease pathogenesis and prognosis. Molecular analyses, primarily based on next-generation sequencing, otherwise known as high-throughput sequencing, are allowing for further refinement of ovarian cancer classification, facilitating the elucidation of the site(s) of precursor lesions of high-grade serous ovarian cancer, and providing insight into the processes of clonal selection and evolution that may be associated with development of chemoresistance. Potential therapeutic targets have been identified from recent molecular profiling studies of these tumors, and the effectiveness and safety of a number of specific targeted therapies have been evaluated or are currently being studied for the treatment of women with this disease.
Collapse
Affiliation(s)
- Veronica Rojas
- Department Obstetrics/Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, New Brunswick, NJ 08901, USA.
| | - Kim M Hirshfield
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
- Precision Medicine Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Shridar Ganesan
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
- Precision Medicine Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Lorna Rodriguez-Rodriguez
- Precision Medicine Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
- Department Obstetrics/Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
31
|
Previs RA, Sood AK, Mills GB, Westin SN. The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn 2016. [PMID: 27828713 DOI: 10.1080/14737159.2016.1259069]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
32
|
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
33
|
Novel mechanisms and approaches to overcome multidrug resistance in the treatment of ovarian cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:266-275. [PMID: 27717733 DOI: 10.1016/j.bbcan.2016.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022]
Abstract
Ovarian cancer remains the leading cause of gynecological cancer-related mortality despite the advances in surgical techniques and chemotherapy drugs over the past three decades. Multidrug resistance (MDR) to chemotherapy is the major cause of treatment failure. Previous research has focused mainly on strategies to reverse MDR by targeting the MDR1 gene encoded P-glycoprotein (Pgp) with small molecular compound inhibitors. However, prior Pgp inhibitors have shown very limited clinical success because these agents have relatively low potency and high toxicity. Therefore, identification of more specific and potent new inhibitors would be useful. In addition, emerging evidence suggests that cancer stem cells (CSCs), deregulated non-coding RNA (ncRNA), autophagy, and tumor heterogeneity also contribute significantly to drug sensitivity/resistance in ovarian cancer. This review summarizes these novel mechanisms of MDR and evaluates several new concepts to overcome MDR in the treatment of ovarian cancer. These new strategies include overcoming MDR with more potent and specific Pgp inhibitors, targeting CSCs and ncRNA, modulating autophagy signaling pathway, and targeting tumor heterogeneity.
Collapse
|
34
|
Ciccone MA, Maoz A, Casabar JK, Machida H, Mabuchi S, Matsuo K. Clinical outcome of treatment with serine-threonine kinase inhibitors in recurrent epithelial ovarian cancer: a systematic review of literature. Expert Opin Investig Drugs 2016; 25:781-96. [PMID: 27101098 DOI: 10.1080/13543784.2016.1181748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION While serine-threonine kinases (STK) are attractive therapeutic targets in epithelial ovarian cancer, clinical outcomes of STK inhibitors in the management of recurrent disease have not been completely described. AREAS COVERED A systematic literature review of published clinical studies on STK inhibitors targeting mTOR, MAPK, and aurora kinase pathways in recurrent epithelial ovarian cancer was conducted, revealing 18 clinical trials (497 patients). Pooled analyses were performed to assess treatment response, survival time, and adverse events. Median progression-free survival was 3.4 months in STK inhibitor-based therapy, and the average response rate and clinical benefit rate were 13% and 67%, respectively. Among regimens comprised of only STK inhibitors (11 trials, 299 patients), median progression-free time was 2.7 months, response rate was 10%, and clinical benefit rate was 64%. Compared to single STK inhibitor monotherapy (52.5%), clinical benefit rates significantly improved when STK inhibitors were combined with a cytotoxic agent (71.4%), other class biological agent (74.2%), or an additional STK inhibitor (95.0%) (all, P ≤ 0.002). EXPERT OPINION STK inhibitor-based therapy showed modest activity for recurrent epithelial ovarian cancer with reasonable clinical benefit rates, suggesting its potential utility for maintaining disease stability if supported by future studies. Efficacy appears greatly improved in appropriately selected patient populations, especially those with low-grade serous ovarian carcinoma, platinum-sensitive disease, cancers with somatic RAS or BRAF mutations, and when used in a combination regimen with a cytotoxic or biological agent.
