1
|
Broege A, Rossetti S, Sen A, Menon AS, MacNeil I, Molden J, Laing L. Functional Assessments of Gynecologic Cancer Models Highlight Differences Between Single-Node Inhibitors of the PI3K/AKT/mTOR Pathway and a Pan-PI3K/mTOR Inhibitor, Gedatolisib. Cancers (Basel) 2024; 16:3520. [PMID: 39456616 PMCID: PMC11505998 DOI: 10.3390/cancers16203520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The PI3K/AKT/mTOR (PAM) pathway is frequently activated in gynecological cancers. Many PAM inhibitors selectively target single PAM pathway nodes, which can lead to reduced efficacy and increased drug resistance. To address these limitations, multiple PAM pathway nodes may need to be inhibited. Gedatolisib, a well-tolerated panPI3K/mTOR inhibitor targeting all Class I PI3K isoforms, mTORC1 and mTORC2, could represent an effective treatment option for patients with gynecologic cancers. Methods: Gedatolisib and other PAM inhibitors (e.g., alpelisib, capivasertib, and everolimus) were tested in endometrial, ovarian, and cervical cancer cell lines by using cell viability, cell proliferation, and flow cytometry assays. Xenograft studies evaluated gedatolisib in combination with a CDK4/6 inhibitor (palbociclib) or an anti-estrogen (fulvestrant). A pseudo-temporal transcriptomic trajectory of endometrial cancer clinical progression was computationally modeled employing data from 554 patients to correlate non-clinical studies with a potential patient group. Results: Gedatolisib induced a substantial decrease in PAM pathway activity in association with the inhibition of cell cycle progression and the decreased cell viability in vitro. Compared to single-node PAM inhibitors, gedatolisib exhibited greater growth-inhibitory effects in almost all cell lines, regardless of the PAM pathway mutations. Gedatolisib combined with either fulvestrant or palbociclib inhibited tumor growth in endometrial and ovarian cancer xenograft models. Conclusions: Gedatolisib in combination with other therapies has shown an acceptable safety profile and promising preliminary efficacy in clinical studies with various solid tumor types. The non-clinical data presented here support the development of gedatolisib combined with CDK4/6 inhibitors and/or hormonal therapy for gynecologic cancer treatment.
Collapse
Affiliation(s)
- Aaron Broege
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Stefano Rossetti
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Adrish Sen
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Arul S. Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA;
- College of Computing, Data Science, and Society, University of California, Berkeley, CA 94720, USA
| | - Ian MacNeil
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Jhomary Molden
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Lance Laing
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| |
Collapse
|
2
|
Matoba Y, Devins KM, Milane L, Manning WB, Mazina V, Yeku OO, Rueda BR. High-Grade Endometrial Cancer: Molecular Subtypes, Current Challenges, and Treatment Options. Reprod Sci 2024; 31:2541-2559. [PMID: 38658487 DOI: 10.1007/s43032-024-01544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Although many recent advancements have been made in women's health, perhaps one of the most neglected areas of research is the diagnosis and treatment of high-grade endometrial cancer (EnCa). The molecular classification of EnCa in concert with histology was a major step forward. The integration of profiling for mismatch repair deficiency and Human Epidermal Growth Factor 2 (HER2) overexpression, can further inform treatment options, especially for drug resistant recurrent disease. Recent early phase trials suggest that regardless of subtype, combination therapy with agents that have distinct mechanisms of action is a fruitful approach to the treatment of high-grade EnCa. Unfortunately, although the importance of diagnosis and treatment of high-grade EnCa is well recognized, it is understudied compared to other gynecologic and breast cancers. There remains a tremendous need to couple molecular profiling and biomarker development with promising treatment options to inform new treatment strategies with higher efficacy and safety for all who suffer from high-grade recurrent EnCa.
Collapse
Affiliation(s)
- Yusuke Matoba
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
| | - Kyle M Devins
- Department of Pathology, Massachusetts General Hospital, 021151, Boston, MA, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, 02115, Boston, MA, USA
| | - William B Manning
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Varvara Mazina
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Oladapo O Yeku
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, 55 Fruit St, 02114, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA.
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA.
| |
Collapse
|
3
|
Salmon A, Lebeau A, Streel S, Dheur A, Schoenen S, Goffin F, Gonne E, Kridelka F, Kakkos A, Gennigens C. Locally advanced and metastatic endometrial cancer: Current and emerging therapies. Cancer Treat Rev 2024; 129:102790. [PMID: 38972136 DOI: 10.1016/j.ctrv.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Until recently, patients diagnosed with locally advanced and metastatic endometrial cancer faced significant challenges in their treatment due to limited options and poor prognostic outcomes. The sequencing of tumors has been a major advancement in its management. It has led to The Cancer Genome Atlas classification currently used in clinical practice and the initiation of several clinical trials for innovative treatments targeting principally signaling pathways, immune checkpoints, DNA integrity, growth factors, hormonal signaling, and metabolism. Numerous clinical trials are investigating a combinatorial approach of these targeted therapies to counter tumoral resistance, cellular compensatory mechanisms, and tumor polyclonality. This review provides a comprehensive overview of historical, current, and promising therapies in advanced and metastatic endometrial cancer. It particularly highlights clinical research on targeted and hormonal therapies, but also immunotherapy, reflecting the evolving landscape of treatment modalities for this disease.
Collapse
Affiliation(s)
- Alixe Salmon
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - Alizée Lebeau
- Department of Medical Oncology, CHU Liège, Liège, Belgium; Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Sylvie Streel
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - Adriane Dheur
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Sophie Schoenen
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Frédéric Goffin
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Elodie Gonne
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | | | | | | |
Collapse
|
4
|
Li H, Wen X, Ren Y, Fan Z, Zhang J, He G, Fu L. Targeting PI3K family with small-molecule inhibitors in cancer therapy: current clinical status and future directions. Mol Cancer 2024; 23:164. [PMID: 39127670 DOI: 10.1186/s12943-024-02072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The Phosphatidylinositol-3-kinase (PI3K) family is well-known to comprise three classes of intracellular enzymes. Class I PI3Ks primarily function in signaling by responding to cell surface receptor stimulation, while class II and III are more involved in membrane transport. Under normal physiological conditions, the PI3K signaling network orchestrates cell growth, division, migration and survival. Aberrant activation of the PI3K signaling pathway disrupts cellular activity and metabolism, often marking the onset of cancer. Currently, the Food and Drug Administration (FDA) has approved the clinical use of five class I PI3K inhibitors. These small-molecule inhibitors, which exhibit varying selectivity for different class I PI3K family members, are primarily used in the treatment of breast cancer and hematologic malignancies. Therefore, the development of novel class I PI3K inhibitors has been a prominent research focus in the field of oncology, aiming to enhance potential therapeutic selectivity and effectiveness. In this review, we summarize the specific structures of PI3Ks and their functional roles in cancer progression. Additionally, we critically evaluate small molecule inhibitors that target class I PI3K, with a particular focus on their clinical applications in cancer treatment. Moreover, we aim to analyze therapeutic approaches for different types of cancers marked by aberrant PI3K activation and to identify potential molecular targets amenable to intervention with small-molecule inhibitors. Ultimately, we propose future directions for the development of therapeutic strategies that optimize cancer treatment outcomes by modulating the PI3K family.
Collapse
Affiliation(s)
- Hongyao Li
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yueting Ren
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Brain Science, Faculty of Medicine, Imperial College, London, SW72AZ, UK
| | - Zhichao Fan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China.
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Leilei Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
5
|
Ibanez KR, Huang TT, Lee JM. Combination Therapy Approach to Overcome the Resistance to PI3K Pathway Inhibitors in Gynecological Cancers. Cells 2024; 13:1064. [PMID: 38920692 PMCID: PMC11201409 DOI: 10.3390/cells13121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
The PI3K signaling pathway plays an essential role in cancer cell proliferation and survival. PI3K pathway inhibitors are now FDA-approved as a single agent treatment or in combination for solid tumors such as renal cell carcinoma or breast cancer. However, despite the high prevalence of PI3K pathway alterations in gynecological cancers and promising preclinical activity in endometrial and ovarian cancer models, PI3K pathway inhibitors showed limited clinical activity in gynecological cancers. In this review, we provide an overview on resistance mechanisms against PI3K pathway inhibitors that limit their use in gynecological malignancies, including genetic alterations that reactivate the PI3K pathway such as PIK3CA mutations and PTEN loss, compensatory signaling pathway activation, and feedback loops causing the reactivation of the PI3K signaling pathway. We also discuss the successes and limitations of recent clinical trials aiming to address such resistance mechanisms through combination therapies.
