1
|
Nelson BH, Hamilton P, Phung MT, Milne K, Harris B, Thornton S, Stevens D, Kalaria S, Singh K, Laumont CM, Moss E, Alimujiang A, Meagher NS, Bolithon A, Fereday S, Kennedy CJ, Hendley J, Ariyaratne D, Alsop K, Traficante N, Goode EL, Karnezis A, Shen H, Richardson J, McKinnonDeurloo C, Chase A, Grout B, Doherty JA, Harris HR, Cushing-Haugen KL, Anglesio M, Heinze K, Huntsman D, Talhouk A, Hanley GE, Alsop J, Jimenez-Linan M, Pharoah PD, Boros J, Brand AH, Harnett PR, Sharma R, Hecht JL, Sasamoto N, Terry KL, Karlan B, Lester J, Carney ME, Goodman MT, Hernandez BY, Wilkens LR, Behrens S, Turzanski Fortner R, Fasching PA, Bisinotto C, Candido dos Reis FJ, Ghatage P, Köbel M, Elishaev E, Modugno F, Cook L, Le N, Gentry-Maharaj A, Menon U, García MJ, Rodriguez-Antona C, Farrington K, Kelemen LE, Kommoss S, Staebler A, Garsed DW, Brenton JD, Piskorz AM, Bowtell DD, DeFazio A, Ramus SJ, Pike MC, Pearce CL. Immunological and molecular features of the tumor microenvironment of long-term survivors of ovarian cancer. J Clin Invest 2024; 134:e179501. [PMID: 39470729 PMCID: PMC11645148 DOI: 10.1172/jci179501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUNDDespite an overall poor prognosis, about 15% of patients with advanced-stage tubo-ovarian high-grade serous carcinoma (HGSC) survive 10 or more years after standard treatment.METHODSWe evaluated the tumor microenvironment of this exceptional, understudied group using a large international cohort enriched for long-term survivors (LTS; 10+ years; n = 374) compared with mid-term (MTS; 5-7.99 years; n = 433) and short-term survivors (STS; 2-4.99 years; n = 416). Primary tumor samples were immunostained and scored for intraepithelial and intrastromal densities of 10 immune-cell subsets (including T cells, B cells, plasma cells, myeloid cells, PD-1+ cells, and PD-L1+ cells) and epithelial content.RESULTSPositive associations with LTS compared with STS were seen for 9 of 10 immune-cell subsets. In particular, the combination of intraepithelial CD8+ T cells and intrastromal B cells showed near 5-fold increased odds of LTS compared with STS. All of these associations were stronger in tumors with high epithelial content and/or the C4/Differentiated molecular subtype, despite immune-cell densities generally being higher in tumors with low epithelial content and/or the C2/Immunoreactive molecular subtype.CONCLUSIONThe tumor microenvironment of HGSC LTS is distinguished by the intersection of T and B cell coinfiltration, high epithelial content, and C4/differentiated molecular subtype, features which may inspire new approaches to immunotherapy.FUNDINGOvarian Cancer Research Program (OCRP) of the Congressionally Directed Medical Research Program (CDMRP), U.S. Department of Defense (DOD); American Cancer Society; BC Cancer Foundation; Canada's Networks of Centres of Excellence; Canadian Cancer Society; Canadian Institutes of Health Research; Cancer Councils of New South Wales, Victoria, Queensland, South Australia, and Tasmania, Cancer Foundation of Western Australia; Cancer Institute NSW; Cancer Research UK; Deutsche Forschungsgesellschaft; ELAN Funds of the University of Erlangen-Nuremberg; Fred C. and Katherine B. Andersen Foundation; Genome BC; German Cancer Research Center; German Federal Ministry of Education and Research, Programme of Clinical Biomedical Research; Instituto de Salud Carlos III; Mayo Foundation; Minnesota Ovarian Cancer Alliance; Ministerio de Economía y Competitividad; Medical Research Council (MRC); National Center for Advancing Translational Sciences; National Health and Medical Research Council of Australia (NHMRC); Ovarian Cancer Australia; Peter MacCallum Foundation; Sydney West Translational Cancer Research Centre; Terry Fox Research Institute; The Eve Appeal (The Oak Foundation); UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge; University of Pittsburgh School of Medicine; U.S. National Cancer Institute of the National Institutes of Health; VGH & UBC Hospital Foundation; Victorian Cancer Agency.
Collapse
Affiliation(s)
- Brad H. Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Phineas Hamilton
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Minh Tung Phung
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Bronwyn Harris
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Shelby Thornton
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Donald Stevens
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Shreena Kalaria
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karanvir Singh
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Céline M. Laumont
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena Moss
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Aliya Alimujiang
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicola S. Meagher
- School of Clinical Medicine, University of New South Wales (NSW) Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Adelyn Bolithon
- School of Clinical Medicine, University of New South Wales (NSW) Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Ellen L. Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Anthony Karnezis
- Department of Pathology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Hui Shen
- Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jean Richardson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Patient advocate
| | | | | | | | - Jennifer Anne Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Karolin Heinze
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - David Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Aline Talhouk
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Gillian E. Hanley
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | - Paul D.P. Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, California, USA
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R. Harnett
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre and
| | - Raghwa Sharma
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia
- Western Sydney University, Sydney, New South Wales, Australia
| | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Naoko Sasamoto
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn L. Terry
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Beth Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California, USA
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California, USA
| | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine University of Hawaii, Honolulu, Hawaii, USA
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Christiani Bisinotto
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francesmary Modugno
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Linda Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, Colorado, USA
- Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nhu Le
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology and
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology and
| | - María J. García
- Cancer Biology Department, Sols-Morreale Biomedical Research Institute (IIBM), CSIC UAM, Madrid, Spain
| | - Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Kyo Farrington
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health and Environmental Control, Columbia, South Carolina, USA
| | | | - Annette Staebler
- Institute of Pathology and Neuropathology, Tuebingen University Hospital, Tuebingen, Germany
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anna M. Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Susan J. Ramus
- School of Clinical Medicine, University of New South Wales (NSW) Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Malcolm C. Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
2
|
Saner FA, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Gilks CB, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Soong TR, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DD, Garsed DW. Concurrent RB1 Loss and BRCA Deficiency Predicts Enhanced Immunologic Response and Long-term Survival in Tubo-ovarian High-grade Serous Carcinoma. Clin Cancer Res 2024; 30:3481-3498. [PMID: 38837893 PMCID: PMC11325151 DOI: 10.1158/1078-0432.ccr-23-3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The purpose of this study was to evaluate RB1 expression and survival across ovarian carcinoma histotypes and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7,436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1,134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes, and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 patients with primary HGSC to characterize tumors with concurrent BRCA deficiency and RB1 loss. RESULTS RB1 loss was associated with longer OS in HGSC but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared with patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA deficiency correlated with transcriptional markers of enhanced IFN response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS Co-occurrence of RB1 loss and BRCA deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A.M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland.
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom.
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Gregg S. Nelson
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Prafull Ghatage
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.
| | - Marjorie J. Riggan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - Jennifer Alsop
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom.
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Paul R. Harnett
- The University of Sydney, Sydney, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
- Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland.
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | | | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Minouk J. Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Mitul Shah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, Australia.
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida.
| | - Yurii B. Shvetsov
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada.
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Canada.
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota.
| | - Chen Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | | | - Lynne R. Wilkens
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - Stacey J. Winham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Linda S. Cook
- Department of Epidemiology, School of Public Health, University of Colorado, Aurora, Colorado.
- Community Health Sciences, University of Calgary, Calgary, Canada.
| | - Jennifer A. Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, Canada.
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, South Carolina.
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania.
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Paul D.P. Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, California.
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.
| | - Karin Sundfeldt
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Ellen L. Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
3
|
Borst R, Meyaard L, Pascoal Ramos MI. Understanding the matrix: collagen modifications in tumors and their implications for immunotherapy. J Transl Med 2024; 22:382. [PMID: 38659022 PMCID: PMC11040975 DOI: 10.1186/s12967-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interactions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-translational modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how collagen could be targeted to treat cancer.
Collapse
Affiliation(s)
- Rowie Borst
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Ines Pascoal Ramos
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
4
|
Ramachandran D, Tyrer JP, Kommoss S, DeFazio A, Riggan MJ, Webb PM, Fasching PA, Lambrechts D, García MJ, Rodríguez-Antona C, Goodman MT, Modugno F, Moysich KB, Karlan BY, Lester J, Kjaer SK, Jensen A, Høgdall E, Goode EL, Cliby WA, Kumar A, Wang C, Cunningham JM, Winham SJ, Monteiro AN, Schildkraut JM, Cramer DW, Terry KL, Titus L, Bjorge L, Thomsen LCV, Pejovic T, Høgdall CK, McNeish IA, May T, Huntsman DG, Pfisterer J, Canzler U, Park-Simon TW, Schröder W, Belau A, Hanker L, Harter P, Sehouli J, Kimmig R, de Gregorio N, Schmalfeldt B, Baumann K, Hilpert F, Burges A, Winterhoff B, Schürmann P, Speith LM, Hillemanns P, Berchuck A, Johnatty SE, Ramus SJ, Chenevix-Trench G, Pharoah PDP, Dörk T, Heitz F. Genome-wide association analyses of ovarian cancer patients undergoing primary debulking surgery identify candidate genes for residual disease. NPJ Genom Med 2024; 9:19. [PMID: 38443389 PMCID: PMC10915171 DOI: 10.1038/s41525-024-00395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
Survival from ovarian cancer depends on the resection status after primary surgery. We performed genome-wide association analyses for resection status of 7705 ovarian cancer patients, including 4954 with high-grade serous carcinoma (HGSOC), to identify variants associated with residual disease. The most significant association with resection status was observed for rs72845444, upstream of MGMT, in HGSOC (p = 3.9 × 10-8). In gene-based analyses, PPP2R5C was the most strongly associated gene in HGSOC after stage adjustment. In an independent set of 378 ovarian tumours from the AGO-OVAR 11 study, variants near MGMT and PPP2R5C correlated with methylation and transcript levels, and PPP2R5C mRNA levels predicted progression-free survival in patients with residual disease. MGMT encodes a DNA repair enzyme, and PPP2R5C encodes the B56γ subunit of the PP2A tumour suppressor. Our results link heritable variation at these two loci with resection status in HGSOC.