Collapse
Affiliation(s)
- Marcia A Ciccone
- a Division of Gynecologic Oncology, Department of Obstetrics and Gynecology , University of Southern California , Los Angeles , CA , USA
| | - Asaf Maoz
- b Norris Comprehensive Cancer Center , University of Southern California , Los Angeles , CA , USA
| | - Jennifer K Casabar
- a Division of Gynecologic Oncology, Department of Obstetrics and Gynecology , University of Southern California , Los Angeles , CA , USA
| | - Hiroko Machida
- a Division of Gynecologic Oncology, Department of Obstetrics and Gynecology , University of Southern California , Los Angeles , CA , USA
| | - Seiji Mabuchi
- c Department of Obstetrics and Gynecology , Osaka University Graduate School of Medicine , Osaka , Japan
| | - Koji Matsuo
- a Division of Gynecologic Oncology, Department of Obstetrics and Gynecology , University of Southern California , Los Angeles , CA , USA.,b Norris Comprehensive Cancer Center , University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
35
|
Encinas G, Maistro S, Pasini FS, Katayama MLH, Brentani MM, Bock GHD, Folgueira MAAK. Somatic mutations in breast and serous ovarian cancer young patients: a systematic review and meta-analysis. Rev Assoc Med Bras (1992) 2016; 61:474-83. [PMID: 26603012 DOI: 10.1590/1806-9282.61.05.474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/16/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE our aim was to evaluate whether somatic mutations in five genes were associated with an early age at presentation of breast cancer (BC) or serous ovarian cancer (SOC). METHODS COSMIC database was searched for the five most frequent somatic mutations in BC and SOC. A systematic review of PubMed was performed. Young age for BC and SOC patients was set at ≤ 35 and ≤ 40 years, respectively. Age groups were also classified in < 30 years and every 10 years thereafter. RESULTS twenty six (1,980 patients, 111 younger) and 16 studies (598, 41 younger), were analyzed for BC and SOC, respectively. In BC, PIK3CA wild type tumor was associated with early onset, not confirmed in binary regression with estrogen receptor (ER) status. In HER2-negative tumors, there was increased frequency of PIK3CA somatic mutation in older age groups; in ER-positive tumors, there was a trend towards an increased frequency of PIK3CA somatic mutation in older age groups. TP53 somatic mutation was described in 20% of tumors from both younger and older patients; PTEN, CDH1 and GATA3 somatic mutation was investigated only in 16 patients and PTEN mutation was detected in one of them. In SOC, TP53 somatic mutation was rather common, detected in more than 50% of tumors, however, more frequently in older patients. CONCLUSION frequency of somatic mutations in specific genes was not associated with early-onset breast cancer. Although very common in patients with serous ovarian cancer diagnosed at all ages, TP53 mutation was more frequently detected in older women.
