1
|
Ventura E, Ducci G, Benot Dominguez R, Ruggiero V, Belfiore A, Sacco E, Vanoni M, Iozzo RV, Giordano A, Morrione A. Progranulin Oncogenic Network in Solid Tumors. Cancers (Basel) 2023; 15:cancers15061706. [PMID: 36980592 PMCID: PMC10046331 DOI: 10.3390/cancers15061706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Progranulin is a pleiotropic growth factor with important physiological roles in embryogenesis and maintenance of adult tissue homeostasis. While-progranulin deficiency is associated with a broad range of pathological conditions affecting the brain, such as frontotemporal dementia and neuronal ceroid lipofuscinosis, progranulin upregulation characterizes many tumors, including brain tumors, multiple myeloma, leiomyosarcoma, mesothelioma and epithelial cancers such as ovarian, liver, breast, bladder, adrenal, prostate and kidney carcinomas. The increase of progranulin levels in tumors might have diagnostic and prognostic significance. In cancer, progranulin has a pro-tumorigenic role by promoting cancer cell proliferation, migration, invasiveness, anchorage-independent growth and resistance to chemotherapy. In addition, progranulin regulates the tumor microenvironment, affects the function of cancer-associated fibroblasts, and modulates tumor immune surveillance. However, the molecular mechanisms of progranulin oncogenic function are not fully elucidated. In bladder cancer, progranulin action relies on the activation of its functional signaling receptor EphA2. Notably, more recent data suggest that progranulin can also modulate a functional crosstalk between multiple receptor-tyrosine kinases, demonstrating a more complex and context-dependent role of progranulin in cancer. Here, we will review what is currently known about the function of progranulin in tumors, with a focus on its molecular mechanisms of action and regulation.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| | - Giacomo Ducci
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Reyes Benot Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Valentina Ruggiero
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Pharmacological Sciences, Master Program in Pharmaceutical Biotechnologies, University of Padua, 35131 Padua, Italy
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| |
Collapse
|
2
|
Ren Z, Li J, Du X, Shi W, Guan F, Wang X, Wang L, Wang H. Helicobacter pylori-Induced Progranulin Promotes the Progression of the Gastric Epithelial Cell Cycle by Regulating CDK4. J Microbiol Biotechnol 2022; 32:844-854. [PMID: 35880418 PMCID: PMC9628913 DOI: 10.4014/jmb.2203.03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori, a group 1 carcinogen, colonizes the stomach and affects the development of stomach diseases. Progranulin (PGRN) is an autocrine growth factor that regulates multiple cellular processes and plays a tumorigenic role in many tissues. Nevertheless, the mechanism of action of PGRN in gastric cancer caused by H. pylori infection remains unclear. Here, we investigated the role of PGRN in cell cycle progression and the cell proliferation induced by H. pylori infection. We found that the increased PGRN was positively associated with CDK4 expression in gastric cancer tissue. PGRN was upregulated by H. pylori infection, thereby promoting cell proliferation, and that enhanced level of proliferation was reduced by PGRN inhibitor. CDK4, a target gene of PGRN, is a cyclin-dependent kinase that binds to cyclin D to promote cell cycle progression, which was upregulated by H. pylori infection. We also showed that knockdown of CDK4 reduced the higher cell cycle progression caused by upregulated PGRN. Moreover, when the PI3K/Akt signaling pathway (which is promoted by PGRN) was blocked, the upregulation of CDK4 mediated by PGRN was reduced. These results reveal the potential mechanism by which PGRN plays a major role through CDK4 in the pathological mechanism of H. pylori infection.
Collapse
Affiliation(s)
- Zongjiao Ren
- Department of Pathogenic Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Jiayi Li
- Department of Pathogenic Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Xianhong Du
- Department of Pathogenic Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China,Key Lab for Immunology in Universities of Shandong Province, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Wenjing Shi
- Department of Gynecology, Weifang Medical University Affiliated Hospital, Weifang 261000, Shandong, P.R. China
| | - Fulai Guan
- Laboratory of Morphology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Xiaochen Wang
- Department of Pathogenic Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Linjing Wang
- Clinical Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Hongyan Wang
- Department of Pathogenic Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China,Key Lab for Immunology in Universities of Shandong Province, Basic Medical College, Weifang Medical University, Weifang 261053, Shandong, P.R. China,Corresponding author Phone: +8615966097518 Fax: +86-0536-8462035 E-mail:
| |
Collapse
|
3
|
Zhou C, Huang Y, Wu J, Wei Y, Chen X, Lin Z, Nie S. A narrative review of multiple mechanisms of progranulin in cancer: a potential target for anti-cancer therapy. Transl Cancer Res 2021; 10:4207-4216. [PMID: 35116716 PMCID: PMC8798827 DOI: 10.21037/tcr-20-2972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Progranulin (PGRN) is an autocrine growth factor and has important effects on regulation of cell growth, motility, tissue repair and embryonic development. Recent years, several researches found the expression of PGRN was at higher levels in a number of cancer cells and its high levels are associated with poor outcome of patients. More and more studies investigated the role of PGRN in cancer and found PGRN exerted various biological functions in cancer cells, such as promoting proliferation, inhibiting apoptosis, inducing migration and invasion of cells, accelerating angiogenesis and enhancing the effectiveness of chemoresistance and radiation. Now the effects of PGRN have been demonstrated in several cancers, including breast cancer, lung cancer, and bladder cancer. In addition, several signaling pathways and molecules are involved in the effects of PGRN on cancer cells, including Akt, mitogen-activated protein kinase (MAPK), vascular endothelial growth factor (VEGF) and cyclin D1. Therefore, PGRN is probably a significant diagnostic and prognostic biomarker for cancer and may be a potential target for anti-cancer therapy. Here, we reviewed the advancing field of PGRN in cancer as well as several signaling pathways activated by PGRN and confirmed PGRN is a key role in cancer. Moreover, future studies are still necessary to elucidate the biological functions and signaling pathways of PGRN in cancer.
