1
|
Rodrigues P, Rizaev JA, Hjazi A, Altalbawy FMA, H M, Sharma K, Sharma SK, Mustafa YF, Jawad MA, Zwamel AH. Dual role of microRNA-31 in human cancers; focusing on cancer pathogenesis and signaling pathways. Exp Cell Res 2024; 442:114236. [PMID: 39245198 DOI: 10.1016/j.yexcr.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Widespread changes in the expression of microRNAs in cancer result in abnormal gene expression for the miRNAs that control those genes, which in turn causes changes to entire molecular networks and pathways. The frequently altered miR-31, which is found in a wide range of cancers, is one cancer-related miRNA that is particularly intriguing. MiR-31 has a very complicated set of biological functions, and depending on the type of tumor, it may act both as a tumor suppressor and an oncogene. The endogenous expression levels of miR-31 appear to be a key determinant of the phenotype brought on by aberrant expression. Varied expression levels of miR-31 could affect cell growth, metastasis, drug resistance, and other process by several mechanisms like targeting BRCA1-associated protein-1 (BAP1), large tumor suppressor kinase 1 (LATS1) and protein phosphatase 2 (PP2A). This review highlights the current understanding of the genes that miR-31 targets while summarizing the complex expression patterns of miR-31 in human cancers and the diverse phenotypes brought on by altered miR-31 expression.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Kirti Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India.
| | - Satish Kumar Sharma
- Vice Chancellor of Department of Pharmacy (Pharmacology), The Glocal University, Saharanpur, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
2
|
Ssedyabane F, Obuku EA, Namisango E, Ngonzi J, Castro CM, Lee H, Randall TC, Ocan M, Apunyo R, Annet Kinengyere A, Kajabwangu R, Tahirah Kisawe A, Nambi Najjuma J, Tusubira D, Niyonzima N. The diagnostic accuracy of serum and plasma microRNAs in detection of cervical intraepithelial neoplasia and cervical cancer: A systematic review and meta-analysis. Gynecol Oncol Rep 2024; 54:101424. [PMID: 38939506 PMCID: PMC11208915 DOI: 10.1016/j.gore.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024] Open
Abstract
Studies suggest a need for new diagnostic approaches for cervical cancer including microRNA technology. In this review, we assessed the diagnostic accuracy of microRNAs in detecting cervical cancer and Cervical Intraepithelial Neoplasia (CIN). We performed a systematic review following the Preferred Reporting Items for Systematic Review and Meta-Analysis guideline for protocols (PRISMA-P). We searched for all articles in online databases and grey literature from 01st January 2012 to 16th August 2022. We used the quality assessment of diagnostic accuracy studies tool (QUADAS-2) to assess the risk of bias of included studies and then conducted a Random Effects Meta-analysis. We identified 297 articles and eventually extracted data from 24 studies. Serum/plasma concentration miR-205, miR-21, miR-192, and miR-9 showed highest diagnostic accuracy (AUC of 0.750, 0.689, 0.980, and 0.900, respectively) for detecting CIN from healthy controls. MicroRNA panels (miR-21, miR-125b and miR-370) and (miR-9, miR-10a, miR-20a and miR-196a and miR-16-2) had AUC values of 0.897 and 0.886 respectively for detecting CIN from healthy controls. For detection of cervical cancer from healthy controls, the most promising microRNAs were miR-21, miR-205, miR-192 and miR-9 (AUC values of 0.723, 0.960, 1.00, and 0.99 respectively). We report higher diagnostic accuracy of upregulated microRNAs, especially miR-205, miR-9, miR-192, and miR-21. This highlights their potential as stand-alone screening or diagnostic tests, either with others, in a new algorithm, or together with other biomarkers for purposes of detecting cervical lesions. Future studies could standardize quantification methods, and also study microRNAs in higher prevalence populations like in sub-Saharan Africa and South Asia. Our review protocol was registered in PROSPERO (CRD42022313275).
Collapse
Affiliation(s)
- Frank Ssedyabane
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara, Uganda
| | - Ekwaro A. Obuku
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Clinical Epidemiology Unit, Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P.O. Box 7072 Kampala, Uganda
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, University of London, London, UK
| | - Eve Namisango
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Cesar M. Castro
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas C. Randall
- Department of Global Health and Social Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Moses Ocan
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072 Kampala, Uganda
| | - Robert Apunyo
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Alison Annet Kinengyere
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Sir Albert Cook Medical Library, College of Health Sciences, Makerere University P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Rogers Kajabwangu
- Department of Obstetrics and Gynecology, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Aziza Tahirah Kisawe
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara, Uganda
| | - Josephine Nambi Najjuma
- Department of Nursing, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Nixon Niyonzima
- Research and Training Directorate, Uganda Cancer Institute, P. O. Box 3935 Kampala, Uganda
| |
Collapse
|
3
|
Muthamilselvan S, Palaniappan A. CESCProg: a compact prognostic model and nomogram for cervical cancer based on miRNA biomarkers. PeerJ 2023; 11:e15912. [PMID: 37786580 PMCID: PMC10541812 DOI: 10.7717/peerj.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 10/04/2023] Open
Abstract
Cervical squamous cell carcinoma, more commonly cervical cancer, is the fourth common cancer among women worldwide with substantial burden of disease, and less-invasive, reliable and effective methods for its prognosis are necessary today. Micro-RNAs are increasingly recognized as viable alternative biomarkers for direct diagnosis and prognosis of disease conditions, including various cancers. In this work, we addressed the problem of systematically developing an miRNA-based nomogram for the reliable prognosis of cervical cancer. Towards this, we preprocessed public-domain miRNA -omics data from cervical cancer patients, and applied a cascade of filters in the following sequence: (i) differential expression criteria with respect to controls; (ii) significance with univariate survival analysis; (iii) passage through dimensionality reduction algorithms; and (iv) stepwise backward selection with multivariate Cox modeling. This workflow yielded a compact prognostic DEmiR signature of three miRNAs, namely hsa-miR-625-5p, hs-miR-95-3p, and hsa-miR-330-3p, which were used to construct a risk-score model for the classification of cervical cancer patients into high-risk and low-risk groups. The risk-score model was subjected to evaluation on an unseen test dataset, yielding a one-year AUROC of 0.84 and five-year AUROC of 0.71. The model was validated on an out-of-domain, external dataset yielding significantly worse prognosis for high-risk patients. The risk-score was combined with significant features of the clinical profile to establish a predictive prognostic nomogram. Both the miRNA-based risk score model and the integrated nomogram are freely available for academic and not-for-profit use at CESCProg, a web-app (https://apalania.shinyapps.io/cescprog).
Collapse
Affiliation(s)
- Sangeetha Muthamilselvan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
4
|
Wang L, Tang J. SWI/SNF complexes and cancers. Gene 2023; 870:147420. [PMID: 37031881 DOI: 10.1016/j.gene.2023.147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Epigenetics refers to the study of genetic changes that can affect gene expression without altering the underlying DNA sequence, including DNA methylation, histone modification, chromatin remodelling, X chromosome inactivation and non-coding RNA regulation. Of these, DNA methylation, histone modification and chromatin remodelling constitute the three classical modes of epigenetic regulation. These three mechanisms alter gene transcription by adjusting chromatin accessibility, thereby affecting cell and tissue phenotypes in the absence of DNA sequence changes. In the presence of ATP hydrolases, chromatin remodelling alters the structure of chromatin and thus changes the transcription level of DNA-guided RNA. To date, four types of ATP-dependent chromatin remodelling complexes have been identified in humans, namely SWI/SNF, ISWI, INO80 and NURD/MI2/CHD. SWI/SNF mutations are prevalent in a wide variety of cancerous tissues and cancer-derived cell lines as discovered by next-generation sequencing technologies.. SWI/SNF can bind to nucleosomes and use the energy of ATP to disrupt DNA and histone interactions, sliding or ejecting histones, altering nucleosome structure, and changing transcriptional and regulatory mechanisms. Furthermore, mutations in the SWI/SNF complex have been observed in approximately 20% of all cancers. Together, these findings suggest that mutations targeting the SWI/SNF complex may have a positive impact on tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Liyuan Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Oncology and Hematology, Jinan 250000, Shandong Province, China
| | - Jinglong Tang
- Adicon Medical Laboratory Center, Molecular Genetic Diagnosis Center, Pathological Diagnosis Center, Jinan 250014, Shandong Province, China.
| |
Collapse
|
5
|
miRNAs role in cervical cancer pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 244:154386. [PMID: 36868096 DOI: 10.1016/j.prp.2023.154386] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Cervical cancer (CC) is the primary cause of cancer deaths in underdeveloped countries. The persistence of infection with high-risk human papillomavirus (HPV) is a significant contributor to the development of CC. However, few women with morphologic HPV infection develop invasive illnesses, suggesting other mechanisms contribute to cervical carcinogenesis. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. They had the power to regulate CC's invasion, pathophysiology, angiogenesis, apoptosis, proliferation, and cell cycle phases. Further research is required, even though novel methods have been developed for employing miRNAs in the diagnosis, and treatment of CC. We'll go through some of the new findings about miRNAs and their function in CC below. The function of miRNAs in the development of CC and its treatment is one of these. Clinical uses of miRNAs in the analysis, prediction, and management of CC are also covered.