Collapse
Affiliation(s)
- Giselly Encinas
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Simone Maistro
- Instituto do Câncer do Estado de São Paulo, FM, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Geertruida Hendrika de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | |
Collapse
|
36
|
Bai H, Cao D, Yang J, Li M, Zhang Z, Shen K. Genetic and epigenetic heterogeneity of epithelial ovarian cancer and the clinical implications for molecular targeted therapy. J Cell Mol Med 2016; 20:581-93. [PMID: 26800494 PMCID: PMC5125785 DOI: 10.1111/jcmm.12771] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and tumoural heterogeneity (TH) has been blamed for treatment failure. The genomic and epigenomic atlas of EOC varies significantly with tumour histotype, grade, stage, sensitivity to chemotherapy and prognosis. Rapidly accumulating knowledge about the genetic and epigenetic events that control TH in EOC has facilitated the development of molecular-targeted therapy. Poly (ADP-ribose) polymerase (PARP) inhibitors, designed to target homologous recombination, are poised to change how breast cancer susceptibility gene (BRCA)-related ovarian cancer is treated. Epigenetic treatment regimens being tested in clinical or preclinical studies could provide promising novel treatment approaches and hope for improving patient survival.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Menghui Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Wang Z, Fu S. An overview of tyrosine kinase inhibitors for the treatment of epithelial ovarian cancer. Expert Opin Investig Drugs 2015; 25:15-30. [PMID: 26560712 DOI: 10.1517/13543784.2016.1117071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and the fifth most common cause of cancer-related deaths in women. Initial treatment with surgery and chemotherapy has improved survival significantly. However, the disease progresses or recurs in most patients. Thus, there is an urgent need to develop more effective treatment strategies. AREAS COVERED This article provides an overview of tyrosine kinase inhibitors (TKIs) for the treatment of EOC, which is based on English peer-reviewed articles on MEDLINE and related abstracts presented at major conferences. The authors highlight the data from the published clinical trials in EOC patients who were treated with TKIs or TKI-based regimens. EXPERT OPINION EOC is responsive to most chemotherapeutic drugs and/or biological agents and represents an ideal disease model for investigating novel anti-cancer agents. Numerous small-molecule TKIs targeting the VEGFR, PARP, PI3K-AKT-mTOR, MAPK, Src, PKC, Wee1 and HER1/2 signaling pathways are currently being tested in clinical trials. Research is needed for devising regimens combining TKIs with other agents in an optimal timing schedule and for identifying potential biomarkers predictive of response and survival.
Collapse
Affiliation(s)
- Zhijie Wang
- a Department of Investigational Cancer Therapeutics , The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston , TX 77030 , USA.,b Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Peking University Cancer Hospital & Beijing Institute for Cancer Research , Beijing , China
| | - Siqing Fu
- a Department of Investigational Cancer Therapeutics , The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston , TX 77030 , USA
| |
Collapse
|
38
|
Bregar AJ, Growdon WB. Emerging strategies for targeting PI3K in gynecologic cancer. Gynecol Oncol 2015; 140:333-44. [PMID: 26432040 DOI: 10.1016/j.ygyno.2015.09.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023]
Abstract
Ovarian, endometrial and cervical cancers are the most prevalent gynecologic cancers in the United States and account for significant mortality. Translational research into these cancers has highlighted the distinctive molecular and genomic profiles of these cancers finding that, even within a disease site, the landscapes and drivers of neoplasia are distinctive. Despite this molecular diversity, activation of the phosphatidylinositol-3-kinase (PI3K) pathway appears to be conserved in subsets of these tumors, suggesting that strategies that antagonize mediators in this signaling cascade could offer anti-tumor efficacy. Extensive pre-clinical and clinical data have demonstrated that single agent targeted therapies lead to modest single agent activity of generally limited duration, even in the setting of innate PI3K pathway activation via mutation or amplification. These findings in the laboratory and clinic have prompted investigations into resistance pathways following PI3K pathway inhibition in order to understand escape pathways and restore tumor cell sensitivity. A next generation of clinical trial investigations will focus on novel combinations in order to define how these important therapeutics can be used in the clinic. This review will present preclinical data that supports the role of the PI3K pathway in ovarian, endometrial and cervical cancers, in addition to discussing the reported clinical trial experience with PI3K pathway inhibition. A specific focus will be on the rationale behind ongoing clinical trials utilizing novel agents in concert with PI3K pathway inhibitors to reverse resistance in populations with and without gain of function alterations in this oncogenic signaling cascade.
Collapse
Affiliation(s)
- Amy J Bregar
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, United States
| | - Whitfield B Growdon
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
39
|
The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol Oncol 2015; 137:173-9. [PMID: 25677064 DOI: 10.1016/j.ygyno.2015.02.003] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/02/2015] [Indexed: 12/12/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway plays a critical role in the malignant transformation of human tumors and their subsequent growth, proliferation, and metastasis. Preclinical investigations have suggested that the PI3K/AKT/mTOR pathway is frequently activated in ovarian cancer, especially in clear cell carcinoma and endometrioid adenocarcinoma. Thus, this pathway is regarded as an attractive candidate for therapeutic interventions, and inhibitors targeting different components of this pathway are in various stages of clinical development. Here, we highlight the recent progress that has been made in our understanding of the PI3K/AKT/mTOR pathway and discuss the potential of therapeutic agents that target this pathway as treatments for ovarian cancer and the obstacles to their development.