Collapse
Grants
- R21 CA267050 NCI NIH HHS
- K05 CA154337 NCI NIH HHS
- UL1 TR000124 NCATS NIH HHS
- P50 CA105009 NCI NIH HHS
- K07 CA080668 NCI NIH HHS
- P30 CA076292 NCI NIH HHS
- R01 CA076016 NCI NIH HHS
- R01 CA248288 NCI NIH HHS
- U19 CA148112 NCI NIH HHS
- R01 CA149429 NCI NIH HHS
- Wellcome Trust
- UL1 TR001881 NCATS NIH HHS
- P50 CA136393 NCI NIH HHS
- M01 RR000056 NCRR NIH HHS
- R01 CA095023 NCI NIH HHS
- P30 CA047904 NCI NIH HHS
- R01 CA058598 NCI NIH HHS
- R01 CA054419 NCI NIH HHS
- P30 CA015083 NCI NIH HHS
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- The Ovarian Cancer Association Consortium is funded by generous contributions from its research investigators and through anonymous donations. OCAC was funded by a grant from the Ovarian Cancer Research Fund (OCRF). The OCAC OncoArray genotyping project was funded through grants from the U.S. National Institutes of Health (CA1X01HG007491-01 (C.I.A.), U19-CA148112 (T.A.S.), R01-CA149429 (C.M.P.) and R01-CA058598 (M.T.G.); Canadian Institutes of Health Research (MOP-86727 (L.E.K.) and the Ovarian Cancer Research Fund (A.B.). The COGS project was funded through a European Commission’s Seventh Framework Programme grant (agreement number 223175 - HEALTH-F2-2009-223175) and in part by the US National Cancer Institute GAME-ON Post-GWAS Initiative (U19-CA148112). This study made use of data generated by the Wellcome Trust Case Control consortium that was funded by the Wellcome Trust under award 076113. The results published are in part based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancer Institute and National Human Genome Research Institute (dbGap accession number phs000178.v8.p7). Funding for individual studies: AUS: The Australian Ovarian Cancer Study (AOCS) was supported by the U.S. Army Medical Research and Materiel Command (DAMD17-01-1-0729), National Health & Medical Research Council of Australia (199600, 400413 and 400281), Cancer Councils of New South Wales, Victoria, Queensland, South Australia and Tasmania and Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182). AOCS gratefully acknowledges additional support from Ovarian Cancer Australia and the Peter MacCallum Foundation; BAV: ELAN Funds of the University of Erlangen-Nuremberg; BEL: National Kankerplan; CNI: Instituto de Salud Carlos III (PI 19/01730); Ministerio de Economía y Competitividad (SAF2012); HAW: U.S. National Institutes of Health (R01-CA58598, N01-CN-55424 and N01-PC-67001); HOP: University of Pittsburgh School of Medicine Dean’s Faculty Advancement Award (F. Modugno), Department of Defense (DAMD17-02-1-0669, OC20085) and United States National Cancer Institute (R21-CA267050, K07-CA080668, R01-CA95023, MO1-RR000056); LAX: American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124; MAC: National Institutes of Health (R01-CA2482288, P30-CA15083, P50-CA136393); Mayo Foundation; Minnesota Ovarian Cancer Alliance; Fred C. and Katherine B. Andersen Foundation; Fraternal Order of Eagles; MAL: Funding for this study was provided by research grant R01- CA61107 from the National Cancer Institute, Bethesda, MD, research grant 94 222 52 from the Danish Cancer Society, Copenhagen, Denmark, the Mermaid I project; and the Mermaid III project; MAY: National Institutes of Health (R01-CA2482288, P30-CA15083, P50-CA136393); Mayo Foundation; Minnesota Ovarian Cancer Alliance; Fred C. and Katherine B. Andersen Foundation; MOF: Moffitt Cancer Center, Merck Pharmaceuticals, the state of Florida, Hillsborough County, and the city of Tampa; NCO: National Institutes of Health (R01-CA76016) and the Department of Defense (DAMD17-02-1-0666); NEC: National Institutes of Health R01-CA54419 and P50-CA105009 and Department of Defense W81XWH-10-1-02802; NOR: Helse Vest, The Norwegian Cancer Society, The Research Council of Norway; OPL: National Health and Medical Research Council (NHMRC) of Australia (APP1025142, APP1120431) and Brisbane Women’s Club; ORE: Sherie Hildreth Ovarian Cancer (SHOC) Foundation; PVD: Canadian Cancer Society and Cancer Research Society GRePEC Program; SRO: Cancer Research UK (C536/A13086, C536/A6689) and Imperial Experimental Cancer Research Centre (C1312/A15589); UHN: Princess Margaret Cancer Centre Foundation-Bridge for the Cure; VAN: BC Cancer Foundation, VGH & UBC Hospital Foundation; VTL: NIH K05-CA154337; WMH: National Health and Medical Research Council of Australia, Enabling Grants ID 310670 & ID 628903. Cancer Institute NSW Grants 12/RIG/1-17 & 15/RIG/1-16. The AGO-OVAR 11 study was funded by Roche Pharma AG.
- National Health and Medical Research Council (NHMRC) of Australia (APP1025142, APP1120431) and Brisbane Women’s Club
Collapse
Affiliation(s)
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Stefan Kommoss
- Department of Women's Health, Tuebingen University Hospital, Tuebingen, Germany
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Discipline of Obstetrics and Gynaecology, The University of Sydney, Sydney, NSW, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Marjorie J Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Penelope M Webb
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - María J García
- Biochemistry and Molecular Biology area, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc T Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Francesmary Modugno
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Beth Y Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and Genes, Danish Cancer Institute, Copenhagen, Denmark
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Institute, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - William A Cliby
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Mayo Clinic, Rochester, MN, USA
| | - Amanika Kumar
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Daniel W Cramer
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gyneclogy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn L Terry
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gyneclogy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Linda Titus
- Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Line Bjorge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Liv Cecilie Vestrheim Thomsen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tanja Pejovic
- Department of ObGyn, Providence Medical Center, Medford, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Claus K Høgdall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iain A McNeish
- Division of Cancer and Ovarian Cancer Action Research Centre, Department Surgery & Cancer, Imperial College London, London, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Taymaa May
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | - David G Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Ulrich Canzler
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | | | - Willibald Schröder
- Klinikum Bremen-Mitte, Bremen, Germany
- Gynaekologicum Bremen, Bremen, Germany
| | - Antje Belau
- University Hospital Greifswald, Greifswald, Germany
- Frauenarztpraxis Belau, Greifswald, Germany
| | - Lars Hanker
- University Hospital Frankfurt, Frankfurt, Germany
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte (KEM), Essen, Germany
| | - Jalid Sehouli
- Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Rainer Kimmig
- University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nikolaus de Gregorio
- University Hospital Ulm, Ulm, Germany
- SLK-Kliniken Heilbronn, Klinikum am Gesundbrunnen, Heilbronn, Germany
| | | | - Klaus Baumann
- University Hospital Gießen and Marburg, Site Marburg, Marburg, Germany
- Klinikum Ludwigshafen, Ludwigshafen, Germany
| | - Felix Hilpert
- University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Krankenhaus Jerusalem, Mammazentrum Hamburg, Hamburg, Germany
| | | | - Boris Winterhoff
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Lisa-Marie Speith
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Sharon E Johnatty
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Susan J Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, NSW, Australia
| | | | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte (KEM), Essen, Germany.
- Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany.
- Department of Gynecology and Gynecological Oncology, HSK, Dr. Horst-Schmidt Klinik, Wiesbaden, Wiesbaden, Germany.
| |
Collapse
|
5
|
Hunt AL, Bateman NW, Barakat W, Makohon-Moore SC, Abulez T, Driscoll JA, Schaaf JP, Hood BL, Conrads KA, Zhou M, Calvert V, Pierobon M, Loffredo J, Wilson KN, Litzi TJ, Teng PN, Oliver J, Mitchell D, Gist G, Rojas C, Blanton B, Darcy KM, Rao UNM, Petricoin EF, Phippen NT, Maxwell GL, Conrads TP. Mapping three-dimensional intratumor proteomic heterogeneity in uterine serous carcinoma by multiregion microsampling. Clin Proteomics 2024; 21:4. [PMID: 38254014 PMCID: PMC10804562 DOI: 10.1186/s12014-024-09451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view of the tumor microenvironment of this poorly characterized uterine cancer variant through multi-region microsampling and quantitative proteomics. METHODS Tumor epithelium, tumor-involved stroma, and whole "bulk" tissue were harvested by laser microdissection (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA-sequencing for one patient's tumor. RESULTS LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal ( https://lmdomics.org/ ). CONCLUSIONS Here we identified extensive three-dimensional heterogeneity within the USC tumor microenvironment, with disease-relevant biomarkers present in both the tumor and the stroma. These data underscore the critical need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.