Collapse
|
6
|
Shan KS, Bonano-Rios A, Theik NWY, Hussein A, Blaya M. Molecular Targeting of the Phosphoinositide-3-Protein Kinase (PI3K) Pathway across Various Cancers. Int J Mol Sci 2024; 25:1973. [PMID: 38396649 PMCID: PMC10888452 DOI: 10.3390/ijms25041973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of the phosphatidylinositol-3-kinase (PI3K) pathway can lead to uncontrolled cellular growth and tumorigenesis. Targeting PI3K and its downstream substrates has been shown to be effective in preclinical studies and phase III trials with the approval of several PI3K pathway inhibitors by the Food and Drug Administration (FDA) over the past decade. However, the limited clinical efficacy of these inhibitors, intolerable toxicities, and acquired resistances limit the clinical application of PI3K inhibitors. This review discusses the PI3K signaling pathway, alterations in the PI3K pathway causing carcinogenesis, current and novel PI3K pathway inhibitors, adverse effects, resistance mechanisms, challenging issues, and future directions of PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Khine S. Shan
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Amalia Bonano-Rios
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Nyein Wint Yee Theik
- Division of Internal Medicine, Memorial Health Care, Pembroke Pines, FL 33028, USA;
| | - Atif Hussein
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Marcelo Blaya
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| |
Collapse
|
7
|
Wang L, Liu WQ, Broussy S, Han B, Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front Pharmacol 2024; 14:1307860. [PMID: 38239196 PMCID: PMC10794590 DOI: 10.3389/fphar.2023.1307860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Vascular endothelial growth factors (VEGF), Vascular endothelial growth factor receptors (VEGFR) and their downstream signaling pathways are promising targets in anti-angiogenic therapy. They constitute a crucial system to regulate physiological and pathological angiogenesis. In the last 20 years, many anti-angiogenic drugs have been developed based on VEGF/VEGFR system to treat diverse cancers and retinopathies, and new drugs with improved properties continue to emerge at a fast rate. They consist of different molecular structures and characteristics, which enable them to inhibit the interaction of VEGF/VEGFR, to inhibit the activity of VEGFR tyrosine kinase (TK), or to inhibit VEGFR downstream signaling. In this paper, we reviewed the development of marketed anti-angiogenic drugs involved in the VEGF/VEGFR axis, as well as some important drug candidates in clinical trials. We discuss their mode of action, their clinical benefits, and the current challenges that will need to be addressed by the next-generation of anti-angiogenic drugs. We focus on the molecular structures and characteristics of each drug, including those approved only in China.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wang-Qing Liu
- CiTCoM, CNRS, INSERM, Université Paris Cité, Paris, France
| | | | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongming Fang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
| |
Collapse
|
8
|
Farghaly TA, Alqurashi RM, Masaret GS, Abdulwahab HG. Recent Methods for the Synthesis of Quinoxaline Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:920-982. [PMID: 37885112 DOI: 10.2174/0113895575264375231012115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023]
Abstract
Quinoxaline derivatives have been incorporated into numerous marketed drugs used for the treatment of various diseases. Examples include glecaprevir (Mavyret), voxilaprevir (Vosevi), Balversa (L01EX16) (erdafitinib), carbadox, XK469R (NSC698215), and becampanel (AMP397). These quinoxaline derivatives exhibit a diverse range of pharmacological activities, including antibacterial, antitubercular, antiviral, anti-HIV, anti-inflammatory, antifungal, anticancer, antiproliferative, antitumor, kinase inhibition, antimicrobial, antioxidant, and analgesic effects. Recognizing the significance of these bioactive quinoxaline derivatives, researchers have dedicated their efforts to developing various synthetic methods for their production. This review aimed to compile the most recent findings on the synthesis and biological properties of quinoxaline derivatives from 2015 to 2023.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raghad M Alqurashi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Chang L, Jung NY, Atari A, Rodriguez DJ, Kesar D, Song TY, Rees MG, Ronan M, Li R, Ruiz P, Chaturantabut S, Ito T, van Tienen LM, Tseng YY, Roth JA, Sellers WR. Systematic profiling of conditional pathway activation identifies context-dependent synthetic lethalities. Nat Genet 2023; 55:1709-1720. [PMID: 37749246 DOI: 10.1038/s41588-023-01515-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/22/2023] [Indexed: 09/27/2023]
Abstract
The paradigm of cancer-targeted therapies has focused largely on inhibition of critical pathways in cancer. Conversely, conditional activation of signaling pathways as a new source of selective cancer vulnerabilities has not been deeply characterized. In this study, we sought to systematically identify context-specific gene-activation-induced lethalities in cancer. To this end, we developed a method for gain-of-function genetic perturbations simultaneously across ~500 barcoded cancer cell lines. Using this approach, we queried the pan-cancer vulnerability landscape upon activating ten key pathway nodes, revealing selective activation dependencies of MAPK and PI3K pathways associated with specific biomarkers. Notably, we discovered new pathway hyperactivation dependencies in subsets of APC-mutant colorectal cancers where further activation of the WNT pathway by APC knockdown or direct β-catenin overexpression led to robust antitumor effects in xenograft and patient-derived organoid models. Together, this study reveals a new class of conditional gene-activation dependencies in cancer.
Collapse
Affiliation(s)
- Liang Chang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nancy Y Jung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adel Atari
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Devishi Kesar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tian-Yu Song
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Melissa Ronan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruitong Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paloma Ruiz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Saireudee Chaturantabut
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Takahiro Ito
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laurens M van Tienen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yuen-Yi Tseng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - William R Sellers
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Rahman MM, Islam MR, Akash S, Hossain ME, Tumpa AA, Abrar Ishtiaque GM, Ahmed L, Rauf A, Khalil AA, Al Abdulmonem W, Simal-Gandara J. Pomegranate-specific natural compounds as onco-preventive and onco-therapeutic compounds: Comparison with conventional drugs acting on the same molecular mechanisms. Heliyon 2023; 9:e18090. [PMID: 37519687 PMCID: PMC10372646 DOI: 10.1016/j.heliyon.2023.e18090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Pomegranate, scientifically known as Punica granatum, has been a traditional medicinal remedy since ancient times. Research findings have shown that using pomegranate extracts can positively affect a variety of signaling pathways, including those involved in angiogenesis, inflammation, hyperproliferation, cellular transformation, the beginning stages of tumorigenesis, and lastly, a reduction in the final stages of metastasis and tumorigenesis. This is due to the fact that pomegranate extracts are rich in polyphenols, which are known to inhibit the activity of certain signaling pathways. In the United States, cancer is the second biggest cause of death after heart disease. The number of fatalities caused by cancer in the United States escalates yearly. Altering one's diet, getting involved in regular physical activity, and sustaining a healthy body weight are three easy steps an individual may follow to lower their cancer risk. Simply garnishing one's diet with vegetables and fruits has the potential to avert at least 20% of all cancer diagnoses and around 200,000 deaths caused by cancer each year. Vegetables, fruits, and other dietary constituents, such as minerals and phytochemicals, are currently being researched for their potential to prevent cancer. It is being done because they are safe, have minimal toxicity, possess antioxidant properties, and are universally accepted as dietary supplements. Ancient civilizations used the fruit of pomegranate (Punica granatum L.) to prevent and cure a number of diseases. The anti-tumorigenic, anti-inflammatory and anti-proliferative qualities of pomegranate have been shown in studies with the fruit, juice, extract, and oil of the pomegranate. Pomegranate has the capacity to affect several signaling pathways, which implies that it may have the potential to be employed not only as a chemopreventive agent but also as a chemotherapeutic drug. This article elaborates on some recent preclinical and clinical research which shows that pomegranate seems to have a role in the prevention and treatment of a number of cancers, including but not limited to breast, bladder, skin, prostate, colon, and lung cancer, among others.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | | | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, 54000, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
12
|
Belli C, Repetto M, Anand S, Porta C, Subbiah V, Curigliano G. The emerging role of PI3K inhibitors for solid tumour treatment and beyond. Br J Cancer 2023; 128:2150-2162. [PMID: 36914722 PMCID: PMC10241926 DOI: 10.1038/s41416-023-02221-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) play a central role in tumourigenesis with recurrent activating mutations of its p110α subunit (PIK3CA) identified in several tumours. Although several PI3K inhibitors are approved for haematological malignancies, only alpelisib was approved in solid tumours and for the treatment of PIK3CA-related overgrowth spectrum (PROS) syndrome. Traditional PI3K inhibitors inhibit both wild-type and mutant PI3K with almost equal potency, thus limiting their efficacy due to on-target toxicity. Since the initiation of phase I clinical trials investigating next generation allosteric mutant and isoform selective PIK3CA inhibitors, there has been a surge in interest in PIK3CA targeting in solid tumours. Preclinical characterisation of these compounds showed that maximal mutant protein inhibition fails to elicit metabolic and glucose homoeostasis dysregulation, one of the dose limiting toxicities of both selective and pan PI3K inhibitors. While extreme selectivity can be hypothesised to grant activity and safety advantage to these novel agents, on the other hand reduced benefit can be speculated for patients harbouring multiple or rare PIK3CA mutations. This review summarises the current understanding of PI3K alterations and the state-of-the-art treatment strategies in PI3K driven solid tumours, while also exploring the potential intrinsic and acquired resistance mechanisms to these agents, and the emerging role of mutant selective PIK3CA inhibitors.
Collapse
Affiliation(s)
- Carmen Belli
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141, Milan, Italy
| | - Matteo Repetto
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Santosh Anand
- Department of Informatics, System, and Communications (DISCo), University of Milano-Bicocca, Milan, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy.
| |
Collapse
|
13
|
Occhiuzzi MA, Lico G, Ioele G, De Luca M, Garofalo A, Grande F. Recent advances in PI3K/PKB/mTOR inhibitors as new anticancer agents. Eur J Med Chem 2023; 246:114971. [PMID: 36462440 DOI: 10.1016/j.ejmech.2022.114971] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The biochemical role of the PI3K/PKB/mTOR signalling pathway in cell-cycle regulation is now well known. During the onset and development of different forms of cancer it becomes overactive reducing apoptosis and allowing cell proliferation. Therefore, this pathway has become an important target for the treatment of various forms of malignant tumors, including breast cancer and follicular lymphoma. Recently, several more or less selective inhibitors targeting these proteins have been identified. In general, drugs that act on multiple targets within the entire pathway are more efficient than single targeting inhibitors. Multiple inhibitors exhibit high potency and limited drug resistance, resulting in promising anticancer agents. In this context, the present survey focuses on small molecule drugs capable of modulating the PI3K/PKB/mTOR signalling pathway, thus representing drugs or drug candidates to be used in the pharmacological treatment of different forms of cancer.
Collapse
Affiliation(s)
| | - Gernando Lico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
14
|
Tronconi F, Nero C, Giudice E, Salutari V, Musacchio L, Ricci C, Carbone MV, Ghizzoni V, Perri MT, Camarda F, Gentile M, Berardi R, Scambia G, Lorusso D. Advanced and recurrent endometrial cancer: State of the art and future perspectives. Crit Rev Oncol Hematol 2022; 180:103851. [DOI: 10.1016/j.critrevonc.2022.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
15
|
Avila M, Grinsfelder MO, Pham M, Westin SN. Targeting the PI3K Pathway in Gynecologic Malignancies. Curr Oncol Rep 2022; 24:1669-1676. [PMID: 36401704 PMCID: PMC10862662 DOI: 10.1007/s11912-022-01326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW This review explores the PI3K pathway aberrations common in gynecologic malignancies, the relevant therapeutic targets that have been explored to date particularly given their success in endometrial cancers, and predictive biomarkers of response to therapy. RECENT FINDINGS Landmark trials have been noted involving this pathway, particularly in endometrial cancers. One phase II trial of the potent orally bioavailable mTOR inhibitor, everolimus, in combination with letrozole demonstrated an unprecedented clinical benefit rate (CBR) of 40% and high objective response rate (RR) of 32% in hormone agnostic endometrial cancers. This was followed by GOG 3007 that compared everolimus and letrozole to hormonal therapy yielding similar response rates but double progression-free survival rates. The phosphoinositide 3-kinase (PI3K) signaling pathway is implicated in tumorigenesis given its regulation over cell growth, cellular trafficking, and angiogenesis. In gynecologic malignancies, alterations in PI3K signaling are common. Therefore, developing modulators of the PI3K pathway and identifying molecular markers to predict response are of great interest for these cancer types.