Collapse
|
40
|
Murray M, Hraiki A, Bebawy M, Pazderka C, Rawling T. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharmacol Ther 2015; 150:109-28. [PMID: 25603423 DOI: 10.1016/j.pharmthera.2015.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/28/2022]
Abstract
Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransformation of ω-6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation and cell death. In contrast, several analogous products from the biotransformation of ω-3 PUFAs impair particular tumorigenic pathways. For example, the ω-3 17,18-epoxide of eicosapentaenoic acid activates anti-proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Nevertheless, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-occurring membrane phospholipid esters, have provided the impetus for development of further molecules. The alkyl phospholipids have been tested against a range of cancers and show considerable activity against skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments may also be assessed. This could provide a range of important treatment options in the management of advanced and metastatic cancer.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia.
| | - Adam Hraiki
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| | - Curtis Pazderka
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| | - Tristan Rawling
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| |
Collapse
|
41
|
Cheaib B, Auguste A, Leary A. The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges. CHINESE JOURNAL OF CANCER 2015. [PMID: 25556614 DOI: 10.5732/cjc.014.10289] [] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The phosphatidylinositol 3 kinase (PI3K) pathway is frequently altered in cancer, including ovarian cancer (OC). Unfortunately, despite a sound biological rationale and encouraging activity in preclinical models, trials of first-generation inhibitors of mammalian target of rapamycin (mTOR) in OC have demonstrated negative results. The lack of patient selection as well as resistance to selective mTOR complex-1 (mTORC1) inhibitors could explain the disappointing results thus far. Nonetheless, a number of novel agents are being investigated, including dual mTORC1/mTORC2, Akt, and PI3K inhibitors. Although it is likely that inhibition of the PI3K/Akt/mTOR pathway may have little effect in unselected OC patients, certain histological types, such as clear cell or endometrioid OC with frequent phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit alpha (PIK3CA) and/or phosphatase and tensin homolog (PTEN) alterations, may be particularly suited to this approach. Given the complexity and redundancy of the PI3K signaling network, PI3K pathway inhibition may be most useful in combination with either chemotherapy or other targeted therapies, such as MEK inhibitors, anti-angiogenic therapy, and hormonal therapy, in appropriately selected OC patients. Here, we discuss the relevance of the PI3K pathway in OC and provide an up-to-date review of clinical trials of novel PI3K inhibitors alone or in combination with cytotoxics and novel therapies in OC. In addition, the challenges of drug resistance and predictive biomarkers are addressed.
Collapse
Affiliation(s)
- Bianca Cheaib
- Gynecological Unit, Department of Medicine, Gustave Roussy Comprehensive Cancer Centre, 94805 Villejuif, France.
| | | | | |
Collapse
|
42
|
Cheaib B, Auguste A, Leary A. The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges. CHINESE JOURNAL OF CANCER 2015; 34:4-16. [PMID: 25556614 PMCID: PMC4302085 DOI: 10.5732/cjc.014.10289] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/03/2022]
Abstract
The phosphatidylinositol 3 kinase (PI3K) pathway is frequently altered in cancer, including ovarian cancer (OC). Unfortunately, despite a sound biological rationale and encouraging activity in preclinical models, trials of first-generation inhibitors of mammalian target of rapamycin (mTOR) in OC have demonstrated negative results. The lack of patient selection as well as resistance to selective mTOR complex-1 (mTORC1) inhibitors could explain the disappointing results thus far. Nonetheless, a number of novel agents are being investigated, including dual mTORC1/mTORC2, Akt, and PI3K inhibitors. Although it is likely that inhibition of the PI3K/Akt/mTOR pathway may have little effect in unselected OC patients, certain histological types, such as clear cell or endometrioid OC with frequent phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit alpha (PIK3CA) and/or phosphatase and tensin homolog (PTEN) alterations, may be particularly suited to this approach. Given the complexity and redundancy of the PI3K signaling network, PI3K pathway inhibition may be most useful in combination with either chemotherapy or other targeted therapies, such as MEK inhibitors, anti-angiogenic therapy, and hormonal therapy, in appropriately selected OC patients. Here, we discuss the relevance of the PI3K pathway in OC and provide an up-to-date review of clinical trials of novel PI3K inhibitors alone or in combination with cytotoxics and novel therapies in OC. In addition, the challenges of drug resistance and predictive biomarkers are addressed.