Collapse
Grants
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Sasha C Makohon-Moore
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Jordan A Driscoll
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Joshua P Schaaf
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Katlin N Wilson
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tracy J Litzi
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Christine Rojas
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Brian Blanton
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Uma N M Rao
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Neil T Phippen
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| |
Collapse
|
6
|
Saner FAM, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Blake Gilks C, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Singh N, Rinda Soong T, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DDL, Garsed DW. Concurrent RB1 loss and BRCA-deficiency predicts enhanced immunological response and long-term survival in tubo-ovarian high-grade serous carcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.09.23298321. [PMID: 37986741 PMCID: PMC10659507 DOI: 10.1101/2023.11.09.23298321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A. M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, UK
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Gregg S. Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Marjorie J. Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul R. Harnett
- The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - AOCS Group
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Marcin Lener
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Sandra Orsulic
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Minouk J. Schoemaker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naveena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Alberta, Canada
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stacey J. Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda S. Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A. Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, SC, USA
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Harrington BS, Kamdar R, Ning F, Korrapati S, Caminear MW, Hernandez LF, Butcher D, Edmondson EF, Traficante N, Hendley J, Gough M, Rogers R, Lourie R, Shetty J, Tran B, Elloumi F, Abdelmaksoud A, Nag ML, Mazan-Mamczarz K, House CD, Hooper JD, Annunziata CM. UGDH promotes tumor-initiating cells and a fibroinflammatory tumor microenvironment in ovarian cancer. J Exp Clin Cancer Res 2023; 42:270. [PMID: 37858159 PMCID: PMC10585874 DOI: 10.1186/s13046-023-02820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/02/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a global health burden, with the poorest five-year survival rate of the gynecological malignancies due to diagnosis at advanced stage and high recurrence rate. Recurrence in EOC is driven by the survival of chemoresistant, stem-like tumor-initiating cells (TICs) that are supported by a complex extracellular matrix and immunosuppressive microenvironment. To target TICs to prevent recurrence, we identified genes critical for TIC viability from a whole genome siRNA screen. A top hit was the cancer-associated, proteoglycan subunit synthesis enzyme UDP-glucose dehydrogenase (UGDH). METHODS Immunohistochemistry was used to characterize UGDH expression in histological and molecular subtypes of EOC. EOC cell lines were subtyped according to the molecular subtypes and the functional effects of modulating UGDH expression in vitro and in vivo in C1/Mesenchymal and C4/Differentiated subtype cell lines was examined. RESULTS High UGDH expression was observed in high-grade serous ovarian cancers and a distinctive survival prognostic for UGDH expression was revealed when serous cancers were stratified by molecular subtype. High UGDH was associated with a poor prognosis in the C1/Mesenchymal subtype and low UGDH was associated with poor prognosis in the C4/Differentiated subtype. Knockdown of UGDH in the C1/mesenchymal molecular subtype reduced spheroid formation and viability and reduced the CD133 + /ALDH high TIC population. Conversely, overexpression of UGDH in the C4/Differentiated subtype reduced the TIC population. In co-culture models, UGDH expression in spheroids affected the gene expression of mesothelial cells causing changes to matrix remodeling proteins, and fibroblast collagen production. Inflammatory cytokine expression of spheroids was altered by UGDH expression. The effect of UGDH knockdown or overexpression in the C1/ Mesenchymal and C4/Differentiated subtypes respectively was tested on mouse intrabursal xenografts and showed dynamic changes to the tumor stroma. Knockdown of UGDH improved survival and reduced tumor burden in C1/Mesenchymal compared to controls. CONCLUSIONS These data show that modulation of UGDH expression in ovarian cancer reveals distinct roles for UGDH in the C1/Mesenchymal and C4/Differentiated molecular subtypes of EOC, influencing the tumor microenvironmental composition. UGDH is a strong potential therapeutic target in TICs, for the treatment of EOC, particularly in patients with the mesenchymal molecular subtype.
Collapse
Affiliation(s)
- Brittney S Harrington
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rahul Kamdar
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Franklin Ning
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Soumya Korrapati
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael W Caminear
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lidia F Hernandez
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, 21702, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, 21702, USA
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeline Gough
- Mater Brisbane Hospital, Mater Health Services, South Brisbane, QLD, 4101, Australia
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Rebecca Rogers
- Mater Brisbane Hospital, Mater Health Services, South Brisbane, QLD, 4101, Australia
| | - Rohan Lourie
- Mater Brisbane Hospital, Mater Health Services, South Brisbane, QLD, 4101, Australia
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Jyoti Shetty
- CCR Sequencing Facility, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Bao Tran
- CCR Sequencing Facility, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Fathi Elloumi
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Madhu Lal Nag
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Krystyna Mazan-Mamczarz
- Functional Genomics Lab, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carrie D House
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Present address: Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - John D Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Christina M Annunziata
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Tsibulak I, Fotopoulou C. Tumor biology and impact on timing of surgery in advanced epithelial ovarian cancer. Int J Gynecol Cancer 2023; 33:1627-1632. [PMID: 37553165 DOI: 10.1136/ijgc-2023-004676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Recent advances in epithelial ovarian cancer research have led to a shift in treatment strategy from the traditional 'organ-centric' to a personalized tumor biology-based approach. Nevertheless, we are still far behind an individualized approach for cytoreductive surgery in advanced ovarian cancer; the gold standard of primary treatment in combination with systemic agents. The impact of tumor biology on treatment sequence is still understudied. It is obvious, that response to platinum-based therapy is crucial for the success of neoadjuvant chemotherapy. While high-grade serous and endometrioid tumors are commonly characterized by an excellent response, other subtypes are considered poor responders or even resistant to platinum. Undoubtedly, neoadjuvant chemotherapy may filter poor responders, but to date, we still do not have appropriate alternatives to platinum-based chemotherapy in the neoadjuvant and first-line setting and 'adjusting' systemic treatment in cases of poor response to neoadjuvant chemotherapy remains elusive. Primary cytoreduction is still considered the gold standard for fit patients with operable tumor dissemination patterns, especially for those ovarian cancer subtypes that show poor response to platinum. Of note, even in high-grade serous ovarian cancer, approximately 20% of tumors are platinum resistant and the benefit of neoadjuvant chemotherapy in this subgroup is limited. Interestingly, these tumors are associated with the mesenchymal molecular subtype, which in turn correlates with high risk for residual disease after cytoreductive surgery and is characterized by the worst survival outcome among high-grade ovarian cancers. This leads to the question, how to best tailor surgical radicality at the onset of patients' presentation to avoid associated morbidity and with a moderate benefit. Here, we give an overview of recent advances of interaction between tumor biology and surgery in ovarian cancer.
Collapse
Affiliation(s)
- Irina Tsibulak
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Fotopoulou
- Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, London, UK
| |
Collapse
|
9
|
Polan RM, Slota JM, Barber EL. Postoperative complications in women with ovarian cancer stratified by cytoreductive surgery outcome. J Surg Oncol 2023; 128:891-901. [PMID: 37382209 PMCID: PMC10529113 DOI: 10.1002/jso.27380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE To compare 30-day postoperative complications for patients with advanced ovarian cancer who underwent resection to no gross residual disease versus optimal and suboptimal cytoreduction. METHODS A retrospective cohort study of women drawn from the National Surgical Quality Improvement Program who underwent cytoreductive surgery for advanced ovarian cancer between 2014 and 2019 was performed. Exposure of interest was extent of surgical resection defined as no gross residual disease; residual disease <1 cm (optimal); and residual disease >1 cm (suboptimal). Primary outcome was postoperative complication. Associations were examined with bivariable tests and multivariable logistic regression. RESULTS A total of 2248 women underwent cytoreductive surgery; 68.4% (n = 1538) underwent resection to no gross residual disease, 22.4% (n = 504) had an optimal, and 9.2% (n = 206) had a suboptimal cytoreduction. Optimal cytoreduction patients had the highest rates of any postoperative complication (35.5%, p < 0.001). They also had the longest operative times and procedures that were most surgically complex (203 min, 43.6 relative value units, both p < 0.05). However, patients who underwent optimal cytoreduction did not have increased odds of major complications (adjusted odds ratio: 1.20, 95% confidence interval: 0.91-1.58). CONCLUSION Patients who underwent optimal cytoreduction had more postoperative complications, required the most operating room time, and represented more complex surgeries compared with suboptimal cytoreduction or resection to no gross residual disease.
Collapse
Affiliation(s)
- Rosa M Polan
- Division of Gynecology Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Jennifer M Slota
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Northwestern University, Chicago, Illinois, USA
| | - Emma L Barber
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Northwestern University, Chicago, Illinois, USA
- Department of Oncology, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
- Department of Gynecology, Surgical Outcomes and Quality Improvement Center, Institute for Public Health in Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Perrone AM, Coada CA, Ravegnini G, De Leo A, Damiano G, De Crescenzo E, Tesei M, Di Costanzo S, Genovesi L, Rubino D, Zamagni C, De Iaco P. Post-operative residual disease and number of cycles of neoadjuvant chemotherapy in advanced epithelial ovarian carcinoma. Int J Gynecol Cancer 2023; 33:1270-1278. [PMID: 37429642 PMCID: PMC10423511 DOI: 10.1136/ijgc-2022-004249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/18/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The optimal number of neoadjuvant chemotherapy cycles in patients with advanced ovarian cancer is still disputed. OBJECTIVE To evaluate the impact of the number of neoadjuvant chemotherapy cycles and role of optimal cytoreduction on the prognosis of patients with advanced ovarian cancer. METHODS Clinical and pathological details were examined. Patients were evaluated combining the number of cycles of neoadjuvant chemotherapy-namely, 'interval debulking surgery' after up to four neoadjuvant chemotherapy cycles, and 'delayed debulking surgery' after more than four cycles of therapy. RESULTS A total of 286 patients were included in the study. Complete cytoreduction with no residual peritoneal disease (CC0) was achieved in 74 (74%) patients with interval debulking surgery and 124 (66.7%) patients with delayed interval debulking. Of those with residual disease, there were 26/88 (29.5%) patients in the interval debulking surgery group and 62/88 (70.5%) patients in the delayed debulking surgery group. Comparison of patients with delayed debulking-CC0 and interval debulking-CC0 showed no difference in progression-free survival (p=0.3) or overall survival (p=0.4), while significantly worse outcomes were observed in patients with interval debulking-CC1 (p=0.02 and p=0.04, respectively). Specifically, patients with interval debulking-CC1 had an approximately 67% increased risk of disease progression (p=0.04; HR=2.01 (95% CI 1.04 to 4.18)) and a 69% higher risk of death than patients with delayed debulking-CC0 (p=0.03; HR=2.34 (95% CI 1.11 to 4.67)). CONCLUSION Increasing the number of neoadjuvant chemotherapy cycles does not worsen patient outcomes if complete resection is achieved. Nevertheless, additional prospective trials are necessary to establish the optimum number of neoadjuvant chemotherapy cycles.