Collapse
Affiliation(s)
- Monica Avila
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA
| | - Michaela Onstad Grinsfelder
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA
| | - Melissa Pham
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
PI3K Inhibitor Eruptions: an Overview of Diagnostic and Management Strategies for the Inpatient Dermatologist. CURRENT DERMATOLOGY REPORTS 2022. [DOI: 10.1007/s13671-022-00365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Piñeiro-Pérez R, Abal M, Muinelo-Romay L. Liquid Biopsy for Monitoring EC Patients: Towards Personalized Treatment. Cancers (Basel) 2022; 14:1405. [PMID: 35326558 PMCID: PMC8946652 DOI: 10.3390/cancers14061405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
Endometrial cancer (EC) is the most frequent gynecological cancer in developed countries and its incidence shows an increasing trend. Fortunately, the prognosis of the disease is good when the tumour is diagnosed in an early phase, but some patients recur after surgery and develop distant metastasis. The therapy options for EC for advanced disease are more limited than for other tumours. Therefore, the application of non-invasive strategies to anticipate the recurrence of localized tumours and guide the treatment in advanced stages represents a clear requirement to improve the survival and quality of life of patients with EC. To achieve this desired precision oncology, it is necessary to invest in the identification and validation of circulating markers that allow a more effective stratification and monitoring of patients. We here review the main advances made for the evaluation of circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), circulating extracellular vesicles (cEVs), and other non-invasive biomarkers as a monitoring tool in the context of localized and advanced endometrial tumours, with the aim of providing a global perspective of the achievements and the key areas in which the use of these markers can be developed into a real clinical tool.
Collapse
Affiliation(s)
- Raquel Piñeiro-Pérez
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
18
|
Zhou Y, Espenel S, Achkar S, Leary A, Gouy S, Chargari C. Combined modality including novel sensitizers in gynecological cancers. Int J Gynecol Cancer 2022; 32:389-401. [DOI: 10.1136/ijgc-2021-002529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
Standard treatment of locally advanced gynecological cancers relies mainly on platinum-based concurrent chemoradiotherapy followed by brachytherapy. Current chemotherapeutic drugs are only transiently effective and patients with advanced disease often develop resistance and subsequently, distant metastases despite significant initial responses of the primary tumor. In addition, some patients still develop local failure or progression, suggesting that there is still a place for increasing the anti-tumor radiation effect. Several strategies are being developed to increase the probability of curing patients. Vaginal cancer and vulva cancer are rare diseases, which resemble cervical cancer in their histology and pathogenesis. These gynecological cancers are predominantly associated with human papilloma virus infection. Treatment strategies in other unresectable gynecologic cancers are usually derived from evidence in locally advanced cervical cancers. In this review, we discuss mechanisms by which novel therapies could work synergistically with conventional chemoradiotherapy, from pre-clinical and ongoing clinical data. Trimodal, even quadrimodal treatment are currently being tested in clinical trials. Novel combinations derived from a metastatic setting, and being tested in locally advanced tumors, include anti-angiogenic agents, immunotherapy, tumor-infiltrating lymphocytes therapy, adoptive T-cell therapy and apoptosis inducers to enhance chemoradiotherapy efficacy through complementary molecular pathways. In parallel, radiosensitizers, such as nanoparticles and radiosensitizers of hypoxia aim to maximize the effect of radiotherapy locally.
Collapse
|
19
|
Monk BJ, Smith G, Lima J, Long GH, Alam N, Nakamura H, Meulendijks D, Ghiorghiu D, Banerjee S. Real-world outcomes in patients with advanced endometrial cancer: A retrospective cohort study of US electronic health records. Gynecol Oncol 2021; 164:325-332. [PMID: 34952707 DOI: 10.1016/j.ygyno.2021.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To characterize clinical outcomes of women with advanced/recurrent endometrial cancer (AEC) in routine practice using electronic health records from a real-world database. METHODS Adult women diagnosed with AEC (stage III/IV, or early stage with locoregional/distant recurrence) between January 1, 2013 and September 30, 2020, inclusive, were eligible provided they received platinum-based chemotherapy at any time following diagnosis and had ≥2 clinical visits. Follow-up was from initiation of systemic treatment after advanced diagnosis (index) until March 30, 2021, last available follow-up, or death, whichever occurred first. Outcomes, by histological subtype, included Kaplan-Meier estimates of overall survival (OS) and time to first subsequent therapy or death (TFST). RESULTS Of the 2202 women with AEC, most were treated in a community setting (82.7%) and presented with stage III/IV disease at initial diagnosis (74.0%). The proportion with endometrioid carcinoma, uterine serous carcinoma (USC), and other AEC subtypes was 59.8%, 25.0%, and 15.2%, respectively. The most common first systemic treatment following advanced/recurrent diagnosis was platinum-based combination chemotherapy (82.0%). Median OS (95% CI) from initiation of first systemic treatment was shorter with USC (31.3 [27.7-34.3] months) and other AECs (29.4 [21.4-43.9] months) versus endometrioid carcinoma (70.8 [60.5-83.2] months). Similar results were observed for TFST. Black/African American women had worse OS and TFST than white women. CONCLUSIONS Women with AEC had poor survival outcomes, demonstrating the requirement for more effective therapies. To our knowledge, this is the most comprehensive evaluation of contemporary treatment of AEC delivered in a community setting to date.
Collapse
Affiliation(s)
- Bradley J Monk
- Arizona Oncology (US Oncology Network), University of Arizona, Creighton University, Phoenix, AZ, USA.
| | - Gabriella Smith
- University of Arizona College of Medicine, Phoenix, AZ, USA.
| | - Julianne Lima
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK.
| | | | - Naufil Alam
- AstraZeneca Pharmaceuticals LP, Cambridge, UK.
| | | | | | - Dana Ghiorghiu
- Global Medicines Development, AstraZeneca, Cambridge, UK.
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK.
| |
Collapse
|
20
|
Ye Y, Li H, Bian J, Wang L, Wang Y, Huang H. Exploring Prognosis-Associated Biomarkers of Estrogen-Independent Uterine Corpus Endometrial Carcinoma by Bioinformatics Analysis. Int J Gen Med 2021; 14:9067-9081. [PMID: 34876842 PMCID: PMC8643178 DOI: 10.2147/ijgm.s341345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background Uterine corpus endometrial carcinoma (UCEC) is one of the most common female cancers with high incidence and mortality rates. In particular, the prognosis of type II UCEC is poorer than that of type I. However, the molecular mechanism underlying type II UCEC remains unclear. Methods RNA-seq data and corresponding clinical information on UCEC patients were downloaded from The Cancer Genome Atlas database, which were then separated into mRNA, lncRNA, and miRNA gene expression profile matrix to perform differentially expressed gene analysis. Weighted gene co-expression network analysis (WGCNA) was used to identify key modules associated with different UCEC subtypes based on mRNA and lncRNA expression matrix. Following that, a subtype-associated competing endogenous RNA (ceRNA) regulatory network was constructed. In addition, GO functional annotation and KEGG pathway analysis were performed on subtype-related DE mRNAs, and STRING database was utilized to predict the interaction network between proteins and their biological functions. The key mRNAs were validated at the protein and gene expression levels in endometrial cancerous tissues as compared with normal tissues. Results In summary, we identified 4611 mRNA, 3568 lncRNAs, and 47 miRNAs as differentially expressed between endometrial cancerous tissues and normal endometrial tissues. WGCNA demonstrated that 72 mRNAs and 55 lncRNAs were correlated with pathological subtypes. In the constructed ceRNA regulatory network, LINC02418, RASGRF1, and GCNT1 were screened for their association with poor prognosis of type II UCEC. These DE mRNAs were linked to Wnt signaling pathway, and lower expression of LEF1 and NKD1 predicted advanced clinical stages and worse prognosis of UCEC patients. Conclusion This study revealed five prognosis-associated biomarkers that can be used to predict the worst prognosis of type II UCEC.
Collapse
Affiliation(s)
- Youchun Ye
- Department of Gynecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Hongfeng Li
- Department of Gynecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Jia Bian
- Department of Gynecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Liangfei Wang
- Department of Gynecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Yijie Wang
- Department of Gynecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Hui Huang
- Department of Gynecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| |
Collapse
|
21
|
Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem 2021; 476:4045-4059. [PMID: 34244974 DOI: 10.1007/s11010-021-04219-w] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
Heart failure (HF) is considered as a severe health problem worldwide, while cardiac fibrosis is one of the main driving factors for the progress of HF. Cardiac fibrosis was characterized by changes in cardiomyocytes, cardiac fibroblasts, ratio of collagen (COL) I/III, and the excessive production and deposition of extracellular matrix (ECM), thus forming a scar tissue, which leads to pathological process of cardiac structural changes and systolic as well as diastolic dysfunction. Cardiac fibrosis is a common pathological change of many advanced cardiovascular diseases including ischemic heart disease, hypertension, and HF. Accumulated studies have proven that phosphoinositol-3 kinase (PI3K)/Akt signaling pathway is involved in regulating the occurrence, progression and pathological formation of cardiac fibrosis via regulating cell survival, apoptosis, growth, cardiac contractility and even the transcription of related genes through a series of molecules including mammalian target of rapamycin (mTOR), glycogen synthase kinase 3 (GSK-3), forkhead box proteins O1/3 (FoxO1/3), and nitric oxide synthase (NOS). Thus, the review focuses on the role of PI3K/Akt signaling pathway in the cardiac fibrosis. The information reviewed here should be significant in understanding the role of PI3K/Akt in cardiac fibrosis and contribute to the design of further studies related to PI3K/Akt and the cardiac fibrotic response, as well as sought to shed light on a potential treatment for cardiac fibrosis.
Collapse
|
22
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Phosphatidylinositol 3-kinase (PI3K) inhibitors: a recent update on inhibitor design and clinical trials (2016-2020). Expert Opin Ther Pat 2021; 31:877-892. [PMID: 33970742 DOI: 10.1080/13543776.2021.1924150] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a central role in regulating cell growth and proliferation and thus has been considered as effective anticancer drug targets. Many PI3K inhibitors have been developed and progressed to various stages of clinical trials, and some have been approved as anticancer treatment. In this review, we discuss the drug design and clinical development of PI3K inhibitors over the past 4 years. We review the selectivity and potency of 47 PI3K inhibitors. Structural determinants for increasing selectivity toward PI3K subtype-selectivity or mutant selectivity are discussed. Future research direction and current clinical development in combination therapy of inhibitors involved in PI3Ks are also discussed.Area covered: This review covers clinical trial reports and patent literature on PI3K inhibitors and their selectivity published between 2016 and 2020.Expert opinion: To PI3Kα mutants (E542K, E545K, and H1047R), it is highly desirable to design and develop mutant-specific PI3K inhibitors. It is also necessary to develop subtype-selective PI3Kα inhibitors to minimize toxicity. To reduce drug resistance and to improve efficacy, future studies should include combination therapy of PI3K inhibitors with existing anticancer drugs from different pathways.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 362, Department of Chemistry, The University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
24
|
Targeting Wnt Signaling in Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102351. [PMID: 34068065 PMCID: PMC8152465 DOI: 10.3390/cancers13102351] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Wnt has diverse regulatory roles at multiple cellular levels and numerous targeting points, and aberrant Wnt signaling has crucial roles in carcinogenesis, metastasis, cancer recurrence, and chemotherapy resistance; based on these facts, Wnt represents an appealing therapeutic target for cancer treatment. Although preclinical data supports a role for the Wnt signaling pathway in uterine carcinogenesis, this area remains understudied. In this review, we identify the functions of several oncogenes of the Wnt/β-catenin signaling pathway in tumorigenesis and address the translation approach with potent Wnt inhibitors that have already been established or are being investigated to target key components of the pathway. Further research is likely to expand the potential for both biomarker and cancer drug development. There is a scarcity of treatment choices for advanced and recurrent endometrial cancer; investigating the sophisticated connections of Wnt signaling networks in endometrial cancer could address the unmet need for new therapeutic targets. Abstract This review presents new findings on Wnt signaling in endometrial carcinoma and implications for possible future treatments. The Wnt proteins are essential mediators in cell signaling during vertebrate embryo development. Recent biochemical and genetic studies have provided significant insight into Wnt signaling, in particular in cell cycle regulation, inflammation, and cancer. The role of Wnt signaling is well established in gastrointestinal and breast cancers, but its function in gynecologic cancers, especially in endometrial cancers, has not been well elucidated. Development of a subset of endometrial carcinomas has been attributed to activation of the APC/β-catenin signaling pathway (due to β-catenin mutations) and downregulation of Wnt antagonists by epigenetic silencing. The Wnt pathway also appears to be linked to estrogen and progesterone, and new findings implicate it in mTOR and Hedgehog signaling. Therapeutic interference of Wnt signaling remains a significant challenge. Herein, we discuss the Wnt-activating mechanisms in endometrial cancer and review the current advances and challenges in drug discovery.