Collapse
|
6
|
Ssedyabane F, Niyonzima N, Ngonzi J, Tusubira D, Ocan M, Akena D, Namisango E, Apunyo R, Kinengyere AA, Obuku EA. The diagnostic accuracy of serum microRNAs in detection of cervical cancer: a systematic review protocol. Diagn Progn Res 2023; 7:4. [PMID: 36721194 PMCID: PMC9887905 DOI: 10.1186/s41512-023-00142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Cervical cancer remains a public health problem worldwide, especially in sub-Saharan Africa. There are challenges in timely screening and diagnosis for early detection and intervention. Therefore, studies on cervical cancer and cervical intraepithelial neoplasia suggest the need for new diagnostic approaches including microRNA technology. Plasma/serum levels of microRNAs are elevated or reduced compared to the normal state and their diagnostic accuracy for detection of cervical neoplasms has not been rigorously assessed more so in low-resource settings such as Uganda. The aim of this systematic review was therefore to assess the diagnostic accuracy of serum microRNAs in detecting cervical cancer. METHODS We will perform a systematic review following the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) statement. We will search for all articles in MEDLINE/PubMed, Web of Science, Embase, and CINAHL, as well as grey literature from 2012 to 2022. Our outcomes will be sensitivity, specificity, negative predictive values, positive predictive values or area under the curve (Nagamitsu et al, Mol Clin Oncol 5:189-94, 2016) for each microRNA or microRNA panel. We will use the quality assessment of diagnostic accuracy studies (Whiting et al, Ann Intern Med 155:529-36, 2011) tool to assess the risk of bias of included studies. Our results will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy studies (PRISMA-DTA). We will summarise studies in a flow chart and then describe them using a structured narrative synthesis. If possible, we shall use the Lehmann model bivariate approach for the meta analysis USE OF THE REVIEW RESULTS: This systematic review will provide information on the relevance of microRNAs in cervical cancer. This information will help policy makers, planners and researchers in determining which particular microRNAs could be employed to screen or diagnose cancer of the cervix. SYSTEMATIC REVIEW REGISTRATION This protocol has been registered in PROSPERO under registration number CRD42022313275.
Collapse
Affiliation(s)
- Frank Ssedyabane
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Nixon Niyonzima
- grid.512320.70000 0004 6015 3252The Uganda Cancer Institute, P. O. Box 3935, Kampala, Uganda
| | - Joseph Ngonzi
- grid.33440.300000 0001 0232 6272Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Deusdedit Tusubira
- grid.33440.300000 0001 0232 6272Department of Biochemistry, Mbarara University of Science of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Moses Ocan
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- grid.11194.3c0000 0004 0620 0548Department of Pharmacology & Therapeutics, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Dickens Akena
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- grid.11194.3c0000 0004 0620 0548Department of Psychiatry, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Eve Namisango
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Robert Apunyo
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Alison Annet Kinengyere
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- grid.11194.3c0000 0004 0620 0548Sir Albert Cook Medical Library, Makerere University, College of Health Sciences, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Ekwaro A. Obuku
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- grid.11194.3c0000 0004 0620 0548Clinical Epidemiology Unit, Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| |
Collapse
|
7
|
Yamamoto T, Kohashi K, Yamada Y, Kawata J, Sakihama K, Matsuda R, Koga Y, Aishima S, Nakamura M, Oda Y. Relationship between cellular morphology and abnormality of SWI/SNF complex subunits in pancreatic undifferentiated carcinoma. J Cancer Res Clin Oncol 2022; 148:2945-2957. [PMID: 34817661 DOI: 10.1007/s00432-021-03860-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Pancreatic undifferentiated carcinoma (UDC) is a rare tumor with a worse prognosis than pancreatic ductal adenocarcinoma (PDAC). Recent study showed that UDC exhibits loss of SMARCB1, which is one of the subunits of the SWI/SNF complex. However, whether there are abnormalities of other SWI/SNF complex subunits in UDC has remained unknown. In this study, we attempted to clarify whether the loss of SWI/SNF complex subunits is related to the pathogenesis of UDC by comparing undifferentiated component (UC) and ductal adenocarcinoma component (DAC). METHODS Genetic analysis of the ten UCs and six DACs was performed. The expression of ARID1A, SMARCA2, SMARCA4, SMARCB1, SMARCC1, and SMARCC2 in formalin-fixed, paraffin-embedded tumor tissues collected by surgical resection from 18 UDC patients was evaluated immunohistochemically. Moreover, two pancreatic cell lines were evaluated for the effects of siARID1A on the mRNA and protein expression of E-cadherin, vimentin, and epithelial-mesenchymal transition (EMT)-related markers by qRT-PCR, western blotting, and immunofluorescence staining. RESULTS UCs tended to have a higher frequency of mutation in ARID1A, SMARCA4, and SMARCC2 than DACs. Immunohistochemically, UCs revealed reduced/lost expression of ARID1A (72%), SMARCB1 (44%), SMARCC1 (31%), and SMARCC2 (67%). Reduced/lost expression of ARID1A, SMARCB1, and SMARCC2 was significantly more frequently observed in UCs than in DACs. In the pancreatic cell lines, western blotting and qRT-PCR showed that the downregulation of ARID1A increased the expression of vimentin and EMT-related markers. CONCLUSION Our results suggest that the abnormality of SWI/SNF complex subunits, especially ARID1A, is one of the factors behind the morphological change of UDC.
Collapse
Affiliation(s)
- Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Kawata
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kukiko Sakihama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Matsuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Koga
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Jie J, Liu D, Wang Y, Wu Q, Wu T, Fang R. Generation of MiRNA sponge constructs targeting multiple MiRNAs. J Clin Lab Anal 2022; 36:e24527. [PMID: 35666624 PMCID: PMC9279985 DOI: 10.1002/jcla.24527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/29/2022] Open
Abstract
Background MicroRNAs(miRNAs) are key regulators of gene expression in plants, animals and some viruses. Hence, alteration of miRNA levels in cells or tissues is common for miRNA studies. Loss‐of‐function of miRNA can be achieved using antisense oligonucleotides, sponges and gene knockout models. Methods Here, we showed an efficient, rational and economical way to construct multi‐targeted miRNA sponges with desired copies. Four copies of miRNA sponge are used as “building‐blocks”. Results These building‐blocks, which can target same miRNA or different miRNAs, are linked together through ligation. Each time of ligation can double the number of sponge copies. Conclusions In this way, we constructed lentivirus vectors harboring sponges targeting miR‐21, miR‐31 and miR‐155 and the combination of two miRNA sponges can inhibit cancer cell growth significantly.
Collapse
Affiliation(s)
- Junjin Jie
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, China
| | - Danni Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, China
| | - Yifan Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, China
| | - Qiong Wu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, China
| | - Tingting Wu
- Department of Respiratory Medicine, Affiliated Hospital of Ningbo University Medical College, Ningbo, China
| | - Rong Fang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer. Cancers (Basel) 2021; 13:cancers13225748. [PMID: 34830902 PMCID: PMC8616420 DOI: 10.3390/cancers13225748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Uterine cervical cancer is one of the leading causes of cancer-related mortality in women worldwide. Each year, over half a million new cases are estimated, resulting in more than 300,000 deaths. While less-invasive, fertility-preserving surgical procedures can be offered to women in early stages, treatment for locally advanced disease may include radical hysterectomy, primary chemoradiotherapy (CRT) or a combination of these modalities. Concurrent platinum-based chemoradiotherapy regimens remain the first-line treatments for locally advanced cervical cancer. Despite achievements such as the introduction of angiogenesis inhibitors, and more recently immunotherapies, the overall survival of women with persistent, recurrent or metastatic disease has not been extended significantly in the last decades. Furthermore, a broad spectrum of molecular markers to predict therapy response and survival and to identify patients with high- and low-risk constellations is missing. Implementation of these markers, however, may help to further improve treatment and to develop new targeted therapies. This review aims to provide comprehensive insights into the complex mechanisms of cervical cancer pathogenesis within the context of molecular markers for predicting treatment response and prognosis.
Collapse
|
10
|
Zhang J, Yang ZM, Huang Y, Wang KN, Xie Y, Yang N. LncRNA GAS5 inhibits the proliferation and invasion of ovarian clear cell carcinoma via the miR-31-5p/ARID1A axis. Kaohsiung J Med Sci 2021; 37:940-950. [PMID: 34414664 DOI: 10.1002/kjm2.12420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
To investigate the role of the lncRNA growth arrest special 5 (GAS5) in ovarian clear cell carcinoma (OCCC), we measured the expression of GAS5 and miR-31-5p in OCCC tissue samples and OCCC cell lines using RT-qPCR. MTT and colony formation assays were used to measure cell viability and colony formation ability. Cell invasion was determined by Transwell assays. The binding between GAS5 and miR-31-5p as well as miR-31-5p and ARID1A was determined by dual-luciferase reporter assays. The ARID1A protein levels were detected using western blotting. Kaplan-Meier curves were used for the analysis of the 5-year survival rate of patients with OCCC. GAS5 and ARID1A levels were significantly decreased, while miR-31-5p levels were strongly elevated in the OCCC tissues and cell lines. Patients with lower GAS5/ARID1A levels had shorter overall survival times. Overexpression of GAS5 or inhibition of miR-31-5p suppressed cell viability and invasion of OCCC cells and upregulated the protein levels of ARID1A. Moreover, overexpression of miR-31-5p reversed the effects of overexpression of GAS5. Cotransfection with pcDNA3.1-GAS5 and miR-31-5p inhibitor led to the lowest cell viability and cell invasion rates. A dual-luciferase reporter assay was performed to confirm the target relationship between GAS5 and miR-31-5p, as well as between miR-31-5p and ARID1A. LncRNA GAS5 inhibited cell viability and invasion of OCCC through activation of ARID1A by sponging miR-31-5p.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhong-Mei Yang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Huang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ka-Na Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nian Yang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Karimi F, Mollaei H. Potential of miRNAs in cervical cancer chemoresistance. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Role of miRNAs in cervical cancer: A comprehensive novel approach from pathogenesis to therapy. J Gynecol Obstet Hum Reprod 2021; 50:102159. [PMID: 33965650 DOI: 10.1016/j.jogoh.2021.102159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/04/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022]
Abstract
Human papillomaviruses (HPV) infection is a major causative agent and strongly associated with the development of cervical cancer. Understanding the mechanisms of HPV-induced cervical cancer is extremely useful in therapeutic strategies for primary prevention (HPV vaccines) and secondary prevention (screening and diagnosis of precancerous lesions). However, due to the lack of proper implementation of screening programs in developing countries, cervical cancer is usually diagnosed at advanced stages that result in poor treatment responses. Nearly half of the patients will experience disease recurrence within two years post treatment. Therefore, it is vital to identify new tools for early diagnosis, prognosis, and treatment prediction. MicroRNAs (miRNAs) are small non-coding RNAs, implicated in posttranscriptional regulation of gene expression. Growing evidence has shown that abnormal miRNA expression is associated with cervical cancer progression, metastasis, and influences treatment outcomes. In this review, we provide comprehensive information about miRNA and their potential utility in cervical cancer diagnosis, prognosis, and clinical management to improve patient outcomes.