Collapse
Affiliation(s)
- Anna Myriam Perrone
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonio De Leo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuseppe Damiano
- Infertility and IVF Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Eugenia De Crescenzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marco Tesei
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stella Di Costanzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lucia Genovesi
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniela Rubino
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Claudio Zamagni
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Timofeeva AV, Fedorov IS, Asaturova AV, Sannikova MV, Tregubova AV, Mayboroda OA, Khabas GN, Frankevich VE, Sukhikh GT. Blood Plasma Small Non-Coding RNAs as Diagnostic Molecules for the Progesterone-Receptor-Negative Phenotype of Serous Ovarian Tumors. Int J Mol Sci 2023; 24:12214. [PMID: 37569592 PMCID: PMC10419267 DOI: 10.3390/ijms241512214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The expression level of the progesterone receptor (PGR) plays a crucial role in determining the biological characteristics of serous ovarian carcinoma. Low PGR expression is associated with chemoresistance and a poorer outcome. In this study, our objective was to explore the relationship between tumor progesterone receptor levels and RNA profiles (miRNAs, piwiRNAs, and mRNAs) to understand their biological characteristics and behavior. To achieve this, we employed next-generation sequencing of small non-coding RNAs, quantitative RT-PCR, and immunohistochemistry to analyze both FFPE and frozen tumor samples, as well as blood plasma from patients with benign cystadenoma (BSC), serous borderline tumor (SBT), low-grade serous ovarian carcinoma (LGSOC), and high-grade serous ovarian carcinoma (HGSOC). Our findings revealed significant upregulation of MMP7 and MUC16, along with downregulation of PGR, in LGSOC and HGSOC compared to BSC. We observed significant correlations of PGR expression levels in tumor tissue with the contents of miR-199a-5p, miR-214-3p, miR-424-3p, miR-424-5p, and miR-125b-5p, which potentially target MUC16, MMP7, and MMP9, as well as with the tissue content of miR-16-5p, miR-17-5p, miR-20a-5p, and miR-93-5p, which are associated with the epithelial-mesenchymal transition (EMT) of cells. The levels of EMT-associated miRNAs were significantly correlated with the content of hsa_piR_022437, hsa_piR_009295, hsa_piR_020813, hsa_piR_004307, and hsa_piR_019914 in tumor tissues. We developed two optimal logistic regression models using the quantitation of hsa_piR_020813, miR-16-5p, and hsa_piR_022437 or hsa_piR_004307, hsa_piR_019914, and miR-93-5p in the tumor tissue, which exhibited a significant ability to diagnose the PGR-negative tumor phenotype with 93% sensitivity. Of particular interest, the blood plasma levels of miR-16-5p and hsa_piR_022437 could be used to diagnose the PGR-negative tumor phenotype with 86% sensitivity even before surgery and chemotherapy. This knowledge can help in choosing the most effective treatment strategy for this aggressive type of ovarian cancer, such as neoadjuvant chemotherapy followed by cytoreduction in combination with hyperthermic intraperitoneal chemotherapy and targeted therapy, thus enhancing the treatment's effectiveness and the patient's longevity.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Ivan S. Fedorov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Aleksandra V. Asaturova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Maya V. Sannikova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Anna V. Tregubova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands;
| | - Grigory N. Khabas
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Vladimir E. Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, First Moscow State Medical University Named after I.M. Sechenov, 119991 Moscow, Russia
| |
Collapse
|
12
|
Torkildsen CF, Thomsen LCV, Sande RK, Krakstad C, Stefansson I, Lamark EK, Knappskog S, Bjørge L. Molecular and phenotypic characteristics influencing the degree of cytoreduction in high-grade serous ovarian carcinomas. Cancer Med 2023. [PMID: 37191035 DOI: 10.1002/cam4.6085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND High-grade serous ovarian carcinoma (HGSOC) is the deadliest ovarian cancer subtype, and survival relates to initial cytoreductive surgical treatment. The existing tools for surgical outcome prediction remain inadequate for anticipating the outcomes of the complex relationship between tumour biology, clinical phenotypes, co-morbidity and surgical skills. In this genotype-phenotype association study, we combine phenotypic markers with targeted DNA sequencing to discover novel biomarkers to guide the surgical management of primary HGSOC. METHODS Primary tumour tissue samples (n = 97) and matched blood from a phenotypically well-characterised treatment-naïve HGSOC patient cohort were analysed by targeted massive parallel DNA sequencing (next generation sequencing [NGS]) of a panel of 360 cancer-related genes. Association analyses were performed on phenotypic traits related to complete cytoreductive surgery, while logistic regression analysis was applied for the predictive model. RESULTS The positive influence of complete cytoreductive surgery (R0) on overall survival was confirmed (p = 0.003). Before surgery, low volumes of ascitic fluid, lower CA125 levels, higher platelet counts and relatively lower clinical stage at diagnosis were all indicators, alone and combined, for complete cytoreduction (R0). Mutations in either the chromatin remodelling SWI_SNF (p = 0.036) pathway or the histone H3K4 methylation pathway (p = 0.034) correlated with R0. The R0 group also demonstrated higher tumour mutational burden levels (p = 0.028). A predictive model was developed by combining two phenotypes and the mutational status of five genes and one genetic pathway, enabling the prediction of surgical outcomes in 87.6% of the cases in this cohort. CONCLUSION Inclusion of molecular biomarkers adds value to the pre-operative stratification of HGSOC patients. A potential preoperative risk stratification model combining phenotypic traits and single-gene mutational status is suggested, but the set-up needs to be validated in larger cohorts.
Collapse
Affiliation(s)
- Cecilie Fredvik Torkildsen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Stavanger University Hospital, Stavanger, Norway
| | - Liv Cecilie Vestrheim Thomsen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Ragnar Kvie Sande
- Department of Obstetrics and Gynecology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Ingunn Stefansson
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Eva Karin Lamark
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Line Bjørge
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Raspaglio G, Buttarelli M, Cappoli N, Ciucci A, Fagotti A, Scambia G, Gallo D. Exploring the Control of PARP1 Levels in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15082361. [PMID: 37190289 DOI: 10.3390/cancers15082361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is a leading cause of mortality from gynecologic malignancies worldwide. Although a transformative improvement has been shown with the introduction of PARP (poly(ADP-ribose) polymerase) inhibitors, the emergence of resistance to these drugs represents a therapeutic challenge. Hence, expanding our understanding of mechanisms behind the control of PARP1 expression can provide strategic guidance for the translation of novel therapeutic strategies. The Signal Transducer and Activator of Transcription (STAT) family of proteins consists of transcription factors critically involved in the regulation of important cellular functions. Notably, we recently demonstrated that, in cervical cancer cells, STAT1 controls PARP1 levels through multiple mechanisms, possibly involving also STAT3. Here, we tested the hypothesis that a similar mechanism might be operative in HGSOC. To this end, the impact of STAT1/STAT3 modulation on PARP1 expression was assessed in established and primary HGSOC cells, and molecular biology studies proved that STAT1 might act at both transcriptional and post-transcriptional levels to modulate the PARP1 level. Notably, bioinformatics analysis of TCGA databases demonstrated that increased STAT1 mRNA expression levels are associated with a favorable prognosis and with response to chemotherapy in HGSOC patients. Our findings suggest an alternative strategy for targeting HGSOC cells based on their dependency on PARP1.
Collapse
Affiliation(s)
- Giuseppina Raspaglio
- Unità di Medicina Traslazionale per la Salute della Donna e del Bambino, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Marianna Buttarelli
- Unità di Medicina Traslazionale per la Salute della Donna e del Bambino, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Natalia Cappoli
- Unità di Medicina Traslazionale per la Salute della Donna e del Bambino, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Alessandra Ciucci
- Unità di Medicina Traslazionale per la Salute della Donna e del Bambino, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Anna Fagotti
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| | - Giovanni Scambia
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| | - Daniela Gallo
- Unità di Medicina Traslazionale per la Salute della Donna e del Bambino, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
14
|
Abbas-Aghababazadeh F, Sasamoto N, Townsend MK, Huang T, Terry KL, Vitonis AF, Elias KM, Poole EM, Hecht JL, Tworoger SS, Fridley BL. Predictors of residual disease after debulking surgery in advanced stage ovarian cancer. Front Oncol 2023; 13:1090092. [PMID: 36761962 PMCID: PMC9902593 DOI: 10.3389/fonc.2023.1090092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Objective Optimal debulking with no macroscopic residual disease strongly predicts ovarian cancer survival. The ability to predict likelihood of optimal debulking, which may be partially dependent on tumor biology, could inform clinical decision-making regarding use of neoadjuvant chemotherapy. Thus, we developed a prediction model including epidemiological factors and tumor markers of residual disease after primary debulking surgery. Methods Univariate analyses examined associations of 11 pre-diagnosis epidemiologic factors (n=593) and 24 tumor markers (n=204) with debulking status among incident, high-stage, epithelial ovarian cancer cases from the Nurses' Health Studies and New England Case Control study. We used Bayesian model averaging (BMA) to develop prediction models of optimal debulking with 5x5-fold cross-validation and calculated the area under the curve (AUC). Results Current aspirin use was associated with lower odds of optimal debulking compared to never use (OR=0.52, 95%CI=0.31-0.86) and two tissue markers, ADRB2 (OR=2.21, 95%CI=1.23-4.41) and FAP (OR=1.91, 95%CI=1.24-3.05) were associated with increased odds of optimal debulking. The BMA selected aspirin, parity, and menopausal status as the epidemiologic/clinical predictors with the posterior effect probability ≥20%. While the prediction model with epidemiologic/clinical predictors had low performance (average AUC=0.49), the model adding tissue biomarkers showed improved, but weak, performance (average AUC=0.62). Conclusions Addition of ovarian tumor tissue markers to our multivariable prediction models based on epidemiologic/clinical data slightly improved the model performance, suggesting debulking status may be in part driven by tumor characteristics. Larger studies are warranted to identify those at high risk of poor surgical outcomes informing personalized treatment.