Collapse
|
25
|
Colardo M, Segatto M, Di Bartolomeo S. Targeting RTK-PI3K-mTOR Axis in Gliomas: An Update. Int J Mol Sci 2021; 22:4899. [PMID: 34063168 PMCID: PMC8124221 DOI: 10.3390/ijms22094899] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the most common and challenging malignancies of the central nervous system (CNS), due to their infiltrative nature, tendency to recurrence, and poor response to treatments. Indeed, despite the advances in neurosurgical techniques and in radiation therapy, the modest effects of therapy are still challenging. Moreover, tumor recurrence is associated with the onset of therapy resistance; it is therefore critical to identify effective and well-tolerated pharmacological approaches capable of inducing durable responses in the appropriate patient groups. Molecular alterations of the RTK/PI3K/Akt/mTOR signaling pathway are typical hallmarks of glioma, and several clinical trials targeting one or more players of this axis have been launched, showing disappointing results so far, due to the scarce BBB permeability of certain compounds or to the occurrence of resistance/tolerance mechanisms. However, as RTK/PI3K/mTOR is one of the pivotal pathways regulating cell growth and survival in cancer biology, targeting still remains a strong rationale for developing strategies against gliomas. Future rigorous clinical studies, aimed at addressing the tumor heterogeneity, the interaction with the microenvironment, as well as diverse posology adjustments, are needed-which might unravel the therapeutic efficacy and response prediction of an RTK/PI3K/mTOR-based approach.
Collapse
Affiliation(s)
| | | | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, IS, Italy; (M.C.); (M.S.)
| |
Collapse
|
26
|
Concin N, Matias-Guiu X, Vergote I, Cibula D, Mirza MR, Marnitz S, Ledermann J, Bosse T, Chargari C, Fagotti A, Fotopoulou C, Martin AG, Lax S, Lorusso D, Marth C, Morice P, Nout RA, O'Donnell D, Querleu D, Raspollini MR, Sehouli J, Sturdza A, Taylor A, Westermann A, Wimberger P, Colombo N, Planchamp F, Creutzberg CL. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Radiother Oncol 2021; 154:327-353. [PMID: 33712263 DOI: 10.1016/j.radonc.2020.11.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A European consensus conference on endometrial carcinoma was held in 2014 to produce multidisciplinary evidence-based guidelines on selected questions. Given the large body of literature on the management of endometrial carcinoma published since 2014, the European Society of Gynaecological Oncology (ESGO), the European SocieTy for Radiotherapy & Oncology (ESTRO) and the European Society of Pathology (ESP) jointly decided to update these evidence-based guidelines and to cover new topics in order to improve the quality of care for women with endometrial carcinoma across Europe and worldwide. ESGO/ESTRO/ESP nominated an international multidisciplinary development group consisting of practicing clinicians and researchers who have demonstrated leadership and expertise in the care and research of endometrial carcinoma (27 experts across Europe). To ensure that the guidelines are evidence-based, the literature published since 2014, identified from a systematic search was reviewed and critically appraised. In the absence of any clear scientific evidence, judgment was based on the professional experience and consensus of the development group. The guidelines are thus based on the best available evidence and expert agreement. Prior to publication, the guidelines were reviewed by 191 independent international practitioners in cancer care delivery and patient representatives. The guidelines comprehensively cover endometrial carcinoma staging, definition of prognostic risk groups integrating molecular markers, pre- and intra-operative work-up, fertility preservation, management for early, advanced, metastatic, and recurrent disease and palliative treatment. Principles of radiotherapy and pathological evaluation are also defined.
Collapse
Affiliation(s)
- Nicole Concin
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Austria; Evangelische Kliniken Essen-Mitte, Germany.
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari Arnau de Vilanova, University of Lleida, CIBERONC, Irblleida, Spain; Department of Pathology, Hospital Universitari de Bellvitge, University of Barcelona, Idibell, Spain
| | - Ignace Vergote
- Department of Gynecology and Obstetrics, Gynecologic Oncology, Leuven Cancer Institute, Catholic University Leuven, Belgium
| | - David Cibula
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Czech Republic
| | - Mansoor Raza Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Simone Marnitz
- Department of Radiation Oncology, Medical Faculty of the University of Cologne, Germany
| | | | - Tjalling Bosse
- Department of Pathology, Leids Universitair Medisch Centrum, Leiden, Netherlands
| | - Cyrus Chargari
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Anna Fagotti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Christina Fotopoulou
- Department of Gynaecologic Oncology, Imperial College London Faculty of Medicine, UK
| | | | - Sigurd Lax
- Department of Pathology, Hospital Graz II, Austria; School of Medicine, Johannes Kepler University Linz, Austria
| | - Domenica Lorusso
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Christian Marth
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Austria
| | - Philippe Morice
- Department of Surgery, Institut Gustave Roussy, Villejuif, France
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | - Denis Querleu
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy; Department of Obstetrics and Gynecologic Oncology, University Hospital, Strasbourg, France
| | - Maria Rosaria Raspollini
- Histopathology and Molecular Diagnostics, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Jalid Sehouli
- Department of Gynecology with Center for Oncological Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Alina Sturdza
- Department of Radiation Oncology, Comprehensive Cancer Center, Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Austria
| | | | - Anneke Westermann
- Department of Medical Oncology, Amsterdam University Medical Centres, Noord-Holland, Netherlands
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, TU Dresden Medizinische Fakultat Carl Gustav Carus, Germany
| | - Nicoletta Colombo
- Gynecologic Oncology Program, European Institute of Oncology, IRCCS, Milan and University of Milan-Bicocca, Italy
| | | | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden Netherlands
| |
Collapse
|
27
|
Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Cancer Manag Res 2021; 13:3081-3100. [PMID: 33854378 PMCID: PMC8041604 DOI: 10.2147/cmar.s292992] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a common and complex malignancy with poor prognostic outcome. Most women with ovarian cancer are diagnosed with advanced stage disease due to a lack of effective detection strategies in the early stage. Traditional treatment with cytoreductive surgery and platinum-based combination chemotherapy has not significantly improved prognosis and 5-year survival rates are still extremely poor. Therefore, novel treatment strategies are needed to improve the treatment of ovarian cancer patients. Recent advances of next generation sequencing technologies have both confirmed previous known mutated genes and discovered novel candidate genes in ovarian cancer. In this review, we illustrate recent advances in identifying ovarian cancer gene mutations, including those of TP53, BRCA1/2, PIK3CA, and KRAS genes. In addition, we discuss advances in targeting therapies for ovarian cancer based on these mutated genes in ovarian cancer. Further, we associate between detection of mutation genes by liquid biopsy and the potential early diagnostic value in ovarian cancer.
Collapse
Affiliation(s)
- Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Dong
- Department of Gynecology, Cheng Du Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shanli Xie
- First People's Hospital of Guangyuan, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lin Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
28
|
Concin N, Creutzberg CL, Vergote I, Cibula D, Mirza MR, Marnitz S, Ledermann JA, Bosse T, Chargari C, Fagotti A, Fotopoulou C, González-Martín A, Lax SF, Lorusso D, Marth C, Morice P, Nout RA, O'Donnell DE, Querleu D, Raspollini MR, Sehouli J, Sturdza AE, Taylor A, Westermann AM, Wimberger P, Colombo N, Planchamp F, Matias-Guiu X. ESGO/ESTRO/ESP Guidelines for the management of patients with endometrial carcinoma. Virchows Arch 2021; 478:153-190. [PMID: 33604759 DOI: 10.1007/s00428-020-03007-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A European consensus conference on endometrial carcinoma was held in 2014 to produce multidisciplinary evidence-based guidelines on selected questions. Given the large body of literature on the management of endometrial carcinoma published since 2014, the European Society of Gynaecological Oncology (ESGO), the European SocieTy for Radiotherapy & Oncology (ESTRO) and the European Society of Pathology (ESP) jointly decided to update these evidence-based guidelines and to cover new topics in order to improve the quality of care for women with endometrial carcinoma across Europe and worldwide. ESGO/ESTRO/ESP nominated an international multidisciplinary development group consisting of practicing clinicians and researchers who have demonstrated leadership and expertise in the care and research of endometrial carcinoma (27 experts across Europe). To ensure that the guidelines are evidence-based, the literature published since 2014, identified from a systematic search was reviewed and critically appraised. In the absence of any clear scientific evidence, judgment was based on the professional experience and consensus of the development group. The guidelines are thus based on the best available evidence and expert agreement. Prior to publication, the guidelines were reviewed by 191 independent international practitioners in cancer care delivery and patient representatives. The guidelines comprehensively cover endometrial carcinoma staging, definition of prognostic risk groups integrating molecular markers, pre- and intra-operative work-up, fertility preservation, management for early, advanced, metastatic, and recurrent disease and palliative treatment. Principles of radiotherapy and pathological evaluation are also defined.
Collapse
Affiliation(s)
- Nicole Concin
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria. .,Evangelische Kliniken Essen-Mitte, Essen, Germany.