Collapse
Affiliation(s)
- Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Jingmi Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Yiting Wei
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xiaosheng Chen
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Zhiqing Lin
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| |
Collapse
|
4
|
Ishida H, Takemura M, Suetsugu A, Naiki T, Tanaka T, Eiichi T, Serrero G, Matsunami H, Yamamoto Y, Saito K. Serum GP88 as a predictive biomarker for hepatocellular carcinoma in patients with viral hepatitis C after direct-acting antiviral agents. Ann Clin Biochem 2021; 58:605-613. [PMID: 34284614 DOI: 10.1177/00045632211036723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Progranulin (GP88) is an 88-kDa glycoprotein growth factor with important biological effects in tumorigenesis and tumour survival. We investigated the usefulness of measuring serum GP88 concentrations as a predictive biomarker for hepatocellular carcinoma in patients with viral hepatitis C after treatment with direct-acting antiviral agents. METHODS We measured the serum GP88 concentrations by using a sandwich enzyme-linked immunoassay from 67 healthy control subjects and 29 patients (20 patients who did not develop hepatocellular carcinoma and 9 patients who developed hepatocellular carcinoma after treatment) with viral hepatitis C after treatment with asunaprevir and daclatasvir. RESULTS The serum GP88 concentrations of patients with chronic hepatitis C prior to antiviral treatment were significantly higher than those of healthy control subjects. After antiviral treatment, the serum GP88 concentrations of patients who eventually developed hepatocellular carcinoma were significantly higher than those who did not develop hepatocellular carcinoma. The changes in the serum GP88 concentrations before and after treatment in patients who developed hepatocellular carcinoma were significantly lower than those in patients who did not develop hepatocellular carcinoma. The cumulative incidence of hepatocellular carcinoma was significantly higher in either patients with high serum GP88 concentrations after treatment or those with small changes of serum GP88 concentrations pre- and post-treatment. CONCLUSIONS Sustained high concentrations of serum GP88 in patients treated with direct-acting antiviral agents are correlated with the risk of developing hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hidekazu Ishida
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.,Department of Clinical Laboratory, Fujita Health University Hospital, Aichi, Japan
| | - Masao Takemura
- Advanced Diagnostic System Research Laboratory, Fujita Health University, Toyoake, Japan
| | - Atsushi Suetsugu
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takafumi Naiki
- Department of Clinical Laboratory, Gifu Municipal Hospital, Gifu, Japan
| | - Takuji Tanaka
- Department of Pathological Diagnosis, Gifu Municipal Hospital, Gifu, Japan
| | | | - Ginette Serrero
- R&D and Precision Antibody Divisions, A&G Pharmaceutical Inc., Columbia, MD, USA
| | | | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.,Advanced Diagnostic System Research Laboratory, Fujita Health University, Toyoake, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.,Advanced Diagnostic System Research Laboratory, Fujita Health University, Toyoake, Japan
| |
Collapse
|
5
|
Chen S, Bie M, Wang X, Fan M, Chen B, Shi Q, Jiang Y. PGRN exacerbates the progression of non-small cell lung cancer via PI3K/AKT/Bcl-2 antiapoptotic signaling. Genes Dis 2021; 9:1650-1661. [PMID: 36157487 PMCID: PMC9485207 DOI: 10.1016/j.gendis.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Progranulin (PGRN) is a growth factor that is involved in the progression of multiple tumors. However, the effects and molecular mechanisms by which PGRN induces lung cancer remain unclear. The expression level of PGRN was analyzed by conducting immunohistochemistry of the histological sections of lung tissues from non-small-cell lung carcinoma (NSCLC) patients. The proliferation, apoptosis, migration, and invasion of NSCLC cells were assessed by the MTT assay, Western blot, degree of wound healing, and Transwell assays. A nude mouse xenograft model was used to validate the role of PGRN in vivo. The expression level of PGRN was higher in male patients with lung adenocarcinoma than in those with lung squamous cell carcinoma; by contrast, no difference was observed in female patients. The overexpression of PGRN promoted the proliferation and anti-apoptosis of H520 (derived from lung squamous cell carcinoma) cells, whereas knockdown of PGRN inhibited the proliferation and anti-apoptosis of A549 (derived from lung adenocarcinoma) cells. Copanlisib (targeting PI3K) inhibited the increase in the expression of cell anti-apoptosis marker Bcl-2 induced by rhPGRN protein; the PI3K agonist 740 Y–P partially reversed the decrease in Bcl-2 expression induced by PGRN deficiency in both A549 and H520 cells. PGRN increased the expression of Ki-67, PCNA, and Bcl-2 in vivo. PGRN inhibited cell apoptosis depending on the PI3K/Akt/Bcl-2 signaling axis; PGRN positivity correlated with lung adenocarcinoma. PGRN is a potential biomarker for the treatment and diagnosis of NSCLC, especially in lung adenocarcinoma.