Collapse
Affiliation(s)
- Bianca Cheaib
- Gynecological Unit, Department of Medicine, Gustave Roussy Comprehensive Cancer Centre, 94805 Villejuif, France.
| | | | | |
Collapse
|
43
|
Sasano T, Mabuchi S, Kuroda H, Kawano M, Matsumoto Y, Takahashi R, Hisamatsu T, Sawada K, Hashimoto K, Isobe A, Testa JR, Kimura T. Preclinical Efficacy for AKT Targeting in Clear Cell Carcinoma of the Ovary. Mol Cancer Res 2014; 13:795-806. [PMID: 25519148 DOI: 10.1158/1541-7786.mcr-14-0314] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/07/2014] [Indexed: 12/20/2022]
Abstract
UNLABELLED The aim of this study was to determine the role of AKT as a therapeutic target in ovarian clear cell carcinoma (CCC), an aggressive, chemoresistant histologic subtype of ovarian cancer. AKT activation was assessed by immunohistochemistry (IHC) using human tissue microarrays of primary ovarian cancers, composed of both CCC and serous adenocarcinoma (SAC). The growth-inhibitory effect of AKT-specific targeting by the small-molecule inhibitor, perifosine, was examined using ovarian CCC cell lines in vitro and in vivo. Finally, the activity of perifosine was examined using in CCC-derived tumors that had acquired resistance to anti-VEGF or chemotherapeutics such as bevacizumab or cisplatin, respectively. Interestingly, AKT was frequently activated both in early-stage and advanced-stage CCCs. Treatment of CCC cells with perifosine attenuated the activity of AKT-mTORC1 signaling, inhibited proliferation, and induced apoptosis. The effect of perifosine was more profound under conditions of high AKT activity compared with low AKT activity. Increased AKT activation and enhanced sensitivity to perifosine were observed in the context of cisplatin-resistant CCC. Treatment with perifosine concurrently with cisplatin significantly enhanced the antitumor effect of cisplatin. Moreover, perifosine showed significant antitumor activity in CCC-derived tumors that had acquired resistance to bevacizumab or cisplatin. Collectively, these data reveal that AKT is frequently activated in ovarian CCCs and is a promising therapeutic target in aggressive forms of ovarian cancer. IMPLICATIONS AKT-targeted therapy has value in a first-line setting as well as a second-line treatment for recurrent disease developing after platinum-based chemotherapy or bevacizumab treatment.
Collapse
Affiliation(s)
- Tomoyuki Sasano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiromasa Kuroda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mahiru Kawano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuri Matsumoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoko Takahashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Hisamatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aki Isobe
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
44
|
Improving chemoradiation efficacy by PI3-K/AKT inhibition. Cancer Treat Rev 2014; 40:1182-91. [DOI: 10.1016/j.ctrv.2014.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 12/28/2022]
|
45
|
Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat Commun 2014; 5:5006. [PMID: 25233892 PMCID: PMC4354107 DOI: 10.1038/ncomms6006] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/15/2014] [Indexed: 12/21/2022] Open
Abstract
Malignant mixed Müllerian tumours, also known as carcinosarcomas, are rare tumours of gynaecological origin. Here we perform whole-exome analyses of 22 tumours using massively parallel sequencing to determine the mutational landscape of this tumour type. On average, we identify 43 mutations per tumour, excluding four cases with a mutator phenotype that harboured inactivating mutations in mismatch repair genes. In addition to mutations in TP53 and KRAS, we identify genetic alterations in chromatin remodelling genes, ARID1A and ARID1B, in histone methyltransferase MLL3, in histone deacetylase modifier SPOP and in chromatin assembly factor BAZ1A, in nearly two thirds of cases. Alterations in genes with potential clinical utility are observed in more than three quarters of the cases and included members of the PI3-kinase and homologous DNA repair pathways. These findings highlight the importance of the dysregulation of chromatin remodelling in carcinosarcoma tumorigenesis and suggest new avenues for personalized therapy. Malignant mixed Müllerian tumours are a rare and aggressive gynaecological cancer with poor 5-year survival rates. Here, the authors characterize the mutational landscape of carcinosarcomas and highlight the role of chromatin remodelling dysregulation in carcinosarcoma tumorigenesis.