Collapse
Affiliation(s)
- Farnoosh Abbas-Aghababazadeh
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States,University Health Network, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Mary K. Townsend
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tianyi Huang
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Kathryn L. Terry
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Allison F. Vitonis
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Kevin M. Elias
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Brooke L. Fridley
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States,*Correspondence: Brooke L. Fridley,
| |
Collapse
|
15
|
Timofeeva AV, Asaturova AV, Sannikova MV, Khabas GN, Chagovets VV, Fedorov IS, Frankevich VE, Sukhikh GT. Search for New Participants in the Pathogenesis of High-Grade Serous Ovarian Cancer with the Potential to Be Used as Diagnostic Molecules. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122017. [PMID: 36556382 PMCID: PMC9784419 DOI: 10.3390/life12122017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022]
Abstract
Recent studies have attempted to develop molecular signatures of epithelial ovarian cancer (EOC) based on the quantitation of protein-coding and non-coding RNAs to predict disease prognosis. Due to the heterogeneity of EOC, none of the developed prognostic signatures were directly applied in clinical practice. Our work focuses on high-grade serous ovarian carcinoma (HGSOC) due to the highest mortality rate relative to other types of EOC. Using deep sequencing of small non-coding RNAs in combination with quantitative real-time PCR, we confirm the dualistic classification of epithelial ovarian cancers based on the miRNA signature of HGSOC (type 2), which differs from benign cystadenoma and borderline cystadenoma-precursors of low-grade serous ovarian carcinoma (type 1)-and identified two subtypes of HGSOC, which significantly differ in the level of expression of the progesterone receptor in the tumor tissue, the secretion of miR-16-5p, miR-17-5p, miR-93-5p, miR-20a-5p, the level of serum CA125, tumor size, surgical outcome (optimal or suboptimal cytoreduction), and response to chemotherapy. It was found that the combined determination of the level of miR-16-5p, miR-17-5p, miR-20a-5p, and miR-93-5p circulating in blood plasma of patients with primary HGSOC tumors makes it possible to predict optimal cytoreduction with 80.1% sensitivity and 70% specificity (p = 0.022, TPR = 0.8, FPR = 0.3), as well as complete response to adjuvant chemotherapy with 77.8% sensitivity and 90.9% specificity (p = 0.001, TPR = 0.78, FPR = 0.09). After the additional verification of the obtained data in a larger HGSOC patient cohort, the combined quantification of these four miRNAs is proposed to be used as a criterion for selecting patients either for primary cytoreduction or neoadjuvant chemotherapy followed by interval cytoreduction.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
- Correspondence: or ; Tel.: +7-495-531-4444
| | - Aleksandra V. Asaturova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Maya V. Sannikova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Grigory N. Khabas
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Vitaliy V. Chagovets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Ivan S. Fedorov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Vladimir E. Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| |
Collapse
|
16
|
Orsulic S, John J, Walts AE, Gertych A. Computational pathology in ovarian cancer. Front Oncol 2022; 12:924945. [PMID: 35965569 PMCID: PMC9372445 DOI: 10.3389/fonc.2022.924945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Histopathologic evaluations of tissue sections are key to diagnosing and managing ovarian cancer. Pathologists empirically assess and integrate visual information, such as cellular density, nuclear atypia, mitotic figures, architectural growth patterns, and higher-order patterns, to determine the tumor type and grade, which guides oncologists in selecting appropriate treatment options. Latent data embedded in pathology slides can be extracted using computational imaging. Computers can analyze digital slide images to simultaneously quantify thousands of features, some of which are visible with a manual microscope, such as nuclear size and shape, while others, such as entropy, eccentricity, and fractal dimensions, are quantitatively beyond the grasp of the human mind. Applications of artificial intelligence and machine learning tools to interpret digital image data provide new opportunities to explore and quantify the spatial organization of tissues, cells, and subcellular structures. In comparison to genomic, epigenomic, transcriptomic, and proteomic patterns, morphologic and spatial patterns are expected to be more informative as quantitative biomarkers of complex and dynamic tumor biology. As computational pathology is not limited to visual data, nuanced subvisual alterations that occur in the seemingly “normal” pre-cancer microenvironment could facilitate research in early cancer detection and prevention. Currently, efforts to maximize the utility of computational pathology are focused on integrating image data with other -omics platforms that lack spatial information, thereby providing a new way to relate the molecular, spatial, and microenvironmental characteristics of cancer. Despite a dire need for improvements in ovarian cancer prevention, early detection, and treatment, the ovarian cancer field has lagged behind other cancers in the application of computational pathology. The intent of this review is to encourage ovarian cancer research teams to apply existing and/or develop additional tools in computational pathology for ovarian cancer and actively contribute to advancing this important field.
Collapse
Affiliation(s)
- Sandra Orsulic
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, United States
- *Correspondence: Sandra Orsulic,
| | - Joshi John
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Ann E. Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Arkadiusz Gertych
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
| |
Collapse
|
17
|
Albright BB, Monuszko KA, Kaplan SJ, Davidson BA, Moss HA, Huang AB, Melamed A, Wright JD, Havrilesky LJ, Previs RA. Primary cytoreductive surgery for advanced stage endometrial cancer: a systematic review and meta-analysis. Am J Obstet Gynecol 2021; 225:237.e1-237.e24. [PMID: 33957111 DOI: 10.1016/j.ajog.2021.04.254] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Endometrial cancer uncommonly presents at an advanced stage and little prospective evidence exists to guide the management thereof. We aimed to summarize the evidence about primary cytoreductive surgery in the treatment of advanced stage endometrial cancer. DATA SOURCES MEDLINE, Embase, and Scopus databases were searched from inception to September 11, 2020, using search terms representing the themes "endometrial cancer," "advanced stage," and "primary cytoreductive surgery." STUDY ELIGIBILITY CRITERIA We included full-text, English reports that included ≥10 patients undergoing primary cytoreductive surgery for advanced stage endometrial cancer and that reported on the outcomes of primary cytoreductive surgery and survival rates based on the residual disease burden. METHODS Two reviewers independently screened the studies and with disagreements between the reviewers resolved by a third reviewer. Data were extracted using a standardized form. The percentage of cases reaching maximal (no gross residual disease) and optimal (<1 cm or <2 cm residual disease) cytoreduction were assessed by summing binomials proportions, and the association with survival was assessed using an inverse variance-weighted meta-analysis of logarithmic hazard ratios. RESULTS From 1219 unique records identified, 34 studies were selected for inclusion. Studies consisted of single or multi-institutional cohorts of patients collected over a period of 6 to 24 years and included various mixes of histologies (endometrioid, serous, clear cell, and carcinosarcoma) and disease stages (III or IV). In a meta-analysis of the extent of residual disease after primary cytoreductive surgery, we found that 52.1% of cases reached no gross residual disease status (n=18 studies; 1329 patients) and 75% reached <1 cm residual disease status (n=27 studies; 2343 patients). The proportion of cytoreduction for both thresholds was lower for studies of stage IV vs stage III to IV disease (41.4% vs 69.8% for no gross residual disease; 63.2% vs 82.2% for <1 cm residual disease) but did not vary notably by histology. In a meta-analysis of the reported hazard ratios, submaximal (any gross residual disease vs no gross residual disease) and suboptimal (≥1 cm vs <1 cm) cytoreduction thresholds were associated with worse progression-free survival (submaximal hazard ratio, 2.16; 95% confidence interval, 1.45-3.21; I2=68%; suboptimal hazard ratio, 2.55; 95% confidence interval, 1.93-3.37; I2=63%) and overall survival rates (submaximal hazard ratio, 2.57; 95% confidence interval, 2.13-3.10; I2=1%; suboptimal hazard ratio, 2.62; 95% confidence interval, 2.20-3.11; I2=15%). Sensitivity analyses limited to high-quality studies demonstrated consistent results. CONCLUSION Among cases of advanced stage endometrial cancer undergoing primary cytoreductive surgery, a significant proportion of patients are left with residual disease, which is associated with worse survival outcomes. Further investigations about the roles of neoadjuvant chemotherapy and primary cytoreductive surgery in prospective trials is warranted in this population.
Collapse
|
18
|
Hunt AL, Bateman NW, Barakat W, Makohon-Moore S, Hood BL, Conrads KA, Zhou M, Calvert V, Pierobon M, Loffredo J, Litzi TJ, Oliver J, Mitchell D, Gist G, Rojas C, Blanton B, Robinson EL, Odunsi K, Sood AK, Casablanca Y, Darcy KM, Shriver CD, Petricoin EF, Rao UN, Maxwell GL, Conrads TP. Extensive three-dimensional intratumor proteomic heterogeneity revealed by multiregion sampling in high-grade serous ovarian tumor specimens. iScience 2021; 24:102757. [PMID: 34278265 PMCID: PMC8264160 DOI: 10.1016/j.isci.2021.102757] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Enriched tumor epithelium, tumor-associated stroma, and whole tissue were collected by laser microdissection from thin sections across spatially separated levels of ten high-grade serous ovarian carcinomas (HGSOCs) and analyzed by mass spectrometry, reverse phase protein arrays, and RNA sequencing. Unsupervised analyses of protein abundance data revealed independent clustering of an enriched stroma and enriched tumor epithelium, with whole tumor tissue clustering driven by overall tumor "purity." Comparing these data to previously defined prognostic HGSOC molecular subtypes revealed protein and transcript expression from tumor epithelium correlated with the differentiated subtype, whereas stromal proteins (and transcripts) correlated with the mesenchymal subtype. Protein and transcript abundance in the tumor epithelium and stroma exhibited decreased correlation in samples collected just hundreds of microns apart. These data reveal substantial tumor microenvironment protein heterogeneity that directly bears on prognostic signatures, biomarker discovery, and cancer pathophysiology and underscore the need to enrich cellular subpopulations for expression profiling.