Collapse
|
13
|
Luo C, Wang D, Huang W, Song Y, Ge L, Zhang X, Yang L, Lu J, Tu X, Chen Q, Yang J, Xu C, Wang Q. Feedback regulation of coronary artery disease susceptibility gene ADTRP and LDL receptors LDLR/CD36/LOX-1 in endothelia cell functions involved in atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166130. [PMID: 33746034 DOI: 10.1016/j.bbadis.2021.166130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
A high level of low-density lipoprotein cholesterol (LDL) is one of the most important risk factors for coronary artery disease (CAD), the leading cause of death worldwide. However, a low concentration of LDL may be protective. Genome-wide association studies revealed that variation in ADTRP gene increased the risk of CAD. In this study, we found that a low concentration of oxidized-LDL induced the expression of ADTRP. Further analyses showed that knockdown of the expression of LDL receptor genes LDLR, CD36, or LOX-1 significantly downregulated ADTRP expression, whereas overexpression of LDLR/CD36/LOX-1 markedly increased ADTRP expression through the NF-κB pathway. Like ADTRP, LDLR, CD36 and LOX-1 were all involved in endothelial cell (EC) functions relevant to the initiation of atherosclerosis. Downregulation of LDLR/CD36/LOX-1 promoted monocyte adhesion to ECs and transendothelial migration of monocytes by increasing expression of ICAM-1, VCAM-1, E-selectin and P-selectin, decreased EC proliferation and migration, and increased EC apoptosis, thereby promoting the initiation of atherosclerosis. Opposite effects were observed with the overexpression of ADTRP and LDLR/CD36/LOX-1 in ECs. Interestingly, through the NF-κB and AKT pathways, overexpression of ADTRP significantly upregulated the expression of LDLR, CD36, and LOX-1, and knockdown of ADTRP expression significantly downregulated the expression of LDLR, CD36, and LOX-1. These data suggest that ADTRP and LDL receptors LDLR/CD36/LOX-1 positively regulate each other, and form a positive regulatory loop that regulates endothelial cell functions, thereby providing a potential protective mechanism against atherosclerosis. Our findings provide a new molecular mechanism by which deregulation of ADTRP and LDLR/CD36/LOX-1 promote the development of atherosclerosis and CAD.
Collapse
Affiliation(s)
- Chunyan Luo
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang 443002, Hubei, PR China; The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, Hubei, PR China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Decheng Wang
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang 443002, Hubei, PR China; The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Weifeng Huang
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang 443002, Hubei, PR China; The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Yinhong Song
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang 443002, Hubei, PR China; The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Lisha Ge
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Xinyue Zhang
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Lixue Yang
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Jiao Lu
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Xiancong Tu
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Jian Yang
- Department of Cardiology, the People's Hospital of China Three Gorges University, Yichang 443000, Hubei, PR China.
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
14
|
Causin RL, de Freitas AJA, Trovo Hidalgo Filho CM, dos Reis R, Reis RM, Marques MMC. A Systematic Review of MicroRNAs Involved in Cervical Cancer Progression. Cells 2021; 10:668. [PMID: 33803022 PMCID: PMC8002658 DOI: 10.3390/cells10030668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
To obtain a better understanding on the role of microRNAs in the progression of cervical cancer, a systematic review was performed to analyze cervical cancer microRNA studies. We provide an overview of the studies investigating microRNA expression in relation to cervical cancer (CC) progression, highlighting their common outcomes and target gene interactions according to the regulatory pathways. To achieve this, we systematically searched through PubMed MEDLINE, EMBASE, and Google Scholar for all articles between April 2010 and April 2020, in accordance with the PICO acronym (participants, interventions, comparisons, outcomes). From 27 published reports, totaling 1721 cases and 1361 noncancerous control tissue samples, 26 differentially expressed microRNAs (DEmiRNAs) were identified in different International Federation of Gynecology and Obstetrics (FIGO) stages of cervical cancer development. It was identified that some of the dysregulated microRNAs were associated with specific stages of cervical cancer development. The results indicated that DEmiRNAs in different stages of cervical cancer were functionally involved in several key hallmarks of cancer, such as evading growth suppressors, enabling replicative immortality, activation of invasion and metastasis, resisting cell death, and sustained proliferative signaling. These dysregulated microRNAs could play an important role in cervical cancer's development. Some of the stage-specific microRNAs can also be used as biomarkers for cancer classification and monitoring the progression of cervical cancer.
Collapse
Affiliation(s)
- Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos-SP 14784-400, Brazil; (R.L.C.); (A.J.A.d.F.); (R.M.R.)
| | - Ana Julia Aguiar de Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos-SP 14784-400, Brazil; (R.L.C.); (A.J.A.d.F.); (R.M.R.)
| | | | - Ricardo dos Reis
- Gynecologic Oncology Department, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil;
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos-SP 14784-400, Brazil; (R.L.C.); (A.J.A.d.F.); (R.M.R.)
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4704-553 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos-SP 14784-400, Brazil; (R.L.C.); (A.J.A.d.F.); (R.M.R.)
- Barretos School of Health Sciences, Dr. Paulo Prata–FACISB, Barretos, São Paulo 14785-002, Brazil
| |
Collapse
|
15
|
Identification and validation of a miRNA-based prognostic signature for cervical cancer through an integrated bioinformatics approach. Sci Rep 2020; 10:22270. [PMID: 33335254 PMCID: PMC7747620 DOI: 10.1038/s41598-020-79337-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide. Increasing evidence has shown that miRNAs are related to the progression of cervical cancer. However, the mechanisms that affect the prognosis of cancer are still largely unknown. In the present study, we sought to identify miRNAs associated with poor prognosis of patient with cervical cancer, as well as the possible mechanisms regulated by them. The miRNA expression profiles and relevant clinical information of patients with cervical cancer were obtained from The Cancer Genome Atlas (TCGA). The selection of prognostic miRNAs was carried out through an integrated bioinformatics approach. The most effective miRNAs with synergistic and additive effects were selected for validation through in vitro experiments. Three miRNAs (miR-216b-5p, miR-585-5p, and miR-7641) were identified as exhibiting good performance in predicting poor prognosis through additive effects analysis. The functional enrichment analysis suggested that not only pathways traditionally involved in cancer but also immune system pathways might be important in regulating the outcome of the disease. Our findings demonstrated that a synergistic combination of three miRNAs may be associated, through their regulation of specific pathways, with very poor survival rates for patients with cervical cancer.
Collapse
|
16
|
Ji XL, Liu X, Wang Z, Fang YC. Expression of ARID1A in polycystic ovary syndrome and its effect on the proliferation and apoptosis of ovarian granulosa cells. ANNALES D'ENDOCRINOLOGIE 2020; 81:521-529. [PMID: 33290750 DOI: 10.1016/j.ando.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The purpose of the present study was to clarify the expression of ARID1A in polycystic ovary syndrome (PCOS) and its effect on ovarian granulosa cells (GCs). METHODS Serum samples were collected from PCOS patients to detect the expression of ARID1A by qRT-PCR. Then, mouse and human ovarian GCs were isolated and divided into several groups according to difference in transfection, and the following experiments were performed: MTT assay, flow cytometry, qRT-PCR, radioimmunoassay, and Western blotting. RESULTS ARID1A was down-regulated in the serum of PCOS patients and ovarian GCs from PCOS mice. Human and mouse ovarian GCs in the ARID1A group and in cells that were exposed to LY294002, a PI3/Akt pathway inhibitor, showed decreased proliferation and increased apoptosis compared to those in the mock group, and a higher percentage of G0/G1 phase with a lower percentage of S phase or G2/M. Moreover, the expression of steroid metabolism-related genes (3βHSD,Cyp11a1, StAR and Cyp19a1) in both human and mice PCOS GCs was down-regulatedresulting in lower estradiol (E2) and progesterone (P) 48h accumulation. In addition, protein expression of cleaved caspase-3, a main executor of apoptosis, was increased while expression of p-Akt/Akt and cyclin D1 was decreased in GCs from human and mice PCOS. However, the levels of the above indicators in the si-ARID1A group showed inverse changes. Furthermore, LY29400 treatment could reverse the effect of si-ARID1A on the ovarian GCs. CONCLUSION ARID1A was down-regulated in GCs cells form PCOS women and from PCOS animal models, while ARID1A overexpression can suppress the PI3K/Akt pathway to inhibit proliferation and promote apoptosis in ovarian granulosa cells.