Collapse
|
46
|
Larson N, Roberts S, Ray A, Buckway B, Cheney DL, Ghandehari H. In vitro synergistic action of geldanamycin- and docetaxel-containing HPMA copolymer-RGDfK conjugates against ovarian cancer. Macromol Biosci 2014; 14:1735-47. [PMID: 25185891 DOI: 10.1002/mabi.201400360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 11/06/2022]
Abstract
HPMA copolymer-RGDfK (HPMA-RGDfK) conjugates bearing either aminohexylgeldanamycin (AHGDM) or docetaxel (DOC) were synthesized and characterized. In vitro stability and binding were evaluated. Cytotoxicity toward ovarian cancer cells was evaluated and the ability of the conjugates to induce cell death was assessed by combination index analysis. Conjugates bearing AHGDM were more stable and exhibited slower drug release than those bearing DOC. Both conjugates demonstrated the ability to bind to avb3 integrins. In combination, HPMA-RGDfK conjugates demonstrated marked synergism as compared to their non-targeted counterparts and free drug controls. HPMA-RGDfK conjugates bearing AHGDM and DOC induce synergistic cytotoxicity in vitro, suggesting their potential as a promising combination therapy.
Collapse
Affiliation(s)
- Nate Larson
- TheraTarget, Inc., 615 Arapeen Dr., Suite 302-Y, Salt Lake City, UT, 84108, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Nanomedicine, Nano Institute of Utah, Salt Lake City, UT, 84112, USA
| | | | | | | | | | | |
Collapse
|
47
|
Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol 2014; 141:671-89. [PMID: 25146530 DOI: 10.1007/s00432-014-1803-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/08/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE PTEN is an essential tumour suppressor gene which encodes a phosphatase protein that antagonises the PI3K/Akt/mTOR antiapoptotic pathway. Impairment of this tumour suppressor pathway potentially becomes a causal factor for development of malignancies. This review aims to assess current understanding of mechanisms of dysfunction involving the PI3K/PTEN/Akt/mTOR pathway linked to tumorigenesis and evaluate the evidence for targeted therapy directed at this signalling axis. METHODS Relevant articles in scientific databases were identified using a combination of search terms, including "malignancies", "targeted therapy", "PTEN", and "combination therapy". These databases included Medline, Embase, Cochrane Review, Pubmed, and Scopus. RESULTS PI3K/PTEN expression is frequently deregulated in a majority of malignancies through genetic, epigenetic, and post-transcriptional modifications. This contributes to the upregulation of the PI3K/Akt/mTOR pathway which has been the focus of intense clinical studies. Targeted agents aimed at this pathway offer a novel treatment approach in a variety of haematologic malignancies and solid tumours. Compared to single-agent use, greater response rates were obtained in combination regimens, supporting further investigation of suitable drug combinations in a broad spectrum of malignancies. CONCLUSION Activation of the PI3K/PTEN/Akt/mTOR pathway is implicated both in the pathogenesis of malignancies and development of resistance to anticancer therapies. Therefore, PI3K/Akt/mTOR inhibitors are a promising therapeutic option, in association with systemic cytotoxic and biological therapies, to enable sustained clinical outcomes in cancer treatment. Therapeutic strategies could be tailored according to appropriate biomarkers and patient-specific mutation profiles to maximise benefit of combination therapies.