Collapse
Affiliation(s)
- Sicheng Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Mengjun Bie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Mengtian Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Bin Chen
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingjiu Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Corresponding author. Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, PR China. Fax: +86 023 63310999.
| |
Collapse
|
6
|
Yabe K, Yamamoto Y, Takemura M, Hara T, Tsurumi H, Serrero G, Nabeshima T, Saito K. Progranulin depletion inhibits proliferation via the transforming growth factor beta/SMAD family member 2 signaling axis in Kasumi-1 cells. Heliyon 2021; 7:e05849. [PMID: 33490663 PMCID: PMC7809376 DOI: 10.1016/j.heliyon.2020.e05849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022] Open
Abstract
Progranulin is an autocrine growth factor that promotes proliferation, migration, invasion, and chemoresistance of various cancer cells. These mechanisms mainly depend on the protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) pathway. Recent studies have shown that patients with hematopoietic cancer have elevated serum progranulin levels. Thus, the current study aimed to investigate the role of progranulin in hematopoietic cancer cells and how it modulates their proliferation. Both knockdown of progranulin and progranulin neutralizing antibody treatment inhibited proliferation in several human hematopoietic cancer cell lines. Moreover, progranulin depletion not only decreases the phosphorylation level of the Akt/mTOR pathway but also, surprisingly, increases the expression of transforming growth factor-beta (TGF-β) and phosphorylation of mothers against decapentaplegic homolog 2 (SMAD2) in Kasumi-1 cell. Furthermore, LY2109761, an inhibitor of TGF-β receptor type I/II kinase, and TGF-β neutralizing antibody blocked the inhibition of proliferation induced by progranulin depletion. These data provide new insights that progranulin alters cell proliferation via the TGF-β axis and progranulin could be a new therapeutic target for hematopoietic cancers.
Collapse
Affiliation(s)
- Kuniaki Yabe
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan.,A&T corporation, Kanagawa, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Masao Takemura
- Advanced Diagnostic System Research Laboratory, Fujita Health University, Graduate School of Health Sciences, Aichi, Japan
| | - Takeshi Hara
- Department of Hematology, Matsunami General Hospital, Gifu, Japan
| | - Hisashi Tsurumi
- Department of Hematology, Matsunami General Hospital, Gifu, Japan
| | - Ginette Serrero
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,A&G Pharmaceutical, Inc., Columbia, MD, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University, Graduate School of Health Sciences, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan.,Advanced Diagnostic System Research Laboratory, Fujita Health University, Graduate School of Health Sciences, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Japan.,Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Liu C, Li J, Shi W, Zhang L, Liu S, Lian Y, Liang S, Wang H. Progranulin Regulates Inflammation and Tumor. Antiinflamm Antiallergy Agents Med Chem 2021; 19:88-102. [PMID: 31339079 PMCID: PMC7475802 DOI: 10.2174/1871523018666190724124214] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022]
Abstract
Progranulin (PGRN) mediates cell cycle progression and cell motility as a pleiotropic growth factor and acts as a universal regulator of cell growth, migration and transformation, cell cycle, wound healing, tumorigenesis, and cytotoxic drug resistance as a secreted glycoprotein. PGRN overexpression can induce the secretion of many inflammatory cytokines, such as IL-8, -6,-10, TNF-α. At the same time, this protein can promote tumor proliferation and the occurrence and development of many related diseases such as gastric cancer, breast cancer, cervical cancer, colorectal cancer, renal injury, neurodegeneration, neuroinflammatory, human atherosclerotic plaque, hepatocarcinoma, acute kidney injury, amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease. In short, PGRN plays a very critical role in injury repair and tumorigenesis, it provides a new direction for succeeding research and serves as a target for clinical diagnosis and treatment, thus warranting further investigation. Here, we discuss the potential therapeutic utility and the effect of PGRN on the relationship between inflammation and cancer.
Collapse
Affiliation(s)
- Chunxiao Liu
- Pathogenic Microbiology, Clinical Medical College, Weifang Medical University, Shandong 261053, China
| | - Jiayi Li
- Pathogenic Microbiology, Clinical Medical College, Weifang Medical University, Shandong 261053, China
| | - Wenjing Shi
- Department of Gynecology, Weifang Medical University Affiliated Hospital, Weifang, Shandong 261031, China
| | - Liujia Zhang
- Clinical Medical College, Weifang Medical University, Shandong 261053, China
| | - Shuang Liu
- Clinical Medical College, Weifang Medical University, Shandong 261053, China
| | - Yingcong Lian
- Clinical Medical College, Weifang Medical University, Shandong 261053, China
| | - Shujuan Liang
- Key Lab for Immunology in Universities of Shandong Province, Clinical Medical College, Weifang Medical University, Shandong 261053, China
| | - Hongyan Wang
- Pathogenic Microbiology, Clinical Medical College, Weifang Medical University, Shandong 261053, China
| |
Collapse
|
8
|
Serrero G. Progranulin/GP88, A Complex and Multifaceted Player of Tumor Growth by Direct Action and via the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:475-498. [PMID: 34664252 DOI: 10.1007/978-3-030-73119-9_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Investigation of the role of progranulin/GP88 on the proliferation and survival of a wide variety of cells has been steadily increasing. Several human diseases stem from progranulin dysregulation either through its overexpression in cancer or its absence as in the case of null mutations in some form of frontotemporal dementia. The present review focuses on the role of progranulin/GP88 in cancer development, progression, and drug resistance. Various aspects of progranulin identification, biology, and signaling pathways will be described. Information will be provided about its direct role as an autocrine growth and survival factor and its paracrine effect as a systemic factor as well as via interaction with extracellular matrix proteins and with components of the tumor microenvironment to influence drug resistance, migration, angiogenesis, inflammation, and immune modulation. This chapter will also describe studies examining progranulin/GP88 tumor tissue expression as well as circulating level as a prognostic factor for several cancers. Due to the wealth of publications in progranulin, this review does not attempt to be exhaustive but rather provide a thread to lead the readers toward more in-depth exploration of this fascinating and unique protein.