Collapse
Affiliation(s)
- Xiao-Ling Ji
- Department of Gynecology area 1, Weifang People's Hospital, No. 151, Guangwen Street, Weifang, 261041, Shandong, China
| | - Xia Liu
- Department of Obstetrics, Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Zhe Wang
- Department of Gynecology area 1, Weifang People's Hospital, No. 151, Guangwen Street, Weifang, 261041, Shandong, China
| | - Ying-Chun Fang
- Department of Gynecology area 1, Weifang People's Hospital, No. 151, Guangwen Street, Weifang, 261041, Shandong, China.
| |
Collapse
|
17
|
Remodeling of the ARID1A tumor suppressor. Cancer Lett 2020; 491:1-10. [PMID: 32738271 DOI: 10.1016/j.canlet.2020.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
In recent years, AT-rich interactive domain-containing protein 1A (ARID1A) has been widely accepted as a bona fide tumor suppressor due to its essential role in preventing tumorigenesis and tumor progression in both mouse and human contexts. ARID1A shows high mutation frequencies in both cancers and preneoplastic lesions. The loss of ARID1A expression in cancer cells leads to increases in cell proliferation, invasion and migration and reductions in cell apoptosis and chemosensitivity. The tumor-suppressive role of ARID1A is mainly attributed to its regulation of gene transcription, which can be induced either directly by chromatin remodeling or indirectly by affecting histone modifications. ARID1A also acts independently of its cardinal transcription-regulating mechanisms, which include interfering with protein-protein interactions. Interestingly, nonmutational mechanisms, such as regulation by DNA hypermethylation, microRNAs, and ubiquitinases/deubiquitinases, have provided another perspective on ARID1A inactivation in cancer. Since the critical tumor-suppressive role of ARID1A has been revealed, several studies have attempted to identify synthetic lethal targets with ARID1A mutation/inactivation as an alternative strategy for cancer treatment.
Collapse
|
18
|
MicroRNA-31 Regulates Expression of Wntless in Both Drosophila melanogaster and Human Oral Cancer Cells. Int J Mol Sci 2020; 21:ijms21197232. [PMID: 33007980 PMCID: PMC7582764 DOI: 10.3390/ijms21197232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
Recent comparative studies have indicated distinct expression profiles of short, non-coding microRNAs (miRNAs) in various types of cancer, including oral squamous cell carcinoma (OSCC). In this study, we employed a hybrid approach using Drosophila melanogaster as well as OSCC cell lines to validate putative targets of oral cancer-related miRNAs both in vivo and in vitro. Following overexpression of Drosophila miR-31, we found a significant decrease in the size of the imaginal wing discs and downregulation of a subset of putative targets, including wntless (wls), an important regulator of the Wnt signaling pathway. Parallel experiments performed in OSCC cells have also confirmed a similar miR-31-dependent regulation of human WLS that was not initially predicted as targets of human miR-31. Furthermore, we found subsequent downregulation of cyclin D1 and c-MYC, two of the main transcriptional targets of Wnt signaling, suggesting a potential role of miR-31 in regulating the cell cycle and proliferation of OSCC cells. Taken together, our Drosophila-based in vivo system in conjunction with the human in vitro platform will thus provide a novel insight into a mammal-to-Drosophila-to-mammal approach to validate putative targets of human miRNA and to better understand the miRNA-target relationships that play an important role in the pathophysiology of oral cancer.
Collapse
|
19
|
Miao J, Regenstein JM, Xu D, Zhou D, Li H, Zhang H, Li C, Qiu J, Chen X. The roles of microRNA in human cervical cancer. Arch Biochem Biophys 2020; 690:108480. [PMID: 32681832 DOI: 10.1016/j.abb.2020.108480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Although a potentially preventable disease, cervical cancer (CC) is the second most commonly diagnosed gynaecological cancer with at least 530,000 new cases annually, and the prognosis with CC is still poor. Studies suggest that aberrant expression of microRNA (miRNA) contributes to the progression of CC. As a group of small non-coding RNA with 18-25 nucleotides, miRNA regulate about one-third of all human genes. They function by repressing translation or inducing mRNA cleavage or degradation, including genes involved in diverse and important cellular processes, including cell cycling, proliferation, differentiation, and apoptosis. Results showed that misexpression of miRNA is closely related to the onset and progression of CC. This review will provide an overview of the function of miRNA in CC and the mechanisms involved in cervical carcinogenesis.
Collapse
Affiliation(s)
- Jingnan Miao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Dan Xu
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Dan Zhou
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Haixia Li
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Hua Zhang
- Department of Food Science, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150010, China
| | - Chunfeng Li
- Gastrointestinal Surgical Ward, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Junqiang Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China.
| | - Xun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China
| |
Collapse
|
20
|
Tornesello ML, Faraonio R, Buonaguro L, Annunziata C, Starita N, Cerasuolo A, Pezzuto F, Tornesello AL, Buonaguro FM. The Role of microRNAs, Long Non-coding RNAs, and Circular RNAs in Cervical Cancer. Front Oncol 2020; 10:150. [PMID: 32154165 PMCID: PMC7044410 DOI: 10.3389/fonc.2020.00150] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Prolonged infection of uterine cervix epithelium with human papillomavirus (HPV) and constitutive expression of viral oncogenes have been recognized as the main cause of the complex molecular changes leading to transformation of cervical epithelial cells. Deregulated expression of microRNAs (miRNA), long non-coding RNAs (lncRNA), and circular RNAs (circRNA) is involved in the initiation and promotion processes of cervical cancer development. Expression profiling of small RNAs in cervical neoplasia revealed up-regulated “oncogenic” miRNAs, such as miR-10a, miR-21, miR-19, and miR-146a, and down regulated “tumor suppressive” miRNAs, including miR-29a, miR-372, miR-214, and miR-218, associated with cell growth, malignant transformation, cell migration, and invasion. Also several lncRNAs, comprising among others HOTAIR, MALAT1, GAS5, and MEG3, have shown to be associated with various pathogenic processes such as tumor progression, invasion as well as therapeutic resistance and emerged as new diagnostic and prognostic biomarkers in cervical cancer. Moreover, human genes encoded circular RNAs, such as has_circ-0018289, have shown to sponge specific miRNAs and to concur to the deregulation of target genes. Viral encoded circE7 has also demonstrated to overexpress E7 oncoprotein thus contributing to cell transformation. In this review, we summarize current literature on the complex interplay between miRNAs, lncRNAs, and circRNAs and their role in cervical neoplasia.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Clorinda Annunziata
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesca Pezzuto
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| |
Collapse
|
21
|
Yang L, Liu L, Zhang X, Zhu Y, Li L, Wang B, Liu Y, Ren C. miR-96 enhances the proliferation of cervical cancer cells by targeting FOXO1. Pathol Res Pract 2020; 216:152854. [PMID: 32057517 DOI: 10.1016/j.prp.2020.152854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/04/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
Abstract
MiRNAs affect various biological pathways associated with the development, progression, clinical outcome and treatment response improvement in cervical cancer. This study was performed to evaluate the effects of miRNA 96 on cervical cancer and to clarify the mechanism. Vivo and vitro experiments were conducted in our trial. MiR-96 is upregulated in cervical cancer cell lines and cervical cancer tissues and is correlated with clinical features in cervical cancer patients. Overexpression of miR-96 enhances proliferation of cervical cancer cells, while inhibiting miR-96 reduces the proliferation of cervical cancer cells. Inhibition of miR-96 significantly decreased the percentage of cells in the S phase and increased the percentage of cells in G1/G0 peak in both SiHa and CaSki cells compared with NC cells and decreased the expressions of p21, p27 and cyclin D1. FOXO1 3'-UTR was sub cloned into a luciferase reporter vector and the putative miR-96 binding site in the FOXO1 3'-UTR was mutated. Treated with miR-96 inhibitor consistently enhanced the luciferase activity of the FOXO1 3'-UTR luciferase reporter plasmids in both SiHa and CaSki cells, whereas mutations in the miR-96-binding site abolished the effect. Vivo experiment also support these results. Therefore, inhibition of miR-96 might suppress growth, proliferation of CC cells and promote apoptosis of CC cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xiaoan Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yuanhang Zhu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Lei Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Baojin Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yan Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Chenchen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
22
|
Yan T, Zhao B, Wu Q, Wang W, Shi J, Li D, Stovall DB, Sui G. Characterization of G-quadruplex formation in the ARID1A promoter. Int J Biol Macromol 2020; 147:750-761. [PMID: 31982538 DOI: 10.1016/j.ijbiomac.2020.01.210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
As a member of the SWI/SNF family, ARID1A plays an essential role in modulating chromatin structure and gene expression. The tumor suppressive function of ARID1A has been well-defined and its downregulation in cancers is attributed to genomic deletion, DNA methylation and microRNA-mediated inhibition. In this study, we demonstrated that the negative strand of a C-rich region in the upstream vicinity of the human ARID1A transcription start site could form G-quadruplexes. Synthesized oligonucleotides based on the sequence of this region exhibited molar ellipticity at specific wavelengths characteristic of G-quadruplex structures in circular dichroism analyses. The formation of G-quadruplexes by these oligonucleotides were also proved by native polyacrylamide gel electrophoresis, DNA synthesis block assays, immunofluorescent staining and dimethyl sulfate footprinting studies. In reporter assays, mutations of the G-quadruplex forming sequence reduced ARID1A promoter-mediated transcription. Transfection of the oligonucleotide with the full length of G-quadruplex motif region, but not its partial sequences or the mutants, could both promote endogenous ARID1A expression and reduce cell proliferation.