Collapse
Affiliation(s)
- Allison L. Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Sasha Makohon-Moore
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Brian L. Hood
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Kelly A. Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Tracy J. Litzi
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Christine Rojas
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Brian Blanton
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Emma L. Robinson
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Yovanni Casablanca
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Kathleen M. Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Craig D. Shriver
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Uma N.M. Rao
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - G. Larry Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Thomas P. Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| |
Collapse
|
19
|
Lorusso D, Daniele G. First line ovarian cancer treatment: Scanning the horizon. Crit Rev Oncol Hematol 2021; 160:103297. [PMID: 33684501 DOI: 10.1016/j.critrevonc.2021.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- D Lorusso
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - G Daniele
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
20
|
The Emerging Role of CD24 in Cancer Theranostics-A Novel Target for Fluorescence Image-Guided Surgery in Ovarian Cancer and Beyond. J Pers Med 2020; 10:jpm10040255. [PMID: 33260974 PMCID: PMC7712410 DOI: 10.3390/jpm10040255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Complete cytoreductive surgery is the cornerstone of the treatment of epithelial ovarian cancer (EOC). The application of fluorescence image-guided surgery (FIGS) allows for the increased intraoperative visualization and delineation of malignant lesions by using fluorescently labeled targeting biomarkers, thereby improving intraoperative guidance. CD24, a small glycophosphatidylinositol-anchored cell surface receptor, is overexpressed in approximately 70% of solid cancers, and has been proposed as a prognostic and therapeutic tumor-specific biomarker for EOC. Recently, preclinical studies have demonstrated the benefit of CD24-targeted contrast agents for non-invasive fluorescence imaging, as well as improved tumor resection by employing CD24-targeted FIGS in orthotopic patient-derived xenograft models of EOC. The successful detection of miniscule metastases denotes CD24 as a promising biomarker for the application of fluorescence-guided surgery in EOC patients. The aim of this review is to present the clinical and preclinically evaluated biomarkers for ovarian cancer FIGS, highlight the strengths of CD24, and propose a future bimodal approach combining CD24-targeted fluorescence imaging with radionuclide detection and targeted therapy.
Collapse
|
21
|
Sindiani A, Obeidat B, Hamadeh L, Alghazo S, Al-Mohtaseb A, Alshdaifat E. A descriptive study of the clinico-pathological and surgical characteristics of patients with primary epithelial ovarian cancer. A cross sectional study. Ann Med Surg (Lond) 2020; 59:254-257. [PMID: 33101665 PMCID: PMC7569166 DOI: 10.1016/j.amsu.2020.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
Objective To study the clinical, pathological and surgical features of primary epithelial ovarian cancer treated at our institution. Methods fifty-nine patients with primary epithelial ovarian cancer were included. Clinical data collected included patient's age, presenting symptoms, laboratory and tumor markers results as well as preoperative imaging reports. Pathological and surgical findings included were: spread of the disease, histologic type, stage of the disease, type of surgical procedure and amount of residual disease. Results Mean age of the patients was 54.5 years. Lower abdominal pain was the most common presenting symptom, followed by abdominal distension. The commonest histopathological type was high grade serous carcinoma (72.9%). In our study, majority of patients were diagnosed with stage III disease, accounting for 69.5% of the total number of patients. Complete cytoreduction with no gross residual disease was achieved in 77.3% of patients with stage 3–4 disease. Conclusion clinical and pathological features of primary epithelial ovarian carcinoma in our populations are similar to what is reported worldwide. We have also documented that our surgical approach to the management of ovarian cancer is comparable to the international consensus. The commonest histopathological type of ovarian cancer in our institute is high grade serous carcinoma (72.9%). In our study, majority of patients were diagnosed with stage III disease, accounting for 69.5% of the total number of patients. Complete cytoreduction with no gross residual disease was achieved in 77.3% of patients with stage 3–4 disease. We have reported a high complete cytoreduction rate (77.3%).
Collapse
Affiliation(s)
- Amer Sindiani
- Department of Obstetrics and Gynecology, Jordan University of Science and Technology, Irbid, Jordan
- Corresponding author. Department of Obstetrics and Gynecology, Faculty of Medicine, Jordan University of Science and Technology, P.O.Box: (3030), Irbid, 22110, Jordan.
| | - Basil Obeidat
- Department of Obstetrics and Gynecology, Jordan University of Science and Technology, Irbid, Jordan
| | - Leen Hamadeh
- Department of Obstetrics and Gynecology, Jordan University of Science and Technology, Irbid, Jordan
| | - Shahed Alghazo
- Department of Obstetrics and Gynecology, Jordan University of Science and Technology, Irbid, Jordan
| | - Alia Al-Mohtaseb
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan
| | - Eman Alshdaifat
- Department of Obstetrics and Gynecology, Yarmouk University, Jordan
| |
Collapse
|
22
|
Brieger KK, Peterson S, Lee AW, Mukherjee B, Bakulski KM, Alimujiang A, Anton-Culver H, Anglesio MS, Bandera EV, Berchuck A, Bowtell DDL, Chenevix-Trench G, Cho KR, Cramer DW, DeFazio A, Doherty JA, Fortner RT, Garsed DW, Gayther SA, Gentry-Maharaj A, Goode EL, Goodman MT, Harris HR, Høgdall E, Huntsman DG, Shen H, Jensen A, Johnatty SE, Jordan SJ, Kjaer SK, Kupryjanczyk J, Lambrechts D, McLean K, Menon U, Modugno F, Moysich K, Ness R, Ramus SJ, Richardson J, Risch H, Rossing MA, Trabert B, Wentzensen N, Ziogas A, Terry KL, Wu AH, Hanley GE, Pharoah P, Webb PM, Pike MC, Pearce CL. Menopausal hormone therapy prior to the diagnosis of ovarian cancer is associated with improved survival. Gynecol Oncol 2020; 158:702-709. [PMID: 32641237 PMCID: PMC7487048 DOI: 10.1016/j.ygyno.2020.06.481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Prior studies of menopausal hormone therapy (MHT) and ovarian cancer survival have been limited by lack of hormone regimen detail and insufficient sample sizes. To address these limitations, a comprehensive analysis of 6419 post-menopausal women with pathologically confirmed ovarian carcinoma was conducted to examine the association between MHT use prior to diagnosis and survival. METHODS Data from 15 studies in the Ovarian Cancer Association Consortium were included. MHT use was examined by type (estrogen-only (ET) or estrogen+progestin (EPT)), duration, and recency of use relative to diagnosis. Cox proportional hazards models were used to estimate the association between hormone therapy use and survival. Logistic regression and mediation analysis was used to explore the relationship between MHT use and residual disease following debulking surgery. RESULTS Use of ET or EPT for at least five years prior to diagnosis was associated with better ovarian cancer survival (hazard ratio, 0.80; 95% CI, 0.74 to 0.87). Among women with advanced stage, high-grade serous carcinoma, those who used MHT were less likely to have any macroscopic residual disease at the time of primary debulking surgery (p for trend <0.01 for duration of MHT use). Residual disease mediated some (17%) of the relationship between MHT and survival. CONCLUSIONS Pre-diagnosis MHT use for 5+ years was a favorable prognostic factor for women with ovarian cancer. This large study is consistent with prior smaller studies, and further work is needed to understand the underlying mechanism.
Collapse
Affiliation(s)
- Katharine K Brieger
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Siri Peterson
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alice W Lee
- Department of Public Health, California State University Fullerton, Fullerton, CA, USA
| | - Bhramar Mukherjee
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Aliya Alimujiang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Hoda Anton-Culver
- Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Michael S Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC, USA
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kathleen R Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel W Cramer
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA; Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Australia; Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Jennifer A Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | | | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Ellen L Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Estrid Høgdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark; Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David G Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada; Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, Canada
| | - Hui Shen
- Van Andel Research Institute (VARI), Grand Rapids, MI, USA
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Sharon E Johnatty
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Susan J Jordan
- University of Queensland, School of Public Health, Brisbane, Australia; Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium; Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Karen McLean
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Francesmary Modugno
- Womens Cancer Research Center, Magee-Women's Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA; Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, USA
| | - Kirsten Moysich
- Division of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Roberta Ness
- School of Public Health, University of Texas Health Science Center at Houston (UTHealth), TX, USA
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine, University of NSW Sydney, Sydney, New South Wales, Australia; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jean Richardson
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney. Sydney, New South Wales, Australia
| | - Harvey Risch
- Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Argyrios Ziogas
- Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Kathryn L Terry
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA; Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gillian E Hanley
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Penelope M Webb
- University of Queensland, School of Public Health, Brisbane, Australia; Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Gynaecological Cancers Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| | - Malcolm C Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Hu Y, Taylor-Harding B, Raz Y, Haro M, Recouvreux MS, Taylan E, Lester J, Millstein J, Walts AE, Karlan BY, Orsulic S. Are Epithelial Ovarian Cancers of the Mesenchymal Subtype Actually Intraperitoneal Metastases to the Ovary? Front Cell Dev Biol 2020; 8:647. [PMID: 32766252 PMCID: PMC7380132 DOI: 10.3389/fcell.2020.00647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Primary ovarian high-grade serous carcinoma (HGSC) has been classified into 4 molecular subtypes: Immunoreactive, Proliferative, Differentiated, and Mesenchymal (Mes), of which the Mes subtype (Mes-HGSC) is associated with the worst clinical outcomes. We propose that Mes-HGSC comprise clusters of cancer and associated stromal cells that detached from tumors in the upper abdomen/omentum and disseminated in the peritoneal cavity, including to the ovary. Using comparative analyses of multiple transcriptomic data sets, we provide the following evidence that the phenotype of Mes-HGSC matches the phenotype of tumors in the upper abdomen/omentum: (1) irrespective of the primary ovarian HGSC molecular subtype, matched upper abdominal/omental metastases were typically of the Mes subtype, (2) the Mes subtype was present at the ovarian site only in patients with concurrent upper abdominal/omental metastases and not in those with HGSC confined to the ovary, and (3) ovarian Mes-HGSC had an expression profile characteristic of stromal cells in the upper abdominal/omental metastases. We suggest that ovarian Mes-HGSC signifies advanced intraperitoneal tumor dissemination to the ovary rather than a subtype of primary ovarian HGSC. This is consistent with the presence of upper abdominal/omental disease, suboptimal debulking, and worst survival previously reported in patients with ovarian Mes-HGSC compared to other molecular subtypes.