Collapse
|
9
|
Yue S, Ye X, Zhou T, Gan D, Qian H, Fang W, Yao M, Zhang D, Shi H, Chen T. PGRN -/- TAMs-derived exosomes inhibit breast cancer cell invasion and migration and its mechanism exploration. Life Sci 2020; 264:118687. [PMID: 33181174 DOI: 10.1016/j.lfs.2020.118687] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most malignant diseases world-wide and ranks the first among female cancers. Progranulin (PGRN) plays a carcinogenic role in breast cancer, but its mechanisms are not clear. In addition, there are few reports on the relationship between PGRN and tumor-associated macrophages (TAMs). AIMS To investigate the effects of exosomes derived from PGRN-/- TAMs on invasion and migration of breast cancer cells. MAIN METHODS Mouse breast cancer xenograft model was constructed to explore the effect of PGRN-/- tumor environment (TME) on breast cancer. Flow cytometry was used to compare TAMs of wild type (WT) and PGRN-/- tumor tissue. Transwell assay, wound healing assay and western blot were used to explore the effect of WT and PGRN-/- TAMs and their exosomes on invasion, migration and epithelial-mesenchymal transition (EMT) of breast cancer cells. MicroRNA (miRNA) assay was used to find out the differentially expressed miRNA of negative control (NC) and siPGRN-TAMs exosomes. Quantitative PCR and luciferase report assay were used to explore the target gene. KEY FINDINGS The lung metastasis of breast cancer of PGRN-/- mice was inhibited. PGRN-/- TAMs inhibited invasion, migration and EMT of breast cancer cells through their exosomes. MiR-5100 of PGRN-/- TAMs-derived exosomes was up-regulated, which might regulate expression of CXCL12, thereby inhibiting the CXCL12/CXCR4 axis, and ultimately inhibiting the invasion, migration and EMT of breast cancer cells. SIGNIFICANCE Our study elucidates a new molecular mechanism of lung metastasis of breast cancer, so it may contribute to efficient prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Shujun Yue
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiangsen Ye
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ting Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Delu Gan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenli Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Mengli Yao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
10
|
Xu W, Han SD, Zhang C, Li JQ, Wang YJ, Tan CC, Li HQ, Dong Q, Mei C, Tan L, Yu JT. The FAM171A2 gene is a key regulator of progranulin expression and modifies the risk of multiple neurodegenerative diseases. SCIENCE ADVANCES 2020; 6:eabb3063. [PMID: 33087363 PMCID: PMC7577723 DOI: 10.1126/sciadv.abb3063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/08/2020] [Indexed: 05/14/2023]
Abstract
Progranulin (PGRN) is a secreted pleiotropic glycoprotein associated with the development of common neurodegenerative diseases. Understanding the pathophysiological role of PGRN may help uncover biological underpinnings. We performed a genome-wide association study to determine the genetic regulators of cerebrospinal fluid (CSF) PGRN levels. Common variants in region of FAM171A2 were associated with lower CSF PGRN levels (rs708384, P = 3.95 × 10-12). This was replicated in another independent cohort. The rs708384 was associated with increased risk of Alzheimer's disease, Parkinson's disease, and frontotemporal dementia and could modify the expression of the FAM171A2 gene. FAM171A2 was considerably expressed in the vascular endothelium and microglia, which are rich in PGRN. The in vitro study further confirmed that the rs708384 mutation up-regulated the expression of FAM171A2, which caused a decrease in the PGRN level. Collectively, genetic, molecular, and bioinformatic findings suggested that FAM171A2 is a key player in regulating PGRN production.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Si-Da Han
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jie-Qiong Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cui Mei
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Li Y, Wang D, Li Y, Zhu J, Zhao J, Deng Y, Rogalski EJ, Bigio EH, Rademaker AW, Xia H, Mao Q. A Highly Sensitive Sandwich ELISA to Detect CSF Progranulin: A Potential Biomarker for CNS Disorders. J Neuropathol Exp Neurol 2020; 78:406-415. [PMID: 30939191 DOI: 10.1093/jnen/nlz022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Progranulin (PGRN) plays critical roles in inflammation, tumorigenesis, and neurodegeneration. PGRN levels in blood and cerebrospinal fluid (CSF) are being increasingly investigated as potential biomarkers for these disorders. However, the value of CSF PGRN as a biomarker has been limited because currently available commercial enzyme-linked immunosorbent assay (ELISA) kits have suboptimal sensitivity for detecting CSF PGRN. In this study, pairs of monoclonal antibodies (MAbs) were first screened from eleven monoclonal antiPGRN antibodies using indirect ELISA, then a sandwich ELISA was established using the 2 optimized MAbs. This system displayed high sensitivity, with a lower limit of detection of 60.0 pg/mL and a lower limit of quantification of 150 pg/mL. By using this ELISA system, we showed varied CSF PGRN levels in different brain disorders. For example, as compared with the normal controls, patients with Alzheimer disease or multiple sclerosis showed mildly increased CSF PGRN; those with aseptic encephalitis or neuropsychiatric systemic lupus erythematosus showed moderately increased CSF PGRN; those with bacterial leptomeningitis showed severely increased CSF PGRN. Additionally, determining CSF PGRN levels could monitor CNS metastasis and CSF seeding of carcinomas. These results indicate that this system can be valuable in studying the diagnostic and prognostic value of CSF PGRN in brain disorders.