Collapse
Affiliation(s)
- Ting Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Bo Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qiong Wu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenmeng Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jinming Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dangdang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, United States
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
23
|
Jamal A, Shahid I, Naveed Shahid M, Saleh Alshmemri M, Saeed Bahwerth F. Human Papillomavirus, MicroRNA and their Role in Cervical Cancer Progression, Diagnosis and Treatment Response: A Comprehensive Review. Pak J Biol Sci 2020; 23:977-988. [PMID: 32700847 DOI: 10.3923/pjbs.2020.977.988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Human Papillomavirus (HPV) is sexually transmitted and linked with vaginal, vulvar and cervix cancers in females, penile cancer in male, while anal and oropharyngeal cancer in both genders. Cervical cancer is ranked as third most identified cancer among females globally and is the fourth leading reason of cancer related mortality. The main aim of current study is to highlight the key role of miRNA in cervical cancer development, progression and their therapeutic responses. Current study entailed more than 50 PubMed cited articles related to miRNA role in cervical cancer. Studies have elucidated the role of miRNAs regulation in gene expression at post-transcriptional and translational level by targeting significant genes and therefore involved in cervical cancer. miRNAs control several cellular pathways involved in development of pre-malignant to metastatic stage and proliferation to malignancy. Current review elucidated and elaborated the key role of miRNA their application, treatment and therapeutic responses in cervical cancer.
Collapse
|
24
|
Huang Z, Wu X, Li J. miR-101 suppresses colon cancer cell migration through regulation of EZH2. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 113:255-260. [DOI: 10.17235/reed.2020.6800/2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Zhang L, Wang C, Yu S, Jia C, Yan J, Lu Z, Chen J. Loss of ARID1A Expression Correlates With Tumor Differentiation and Tumor Progression Stage in Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2019; 17:1533034618754475. [PMID: 29486633 PMCID: PMC5833159 DOI: 10.1177/1533034618754475] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in the AT-rich interactive domain 1A gene, which encodes a subunit of the Switch/Sucrose nonfermentable chromatin remodeling complex, can result in loss of protein expression and are associated with different cancers. Here, we used immunohistochemistry to investigate the significance of AT-rich interactive domain 1A loss in 73 pancreatic ductal adenocarcinoma cases with paired paracancerous normal pancreatic tissues. The relationship between levels of the AT-rich interactive domain 1A protein product, BAF250a, and clinicopathological parameters in the 73 pancreatic cancer specimens was also analyzed. We found that the expression of AT-rich interactive domain 1A in normal pancreatic tissue was higher than that in tumor tissue. Loss of AT-rich interactive domain 1A expression in pancreatic tumors was associated with tumor differentiation (P = .002) and tumor stage (P = .048). Meanwhile, BAF250a protein levels were not related to lymph node metastasis, distant metastasis, sex, or age and were not associated with survival. Transfection of the pancreatic cancer cell lines AsPC-1 and PANC-1 with small-interfering RNA specific for AT-rich interactive domain 1A resulted in elevated messenger RNA and protein expression levels of B-cell lymphoma-2 (Bcl-2), CyclinD1, and Kirsten rat sarcoma viral oncogene (KRAS). The AT-rich interactive domain 1A expression level in the cells was increased following microRNA-31 (miR-31) inhibitor transfection. Our data provide additional evidence that AT-rich interactive domain 1A might function as a tumor suppressor gene in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Li Zhang
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Cuiping Wang
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Shuangni Yu
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Congwei Jia
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Jie Yan
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Zhaohui Lu
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Jie Chen
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, Bokharaei-Salim F, Karampoor S, Jafari A, Asemi Z, Tbibzadeh A, Namdar A, Mirzaei H. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234:17064-17099. [PMID: 30891784 DOI: 10.1002/jcp.28457] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Cervical cancer is as a kind of cancer beginning from the cervix. Given that cervical cancer could be observed in women who infected with papillomavirus, regular oral contraceptives, and multiple pregnancies. Early detection of cervical cancer is one of the most important aspects of the therapy of this malignancy. Despite several efforts, finding and developing new biomarkers for cervical cancer diagnosis are required. Among various prognostic, diagnostic, and therapeutic biomarkers, miRNA have been emerged as powerful biomarkers for detection, treatment, and monitoring of response to therapy in cervical cancer. Here, we summarized various miRNAs as an employable platform for prognostic, diagnostic, and therapeutic biomarkers in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Brujen, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep 2019; 39:BSR20181377. [PMID: 30833362 PMCID: PMC6418402 DOI: 10.1042/bsr20181377] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) with early metastasis of the primary tumor results in poor prognosis and poor therapeutic outcomes. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play a substantial role in regulating gene expression post-transcriptionally and influence the development and progression of tumors. Numerous studies have discovered that miRNAs play significant roles in the invasion and metastasis of CC by affecting specific pathways, including Notch, Wnt/β-catenin, and phosphoinositide-3 kinase (PI3K)-Akt pathways. miRNAs also effectively modulate the process of epithelial–mesenchymal transition. Many studies provide new insights into the role of miRNAs and the pathogenesis of metastatic CC. In this review, we will offer an overview and update of our present understanding of the potential roles of miRNAs in metastatic CC.
Collapse
|
28
|
Nilsen A, Jonsson M, Aarnes EK, Kristensen GB, Lyng H. Reference MicroRNAs for RT-qPCR Assays in Cervical Cancer Patients and Their Application to Studies of HPV16 and Hypoxia Biomarkers. Transl Oncol 2019; 12:576-584. [PMID: 30660934 PMCID: PMC6349320 DOI: 10.1016/j.tranon.2018.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miRNA) expressions in tumor biopsies have shown potential as biomarkers in cervical cancer, but suitable reference RNAs for normalization of reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays in patient cohorts with different clinicopathological characteristics are not available. We aimed to identify the optimal reference miRNAs and apply these to investigate the potential of miR-9-5p as human papilloma virus (HPV) 16 biomarker and miR-210-3p as hypoxia biomarker in cervical cancer. Candidate reference miRNAs were preselected in sequencing data of 90 patients and ranked in a stability analysis by RefFinder. A selection of the most stable miRNAs was evaluated by geNorm and NormFinder analyses of RT-qPCR data of 29 patients. U6 small nuclear RNA (RNU6) was also included in the evaluation. MiR-9-5p and miR-210-3p expression was assessed by RT-qPCR in 45 and 65 patients, respectively. Nine candidates were preselected in the sequencing data after excluding those associated with clinical markers, HPV type, hypoxia status, suboptimal expression levels, and low stability. In RT-qPCR assays, the combination of miR-151-5p, miR-152-3p, and miR-423-3p was identified as the most stable normalization factor across clinical markers, HPV type, and hypoxia status. RNU6 showed poor stability. By applying the optimal reference miRNAs, higher miR-9-5p expression in HPV16- than HPV18-positive tumors and higher miR-210-3p expression in more hypoxic than less hypoxic tumors were found in accordance with the sequencing data. MiR-210-3p was associated with poor outcome by both sequencing and RT-qPCR assays. In conclusion, miR-151-5p, miR-152-3p, and miR-423-3p are suitable reference miRNAs in cervical cancer. MiR-9-5p and miR-210-3p are promising HPV16 and hypoxia biomarkers, respectively.
Collapse
Affiliation(s)
- Anja Nilsen
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Marte Jonsson
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Eva-Katrine Aarnes
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Gunnar Balle Kristensen
- Department of Gynaecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Institute for Cancer Genetics and Informatics, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
29
|
Yu T, Ma P, Wu D, Shu Y, Gao W. Functions and mechanisms of microRNA-31 in human cancers. Biomed Pharmacother 2018; 108:1162-1169. [PMID: 30372817 DOI: 10.1016/j.biopha.2018.09.132] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs can exhibit opposite functions in different tumors. MiR-31 is a representative example as it can not only enhance tumor development and progression in pancreatic cancer, colorectal cancer and so on, but also inhibit tumorigenesis and induce apoptosis in ovarian cancer, prostate cancer and etc. The mechanism underlying its' pleiotropy remains unknown. Several recent studies that focused on the global gene expression changes caused by aberrant miR-31 provided information on the upstream and downstream events associated with deregulated miR-31. MiR-31 might interact with a number of signaling pathways including RAS/MARK, PI3K/AKT and RB/E2F to play its opposite functions. This review summarizes the target genes and pathways associated with miR-31 and examines the mechanisms underlying the function of miR-31. The resulting hypothesis is possible that the tissue-specific features of adenocarcinoma and squamous cell cancer and the positive feedback loop consists of miR-31 and its upstream and downstream may account for the diversity of miR-31 functions.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Deqin Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
30
|
Kurata JS, Lin RJ. MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs. RNA (NEW YORK, N.Y.) 2018; 24:966-981. [PMID: 29720387 PMCID: PMC6004052 DOI: 10.1261/rna.066282.118] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional gene regulators that play important roles in the control of cell fitness, differentiation, and development. The CRISPR-Cas9 gene-editing system is composed of the Cas9 nuclease in complex with a single guide RNA (sgRNA) and directs DNA cleavage at a predetermined site. Several CRISPR-Cas9 libraries have been constructed for genome-scale knockout screens of protein function; however, few libraries have included miRNA genes. Here we constructed a miRNA-focused CRISPR-Cas9 library that targets 1594 (85%) annotated human miRNA stem-loops. The sgRNAs in our LX-miR library are designed to have high on-target and low off-target activity, and each miRNA is targeted by four to five sgRNAs. We used this sgRNA library to screen for miRNAs that affect cell fitness of HeLa or NCI-N87 cells by monitoring the change in frequency of each sgRNA over time. By considering the expression in the tested cells and the dysregulation of the miRNAs in cancer specimens, we identified five HeLa pro-fitness and cervical cancer up-regulated miRNAs (miR-31-5p, miR-92b-3p, miR-146b-5p, miR-151a-3p, and miR-194-5p). Similarly, we identified six NCI-N87 pro-fitness and gastric cancer up-regulated miRNAs (miR-95-3p, miR-181a-5p, miR-188-5p, miR-196b-5p, miR-584-5p, and miR-1304-3p), as well as three anti-fitness and down-regulated miRNAs (let-7a-3p, miR-100-5p, and miR-149-5p). Some of those miRNAs are known to be oncogenic or tumor-suppressive, but others are novel. Taken together, the LX-miR library is useful for genome-wide unbiased screening to identify miRNAs important for cellular fitness and likely to be useful for other functional screens.