Collapse
Affiliation(s)
- Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Barbie Taylor-Harding
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yael Raz
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Marcela Haro
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maria Sol Recouvreux
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Enes Taylan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua Millstein
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Beth Y Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
24
|
Mlynska A, Vaišnorė R, Rafanavičius V, Jocys S, Janeiko J, Petrauskytė M, Bijeikis S, Cimmperman P, Intaitė B, Žilionytė K, Barakauskienė A, Meškauskas R, Paberalė E, Pašukonienė V. A gene signature for immune subtyping of desert, excluded, and inflamed ovarian tumors. Am J Reprod Immunol 2020; 84:e13244. [PMID: 32294293 DOI: 10.1111/aji.13244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
PROBLEM The current tumor immunology paradigm emphasizes the role of the immune tumor microenvironment and distinguishes several histologically and transcriptionally different immune tumor subtypes. However, the experimental validation of such classification is so far limited to selected cancer types. Here, we aimed to explore the existence of inflamed, excluded, and desert immune subtypes in ovarian cancer, as well as investigate their association with the disease outcome. METHOD OF STUDY We used the publicly available ovarian cancer dataset from The Cancer Genome Atlas for developing subtype assignment algorithm, which was next verified in a cohort of 32 real-world patients of a known tumor subtype. RESULTS Using clinical and gene expression data of 489 ovarian cancer patients in the publicly available dataset, we identified three transcriptionally distinct clusters, representing inflamed, excluded, and desert subtypes. We developed a two-step subtyping algorithm with COL5A2 serving as a marker for separating excluded tumors, and CD2, TAP1, and ICOS for distinguishing between inflamed and desert tumors. The accuracy of gene expression-based subtyping algorithm in a real-world cohort was 75%. Additionally, we confirmed that patients bearing inflamed tumors are more likely to survive longer. CONCLUSION Our results highlight the presence of transcriptionally and histologically distinct immune subtypes among ovarian tumors and emphasize the potential benefit of immune subtyping as a clinical tool for treatment tailoring.
Collapse
Affiliation(s)
| | | | | | - Simonas Jocys
- Baltic Institute of Advanced Technology, Vilnius, Lithuania
| | - Julija Janeiko
- Baltic Institute of Advanced Technology, Vilnius, Lithuania
| | | | - Simas Bijeikis
- Baltic Institute of Advanced Technology, Vilnius, Lithuania
| | | | | | | | - Aušrinė Barakauskienė
- Vilnius University, Vilnius, Lithuania.,Ltd Patologijos Diagnostika, Vilnius, Lithuania
| | | | | | | |
Collapse
|
25
|
Kessous R, Wissing MD, Piedimonte S, Abitbol J, Kogan L, Laskov I, Yasmeen A, Salvador S, Lau S, Gotlieb WH. CA-125 reduction during neoadjuvant chemotherapy is associated with success of cytoreductive surgery and outcome of patients with advanced high-grade ovarian cancer. Acta Obstet Gynecol Scand 2020; 99:933-940. [PMID: 31954071 DOI: 10.1111/aogs.13814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The objective was to assess whether an early response to neoadjuvant chemotherapy in women with advanced ovarian cancer may predict short- and long-term clinical outcome. MATERIAL AND METHODS This is a retrospective study of all women with stage III-IV tubo-ovarian cancer treated with neoadjuvant chemotherapy at a single center in Montreal between 2003 and 2014. Logistic regression models were used to evaluate the association between cancer antigen 125 (CA-125) levels during neoadjuvant chemotherapy and debulking success. Cox proportional hazard models were used to estimate hazard ratios and their respective 95% CI for death and recurrence. Harrell's concordance indices were calculated to evaluate which variables best predicted the chemotherapy-free interval and overall survival in our population. RESULTS In all, 105 women were included. Following the first, second, and third cycles of neoadjuvant chemotherapy, CA-125 levels had a median reduction of 43.2%, 85.4%, and 92.9%, respectively, compared with CA-125 levels at diagnosis. As early as the second cycle, CA-125 was associated with overall survival (hazard ratio 1.03, 95% CI 1.01-1.05, per 50 U/mL increment). By the third cycle, CA-125 did not only predict overall survival (hazard ratio 1.04, 95% CI 1.01-1.08), but it predicted overall survival better than the success of debulking surgery (Harrell's concordance index 0.646 vs 0.616). Both absolute CA-125 levels and relative reduction in CA-125 levels after 2 and 3 cycles predicted the chance to achieve complete debulking (P < .05). CONCLUSIONS Reduction of CA-125 levels during neoadjuvant chemotherapy provides an early predictive tool that strongly correlates with successful cytoreductive surgery and long-term clinical outcome in women with advanced high-grade serous and endometrioid ovarian cancer.
Collapse
Affiliation(s)
- Roy Kessous
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | | - Sabrina Piedimonte
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Jeremie Abitbol
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Liron Kogan
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ido Laskov
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Amber Yasmeen
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Shannon Salvador
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Susie Lau
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Handley KF, Sood AK. A Solution to the Dilution: The Role for Biomarkers in Advanced Ovarian Cancer. Clin Cancer Res 2020; 26:9-10. [PMID: 31672769 DOI: 10.1158/1078-0432.ccr-19-3072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022]
Abstract
Reliable approaches to predict residual disease prior to primary debulking surgery have been sought to further personalize surgical approaches. Reliance on molecular biomarkers alone in a complex clinical environment is challenging and algorithms that incorporate both molecular and clinical features may need to be considered.See related article by Heitz et al., p. 213.
Collapse
Affiliation(s)
- Katelyn F Handley
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
27
|
Yue H, Wang J, Chen R, Hou X, Li J, Lu X. Gene signature characteristic of elevated stromal infiltration and activation is associated with increased risk of hematogenous and lymphatic metastasis in serous ovarian cancer. BMC Cancer 2019; 19:1266. [PMID: 31888563 PMCID: PMC6937680 DOI: 10.1186/s12885-019-6470-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Background The clinical significance of hematogenous and lymphatic metastasis in ovarian cancer has been increasingly addressed, as it plays an imperative role in the formation of both intraperitoneal and distant metastases. Our objective is to identify the key molecules and biological processes potentially related to this relatively novel metastatic route in serous ovarian cancer. Methods Since lymphovascular space invasion (LVSI) is considered as the first step of hematogenous and lymphatic dissemination, we developed a gene signature mainly based on the transcriptome profiles with available information on LVSI status in the Cancer Genome Atlas (TCGA) dataset. We then explored the underlying biological rationale and prognostic value of the identified gene signature using multiple public databases. Results We observe that primary tumors with increased risk of hematogenous and lymphatic metastasis highly express a panel of genes, namely POSTN, LUM, THBS2, COL3A1, COL5A1, COL5A2, FAP1 and FBN1. The identified geneset is characterized by enhanced deposition of extracellular matrix and extensive stromal activation. Mechanistically, both the recruitment and the activation of stromal cells, especially fibroblasts, are closely associated with lymphovascular metastasis. Survival analysis further reveals that the elevated expression of the identified genes correlates to cancer progression and poor prognosis in patients with serous ovarian cancer. Conclusions Our findings indicate that tumor stroma supports the hematogenous and lymphatic spread of ovarian cancer, increasing tumor invasiveness and ultimately resulting in worse survival. Thus stroma-targeted therapies may improve the clinical outcomes in combination with cytoreductive surgery and chemotherapy.
Collapse
Affiliation(s)
- Huiran Yue
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jieyu Wang
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Ruifang Chen
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xiaoman Hou
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jun Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| |
Collapse
|
28
|
Heitz F, Kommoss S, Tourani R, Grandelis A, Uppendahl L, Aliferis C, Burges A, Wang C, Canzler U, Wang J, Belau A, Prader S, Hanker L, Ma S, Ataseven B, Hilpert F, Schneider S, Sehouli J, Kimmig R, Kurzeder C, Schmalfeldt B, Braicu EI, Harter P, Dowdy SC, Winterhoff BJ, Pfisterer J, du Bois A. Dilution of Molecular-Pathologic Gene Signatures by Medically Associated Factors Might Prevent Prediction of Resection Status After Debulking Surgery in Patients With Advanced Ovarian Cancer. Clin Cancer Res 2019; 26:213-219. [PMID: 31527166 DOI: 10.1158/1078-0432.ccr-19-1741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/08/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Predicting surgical outcome could improve individualizing treatment strategies for patients with advanced ovarian cancer. It has been suggested earlier that gene expression signatures (GES) might harbor the potential to predict surgical outcome. EXPERIMENTAL DESIGN Data derived from high-grade serous tumor tissue of FIGO stage IIIC/IV patients of AGO-OVAR11 trial were used to generate a transcriptome profiling. Previously identified molecular signatures were tested. A theoretical model was implemented to evaluate the impact of medically associated factors for residual disease (RD) on the performance of GES that predicts RD status. RESULTS A total of 266 patients met inclusion criteria, of those, 39.1% underwent complete resection. Previously reported GES did not predict RD in this cohort. Similarly, The Cancer Genome Atlas molecular subtypes, an independent de novo signature and the total gene expression dataset using all 21,000 genes were not able to predict RD status. Medical reasons for RD were identified as potential limiting factors that impact the ability to use GES to predict RD. In a center with high complete resection rates, a GES which would perfectly predict tumor biological RD would have a performance of only AUC 0.83, due to reasons other than tumor biology. CONCLUSIONS Previously identified GES cannot be generalized. Medically associated factors for RD may be the main obstacle to predict surgical outcome in an all-comer population of patients with advanced ovarian cancer. If biomarkers derived from tumor tissue are used to predict outcome of patients with cancer, selection bias should be focused on to prevent overestimation of the power of such a biomarker.See related commentary by Handley and Sood, p. 9.