Collapse
Affiliation(s)
- Yanqing Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Dongyang Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Ya Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Yanchun Deng
- Department of Neurology, Xijing Hospital, Air Force Medical School, Xi'an, Shaanxi, P.R. China
| | - Emily J Rogalski
- Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eileen H Bigio
- Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alfred W Rademaker
- Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
12
|
Schulze-Edinghausen L, Dürr C, Öztürk S, Zucknick M, Benner A, Kalter V, Ohl S, Close V, Wuchter P, Stilgenbauer S, Lichter P, Seiffert M. Dissecting the Prognostic Significance and Functional Role of Progranulin in Chronic Lymphocytic Leukemia. Cancers (Basel) 2019; 11:E822. [PMID: 31200555 PMCID: PMC6627891 DOI: 10.3390/cancers11060822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is known for its strong dependency on the tumor microenvironment. We found progranulin (GRN), a protein that has been linked to inflammation and cancer, to be upregulated in the serum of CLL patients compared to healthy controls, and increased GRN levels to be associated with an increased hazard for disease progression and death. This raised the question of whether GRN is a functional driver of CLL. We observed that recombinant GRN did not directly affect viability, activation, or proliferation of primary CLL cells in vitro. However, GRN secretion was induced in co-cultures of CLL cells with stromal cells that enhanced CLL cell survival. Gene expression profiling and protein analyses revealed that primary mesenchymal stromal cells (MSCs) in co-culture with CLL cells acquire a cancer-associated fibroblast-like phenotype. Despite its upregulation in the co-cultures, GRN treatment of MSCs did not mimic this effect. To test the relevance of GRN for CLL in vivo, we made use of the Eμ-TCL1 CLL mouse model. As we detected strong GRN expression in myeloid cells, we performed adoptive transfer of Eμ-TCL1 leukemia cells to bone marrow chimeric Grn-/- mice that lack GRN in hematopoietic cells. Thereby, we observed that CLL-like disease developed comparable in Grn-/- chimeras and respective control mice. In conclusion, serum GRN is found to be strongly upregulated in CLL, which indicates potential use as a prognostic marker, but there is no evidence that elevated GRN functionally drives the disease.
Collapse
Affiliation(s)
- Lena Schulze-Edinghausen
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Claudia Dürr
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Selcen Öztürk
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway.
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Verena Kalter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Sibylle Ohl
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Viola Close
- Internal Medicine III, University of Ulm, 89081 Ulm, Germany, and Cooperation Unit Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany.
| | - Stephan Stilgenbauer
- Internal Medicine III, University of Ulm, 89081 Ulm, Germany, and Department of Internal Medicine I, Saarland University, 66421 Homburg, Germany.
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Elkabets M, Brook S. Methods to Study the Role of Progranulin in the Tumor Microenvironment. Methods Mol Biol 2019; 1806:155-176. [PMID: 29956276 DOI: 10.1007/978-1-4939-8559-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Accurate measurement of progranulin (PGRN) in the circulation and in the tumor microenvironment is essential for understanding its role in cancer progression and metastasis. This chapter describes a number of approaches to measure the transcription level of the GRN gene and to detect and analyze PGRN expression in cancer cells and in the local environment of the tumor, in mouse and human samples. These validated protocols are utilized to investigate the functional role of PGRN in cancer. Finally, we discuss strategies to investigate the functions of PGRN in tumors using genetically modified mouse models and gene silencing techniques.
Collapse
Affiliation(s)
- Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Samuel Brook
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
14
|
Pan Y, Cheung ST, Tong JHM, Tin KY, Kang W, Lung RWM, Wu F, Li H, Ng SSM, Mak TWC, To KF, Chan AWH. Granulin epithelin precursor promotes colorectal carcinogenesis by activating MARK/ERK pathway. J Transl Med 2018; 16:150. [PMID: 29866109 PMCID: PMC5987413 DOI: 10.1186/s12967-018-1530-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022] Open
Abstract
Background Granulin epithelin precursor (GEP) is reported to function as a growth factor stimulating proliferation and migration, and conferring chemoresistance in many cancer types. However, the expression and functional roles of GEP in colorectal cancer (CRC) remain elusive. The aim of this study was thus to investigate the clinical significance of GEP in CRC and reveal the molecular mechanism of GEP in CRC initiation and progression. Methods The mRNA expression of GEP in CRC cell lines were detected by qRT-PCR. The GEP protein expression was validated by immunohistochemistry in tissue microarray (TMA) including 190 CRC patient samples. The clinicopathological correlation analysis were achieved by GEP expression on TMA. Functional roles of GEP were determined by MTT proliferation, monolayer colony formation, cell invasion and migration and in vivo studies through siRNA/shRNA mediated knockdown assays. The cancer signaling pathway identification was acquired by flow cytometry, western blot and luciferase activity assays. Results The mRNA expression of GEP in CRC was significantly higher than it in normal colon tissues. GEP protein was predominantly localized in the cytoplasm and most of the CRC cases demonstrated abundant GEP protein compared with non-tumorous tissues. GEP overexpression was associated with non-rectal location, advanced AJCC stage, regional lymph node and distant metastasis. By Kaplan–Meier survival analysis, GEP abundance served as a prognostic marker for worse survival in CRC patients. GEP knockdown exhibited anti-cancer effect such as inhibiting cell proliferation, monolayer colony formation, cell invasion and migration in DLD-1 and HCT 116 cells and decelerating xenograft formation in nude mice. siGEP also induced G1 cell cycle arrest and apoptosis. Luciferase activity assays further demonstrated GEP activation was involved in MAPK/ERK signaling pathway. Conclusion In summary, we compressively delineate the oncogenic role of GEP in colorectal tumorigenesis by activating MAPK/ERK signaling pathway. GEP might serve as a useful prognostic biomarker and therapeutic target for CRC. Electronic supplementary material The online version of this article (10.1186/s12967-018-1530-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Pan
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Siu Tim Cheung
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Joanna Hung Man Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ka Yee Tin
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Raymond Wai Ming Lung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Feng Wu
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hui Li
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Simon Siu Man Ng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Division of Colorectal Surgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Tony Wing Chung Mak
- Division of Colorectal Surgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Anthony Wing Hung Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
15
|
Growth factor progranulin promotes tumorigenesis of cervical cancer via PI3K/Akt/mTOR signaling pathway. Oncotarget 2018; 7:58381-58395. [PMID: 27517315 PMCID: PMC5295437 DOI: 10.18632/oncotarget.11126] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
Progranulin (PGRN) is an autocrine growth factor with tumorigenic roles in various tumors including cervical cancer. In this study, we investigated mammalian target of rapamycin (mTOR) signaling in response to PGRN induction and the contribution of the PGRN-stimulated PI3K/Akt/mTOR signaling pathway in the transformation and progression of cervical cancer. Here we identified a strong linkage between PGRN and phosphorylated-mTOR in cervical cancer tissues. PGRN promoted the phosphorylation of mTOR and activated mTOR signaling in human cervical mucosa epithelial cells and cervical cancer cells, and TNFR2 was needed for PGRN-stimulated mTOR signaling. Inhibition of mTOR signaling with rapamycin decreased PGRN-stimulated protein synthesis, transformation and proliferation of cervical cells in vitro, and tumor formation and growth in vivo. Thus, our findings update the signal transduction pathways of PGRN by suggesting that mTOR signaling contributes to PGRN-stimulated carcinogenesis of cervical cancer. Inhibition of PGRN/PI3K/Akt/mTOR signaling may be targeted in treatment of cervical cancer.