Collapse
Affiliation(s)
- Jessica S Kurata
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences of the City of Hope, Duarte, California 91010, USA
| | - Ren-Jang Lin
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences of the City of Hope, Duarte, California 91010, USA
| |
Collapse
|
31
|
Ma Y, Chen Y, Lin J, Liu Y, Luo K, Cao Y, Wang T, Jin H, Su Z, Wu H, Chen X, Cheng J. Circulating miR-31 as an effective biomarker for detection and prognosis of human cancer: a meta-analysis. Oncotarget 2018; 8:28660-28671. [PMID: 28404921 PMCID: PMC5438681 DOI: 10.18632/oncotarget.15638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/29/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Circulating miR-31 was found to be associated with cancers detection and prognosis. The present meta-analysis aimed to explore the effect of circulating miR-31 on cancer detection and prognosis. METHOD The studies were accessed using multiple databases. RevMan5.3, Meta-DiSc 1.4, and STATA14.0 were used to estimate the pooled effects, heterogeneity among studies, and publication bias. RESULTS A total of 14 studies with 1397 cancer patients and 1039 controls were included. For the 12 prognostic tests, the adjusted pooled-AUC was 0.79 (95% CI: 0.73-0.86) as the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odd ratio (DOR) from 10 tests was 0.79 (95% CI: 0.76-0.82), 0.79 (95% CI: 0.76-0.82), 3.81 (95% CI: 2.90-5.01), 0.26 (95% CI: 0.20-0.35), and 16.81 (95% CI: 9.67-29.25), respectively. For the 5 prognosis analyses, the pooled HR (hazard ratio) of overall survival (OS) was 1.55 (95% CI 1.30-1.86) for high versus low circulating miR-31 expression. However, high expression of circulating miR-31 did not significantly increase the risk of poor differentiation (pooled OR=1.39, 95% CI: 0.56-3.47) and LNM (pooled OR=3.46, 95% CI: 0.96-12.42) in lung cancer. CONCLUSION Circulating miR-31 is an effective biomarker and could be used as a component of miRs signature for cancer detection and prognosis surveillance.
Collapse
Affiliation(s)
- Yingjun Ma
- Respiratory Medicine, Guangming District People's Hospital of Shenzhen, Shenzhen, P.R. China
| | - Yunfang Chen
- Pain Department, The Eight Affiliated Hospital, Sun Yat-sen University, ShenZhen, P.R. China
| | - Jinbo Lin
- Medical oncology, Longgang District Central Hospital of Shenzhen, Shenzhen, P.R. China
| | - Yi Liu
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Kai Luo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Yong Cao
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Tieqiang Wang
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Hongwei Jin
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Zhan Su
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Haolin Wu
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Xiaoliang Chen
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Jinquan Cheng
- Molecular Biology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, P.R. China
| |
Collapse
|
32
|
Lu WC, Liu CJ, Tu HF, Chung YT, Yang CC, Kao SY, Chang KW, Lin SC. miR-31 targets ARID1A and enhances the oncogenicity and stemness of head and neck squamous cell carcinoma. Oncotarget 2018; 7:57254-57267. [PMID: 27528032 PMCID: PMC5302987 DOI: 10.18632/oncotarget.11138] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
miR-31 is oncogenic for head and neck squamous cell carcinoma (HNSCC). Proteins containing the AT-rich interacting domain (ARID) modulate the accessibility of chromatin to the transcription machinery needed for gene expression. In this study, we showed that miR-31 was able to target ARID1A in HNSCC. HNSCC tumors had an inverse miR-31 and ARID1A expression. miR-31 associated oncogenicities were rescued by ARID1A expression in HNSCC cells. Furthermore, ARID1A repressed the stemness properties and transcriptional activity of Nanog/OCT4/Sox2/EpCAM via the protein's affinity for AT-rich sites within promoters. HNSCC patients with tumors having high level of miR-31 expression and high levels of Nanog/OCT4/Sox2/EpCAM expression, together with low level of ARID1A expression, were found to have the worst survival. This study provides novel mechanistic clues demonstrating that miR-31 inhibits ARID1A and that this enriches the oncogenicity and stemness of HNSCC.
Collapse
Affiliation(s)
- Wen-Cheng Lu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsi-Feng Tu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Tung Chung
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
33
|
Comprehensive assessment of the expression of the SWI/SNF complex defines two distinct prognostic subtypes of ovarian clear cell carcinoma. Oncotarget 2018; 7:54758-54770. [PMID: 27340867 PMCID: PMC5342379 DOI: 10.18632/oncotarget.10181] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Somatic mutations in the ARID1A tumor-suppressor gene have been frequently identified in ovarian clear cell carcinoma (CCC) cases. BAF250a encoded by ARID1A is a member of the SWI/SNF complex, but the expression and mutation status of other SWI/SNF subunits have not been explored. The current study aimed to elucidate the biological and clinical significance of the SWI/SNF complex subunits, by assessing the expression and mutation status of SWI/SNF subunits, and distinct genomic aberrations associated with their expression. Of 82 CCC specimens, 38 samples presented no BAF250a expression, and 50 samples exhibited the loss of at least one subunit of the SWI/SNF complex. Cases which lack at least one SWI/SNF complex component exhibited significantly more advanced stages, faster growth and stronger nuclear atypia compared with SWI/SNF-positive samples (p<0.05). Although BAF250a expression is not related to poor prognosis, the group presenting the loss of at least one SWI/SNF complex subunit exhibited significantly shorter overall and progression-free survivals (p<0.05). A multivariate analysis suggested that the expression status of the SWI/SNF complex serves as an independent prognostic factor (p<0.005). The cases positive for all SWI/SNF subunits demonstrated significantly greater DNA copy number alterations, such as amplification at chromosomes 8q.24.3 and 20q.13.2-20q.13.33 (including ZNF217) and deletion at chromosomes 13q12.11-13q14.3 (including RB1), 17p13.2-17p13.1 (including TP53) and 19p13.2-19p13.12. In conclusion, the CCCs exhibiting the loss of one or multiple SWI/SNF complex subunits demonstrated aggressive behaviors and poor prognosis, whereas the CCCs with positive expression for all SWI/SNF components presented more copy number alterations and a favorable prognosis.
Collapse
|
34
|
Wang N, Li Y, Zhou J. Downregulation of ribonucleotide reductase subunits M2 induces apoptosis and G1 arrest of cervical cancer cells. Oncol Lett 2018; 15:3719-3725. [PMID: 29556274 PMCID: PMC5844123 DOI: 10.3892/ol.2018.7806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Ribonucleotide reductase subunit M2 (RRM2) is associated with the biological behaviours of cancers, including apoptosis, cell proliferation, invasion, cell cycle and migration. Previous studies have suggested that the expression of RRM2 plays critical roles in tumorigenesis in several cancer types. However, the precise molecular mechanism remains unknown. We previously identified RRM2 as a novel downstream target that is activated by human papillomavirus E7, which activates the extracellular signal-regulated kinase 1/2 signalling pathway, but further studies are warranted to establish RRM2 as a therapeutic target. The results of the present study indicate that RRM2 is associated with cervical cancer cell apoptosis and proliferation. The downregulation of RRM2 significantly increased apoptosis, promoted cell cycle arrest at the G1 phase in vitro and inhibited tumour formation in nude mice transplant models in vivo. These results highlight the potential for inhibition of RRM2 expression as a promising therapeutic target for human cervical cancer treatment.
Collapse
Affiliation(s)
- Nan Wang
- Laboratory of Molecular Biology, College of Life Sciences, Jiaying University, Meizhou, Guangdong 514015, P.R. China
| | - Yong Li
- Key Laboratory of Molecular Biophysics of The Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jianhong Zhou
- Laboratory of Molecular Biology, College of Life Sciences, Jiaying University, Meizhou, Guangdong 514015, P.R. China
| |
Collapse
|
35
|
MicroRNA-31 functions as a tumor suppressor and increases sensitivity to mitomycin-C in urothelial bladder cancer by targeting integrin α5. Oncotarget 2018; 7:27445-57. [PMID: 27050274 PMCID: PMC5053662 DOI: 10.18632/oncotarget.8479] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/16/2016] [Indexed: 11/25/2022] Open
Abstract
Urothelial bladder cancer (UBC) is a common genitourinary malignancy. MiR-31, a well-identified miRNA, exhibits diverse properties in different cancers. However, the specific functions and mechanisms of miR-31 in UBC have not been investigated. In this study, tumor samples, especially invasive UBC, showed significantly reduced level of miR-31, as compared with normal urothelium. Prognostic analysis using the EORTC model showed that down-regulation of miR-31 correlated with higher risks of recurrence and progression in noninvasive UBC cases. Remarkably, overexpression of miR-31 mimics in UBC cell lines inhibited cell proliferation, migration and invasion. Integrin α5 (ITGA5), an integrin family member, was subsequently identified as a direct target of miR-31 in UBC cells. When treated with mitomycin-C (MMC), miR-31-expressing UBC cells displayed lower survival and higher apoptotic rates, and deactivated Akt and ERK. These effects arising from miR-31 overexpression were abrogated by ITGA5 restoration. Furthermore, miR-31 markedly inhibited tumor growth and increased the effectiveness of MMC in UBC xenografts. In summary, our data suggest that miR-31 is a prognostic predictor and can serve as a potential therapeutic target of UBC.