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ignace Vergote
- Department of Gynecology and Obstetrics, Gynecologic Oncology, Leuven Cancer Institute, Catholic University Leuven, Leuven, Belgium
| | - David Cibula
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Prague, Czech Republic
| | - Mansoor Raza Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Simone Marnitz
- Department of Radiation Oncology, Medical Faculty of the University of Cologne, Cologne, Germany
| | | | - Tjalling Bosse
- Department of Pathology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Cyrus Chargari
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Anna Fagotti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Roma, Italy
| | - Christina Fotopoulou
- Department of Gynaecologic Oncology, Imperial College London Faculty of Medicine, London, UK
| | | | - Sigurd F Lax
- Department of Pathology, Hospital Graz II, Graz, Austria.,School of Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Domenica Lorusso
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Roma, Italy
| | - Christian Marth
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| | - Philippe Morice
- Department of Surgery, Institut Gustave Roussy, Villejuif, France
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Denis Querleu
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Roma, Italy.,Department of Obstetrics and Gynecologic Oncology, University Hospital, Strasbourg, France
| | - Maria Rosaria Raspollini
- Histopathology and Molecular Diagnostics, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Jalid Sehouli
- Department of Gynecology with Center for Oncological Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Alina E Sturdza
- Department of Radiation Oncology, Comprehensive Cancer Center, Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Anneke M Westermann
- Department of Medical Oncology, Amsterdam University Medical Centres, Amsterdam, Noord-Holland, The Netherlands
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, TU Dresden Medizinische Fakultat Carl Gustav Carus, Dresden, Germany
| | - Nicoletta Colombo
- Gynecologic Oncology Program, European Institute of Oncology, IRCCS, Milan and University of Milan-Bicocca, Milan, Italy
| | | | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari Arnau de Vilanova, University of Lleida, CIBERONC, Irblleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, University of Barcelona, Idibell, Spain
| |
Collapse
|
29
|
Wright SCE, Vasilevski N, Serra V, Rodon J, Eichhorn PJA. Mechanisms of Resistance to PI3K Inhibitors in Cancer: Adaptive Responses, Drug Tolerance and Cellular Plasticity. Cancers (Basel) 2021; 13:cancers13071538. [PMID: 33810522 PMCID: PMC8037590 DOI: 10.3390/cancers13071538] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K) pathway plays a central role in the regulation of several signalling cascades which regulate biological processes such as cellular growth, survival, proliferation, motility and angiogenesis. The hyperactivation of this pathway is linked to tumour progression and is one of the most common events in human cancers. Additionally, aberrant activation of the PI3K pathway has been demonstrated to limit the effectiveness of a number of anti-tumour agents paving the way for the development and implementation of PI3K inhibitors in the clinic. However, the overall effectiveness of these compounds has been greatly limited by inadequate target engagement due to reactivation of the pathway by compensatory mechanisms. Herein, we review the common adaptive responses that lead to reactivation of the PI3K pathway, therapy resistance and potential strategies to overcome these mechanisms of resistance. Furthermore, we highlight the potential role in changes in cellular plasticity and PI3K inhibitor resistance.
Collapse
Affiliation(s)
- Sarah Christine Elisabeth Wright
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Correspondence: (S.C.E.W.); (N.V.)
| | - Natali Vasilevski
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Correspondence: (S.C.E.W.); (N.V.)
| | - Violeta Serra
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Jordi Rodon
- MD Anderson Cancer Center, Investigational Cancer Therapeutics Department, Houston, TX 77030, USA;
| | - Pieter Johan Adam Eichhorn
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
30
|
Ryabaya OO, Abramov IS, Khochenkov DA, Akasov R, Sholina NV, Prokofieva AA. Rapamycin synergizes the cytotoxic effects of MEK inhibitor binimetinib and overcomes acquired resistance to therapy in melanoma cell lines in vitro. Invest New Drugs 2021; 39:987-1000. [PMID: 33683500 DOI: 10.1007/s10637-021-01089-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022]
Abstract
Objective The problem of drug resistance to BRAF-targeted therapy often occurs in melanoma treatment. Activation of PI3K/AKT/mTOR signaling pathway is one of the mechanisms of acquired resistance and a potential target for treatment. In the current research, we investigated that dual inhibition of mTOR and MEK synergistically reduced the viability of melanoma cells in vitro. Methods A combination of rapamycin (a macrolide immunosuppressant, mTOR inhibitor) and binimetinib (an anti-cancer small molecule, selective inhibitor of MEK) was studied using a panel of melanoma cell lines, including patient-derived cells. Results It was found, that combinatorial therapy of rapamycin (250 nM) and binimetinib (2 μM) resulted in 25% of cell viability compared to either rapamycin (85%) or binimetinib alone (50%) for A375 and vemurafenib-resistant Mel IL/R cells. The suppressed activation of mTOR and MEK by combined rapamycin and binimetinib treatment was confirmed using Western blot assay. Cell death occured via the apoptosis pathway; however, the combination treatment significantly increased the apoptosis only for Mel IL/R cells. The enhanced cytotoxic effect was also associated with enhanced cell cycle arrest in the G0/G1 phase. Conclusion In general, we provide the evidence that dual inhibition of mTOR and MEK could be promising for further preclinical investigations.
Collapse
Affiliation(s)
- Oxana O Ryabaya
- Department of the Experimental Diagnostic and Tumor Therapy N.N., Bloknin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow, 115478, Russia.
| | - Ivan S Abramov
- Center of Strategical Planning, Moscow, Russia, 10-1 Pogodinskaya Street, Moscow, 119121, Russia
| | - Dmitry A Khochenkov
- Department of the Experimental Diagnostic and Tumor Therapy N.N., Bloknin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow, 115478, Russia.,Togliatti State University, Belorusskaya str. 14, Togliatti, 445020, Russia
| | - Roman Akasov
- Institute of Molecular Medicine Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, Moscow, 119991, Russia.,Department of Biomaterials and Biotechnologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 17a Butlerova st, Moscow, 117997, Russia
| | - Nataly V Sholina
- Department of the Experimental Diagnostic and Tumor Therapy N.N., Bloknin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow, 115478, Russia.,Institute of Molecular Medicine Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, Moscow, 119991, Russia
| | - Anastasia A Prokofieva
- Department of the Experimental Diagnostic and Tumor Therapy N.N., Bloknin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow, 115478, Russia
| |
Collapse
|
31
|
Progress in the management of endometrial cancer (subtypes, immunotherapy, alterations in PIK3CA pathway): data and perspectives. Curr Opin Oncol 2020; 32:471-480. [PMID: 32740093 DOI: 10.1097/cco.0000000000000658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Changes in molecular classification together with a deeper knowledge of both immune disregulation and phosphatidylinositol-3 kinase (PI3K) pathway alterations are leading to a new endometrial cancer treatment paradigm. This review will address the cutting-edge data in this field. RECENT FINDINGS This article will cover the updated data in endometrial cancer molecular classification and its correlation with the outcomes in randomized clinical trials (e.g., PORTEC-3). Moreover, we will review the latest data regarding checkpoint blockade molecules (CPB) in the recurrent setting and how they are changing the treatment landscape. In addition, the role of the PI3K inhibitors, their activity, and toxicity profile will be described. SUMMARY As result of the incorporation of molecular classification in our daily practice, the adjuvant treatment in endometrial cancer is rapidly evolving and leading to a new paradigm. The promising data observed with CPB in the recurrent setting have led to the food and drug administration approval of pembrolizumab as monotherapy and in combination with lenvatinib. Additionally, the current outcomes achieved with PI3K inhibitor agents encourage us to continue our clinical research to identify those patients who may benefit the most.
Collapse
|
32
|
Concin N, Matias-Guiu X, Vergote I, Cibula D, Mirza MR, Marnitz S, Ledermann J, Bosse T, Chargari C, Fagotti A, Fotopoulou C, Gonzalez Martin A, Lax S, Lorusso D, Marth C, Morice P, Nout RA, O'Donnell D, Querleu D, Raspollini MR, Sehouli J, Sturdza A, Taylor A, Westermann A, Wimberger P, Colombo N, Planchamp F, Creutzberg CL. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int J Gynecol Cancer 2020; 31:12-39. [PMID: 33397713 DOI: 10.1136/ijgc-2020-002230] [Citation(s) in RCA: 944] [Impact Index Per Article: 188.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
A European consensus conference on endometrial carcinoma was held in 2014 to produce multi-disciplinary evidence-based guidelines on selected questions. Given the large body of literature on the management of endometrial carcinoma published since 2014, the European Society of Gynaecological Oncology (ESGO), the European SocieTy for Radiotherapy and Oncology (ESTRO), and the European Society of Pathology (ESP) jointly decided to update these evidence-based guidelines and to cover new topics in order to improve the quality of care for women with endometrial carcinoma across Europe and worldwide.