Collapse
|
48
|
PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet 2014; 290:1067-78. [PMID: 25086744 DOI: 10.1007/s00404-014-3377-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ovarian cancer is one of the major causes of death in women worldwide. Despite improvements in conventional treatment approaches, such as surgery and chemotherapy, a majority of patients with advanced ovarian cancer experience relapse and eventually succumb to the disease; the outcome of patients remains poor. Hence, new therapeutic strategies are urgently required. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) is activated in approximately 70 % of ovarian cancers, resulting in hyperactive signaling cascades that relate to cellular growth, proliferation, survival, metabolism, and angiogenesis. Consistent with this, a number of clinical studies are focusing on PI3K pathway as an attractive target in the treatment of ovarian cancer. In this review, we present an overview of PI3K pathway as well as its pathological aberrations reported in ovarian cancer. We also discuss inhibitors of PI3K pathway that are currently under clinical investigations and the challenges these inhibitors face in future clinical utility. METHODS PubMed was searched for articles of relevance to ovarian cancer and the PI3K pathway. In addition, the ClinicalTrials.gov was also scanned for data on novel therapeutic inhibitors targeting the PI3K pathway. RESULTS Genetic aberrations at different levels of PI3K pathway are frequently observed in ovarian cancer, resulting in hyperactivation of this pathway. The alterations of this pathway make the PI3K pathway an attractive therapeutic target in ovarian cancer. Currently, several inhibitors of PI3K pathway, such as PI3K/AKT inhibitors, rapamycin analogs for mTOR inhibition, and dual PI3K/mTOR inhibitors are in clinical testing in patients with ovarian cancer. CONCLUSIONS PI3K pathway inhibitors have shown great promise in the treatment of ovarian cancer. However, further researches on selection patients that respond to PI3K inhibitors and exploration of effective combinatorial therapies are required to improve the management of ovarian cancer.
Collapse
|
49
|
Symptom Burden and Outcomes of Patients With Platinum Resistant/Refractory Recurrent Ovarian Cancer: A Reality Check. Int J Gynecol Cancer 2014; 24:857-64. [DOI: 10.1097/igc.0000000000000147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BackgroundThe aim of chemotherapy in patients with platinum resistant ovarian cancer is palliation. Patients’ experience of symptoms is not well documented, and the impact of treatment on symptoms has not been evaluated in clinical trials. We report symptom burden and treatment outcomes from stage 1 of the Gynecological Cancer Intergroup (GCIG) Symptom Benefit Study.MethodsOne hundred twenty-six patients receiving palliative chemotherapy completed 5 validated health-related quality-of-life questionnaires before starting treatment and before each cycle. They also reported their expected and perceived benefits from treatment. Physicians documented the reasons for treatment and adverse events including symptoms at baseline and estimated the number of cycles of treatment that patients would receive.ResultsPalliation was the major reason for chemotherapy. At baseline, all patients were symptomatic (almost 70% had ≥9 symptoms). Patients had high expectation of benefit from treatment. Only 41% of patients received the predicted number of cycles with most stopping early (≤2 cycles) due to progression, death, or adverse effects. Treatment was associated with significant toxicity, with discordance between patient report and physician grading. Although RECIST response rates were low (8.5%), 40% of the patients were reported to have had a clinical benefit and almost 50% of symptomatic patients also reported symptom improvement.ConclusionsPatients had a complex array of symptoms and significant symptom burden, which was commonly the reason for treatment. Although chemotherapy improved symptoms in about half of the patients, many did not benefit and progressed rapidly. Our findings support research into the use of patient reported outcome measures to document symptoms, adverse events, and subjective benefit, both in clinical trials and in clinical practice, in this patient population. Our findings highlight the need to develop prognostic models to better select patients for treatment, and this is an aim of stage 2 of the GCIG Symptom Benefit Study.
Collapse
|
50
|
Ojima I, Kamath A, Seitz JD. Taxol, Taxoids, and Related Taxanes. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|