Collapse
|
36
|
Dai S, Lu Y, Long Y, Lai Y, Du P, Ding N, Yao D. Prognostic value of microRNAs in cervical carcinoma: a systematic review and meta-analysis. Oncotarget 2018; 7:35369-78. [PMID: 27177085 PMCID: PMC5085235 DOI: 10.18632/oncotarget.9294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/11/2016] [Indexed: 12/17/2022] Open
Abstract
This systematic review is written to investigate the outcome of cervical cancer. A comprehensive search of PubMed and EMBASE was performed to identify eligible studies. Nineteen studies from thirteen articles with a total of 1,310 participants were included in this meta-analysis. Overall survival (OS), disease-free survival (DFS), and recurrence-free survival (RFS) as a prognosis for cervical cancer were extracted and calculated, if available. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using STATA (version 12.0), resulting in the pooled HRs 0.70 (95% CI: 0.51–0.97) for OS, 1.02 (95% CI: 0.53–1.98) for DFS, and 0.56 (95% CI: 0.40–0.77) for RFS. The results indicated that cervical cancer patients with decreased microRNA expression were associated with shorter OS and RFS. It suggested that microRNAs might be promising markers for predicting the survival rate of cervical cancer.
Collapse
Affiliation(s)
- Shengkang Dai
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Lu
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ying Long
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuehua Lai
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Du
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Nan Ding
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Desheng Yao
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
37
|
MiR-195 Suppresses Cervical Cancer Migration and Invasion Through Targeting Smad3. Int J Gynecol Cancer 2017; 26:817-24. [PMID: 27206216 DOI: 10.1097/igc.0000000000000686] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs) play crucial roles in cervical cancer development and progression. The purposes of this study were to investigate the role of miR-195 in cervical cancer and clarify the regulation of Smad3 by miR-195. METHODS Quantitative real-time polymerase chain reaction was used to examine miR-195 expression in cervical cancer tissues and cell lines. The clinicopathological significance of miR-195 down-regulation was further analyzed. Transwell migration and invasion assays were performed. A luciferase reporter assay was conducted to confirm the target gene of miR-195, and the results were validated in cervical cancer tissues and cell lines. RESULTS MiR-195 was significantly decreased in clinical tissues and cervical cancer cell lines. The low miR-195 level was significantly correlated with higher International Federation of Gynecology and Obstetrics stage, node metastasis, and deep stromal invasion. Up-regulation of miR-195 suppressed cell migration and invasion in vitro. Smad3 was verified as a direct target of miR-195, which was further confirmed by the inverse expression of miR-195 and Smad3 in patients' specimens. CONCLUSIONS The newly identified miR-195/Smad3 pathway provides an insight into cervical cancer metastasis and may represent a novel therapeutic target.
Collapse
|
38
|
Srivastava SK, Ahmad A, Zubair H, Miree O, Singh S, Rocconi RP, Scalici J, Singh AP. MicroRNAs in gynecological cancers: Small molecules with big implications. Cancer Lett 2017; 407:123-138. [PMID: 28549791 PMCID: PMC5601032 DOI: 10.1016/j.canlet.2017.05.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Gynecological cancers (GCs) are often diagnosed at advanced stages, limiting the efficacy of available therapeutic options. Thus, there remains an urgent and unmet need for innovative research for the efficient clinical management of GC patients. Research over past several years has revealed the enormous promise of miRNAs. These small non-coding RNAs can aid in the diagnosis, prognosis and therapy of all major GCs, viz., ovarian cancers, cervical cancers and endometrial cancers. Mechanistic details of the miRNAs-mediated regulation of multiple biological functions are under constant investigation, and a number of miRNAs are now believed to influence growth, proliferation, invasion, metastasis, chemoresistance and the relapse of different GCs. Modulation of tumor microenvironment by miRNAs can possibly explain some of their reported biological effects. miRNA signatures have been proposed as biomarkers for the early detection of GCs, even the various subtypes of individual GCs. miRNA signatures are also being pursued as predictors of response to therapies. This review catalogs the knowledge gained from collective studies, so as to assess the progress made so far. It is time to ponder over the knowledge gained, so that more meaningful pre-clinical and translational studies can be designed to better realize the potential that miRNAs have to offer.
Collapse
Affiliation(s)
- Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Orlandric Miree
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Rodney P Rocconi
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Scalici
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
39
|
miR-31 Functions as an Oncomir Which Promotes Epithelial-Mesenchymal Transition via Regulating BAP1 in Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6361420. [PMID: 29159179 PMCID: PMC5660773 DOI: 10.1155/2017/6361420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/29/2017] [Indexed: 01/03/2023]
Abstract
MicroRNA-31 (miR-31) functions as tumor suppressors or oncogenes that are involved in tumor behavior. However, the function of miR-31 in cervical carcinogenesis remains unclear. The aim of this study was to validate the potential role of miR-31 and BRCA1-associated protein-1 (BAP1) on regulating epithelial-mesenchymal transition (EMT) in cervical cancer. In the present study, qRT-PCR assay revealed that the expression of miR-31 was upregulated in human cervical cancer cells and clinical tissues. Results of wound healing and cell migration assay revealed that knockdown of miR-31 inhibited cell metastasis and migration. Bioinformatic and dual-luciferase reporter gene assay showed that BAP1 was the direct target of miR-31. Furthermore, the results revealed that miR-31 promoted proliferation and EMT in cervical cancer cells and accelerated the development of tumor growth in vivo xenograft experiment by inhibiting BAP1 expression. Overall, these results highlight an important role of miR-31 functioning as an oncomir which could promote EMT in cervical cancer via downregulating BAP1 expression. Thus, downregulation of miR-31 could be a novel approach for the molecular treatment of cervical cancers and other malignancies.
Collapse
|
40
|
A three miRNAs signature predicts survival in cervical cancer using bioinformatics analysis. Sci Rep 2017; 7:5624. [PMID: 28717180 PMCID: PMC5514022 DOI: 10.1038/s41598-017-06032-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Growing evidences showed that a large number of miRNAs were abnormally expressed in cervical cancer tissues and played irreplaceable roles in tumorigenesis, progression and metastasis. The aim of the present study was to identify the differential miRNAs expression between cervical cancer and normal cervical tissues by analyzing the high-throughput miRNA data downloaded from TCGA database. Additionally, we evaluated the prognostic values of the differentially expressed miRNAs and constructed a three-miRNA signature that could effectively predict patient survival. According to the cut-off criteria (P < 0.05 and |log2FC| > 2.0), a total of 78 differentially expressed miRNAs were identified between cervical cancer tissues and matched normal tissues, including 37 up-regulated miRNAs and 41 down-regulated miRNAs. The Kaplan-Meier survival method revealed the prognostic function of the three miRNAs (miRNA-145, miRNA-200c, and miRNA-218-1). Univariate and multivariate Cox regression analysis showed that the three-miRNA signature was an independent prognostic factor in cervical cancer. The functional enrichment analysis suggested that the target genes of three miRNAs may be involved in various pathways related to cancer, including MAPK, AMPK, focal adhesion, cGMP-PKG, wnt, and mTOR signaling pathway. Taken together, the present study suggested that three-miRNA signature could be used as a prognostic marker in cervical cancer.
Collapse
|
41
|
A novel strategy to dissect endogenous gene transcriptional regulation in live cells. Biochem Biophys Res Commun 2017; 487:573-579. [PMID: 28433629 DOI: 10.1016/j.bbrc.2017.04.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
Gene transcription is a central tenet of biology, traditionally measured by RT-PCR, microarray, or more recently, RNA sequencing. However, these measurements only provide a snapshot of the state of gene transcription and only represent an overall readout of complex transcriptional networks that regulate gene expression. In this report, we describe a novel strategy to dissect endogenous gene transcription regulation in live cells by knocking in a reporter gene, EGFP, under the control of the endogenous gene promoter, using the ARID1A gene as an example. The ARID1A gene, encoding a subunit of the ATP-dependent chromatin remodeling complex SNF/SWI, has recently been identified as a tumor suppressor in multiple cancers. Despite studies that elucidate the mechanism of ARID1A's tumor suppressor function, little is known of the genes/events that regulate ARID1A expression. Using the HEK293 cells as a model, we discovered novel aspects of ARID1A transcription regulation in response to cell cycle progression, DNA damage, and microRNAs, exemplifying the potential of our strategy in providing new insight to the mechanism of gene transcription regulation. This strategy can be generalized to essentially any gene of interest, making it a powerful tool for the study of gene expression heterogeneity, especially in cancer cells, and a robust readout for high-throughput screening of agents that modulate gene transcription.
Collapse
|
42
|
Luo LJ, Yang F, Ding JJ, Yan DL, Wang DD, Yang SJ, Ding L, Li J, Chen D, Ma R, Wu JZ, Tang JH. MiR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer. Gene 2016; 594:47-58. [DOI: 10.1016/j.gene.2016.08.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
43
|
Tumor invasion and metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell lung cancer. Oncotarget 2016; 6:44609-22. [PMID: 26587830 PMCID: PMC4792579 DOI: 10.18632/oncotarget.6338] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor that has an extremely poor clinical prognosis. Metastasis is the key event in SCLC progression, but its mechanism has not been fully elucidated. MicroRNAs (miRNAs) have been proven to participate in cancer processes, but their function in SCLC has not been thoroughly studied either. Here, we performed microarray and quantitative real-time PCR (qRT-PCR) analysesto identify the miRNAsassociated with metastasis and prognosis in SCLC as well as the correlation between serum and tissue. We also explored these miRNAs' promising molecular mechanisms by 3′UTR reporter assay and immunoblotting. We showed thatmiR-184 significantly attenuated the metastasis of SCLC, whereas miR-574–5p enhanced it. Both miRNAs were found to participate in β-catenin signaling by suppressing protein tyrosine phosphatase receptor type U (PTPRU)orendothelial PAS domain protein 1 (EPAS1). Furthermore, miR-574–5p was verified as an independent prognostic risk factor for SCLC. Taken together, our findings providea comprehensive analysis of the miRNA expression pattern in SCLC and indicate that miRNAs may serve as potential therapeutic and prognostic predictors in SCLC.