Collapse
Affiliation(s)
- Nicole Concin
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria .,Evangelische Kliniken Essen-Mitte, Essen, Germany
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari Arnau de Vilanova, University of Lleida, CIBERONC, Irblleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, University of Barcelona, Idibell, Spain
| | - Ignace Vergote
- Department of Gynecology and Obstetrics, Gynecologic Oncology, Leuven Cancer Institute, Catholic University Leuven, Leuven, Belgium
| | - David Cibula
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Prague, Czech Republic
| | - Mansoor Raza Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Simone Marnitz
- Department of Radiation Oncology, Medical Faculty of the University of Cologne, Cologne, Germany
| | | | - Tjalling Bosse
- Department of Pathology, Leids Universitair Medisch Centrum, Leiden, Netherlands
| | - Cyrus Chargari
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Anna Fagotti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Christina Fotopoulou
- Department of Gynaecologic Oncology, Imperial College London Faculty of Medicine, London, UK
| | | | - Sigurd Lax
- Department of Pathology, Hospital Graz II, Graz, Austria.,School of Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Domenica Lorusso
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Christian Marth
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| | - Philippe Morice
- Department of Surgery, Institut Gustave Roussy, Villejuif, France
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | - Denis Querleu
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy.,Department of Obstetrics and Gynecologic Oncology, University Hospital, Strasbourg, France
| | - Maria Rosaria Raspollini
- Histopathology and Molecular Diagnostics, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Jalid Sehouli
- Department of Gynecology with Center for Oncological Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Alina Sturdza
- Department of Radiation Oncology, Comprehensive Cancer Center, Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Anneke Westermann
- Department of Medical Oncology, Amsterdam University Medical Centres, Amsterdam, Noord-Holland, Netherlands
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, TU Dresden Medizinische Fakultat Carl Gustav Carus, Dresden, Germany
| | - Nicoletta Colombo
- Gynecologic Oncology Program, European Institute of Oncology, IRCCS, Milan and University of Milan-Bicocca, Milan, Italy
| | | | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
33
|
Surowiec RK, Ferris SF, Apfelbaum A, Espinoza C, Mehta RK, Monchamp K, Sirihorachai VR, Bedi K, Ljungman M, Galban S. Transcriptomic Analysis of Diffuse Intrinsic Pontine Glioma (DIPG) Identifies a Targetable ALDH-Positive Subset of Highly Tumorigenic Cancer Stem-like Cells. Mol Cancer Res 2020; 19:223-239. [PMID: 33106374 DOI: 10.1158/1541-7786.mcr-20-0464] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
Understanding the cancer stem cell (CSC) landscape in diffuse intrinsic pontine glioma (DIPG) is desperately needed to address treatment resistance and identify novel therapeutic approaches. Patient-derived DIPG cells demonstrated heterogeneous expression of aldehyde dehydrogenase (ALDH) and CD133 by flow cytometry. Transcriptome-level characterization identified elevated mRNA levels of MYC, E2F, DNA damage repair (DDR) genes, glycolytic metabolism, and mTOR signaling in ALDH+ compared with ALDH-, supporting a stem-like phenotype and indicating a druggable target. ALDH+ cells demonstrated increased proliferation, neurosphere formation, and initiated tumors that resulted in decreased survival when orthotopically implanted. Pharmacologic MAPK/PI3K/mTOR targeting downregulated MYC, E2F, and DDR mRNAs and reduced glycolytic metabolism. In vivo PI3K/mTOR targeting inhibited tumor growth in both flank and an ALDH+ orthotopic tumor model likely by reducing cancer stemness. In summary, we describe existence of ALDH+ DIPGs with proliferative properties due to increased metabolism, which may be regulated by the microenvironment and likely contributing to drug resistance and tumor recurrence. IMPLICATIONS: Characterization of ALDH+ DIPGs coupled with targeting MAPK/PI3K/mTOR signaling provides an impetus for molecularly targeted therapy aimed at addressing the CSC phenotype in DIPG.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Sarah F Ferris
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - April Apfelbaum
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan.,Cancer Biology Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Carlos Espinoza
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Ranjit K Mehta
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Karamoja Monchamp
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Veerin R Sirihorachai
- Cancer Biology Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Karan Bedi
- Cancer Biology Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Mats Ljungman
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Environmental Health Sciences, The University of Michigan Medical School, Ann Arbor, Michigan.,Center for RNA Biomedicine, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan. .,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
34
|
Megino-Luque C, Moiola CP, Molins-Escuder C, López-Gil C, Gil-Moreno A, Matias-Guiu X, Colas E, Eritja N. Small-Molecule Inhibitors (SMIs) as an Effective Therapeutic Strategy for Endometrial Cancer. Cancers (Basel) 2020; 12:E2751. [PMID: 32987790 PMCID: PMC7598629 DOI: 10.3390/cancers12102751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Endometrial cancer (EC) is the sixth most common cancer in women. A continued number of low-risk EC patients at diagnosis, as well as patients diagnosed with advanced-stage disease, will experience an aggressive disease. Unfortunately, those patients will present recurrence or overt dissemination. Systemic cytotoxic chemotherapy treatment on advanced, recurrent, or metastatic EC patients has shown poor results, with median survival rates of less than one year, and median progression-free survival rates of four months. Therefore, the search for innovative and alternative drugs or the development of combinatorial therapies involving new targeted drugs and standard regimens is imperative. Over the last few decades, some small-molecule inhibitors have been introduced in the clinics for cancer treatment, but only a few have been approved by the Food and Drug Administration (FDA) for EC treatment. In the present review, we present the current state and future prospects of small-molecule inhibitors on EC treatment, both alone and in combination.
Collapse
Affiliation(s)
- Cristina Megino-Luque
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (C.M.-E.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.G.-M.); (E.C.)
| | - Cristian Pablo Moiola
- Gynecology Department-Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Pg. Vall d’Hebron119-129, 08035 Barcelona, Spain;
| | - Clara Molins-Escuder
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (C.M.-E.); (X.M.-G.)
| | - Carlos López-Gil
- Gynecology Department-Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Pg. Vall d’Hebron119-129, 08035 Barcelona, Spain;
| | - Antonio Gil-Moreno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.G.-M.); (E.C.)
- Gynecology Department-Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Pg. Vall d’Hebron119-129, 08035 Barcelona, Spain;
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (C.M.-E.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.G.-M.); (E.C.)
- Laboratory of Precision Medicine, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Department of Pathology-Hospital, Universitari de Bellvitge, Gran via de l’Hospitalet 199, 08908 Barcelona, Spain
| | - Eva Colas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.G.-M.); (E.C.)
- Gynecology Department-Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Pg. Vall d’Hebron119-129, 08035 Barcelona, Spain;
| | - Núria Eritja
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.G.-M.); (E.C.)
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain
| |
Collapse
|
35
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
36
|
Ghafarzadeh M. Polycystic Ovary Syndrome and Infertility: From Molecular Perspective. CURRENT WOMENS HEALTH REVIEWS 2020. [DOI: 10.2174/1573404816999200408122039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the major endocrine abnormalities in
women. It is associated with the dysfunction of androgen metabolism, elevation in insulin resistance
and impaired fertility. In addition, it is characterized by polycystic ovaries, chronic anovulation,
hyperandrogenism, chronic low-grade inflammation and type 2 diabetes. Furthermore, the studies
have indicated that PCOS is associated with higher rates of obesity and central adiposity, which are
partly responsible for the clinical severity of PCOS. Over the years, PCOS has been associated with
infertility in women, as it is responsible for subfertility and increases the risk of pregnancy-related
complications like gestational diabetes, hypertensive disorders, and premature delivery. The pathogenesis
of PCOS remains ambiguous, however PI3K-Akt and retinoid signaling pathways are
known to be involved mechanisms. In this review, we will give a comprehensive summary based on
the possible association of PI3K-Akt and retinoid signaling pathways in PCOS-related infertility.
Collapse
Affiliation(s)
- Masoumeh Ghafarzadeh
- Department of Obstetrics &Gynecology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
37
|
Bian J, Xu Y, Wu F, Pan Q, Liu Y. Identification of a five-gene signature for predicting the progression and prognosis of stage I endometrial carcinoma. Oncol Lett 2020; 20:2396-2410. [PMID: 32782557 PMCID: PMC7400971 DOI: 10.3892/ol.2020.11798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is often diagnosed at an early clinical stage based on abnormal vaginal bleeding. However, the prognosis of UCEC is poor. The present study was conducted to identify novel tumor grade-related genes with the potential to predict the prognosis and progression of UCEC. A total of three gene expression microarray datasets were downloaded from the Gene Expression Omnibus database, and one RNA-sequencing dataset with corresponding clinical information of patients with UCEC was obtained from The Cancer Genome Atlas database. In summary, 1,447 differentially expressed genes (DEGs) were identified between endometrial cancerous tissues and normal endometrial tissues. Weighted gene co-expression network analysis was performed to assess the associations between DEGs and clinical traits. In total, five genes were found to be highly associated with the tumorigenesis and prognosis of UCEC. Among them, BUB1 mitotic checkpoint serine/threonine kinase B, cyclin B1, cell-division cycle protein 20 and non-SMC condensing I complex subunit G were involved in cell cycle regulation pathways, and DLG-associated protein 5 was involved in the Notch receptor 3 signaling pathway based on functional enrichment analyses. Of the five genes, four were highly expressed in endometrial cancerous tissues compared with normal endometrial tissues at the protein level. In addition, the higher expression of these genes predicted a higher tumor grade and worse overall survival. In conclusion, the present study revealed a 5-gene signature that can be used to predict the progression of UCEC.
Collapse
Affiliation(s)
- Jia Bian
- Department of Gynecology and Obstetrics, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang 310006, P.R. China
| | - Fei Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Qiangwei Pan
- Department of Gynecology and Obstetrics, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Yunlong Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
38
|
Huang TT, Lampert EJ, Coots C, Lee JM. Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer. Cancer Treat Rev 2020; 86:102021. [PMID: 32311593 DOI: 10.1016/j.ctrv.2020.102021] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide although exponential progress has been made in its treatment over the last decade. New agents and novel combination treatments are on the horizon. Among many new drugs, a series of PI3K/AKT/mTOR pathway (referred to as the PI3K pathway) inhibitors are under development or already in clinical testing. The PI3K pathway is frequently upregulated in ovarian cancer and activated PI3K signaling contributes to increased cell survival and chemoresistance. However, no significant clinical success has been achieved with the PI3K pathway inhibitor(s) to date, reflecting the complex biology and also highlighting the need for combination treatment strategies. DNA damage repair pathways have been active therapeutic targets in ovarian cancer. Emerging data suggest the PI3K pathway is also involved in DNA replication and genome stability, making DNA damage response (DDR) inhibitors as an attractive combination treatment for PI3K pathway blockades. This review describes an expanded role for the PI3K pathway in the context of DDR and cell cycle regulation. We also present the novel treatment strategies combining PI3K pathway inhibitors with DDR blockades to improve the efficacy of these inhibitors for ovarian cancer.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Erika J Lampert
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cynthia Coots
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
39
|
Moussa S, Saleh F, El Shamieh S, Assi T, Othman A, Farhat F. Detection of PIK3R1 (L449S) Mutation in a Patient with Ovarian Cancer: A Case Report. Case Rep Oncol 2020; 13:188-192. [PMID: 32231543 DOI: 10.1159/000505723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is one of the most dangerous gynecological diseases and greatly increases the death risk worldwide. The heterogeneity of the ovarian tumors among patients and the lack of sufficient therapies for these tumors make the selection of the appropriate treatment a hard challenge. Understanding the mechanisms leading to OC becomes an urgent need in order to find out better therapeutic strategies. In this study, we have identified a point mutation (L449S) in the regulatory subunit of PI3K in an OC Lebanese patient. This genomic alteration had not been previously reported in OC and could plausibly enhance the PIK3CA amplification effect in strengthening AKT/mTOR pathway activity and leading to tumorigenesis.
Collapse
Affiliation(s)
- Salim Moussa
- Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Fatima Saleh
- Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Said El Shamieh
- Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Tarek Assi
- Department of Hematology-Oncology, Saint Joseph Faculty of Medicine, Beirut, Lebanon.,Department of Hematology and Oncology, Hammoud Hospital UMC, Saida, Lebanon
| | - Ahmad Othman
- Department of Hematology and Oncology, Hammoud Hospital UMC, Saida, Lebanon
| | - Fadi Farhat
- Department of Hematology-Oncology, Saint Joseph Faculty of Medicine, Beirut, Lebanon.,Department of Hematology and Oncology, Hammoud Hospital UMC, Saida, Lebanon
| |
Collapse
|
40
|
Toboni MD, Mutch DG. The emerging role of precision medicine in the treatment of endometrial cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1732204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Michael D. Toboni
- Division of Gynecologic Oncology, Barnes Jewish Hospital, Washington University, St. Louis, MO, USA
| | - David G. Mutch
- Division of Gynecologic Oncology, Barnes Jewish Hospital, Washington University, St. Louis, MO, USA
| |
Collapse
|
41
|
Chen Q, Zhang ZH, Wang S, Lang JH. Circulating Cell-Free DNA or Circulating Tumor DNA in the Management of Ovarian and Endometrial Cancer. Onco Targets Ther 2019; 12:11517-11530. [PMID: 31920340 PMCID: PMC6938177 DOI: 10.2147/ott.s227156] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal cancer of all gynecological malignancies, while endometrial cancer (EC) is the most common one. Current strategies for OC/EC diagnosis consist of the extraction of a solid tissue from the affected area. This sample enables the study of specific biomarkers and the genetic nature of the tumor. However, the tissue extraction is risky and painful for the patient and in some cases is unavailable in inaccessible tumors. Moreover, a tissue biopsy is expensive and requires a highly skilled gynecological surgery to pinpoint accurately which cannot be applied repeatedly. New alternatives that overcome these drawbacks are rising up nowadays, such as liquid biopsy. A liquid biopsy is the analysis of biomarkers in a non-solid biological tissue, mainly blood, which has remarkable advantages over the traditional method. The most studied cancer non-invasive biomarkers are circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating free DNA (cfDNA). These circulating biomarkers play a key role in the understanding of metastasis and tumorigenesis, which could provide a better insight into the evolution of the tumor dynamics during treatment and disease progression. Liquid biopsy is an emerging non-invasive, safe and effective method with considerable potential for clinical diagnosis and treatment management in patients with OC and EC. Analysis of cfDNA and ctDNA will provide a better characterization of biomarkers and give rise to a wide range of clinical applications, such as early detection of OC/EC, the prediction of treatment responses due to the discovery of personalized tumor-related biomarkers, and therapeutic response monitoring.