Collapse
|
16
|
Yu Y, Shi Y, Zuo X, Feng Q, Hou Y, Tang W, Lu Y, Yi F, Hou M, Yu Y, Peng J. Progranulin facilitates the increase of platelet count in immune thrombocytopenia. Thromb Res 2018; 164:24-31. [PMID: 29475178 DOI: 10.1016/j.thromres.2018.02.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/22/2018] [Accepted: 02/16/2018] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Progranulin (PGRN) is emerging as a critical immune mediator involved in a variety of autoimmune disorders. However, its role in immune thrombocytopenia (ITP) remains unclear. MATERIALS AND METHODS In this study, the enzyme-linked immunosorbent assay was used for determining the plasma levels of PGRN in ITP patients vs. healthy controls. In addition, the role of PGRN in ITP was investigated in two kinds of ITP murine models. Further, we explored whether PGRN functioned by affecting the number of T regulatory cells (Tregs) using flow cytometry. RESULTS We first observed that plasma levels of PGRN were significantly elevated in ITP patients (n = 52) compared to healthy controls (n = 40), and the levels of PGRN declined in patients after receiving treatment. Additionally, we found a negative correlation between plasma PGRN levels and platelet count of ITP patients, suggesting that PGRN is involved in the pathogenesis of ITP. PGRN deficiency further decreased platelet count in a passive-transfer ITP murine model. By contrast, administration of recombinant PGRN increased platelet count in SCID mice with chronic ITP. Meanwhile, PGRN deficiency impaired proliferation of Tregs in the passive transfer ITP murine model. These data suggest that PGRN may exert a protective role in ITP by promoting Treg proliferation. CONCLUSION Our study revealed a new regulator involved in the pathogenesis of ITP and provided a potential strategy for management of ITP.
Collapse
Affiliation(s)
- Yingyi Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuanyuan Shi
- Department of Pathogenic Biology, Shandong University School of Basic Medical Sciences, China
| | - Xinyi Zuo
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Wei Tang
- Department of Pathogenic Biology, Shandong University School of Basic Medical Sciences, China
| | - Yi Lu
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuan Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
17
|
Daya M, Loilome W, Techasen A, Thanee M, Sa-Ngiamwibool P, Titapun A, Yongvanit P, Namwat N. Progranulin modulates cholangiocarcinoma cell proliferation, apoptosis, and motility via the PI3K/pAkt pathway. Onco Targets Ther 2018; 11:395-408. [PMID: 29403285 PMCID: PMC5783154 DOI: 10.2147/ott.s155511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Progranulin (PGRN) is a growth factor normally expressed in rapidly cycling epithelial cells for growth, differentiation, and motility. Several studies have shown the association of PGRN overexpression with the progression of numerous malignancies, including cholangiocarcinoma (CCA). However, the underlying mechanisms on how PGRN modulates CCA cell proliferation and motility is not clear. In this study, we investigated the prognostic significance of PGRN expression in human CCA tissue and the mechanisms of PGRN modulation of CCA cell proliferation and motility. We found that CCA tissues with high PGRN expression were correlated with poor prognosis and likelihood of metastasis. PGRN knockdown KKU-100 and KKU-213 cells demonstrated a reduced rate of proliferation and colony formation and decreased levels of phosphatidyl inositol-3-kinase (PI3K) and phosphorylated Akt (pAkt) proteins. Accumulation of cells at the G1 phase was observed and was accompanied by a reduction of cyclin D1 and CDK4 protein levels. Knockdown cells also induced apoptosis by increasing the Bax-to-Bcl-2 ratio. Increased cell apoptosis was confirmed by annexin V-FITC/PI staining. Moreover, suppression of PGRN reduced CCA cell migration and invasion in vitro. Investigating the biomarkers in epithelial–mesenchymal transition (EMT) revealed a decrease in the expression of vimentin, snail, and metalloproteinase-9. In conclusion, our findings imply that PGRN modulates cell proliferation by dysregulating the G1 phase, inhibiting apoptosis, and that it plays a role in the EMT affecting CCA cell motility, possibly via the PI3K/pAkt pathway.