Collapse
|
44
|
Li J, Liu Q, Clark LH, Qiu H, Bae-Jump VL, Zhou C. Deregulated miRNAs in human cervical cancer: functional importance and potential clinical use. Future Oncol 2016; 13:743-753. [PMID: 27806630 DOI: 10.2217/fon-2016-0328] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cervical cancer (CC) is one of the most common malignancies affecting women worldwide. While the morbidity and mortality associated with CC are decreasing in western countries, they both remain high in developing countries. Unfortunately, many issues about molecular mechanisms of CC are not clear yet. miRNAs are a group of small noncoding RNAs that could post-transcriptionally modulate the expression of specific genes and participate in the initiation and progression of multiple diseases including CC. In the last decade, mounting evidences suggest an association between miRNAs and human papillomavirus infection, as well as variations in biologic behavior, treatment response and prognosis in CC. Herein, we highlight the latest findings in this area and the potential applications.
Collapse
Affiliation(s)
- Jing Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuli Liu
- Department of Obstetrics & Gynecology, the Affiliated Hospital of Jiangnan University & the Fourth People's Hospital of Wuxi, Wuxi, China
| | - Leslie H Clark
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haifeng Qiu
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Victoria L Bae-Jump
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
45
|
Sun L, Jiang R, Li J, Wang B, Ma C, Lv Y, Mu N. MicoRNA-425-5p is a potential prognostic biomarker for cervical cancer. Ann Clin Biochem 2016; 54:127-133. [PMID: 27166306 DOI: 10.1177/0004563216649377] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background MicroRNAs have been implicated in many biological pathways involved in tumourigenesis and can serve as prognostic biomarkers in many cancer types. The present study aims at evaluating the prognostic significance of miR-425-5p in cervical cancer. Methods Real-time polymerase chain reaction was performed to assess the expression levels of miR-425-5p in 35 pairs of cervical cancer tissues and their matched normal tissues as well as serum samples from 40 cervical cancer patients, 13 benign cervical disease patients and 32 healthy controls. The association between miR-425-5p expression levels in tissue and serum, and clinicopathological factors was examined. The correlation between serum miR-425-5p expression levels and overall survival of cervical cancer patients was assessed by Kaplan–Meier analysis and Cox proportional hazards model. Results MiR-425-5p expression levels were significantly increased in cervical cancer tissues compared with matched non-cancerous tissues. Higher expression of miR-425-5p was positively associated with high tumour stage ( P = 0.0003) and positive lymph node metastasis ( P = 0.0107). Serum concentrations of miR-425-5p in cervical cancer patients were significantly higher compared with benign cervical disease and healthy controls. Moreover, the up-regulation of serum miR-425-5p occurred more frequently in cervical cancer patients with high TNM stage ( P = 0.0003) and positive lymph node metastasis ( P = 0.0037). Kaplan–Meier analysis showed that high serum miR-425-5p expression levels predicted poor survival ( P = 0.0571). Cox proportional hazards risk analysis demonstrated that miR-425-5p was an independent prognostic factor for cervical cancer. Conclusion Our study suggests that miR-425-5p is up-regulated in cervical cancer and serum miR-425-5p may serve as a potential prognostic biomarker for cervical cancer.
Collapse
Affiliation(s)
- Liwei Sun
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Rong Jiang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Jinduo Li
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Bin Wang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Chunhua Ma
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Yuan Lv
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Ning Mu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| |
Collapse
|
46
|
Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: importance in progression of precancer and cancer. Sci Rep 2016; 6:32735. [PMID: 27597234 PMCID: PMC5011738 DOI: 10.1038/srep32735] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/15/2016] [Indexed: 12/27/2022] Open
Abstract
Oral cancer generally progresses from precancerous lesions such as leukoplakia (LK), lichen planus (LP) and oral submucous fibrosis (OSMF). Since few of these precancers progress to cancers; it is worth to identify biological molecules that may play important roles in progression. Here, expression deregulation of 7 miRNAs (mir204, mir31, mir31*, mir133a, mir7, mir206 and mir1293) and their possible target genes in 23 cancers, 18 LK, 12 LP, 23 OSMF tissues compared to 20 healthy tissues was determined by qPCR method. Expression of mir7, mir31, mir31* and mir1293 was upregulated and that of mir133a, mir204 and mir206 was downregulated in cancer. Expression of most of these miRNAs was also upregulated in LK and LP tissues but not in OSMF. Expression deregulation of some of the target genes was also determined in cancer, LK and LP tissues. Significant upregulation of mir31 and downregulation of its target gene, CXCL12, in cancer, LK and LP tissues suggest their importance in progression of precancer to cancer. Expression upregulation of mir31 was also validated using GEO data sets. Although sample size is low, novelty of this work lies in studying expression deregulation of miRNAs and target genes in oral cancer and three types of precancerous lesions.
Collapse
|
47
|
STEPICHEVA NADEZDAA, SONG JIAL. Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev 2016; 83:654-74. [PMID: 27405090 PMCID: PMC6040227 DOI: 10.1002/mrd.22678] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that orchestrate numerous cellular processes both under normal physiological conditions as well as in diseases. This review summarizes the functional roles and transcriptional regulation of the highly evolutionarily conserved miRNA, microRNA-31 (miR-31). miR-31 is an important regulator of embryonic implantation, development, bone and muscle homeostasis, and immune system function. Its own regulation is disrupted during the onset and progression of cancer and autoimmune disorders such as psoriasis and systemic lupus erythematosus. Limited studies suggest that miR-31 is transcriptionally regulated by epigenetics, such as methylation and acetylation, as well as by a number of transcription factors. Overall, miR-31 regulates diverse cellular and developmental processes by targeting genes involved in cell proliferation, apoptosis, cell differentiation, and cell motility. Mol. Reprod. Dev. 83: 654-674, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - JIA L. SONG
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
48
|
Deng Y, Xiong Y, Liu Y. miR-376c inhibits cervical cancer cell proliferation and invasion by targeting BMI1. Int J Exp Pathol 2016; 97:257-65. [PMID: 27345009 DOI: 10.1111/iep.12177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/31/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in cancer development and progression. The purposes of this study were to explore the role of miR-376c in cervical cancer and to clarify the regulation of BMI1 by miR-376c. Quantitative RT-PCR was used to measure miR-376c expression in cervical cancer tissues and cell lines. The cell proliferation, cell cycle and Transwell invasion assays were performed. A luciferase reporter assay was conducted to confirm the target gene of miR-376c, and the results were validated in cervical cancer cell lines and tissues. MiR-376c was significantly downregulated in cervical cancer cell lines and clinical tissues. Upregulation of miR-376c impaired cell proliferation, blocked G1/S checkpoint of cell cycle and suppressed cell invasion in vitro. BMI1 was verified as a direct target of miR-376c, which was further confirmed by the inverse expression of miR-376c and BMI1 in patient specimens. The newly identified miR-376c/BMI1 pathway provides an insight into cervical cancer progression and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Youping Deng
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Xiong
- Department of gynaecology oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingjuan Liu
- Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
49
|
González-Quintana V, Palma-Berré L, Campos-Parra AD, López-Urrutia E, Peralta-Zaragoza O, Vazquez-Romo R, Pérez-Plasencia C. MicroRNAs are involved in cervical cancer development, progression, clinical outcome and improvement treatment response (Review). Oncol Rep 2015; 35:3-12. [PMID: 26530778 DOI: 10.3892/or.2015.4369] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer (CC) is the third most diagnosed cancer among females worldwide and the fourth cause of cancer-related mortality. Prophylactic HPV vaccines and traditional pap-smear screening are undoubtedly capable of decreasing the incidence and mortality of CC. However, a large number of females succumb to the disease each year due to late diagnosis and resistance to conventional treatments. Thus, it is necessary to identify new molecular markers to predict the clinical outcome and to design powerful treatments. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and are involved in the modulation of several cell pathways associated with progression from pre-malignant to invasive and metastatic disease, increasing tumor malignancy. The aim of this review was to summarize the recent data that describe the important role of miRNAS involved in CC in order to determine their potential as prognostic biomarkers and as therapy targets. Studies of >40 miRNAs with roles in cancer regulation were identified. We also identified 17 miRNAs associated with progression, 12 involved with clinical outcome and 7 that improved CC treatment response. The present review is expected to broaden understanding of the functional role and potential clinical uses of miRNAs in CC.
Collapse
Affiliation(s)
- Víctor González-Quintana
- Cancer Genomics Laboratory, UBIMED, FES-Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, México
| | - Lizbeth Palma-Berré
- Cancer Genomics Laboratory, UBIMED, FES-Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, México
| | - Alma D Campos-Parra
- Cancer Genomics Laboratory, National Cancer Institute of Mexico, Tlalpan, México, DF, México
| | - Eduardo López-Urrutia
- Cancer Genomics Laboratory, UBIMED, FES-Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, México
| | - Oscar Peralta-Zaragoza
- Division of Chronic Infections and Cancer, Research Center for Infectious Diseases, INSP, Cuernavaca Morelos, México
| | - Rafael Vazquez-Romo
- Breast Cancer Surgery Department, National Cancer Institute of Mexico, Tlalpan, México, DF, México
| | - Carlos Pérez-Plasencia
- Cancer Genomics Laboratory, UBIMED, FES-Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, México
| |
Collapse
|
50
|
Zheng W, Liu Z, Zhang W, Hu X. miR-31 functions as an oncogene in cervical cancer. Arch Gynecol Obstet 2015; 292:1083-9. [DOI: 10.1007/s00404-015-3713-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/01/2015] [Indexed: 12/24/2022]
|