Collapse
Affiliation(s)
- Qian Chen
- Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zi-Han Zhang
- Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shu Wang
- Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing-He Lang
- Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
42
|
Rubinstein MM, Hyman DM, Caird I, Won H, Soldan K, Seier K, Iasonos A, Tew WP, O'Cearbhaill RE, Grisham RN, Hensley ML, Troso-Sandoval T, Sabbatini P, Guillen J, Selcuklu SD, Zimel C, Torrisi J, Aghajanian C, Makker V. Phase 2 study of LY3023414 in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. Cancer 2019; 126:1274-1282. [PMID: 31880826 DOI: 10.1002/cncr.32677] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND PI3K pathway activation is common in endometrial cancer. We evaluated the safety and efficacy of the dual PI3K/mTOR inhibitor, LY3023414, in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. METHODS We conducted a single-arm phase 2 study of monotherapy LY3023414. Eligible patients had advanced endometrial cancer of any grade, prior management with 1-4 cytotoxic lines, and PI3K pathway activation prospectively defined as a loss-of-function PTEN alteration or activating alteration in PIK3CA, AKT1, PIK3R1, PIK3R2, or MTOR. The primary objective was best overall response rate (ORR) per RECIST 1.1. RESULTS Twenty-eight patients were treated; histologies included endometroid (39%), carcinosarcoma (25%), serous (21%), and mixed (14%). Patients were heavily pretreated, with a median of 2 prior cytotoxic lines (range, 1-3). The most common alterations involved PIK3CA (68%), PTEN (43%), and PIK3R1 (32%). In the 25 efficacy-evaluable patients, the ORR was 16% (90% CI, 7%-100%), and the clinical benefit rate was 28% (90% CI, 16%-100%). Four patients had a confirmed partial response, and 2 responses lasted for >9 months. The median progression-free survival and overall survival were 2.5 months (95% CI, 1.2-3.0) and 9.2 months (95% CI, 5.0-15.9), respectively. The most common all-grade treatment-related adverse events were anemia (71%), hyperglycemia (71%), hypoalbuminemia (68%), and hypophosphatemia (61%). No correlation between molecular alterations and response was observed. CONCLUSION In patients with heavily pretreated advanced endometrial cancer prospectively selected for tumors with activating PI3K pathway mutations, LY3023414 demonstrated modest single-agent activity and a manageable safety profile.
Collapse
Affiliation(s)
- Maria M Rubinstein
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Hyman
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Imogen Caird
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helen Won
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Krysten Soldan
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Seier
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William P Tew
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Roisin E O'Cearbhaill
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Rachel N Grisham
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Martee L Hensley
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Tiffany Troso-Sandoval
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Paul Sabbatini
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Joyce Guillen
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - S Duygu Selcuklu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine Zimel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jean Torrisi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|
43
|
Myers AP, Konstantinopoulos PA, Barry WT, Luo W, Broaddus RR, Makker V, Drapkin R, Liu J, Doyle A, Horowitz NS, Meric-Bernstam F, Birrer M, Aghajanian C, Coleman RL, Mills GB, Cantley LC, Matulonis UA, Westin SN. Phase II, 2-stage, 2-arm, PIK3CA mutation stratified trial of MK-2206 in recurrent endometrial cancer. Int J Cancer 2019; 147:413-422. [PMID: 31714586 DOI: 10.1002/ijc.32783] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Abstract
Endometrial cancers have high rates of phosphoinositide 3-kinase (PI3K) pathway alterations. MK-2206 is an allosteric inhibitor of AKT, an effector kinase of PI3K signals. We hypothesized patients with tumors harboring PIK3CA mutations would be more likely to benefit from MK-2206 than those without PIK3CA mutation. A Phase II study was performed in patients with recurrent endometrial cancer; all histologies except carcinosarcoma were eligible. Up to two prior chemotherapy lines were permitted, excluding prior treatment with PI3K pathway inhibitors. The first 18 patients were treated with MK-2206 200 mg weekly. Due to unacceptable toxicity, dose was reduced to 135 mg. Co-primary endpoints were objective response rate (ORR) and progression-free survival at 6 months (6moPFS). Thirty-seven patients were enrolled (one ineligible). By somatic PIK3CA mutation analysis, nine patients were mutant (MT) [one with partial response (PR)/6moPFS, two with 6moPFS]. Twenty-seven patients were wild-type (WT) (one PR and four 6moPFS). Most common toxicities were rash (44%), fatigue (41%), nausea (42%) and hyperglycemia (31%). Grade 3 and 4 toxicities occurred in 25 and 17% of patients, respectively. Exploratory analysis found serous histology had greater 6moPFS as compared to all other histologies (5/8 vs. 2/28, p = 0.003). PTEN expression was associated with median time to progression (p = 0.04). No other significant associations with PI3K pathway alterations were identified. There is limited single agent activity of MK-2206 in PIK3CA MT and PIK3CA WT endometrial cancer populations. Activity was detected in patients with serous histology and due to their poor outcomes warrants further study (NCT01307631).
Collapse
Affiliation(s)
- Andrea P Myers
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | | | | | - Weixiu Luo
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Russell R Broaddus
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Vicky Makker
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA
| | - Joyce Liu
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Austin Doyle
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Neil S Horowitz
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Dana Farber Cancer Institute, Boston, MA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Michael Birrer
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Ursula A Matulonis
- Division of Hematology/Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
44
|
Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Eur J Med Chem 2019; 183:111718. [DOI: 10.1016/j.ejmech.2019.111718] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
45
|
Brooks RA, Fleming GF, Lastra RR, Lee NK, Moroney JW, Son CH, Tatebe K, Veneris JL. Current recommendations and recent progress in endometrial cancer. CA Cancer J Clin 2019; 69:258-279. [PMID: 31074865 DOI: 10.3322/caac.21561] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endometrial cancer is the most common gynecologic cancer in the United States, and its incidence is rising. Although there have been significant recent advances in our understanding of endometrial cancer biology, many aspects of treatment remain mired in controversy, including the role of surgical lymph node assessment and the selection of patients for adjuvant radiation or chemotherapy. For the subset of women with microsatellite-instable, metastatic disease, anti- programmed cell death protein 1 immunotherapy (pembrolizumab) is now approved by the US Food and Drug Administration, and numerous trials are attempting to build on this early success.
Collapse
Affiliation(s)
- Rebecca A Brooks
- Associate Professor, Department of Gynecologic Oncology, The University of Chicago, Chicago, IL
- Dr. Brooks is now the Associate Professor and Chief of the Division of Gynecologic Oncology, University of California Davis School of Medicine, Davis, CA
| | - Gini F Fleming
- Professor of Medicine and Director, Medical Oncology Breast Program, Department of Medical Oncology, The University of Chicago, Chicago, IL
| | - Ricardo R Lastra
- Assistant Professor, Department of Pathology, The University of Chicago, Chicago, IL
| | - Nita K Lee
- Assistant Professor of Obstetrics and Gynecology, Department of Gynecologic Oncology, The University of Chicago, Chicago, IL
| | - John W Moroney
- Associate Professor of Obstetrics and Gynecology, Department of Gynecologic Oncology, The University of Chicago, Chicago, IL
| | - Christina H Son
- Assistant Professor, Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL
| | - Ken Tatebe
- Resident, Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL
| | - Jennifer L Veneris
- Instructor of Medicine, Division of Gynecologic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
Curigliano G, Shah RR. Safety and Tolerability of Phosphatidylinositol-3-Kinase (PI3K) Inhibitors in Oncology. Drug Saf 2019; 42:247-262. [PMID: 30649751 DOI: 10.1007/s40264-018-0778-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of phosphatidylinositol-3-kinase (PI3K) and downstream signalling by AKT/mammalian target of rapamycin (mTOR) modulates cellular processes such as increased cell growth, cell proliferation and increased cell migration as well as deregulated apoptosis and oncogenesis. The PI3K/AKT/mTOR pathway (particularly Class I PI3K isoforms) is frequently activated in a variety of solid tumours and haematological malignancies, making PI3K an attractive therapeutic target in oncology. Inhibitors of PI3K also have the potential to restore sensitivity to other modalities of treatments when administered as part of combination regimens. Although many PI3K inhibitors have reached different stages of clinical development, only two (idelalisib and copanlisib) have been currently approved for use in the treatment of B cell lymphoma and leukaemias. While these two agents are effective clinically, their use is associated with a number of serious class-related as well as drug-specific adverse effects. Some of these are immune-mediated and include cutaneous reactions, severe diarrhoea with or without colitis, hepatotoxicity and pneumonitis. They also induce various metabolic abnormalities such as hyperglycaemia and hypertriglyceridaemia. Not surprisingly, therefore, many new PI3K inhibitors with a varying degree of target selectivity have been synthesised in expectations of improved safety and efficacy, and are currently under clinical investigations for use in a variety of solid tumours as well as haematological malignancies. However, evidence from early clinical trials, reviewed herein, suggests that these newer agents are also associated not only with class-related but also other serious and unexpected adverse effects. Their risk/benefit evaluations have resulted in a number of them being discontinued from further development. Cumulative experience with the use of PI3K inhibitors under development suggests that, compared with their use as monotherapy, combining them with other anticancer therapies may be a more effective strategy in improving current standard-of-care and clinical outcomes in cancers beyond haematological cancers. For example, combination of alpelisib with fulvestrant has recently demonstrated unexpectedly superior efficacy compared to fulvestrant alone. Furthermore, the immunomodulatory activity of PI3Kδ and PI3Kγ inhibitors also provides unexpected opportunities for their use in cancer immunotherapy, as is currently being tested in several clinical trials.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Rashmi R Shah
- Pharmaceutical Consultant, 8 Birchdale, Gerrards Cross, Buckinghamshire, SL9 7JA, UK.