Collapse
Affiliation(s)
- Minerva Daya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Sampaloc, Manila, Philippines.,Cholangiocarcinoma Research Institute
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute.,Faculty of Associated Medical Science
| | | | | | - Attapol Titapun
- Department of Pathology.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute
| |
Collapse
|
18
|
Higher levels of progranulin in cerebrospinal fluid of patients with lymphoma and carcinoma with CNS metastasis. J Neurooncol 2018; 137:455-462. [PMID: 29340960 DOI: 10.1007/s11060-017-2742-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 12/29/2017] [Indexed: 01/08/2023]
Abstract
Assessing central nervous system (CNS) involvement in patients with lymphoma or carcinoma is important in determining therapy and prognosis. Progranulin (PGRN) is a secreted glycosylated protein with roles in cancer growth and survival; it is highly expressed in aggressive cancer cell lines and specimens from many cancer types. We examined PRGN levels by Enzyme Immuno-Assay (EIA) in cerebrospinal fluid (CSF) samples from 230 patients, including 18 with lymphoma [12 with CNS metastasis (CNS+); 6 without CNS metastasis (CNS-)], 21 with carcinomas (10 CNS+; 11 CNS-), and 191 control patients with non-cancer neurological diseases, and compared PRGN levels among these disease groups. Median CSF PGRN levels in the CNS+ lymphoma group were significantly higher than in the CNS- lymphoma and control non-cancer groups; and were also significantly higher in the CNS+ carcinoma group than in the CNS- carcinoma and control groups, except for patients with infectious neurological disorders. Receiver operating characteristic curve analyses revealed that CSF PGRN levels distinguished CNS+ lymphoma from CNS- lymphoma and non-cancer neurological diseases [area under curve (AUC): 0.969]; and distinguished CNS+ carcinomas from CNS- carcinomas and non-cancer neurological diseases (AUC: 0.918). We report here, for the first time, that CSF PGRN levels are higher in patients with CNS+ lymphoma and carcinomas compared to corresponding CNS- diseases. This would imply that measuring CSF PGRN levels could be used to monitor CNS+ lymphoma and metastasis.
Collapse
|
19
|
Abstract
Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.
Collapse
|
20
|
Abella V, Pino J, Scotece M, Conde J, Lago F, Gonzalez-Gay MA, Mera A, Gómez R, Mobasheri A, Gualillo O. Progranulin as a biomarker and potential therapeutic agent. Drug Discov Today 2017. [DOI: 10.1016/j.drudis.2017.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Li YW, Chiang KY, Li YH, Wu SY, Liu W, Lin CR, Wu JL. MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling. PLoS One 2017; 12:e0177887. [PMID: 28531199 PMCID: PMC5439702 DOI: 10.1371/journal.pone.0177887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development.
Collapse
Affiliation(s)
- Ya-Wen Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Keng-Yu Chiang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Life science, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsing Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Sung-Yu Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Ray Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jen-Leih Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Kazama K, Hoshino K, Kodama T, Okada M, Yamawaki H. Adipocytokine, progranulin, augments acetylcholine-induced nitric oxide-mediated relaxation through the increases of cGMP production in rat isolated mesenteric artery. Acta Physiol (Oxf) 2017; 219:781-789. [PMID: 27332749 DOI: 10.1111/apha.12739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/18/2016] [Accepted: 06/17/2016] [Indexed: 01/28/2023]
Abstract
AIM Progranulin (PGRN) is a novel adipocytokine with anti-inflammatory effects in vascular cells. The aim of this study was to clarify the effects of PGRN on reactivity of isolated blood vessel. METHODS Isometric contraction of rat isolated superior mesenteric artery was measured. RESULTS Pre-treatment with PGRN (10-100 ng mL-1 , 30 min) had no effect on noradrenaline- or 5-hydroxytriptamine-induced contraction. On the other hand, pre-treatment with PGRN (100 ng mL-1 ) augmented acetylcholine (ACh; 30 nm)-induced endothelium-dependent relaxation. Pre-treatment with PGRN (100 ng mL-1 ) augmented ACh (10 μm)-induced nitric oxide (NO)-mediated relaxation in the presence of indomethacin (10 μm), a cyclooxygenase inhibitor, and tetraethyl ammonium (10 mm), a non-selective potassium channel blocker. In contrast, pre-treatment with PGRN (100 ng mL-1 ) had no effect on ACh-induced endothelium-derived hyperpolarizing factor-mediated relaxation. Pre-treatment with PGRN (100 ng mL-1 ) had no effect on ACh (10 μm, 1 min)-induced endothelial NO synthase phosphorylation (at Ser1177) as determined by Western blotting. Pre-treatment with PGRN (100 ng mL-1 ) augmented an NO donor, sodium nitroprusside (SNP; 30 nm-1 μm)- but not a membrane-permeable cGMP analogue, 8-bromo-cGMP-induced relaxation. In the presence of 3-isobutyl-1-methylxanthine (100 μm), a phosphodiesterase inhibitor, pre-treatment with PGRN (100 ng mL-1 ) increased SNP (30 nm, 5 min)-induced cGMP production as determined by enzyme immunoassay. CONCLUSION We for the first time demonstrate that PGRN augments ACh-induced NO-mediated relaxation through the increases of cGMP production in smooth muscle. These results indicate PGRN as a possible pharmacotherapeutic target against cardiovascular diseases including obesity-related hypertension.
Collapse
Affiliation(s)
- K. Kazama
- Laboratory of Veterinary Pharmacology; School of Veterinary Medicine; Kitasato University; Towada Aomori Japan
| | - K. Hoshino
- Laboratory of Veterinary Pharmacology; School of Veterinary Medicine; Kitasato University; Towada Aomori Japan
| | - T. Kodama
- Laboratory of Veterinary Pharmacology; School of Veterinary Medicine; Kitasato University; Towada Aomori Japan
| | - M. Okada
- Laboratory of Veterinary Pharmacology; School of Veterinary Medicine; Kitasato University; Towada Aomori Japan
| | - H. Yamawaki
- Laboratory of Veterinary Pharmacology; School of Veterinary Medicine; Kitasato University; Towada Aomori Japan
| |
Collapse
|
23
|
Interleukin-6-stimulated progranulin expression contributes to the malignancy of hepatocellular carcinoma cells by activating mTOR signaling. Sci Rep 2016; 6:21260. [PMID: 26879559 PMCID: PMC4754634 DOI: 10.1038/srep21260] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
This study aimed to determine the expression of progranulin (PGRN) in hepatocellular carcinoma (HCC) cells in response to interleukin 6 (IL-6), a non-cellular component of the tumor microenvironment, and the molecular mechanism of PGRN oncogenic activity in hepatocarcinogenesis. Levels of IL-6 and PGRN were increased and positively correlated in HCC tissues. IL-6 dose- and time-dependently increased PGRN level in HCC cells. IL-6-driven PGRN expression was at least in part mediated by Erk/C/EBPβ signaling, and reduced expression of PGRN impaired IL-6-stimulated proliferation, migration and invasion of HepG2 cells. PGRN activated mammalian target of rapamycin (mTOR) signaling, as evidenced by increased phosphorylation of p70S6K, 4E-BP1, and Akt-Ser473/FoxO1. Inhibition of mTOR signaling with rapamycin, an mTOR signaling inhibitor, disturbed PGRN- or IL-6-mediated proliferation, migration and invasion of HCC cells in vitro. Persistent activation of mTOR signaling by knockdown of TSC2 restored PGRN-knockdown-attenuated pro-proliferation effects of IL-6 in HepG2 cells. In addition, rapamycin treatment in vivo in mice slowed tumor growth stimulated by recombinant human PGRN. Our findings provide a better understanding of the biological activities of the IL-6/PGRN/mTOR cascade in the carcinogenesis of HCC, which may suggest a novel target in the treatment of HCC.