| |
Collapse
|
47
|
Rodriguez-Freixinos V, Ruiz-Pace F, Fariñas-Madrid L, Garrido-Castro AC, Villacampa G, Nuciforo P, Vivancos A, Dienstmann R, Oaknin A. Genomic heterogeneity and efficacy of PI3K pathway inhibitors in patients with gynaecological cancer. ESMO Open 2019. [PMID: 30962959 DOI: 10.1136/esmoopen-2018-000444] [] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objectives Aberrant PI3K/AKT/mTOR activation is common in gynaecological malignancies. However, predictive biomarkers of response to PI3K pathway inhibitors (PAMi) have yet to be identified. Methods We analysed the outcomes of patients with advanced gynaecological cancer with available genomic data, treated with PAMi as single agents or in combination in phase I clinical trials. Clinical relevance of the PIK3CA mutant allele fraction (MAF) was investigated. MAF of each variant was normalised for tumour purity in the sample (adjMAFs) to infer clonality of PIK3CA mutations, defined as clonal (≥0.4) or subclonal (<0.4). Results A total of 50 patients with gynaecological cancer (24 ovarian; 15 endometrial; 11 cervical) with available targeted mutation profiling were selected. PAMi therapy was matched to PIK3CA/PTEN mutation in 30 patients (60%). The overall response rate, median time to progression (mTTP) and clinical benefit rate (CBR) of the entire population were 10% (N=5), 3.57 months (2.57-4.4) and 40% (N=18), respectively. Genotype-matched therapy did not lead to a favourable CBR (OR 0.91, p=1 (0.2-3.7)) or mTTP (3.57 months (2.6-4.4) vs 3.73 months (1.9-13.2); HR 1.41; p=0.29). We did not detect differences in mTTP according to therapy or PIK3CA codon mutation (HR 1.71, p=0.24). Overall, 41% of patients had a TTP ratio (TTP PAMi/TTP on immediately prior or subsequent palliative chemotherapy) ≥1.3, without statistically significant differences according to tumour type (p=0.39), molecular alteration status (p=0.13) or therapy (p=0.54). In univariate analysis, genotype-matched therapy in patients with PIK3CA clonal events was associated with improved mTTP (HR 3.6; p=0.03). Conclusions Our study demonstrates that patients with advanced gynaecological cancer, refractory to standard therapies, achieved meaningful clinical benefit from PAMi. The impact of PI3KCA clonality on response to selected PAMi in patients with gynaecological cancer deserves further investigation.
Collapse
Affiliation(s)
- Victor Rodriguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lorena Fariñas-Madrid
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Christina Garrido-Castro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Guillermo Villacampa
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
48
|
Rodriguez-Freixinos V, Ruiz-Pace F, Fariñas-Madrid L, Garrido-Castro AC, Villacampa G, Nuciforo P, Vivancos A, Dienstmann R, Oaknin A. Genomic heterogeneity and efficacy of PI3K pathway inhibitors in patients with gynaecological cancer. ESMO Open 2019. [PMID: 30962959 DOI: 10.1136/esmoopen-2018-000444]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Aberrant PI3K/AKT/mTOR activation is common in gynaecological malignancies. However, predictive biomarkers of response to PI3K pathway inhibitors (PAMi) have yet to be identified. METHODS We analysed the outcomes of patients with advanced gynaecological cancer with available genomic data, treated with PAMi as single agents or in combination in phase I clinical trials. Clinical relevance of the PIK3CA mutant allele fraction (MAF) was investigated. MAF of each variant was normalised for tumour purity in the sample (adjMAFs) to infer clonality of PIK3CA mutations, defined as clonal (≥0.4) or subclonal (<0.4). RESULTS A total of 50 patients with gynaecological cancer (24 ovarian; 15 endometrial; 11 cervical) with available targeted mutation profiling were selected. PAMi therapy was matched to PIK3CA/PTEN mutation in 30 patients (60%). The overall response rate, median time to progression (mTTP) and clinical benefit rate (CBR) of the entire population were 10% (N=5), 3.57 months (2.57-4.4) and 40% (N=18), respectively. Genotype-matched therapy did not lead to a favourable CBR (OR 0.91, p=1 (0.2-3.7)) or mTTP (3.57 months (2.6-4.4) vs 3.73 months (1.9-13.2); HR 1.41; p=0.29). We did not detect differences in mTTP according to therapy or PIK3CA codon mutation (HR 1.71, p=0.24). Overall, 41% of patients had a TTP ratio (TTP PAMi/TTP on immediately prior or subsequent palliative chemotherapy) ≥1.3, without statistically significant differences according to tumour type (p=0.39), molecular alteration status (p=0.13) or therapy (p=0.54). In univariate analysis, genotype-matched therapy in patients with PIK3CA clonal events was associated with improved mTTP (HR 3.6; p=0.03). CONCLUSIONS Our study demonstrates that patients with advanced gynaecological cancer, refractory to standard therapies, achieved meaningful clinical benefit from PAMi. The impact of PI3KCA clonality on response to selected PAMi in patients with gynaecological cancer deserves further investigation.
Collapse
Affiliation(s)
- Victor Rodriguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Fiorella Ruiz-Pace
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lorena Fariñas-Madrid
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Christina Garrido-Castro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Guillermo Villacampa
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
49
|
Konstantinopoulos PA, Barry WT, Birrer M, Westin SN, Cadoo KA, Shapiro GI, Mayer EL, O'Cearbhaill RE, Coleman RL, Kochupurakkal B, Whalen C, Curtis J, Farooq S, Luo W, Eismann J, Buss MK, Aghajanian C, Mills GB, Palakurthi S, Kirschmeier P, Liu J, Cantley LC, Kaufmann SH, Swisher EM, D'Andrea AD, Winer E, Wulf GM, Matulonis UA. Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion phase 1b trial. Lancet Oncol 2019; 20:570-580. [PMID: 30880072 DOI: 10.1016/s1470-2045(18)30905-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Based on preclinical work, we found that combination of poly (ADP-ribose) polymerase (PARP) inhibitors with drugs that inhibit the homologous recombination repair (HRR) pathway (such as PI3K inhibitors) might sensitise HRR-proficient epithelial ovarian cancers to PARP inhibitors. We aimed to assess the safety and identify the recommended phase 2 dose of the PARP inhibitor olaparib in combination with the PI3K inhibitor alpelisib in patients with epithelial ovarian cancer and in patients with breast cancer. METHODS In this multicentre, open-label, phase 1b trial following a 3 + 3 dose-escalation design, we recruited patients aged 18 years or older with the following key eligibility criteria: confirmed diagnosis of either recurrent ovarian, fallopian tube, or primary peritoneal cancer of high-grade serous histology; confirmed diagnosis of either recurrent ovarian, fallopian tube, or primary peritoneal cancer of any histology with known germline BRCA mutations; confirmed diagnosis of recurrent breast cancer of triple-negative histology; or confirmed diagnosis of recurrent breast cancer of any histology with known germline BRCA mutations. Additional patients with epithelial ovarian cancer were enrolled in a dose-expansion cohort. Four dose levels were planned: the starting dose level of alpelisib 250 mg once a day plus olaparib 100 mg twice a day (dose level 0); alpelisib 250 mg once a day plus olaparib 200 mg twice a day (dose level 1); alpelisib 300 mg once a day plus olaparib 200 mg twice a day (dose level 2); and alpelisib 200 mg once a day plus olaparib 200 mg twice a day (dose level 3). Both drugs were administered orally, in tablet formulation. The primary objective was to identify the maximum tolerated dose and the recommended phase 2 dose of the combination of alpelisib and olaparib for patients with epithelial ovarian cancer and patients with breast cancer. Analyses included all patients who received at least one dose of the study drugs. The trial is active, but closed to enrolment; follow-up for patients who completed treatment is ongoing. This trial is registered with ClinicalTrials.gov, number NCT01623349. FINDINGS Between Oct 3, 2014, and Dec 21, 2016, we enrolled 34 patients (28 in the dose-escalation cohort and six in the dose-expansion cohort); two in the dose-escalation cohort were ineligible at the day of scheduled study initiation. Maximum tolerated dose and recommended phase 2 dose were identified as alpelisib 200 mg once a day plus olaparib 200 mg twice a day (dose level 3). Considering all dose levels, the most common treatment-related grade 3-4 adverse events were hyperglycaemia (five [16%] of 32 patients), nausea (three [9%]), and increased alanine aminotransferase concentrations (three [9%]). No treatment-related deaths occurred. Dose-limiting toxic effects included hyperglycaemia and fever with decreased neutrophil count. Of the 28 patients with epithelial ovarian cancer, ten (36%) achieved a partial response and 14 (50%) had stable disease according to Response Evaluation Criteria in Solid Tumors 1.1. INTERPRETATION Combining alpelisib and olaparib is feasible with no unexpected toxic effects. The observed activity provides preliminary clinical evidence of synergism between olaparib and alpelisib, particularly in epithelial ovarian cancer, and warrants further investigation. FUNDING Ovarian Cancer Dream Team (Stand Up To Cancer, Ovarian Cancer Research Alliance, National Ovarian Cancer Coalition), Breast Cancer Research Foundation, Novartis.
Collapse
Affiliation(s)
| | | | - Michael Birrer
- Department of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Karen A Cadoo
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | | | | | - Roisin E O'Cearbhaill
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | - Weixiu Luo
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Julia Eismann
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mary K Buss
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Carol Aghajanian
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | | | | | | | - Joyce Liu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | - Eric Winer
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | |
Collapse
|
50
|
Mitamura T, Dong P, Ihira K, Kudo M, Watari H. Molecular-targeted therapies and precision medicine for endometrial cancer. Jpn J Clin Oncol 2019; 49:108-120. [PMID: 30423148 DOI: 10.1093/jjco/hyy159] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022] Open
Abstract
The overall survival rate of patients with early-stage endometrial cancer is relatively high; however, there are few treatment options for patients with advanced or recurrent endometrial cancer, and the prognosis of such patients remains poor. Recent progress in molecular-targeted therapies demonstrated that they have the potential to improve the long-term survival of cancer patients with appropriate biomarkers. However, the median progression-free survival of patients who received single-agent molecular-targeted therapy was <5 months, and the development of molecular-targeted therapies for endometrial cancer patients is urgently needed. This review highlights the previous efforts, including antiangiogenesis therapy, PI3K/AKT/mTOR pathway inhibitor treatment and epidermal growth factor receptor inhibitor treatment and reports on ongoing phase 2 clinical trials, including immune checkpoint inhibitor and PARP inhibitor. We also summarized the genetic background of endometrial cancer according to The Cancer Genome Atlas data and considered the theoretical background for future efforts to prolong the survival of patients with refractory endometrial cancer and for other interesting challenges.
Collapse
Affiliation(s)
- Takashi Mitamura
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Masataka Kudo
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|