Collapse
|
24
|
Tanimoto R, Lu KG, Xu SQ, Buraschi S, Belfiore A, Iozzo RV, Morrione A. Mechanisms of Progranulin Action and Regulation in Genitourinary Cancers. Front Endocrinol (Lausanne) 2016; 7:100. [PMID: 27512385 PMCID: PMC4961702 DOI: 10.3389/fendo.2016.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/08/2016] [Indexed: 11/13/2022] Open
Abstract
The growth factor progranulin has emerged in recent years as a critical regulator of transformation in several cancer models, including breast cancer, glioblastomas, leukemias, and hepatocellular carcinomas. Several laboratories, including ours, have also demonstrated an important role of progranulin in several genitourinary cancers, including ovarian, endometrial, cervical, prostate, and bladder tumors, where progranulin acts as an autocrine growth factor thereby modulating motility and invasion of transformed cells. In this review, we will focus on the mechanisms of action and regulation of progranulin signaling in genitourinary cancers with a special emphasis on prostate and bladder tumors.
Collapse
Affiliation(s)
- Ryuta Tanimoto
- Biology of Prostate Cancer Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kuojung G. Lu
- Biology of Prostate Cancer Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shi-Qiong Xu
- Biology of Prostate Cancer Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Simone Buraschi
- Cancer Cell Biology and Signaling Program, Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Department of Health Sciences, Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Renato V. Iozzo
- Cancer Cell Biology and Signaling Program, Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea Morrione
- Biology of Prostate Cancer Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- *Correspondence: Andrea Morrione,
| |
Collapse
|
25
|
Nicoletto BB, Canani LH. The role of progranulin in diabetes and kidney disease. Diabetol Metab Syndr 2015; 7:117. [PMID: 26697121 PMCID: PMC4687133 DOI: 10.1186/s13098-015-0112-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Progranulin (PGRN) is a cysteine rich secreted protein, expressed in epithelial cells, immune cells, neurons, and adipocytes. It was first identified for its growth factor-like properties, being involved in early embryogenesis and tissue remodeling, acting as an anti-inflammatory molecule. In the central nervous system, PGRN has neurotrophic and neuroprotective actions. There is also evidence of PGRN effects on cancer, contributing to tumor proliferation, invasion and cell survival. Recently, PGRN was recognized as an adipokine related to obesity and insulin resistance, revealing its metabolic function and pro-inflammatory properties. In obesity and type 2 diabetes mellitus, PGRN levels are increased. In renal disease, there is a relevant association, however, it is not known if it could contribute to kidney damage or if it is only a route of PGRN elimination. PGRN is an emerging molecule which demands studies in different fields. Possibly, it plays distinct functions in different tissues/cells and metabolic conditions. Here, we discuss potential mechanisms and recent data of PGRN pro-inflammatory actions, regarding obesity, insulin resistance, type 2 diabetes mellitus and kidney disease.
Collapse
Affiliation(s)
- Bruna Bellincanta Nicoletto
- />Post Graduation Medical Sciences Program: Endocrinology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), 2400 Ramiro Barcelos Street, 2º floor, Porto Alegre, Rio Grande do Sul 90035-003 Brazil
| | - Luis Henrique Canani
- />Post Graduation Medical Sciences Program: Endocrinology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), 2400 Ramiro Barcelos Street, 2º floor, Porto Alegre, Rio Grande do Sul 90035-003 Brazil
- />Division of Endocrinology, Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos Street, Building 12, 4° floor, Porto Alegre, 90035-903 Brazil
| |
Collapse
|
26
|
Aguirre Palma LM, Gehrke I, Kreuzer KA. Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand? Crit Rev Oncol Hematol 2014; 93:225-36. [PMID: 25459668 DOI: 10.1016/j.critrevonc.2014.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/23/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
The role of angiogenesis in haematological malignancies such as chronic lymphocytic leukaemia (CLL) is difficult to envision, because leukaemia cells are not dependent on a network of blood vessels to support basic physiological requirements. Regardless, CLL cells secrete high levels of major angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF). Nonetheless, it remains unclear how most angiogenic factors regulate accumulation and delayed apoptosis of CLL cells. Angiogenic factors such as leptin, granulocyte colony-stimulating factor (G-CSF), follistatin, angiopoietin-1 (Ang1), angiogenin (ANG), midkine (MK), pleiotrophin (PTN), progranulin (PGRN), proliferin (PLF), placental growth factor (PIGF), and endothelial locus-1 (Del-1), represent novel therapeutic targets of future CLL research but have remained widely overlooked. This review aims to outline our current understanding of angiogenic growth factors and their relationship with CLL, a still uncured haematopoietic malignancy.
Collapse
Affiliation(s)
| | - Iris Gehrke
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB, Canada.
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|