Collapse
Affiliation(s)
- Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken-Essen-Mitte, Germany. .,Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Gynecology, Berlin, Germany.,AGO Study Group
| | - Stefan Kommoss
- AGO Study Group.,Department of Women's Health, Tuebingen University Hospital, Tuebingen, Germany
| | - Roshan Tourani
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, Minnesota
| | - Anthony Grandelis
- Department of Gynecology, Obstetrics and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Locke Uppendahl
- Department of Gynecology, Obstetrics and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Constantin Aliferis
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Burges
- AGO Study Group.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Germany
| | - Chen Wang
- Division of Gynecologic Surgery, Department of Obstetrics and Gynecology; Mayo Clinic, Rochester, Minnesota
| | - Ulrich Canzler
- AGO Study Group.,Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany
| | - Jinhua Wang
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, Minnesota
| | - Antje Belau
- AGO Study Group.,Ernst Moritz Arndt Universität Greifswald - Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Greifswald, Germany
| | - Sonia Prader
- Department of Gynecology and Gynecologic Oncology, Kliniken-Essen-Mitte, Germany
| | - Lars Hanker
- AGO Study Group.,Klinik für Frauenheilkunde und Geburtshilfe, University of Schleswig-Holstein, Lübeck, Germany
| | - Sisi Ma
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, Minnesota
| | - Beyhan Ataseven
- Department of Gynecology and Gynecologic Oncology, Kliniken-Essen-Mitte, Germany.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Germany
| | - Felix Hilpert
- AGO Study Group.,Krankenhaus Jerusalem Hamburg, Hamburg, Germany
| | - Stephanie Schneider
- Department of Gynecology and Gynecologic Oncology, Kliniken-Essen-Mitte, Germany
| | - Jalid Sehouli
- Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Gynecology, Berlin, Germany
| | - Rainer Kimmig
- AGO Study Group.,Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Christian Kurzeder
- AGO Study Group.,Universitätsspital Basel, Basel, Switzerland.,Department of Obstrics and Gynecology, University of Ulm, Ulm, Germany
| | - Barbara Schmalfeldt
- AGO Study Group.,Technical University of Munich - Klinikum rechts der Isar, Munich, Germany.,Department of Gynecology and Obstetrics, Technical University of Munich, Munich, Germany
| | - Elena I Braicu
- Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Gynecology, Berlin, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Kliniken-Essen-Mitte, Germany.,AGO Study Group
| | - Sean C Dowdy
- Division of Gynecologic Surgery, Department of Obstetrics and Gynecology; Mayo Clinic, Rochester, Minnesota
| | - Boris J Winterhoff
- Department of Gynecology, Obstetrics and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota
| | | | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken-Essen-Mitte, Germany.,AGO Study Group
| |
Collapse
|
29
|
Hacker NF. Neoadjuvant chemotherapy for advanced epithelial ovarian cancer. Who really benefits? Aust N Z J Obstet Gynaecol 2019; 57:585-587. [PMID: 29210052 DOI: 10.1111/ajo.12737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neville F Hacker
- Gynaecological Cancer Centre, Royal Hospital for Women, University of New South Wales, Sydney, Australia
| |
Collapse
|
30
|
Orsulic S, Karlan BY. Can molecular subtyping be used to triage women with advanced ovarian cancer to Primary Debulking Surgery or Neoadjuvant Chemotherapy? Gynecol Oncol 2019; 152:221-222. [PMID: 30704616 DOI: 10.1016/j.ygyno.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sandra Orsulic
- Department of Obstetrics and Gynecology and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Beth Y Karlan
- Department of Obstetrics and Gynecology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
31
|
Bregar A, Mojtahed A, Kilcoyne A, Kurra V, Melamed A, Growdon W, Alejandro Rauh-Hain J, Del Carmen M, Lee SI. CT prediction of surgical outcome in patients with advanced epithelial ovarian carcinoma undergoing neoadjuvant chemotherapy. Gynecol Oncol 2019; 152:568-573. [PMID: 30642626 DOI: 10.1016/j.ygyno.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE A scoring system has been proposed to predict gross residual disease at primary debulking surgery (PDS) for advanced epithelial ovarian cancer. This scoring system has not been assessed in patients undergoing neoadjuvant chemotherapy (NACT). The aim of this study is to assess the reproducibility and prognostic significance of the scoring system when applied to women undergoing NACT followed by interval debulking surgery (IDS). METHODS A retrospective cohort study was conducted of patients with advanced ovarian cancer who underwent NACT and IDS between 2005 and 2014. Change in tumor burden using computed tomography (CT) at diagnosis (T0) and after initiation of NACT but before IDS (T1) was independently assessed by two radiologists blinded to outcomes using two read criteria: a scoring system utilizing clinical and radiologic criteria and RECIST 1.1. Relationship between CT assessments to surgical outcome, progression free survival (PFS) and overall survival (OS) were evaluated. Reader agreement was measured using Fleiss's kappa (ĸ). RESULTS 76 patients were analyzed. Optimal surgical outcome was achieved in 69 (91%) of patients. Median progression free survival was 13.2 months and overall survival was 32.6 months, respectively. Predictive score change from T0 to T1 of >1 (denoting an improvement in disease burden) was associated with optimal cytoreduction (p = 0.02 and 0.01 for readers 1 and 2, respectively). Neither predictive score nor RECIST 1.1 assessment was predictive of OS or PFS. Reader agreement was substantial for predictive score (κ = 0.77) and moderate for RECIST (κ = 0.51) assessments. CONCLUSIONS A change in score before and after neoadjuvant chemotherapy minimizes reader variability and predicts surgical outcome.
Collapse
Affiliation(s)
- Amy Bregar
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Amirkasra Mojtahed
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Aoife Kilcoyne
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Vikram Kurra
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Alexander Melamed
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Whitfield Growdon
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - J Alejandro Rauh-Hain
- University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Marcela Del Carmen
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Susanna I Lee
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
32
|
Zhang Q, Wang C, Cliby WA. Cancer-associated stroma significantly contributes to the mesenchymal subtype signature of serous ovarian cancer. Gynecol Oncol 2018; 152:368-374. [PMID: 30448260 DOI: 10.1016/j.ygyno.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Mesenchymal (MES) subtype of high-grade serous ovarian cancer (HGSOC) is associated with worse outcomes including survival and resectability compared with other molecular subtypes. Molecular subtypes have historically been derived from 'tumor', consisting of both cancer and stromal cells. We sought to determine the origins of multiple MES subtype gene signatures in HGSOC. METHODS Fifteen patients with MES subtype of HGSOC diagnosed between 2010 and 2013 were identified. Formalin-fixed paraffin-embedded (FFPE) blocks from primary surgery were sectioned for immunohistochemistry (IHC) staining of relevant proteins. Eight genes (ACTA2, COL5A1, COL11A1, FAP, POSTN, VCAN, ZEB1 and p-SMAD2) were selected for IHC staining based on their differential expression in MES vs. non-MES subtypes of HGSOC. Slides were scored for intensity and localization and simple statistics were used to compare expression results in cancer vs. stroma and between primary and metastatic sites. RESULTS COL5A1, VCAN, FAP, and ZEB1 proteins were almost exclusively expressed by stroma as opposed to cancer cells. In addition, stromal expression was dominant for ACTA2, COL11A1, POSTN and p-SMAD2. In general there were minimal differences in expression of proteins between primary and metastatic sites, exceptions being COL5A1 (reduced in metastases) and COL11A1 (increased in metastases). Nuclear p-SMAD2 expression was more common in metastatic stroma. CONCLUSIONS The existing molecular classification of HGSOC MES subtype reflects a significant stromal contribution, suggesting an important role in HGSOC behavior and thus stroma may be a relevant therapeutic target. Specific patterns of expression indicate that collagens and TGF-β signaling are involved in the metastatic process.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - William A Cliby
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
33
|
Primary debulking surgery versus primary neoadjuvant chemotherapy for high grade advanced stage ovarian cancer: comparison of survivals. Radiol Oncol 2018; 52:307-319. [PMID: 30210049 PMCID: PMC6137361 DOI: 10.2478/raon-2018-0030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023] Open
Abstract
Background The aim of the study was to analyze the overall survival (OS) and progression free survival (PFS) of patients with high grade and advanced stage epithelial ovarian cancer (EOC) with at least 60 months of follow-up treated in a single gynecologic oncology institute. We compared primary debulking surgery (PDS) versus neoadjuvant chemotherapy plus interval debulking surgery (NACT + IDS) stratifying data based on residual disease with the intent to identify the rationale for therapeutic option decision and the role of laparoscopic evaluation of resectability for that intention. Patients and methods This is observational retrospective study on consecutive patients with diagnosis of high grade and International Federation of Gynecology and Obstetrics (FIGO) stage III/IV EOC referred to our center between January 2008 and May 2012. We selected only patients with a follow-up of at least 60 months. Primary endpoint was to compare PDS versus NACT + IDS in term of progression free survival (PFS) and overall survival (OS). Secondary endpoints were PFS and OS stratifying data according to residual disease after surgery in patients receiving PDS versus NACT + IDS. Finally, through Cox hazards models, we tested the prognostic value of different variables (patient age at diagnosis, residual disease after debulking, American Society of Anesthesiologists (ASA) stage, number of adjuvant-chemotherapy cycles) for predicting OS. Results A total number of 157 patients were included in data analysis. Comparing PDS arm (108 patients) and NACT + IDS arm (49 patients) we found no significant differences in term of OS (41.3 versus 34.5 months, respectively) and PFS (17.3 versus 18.3 months, respectively). According to residual disease we found no significant differences in term of OS between NACT + IDS patients with residual disease = 0 and PDS patients with residual disease = 0 or residual disease = 1, as well as no significant differences in PFS were found comparing NACT + IDS patients with residual disease = 0 and PDS patients with residual disease = 0; contrarily, median PFS resulted significantly lower in PDS patients receiving optimal debulking (residual disease = 1) in comparison to NACT + IDS patients receiving complete debulking (residual disease = 0). PDS arm was affected by a significant higher rate of severe post-operative complications (grade 3 and 4). Diagnostic laparoscopy before surgery was significantly associated with complete debulking. Conclusions We confirm previous findings concerning the non-superiority of NACT + IDS compared to PDS for the treatment of EOC, even if NACT + IDS treatment was associated with significant lower rate of post-operative complications. On the other hand, selecting patients for NACT + IDS, based on laparoscopic evaluation of resectabilty prolongs the PFS and does not worse the OS compared to the patients not completely debulked with PDS.
Collapse
|
34
|
Kessous R, Octeau D, Klein K, Tonin PN, Greenwood CMT, Pelmus M, Laskov I, Kogan L, Salvador S, Lau S, Yasmeen A, Gotlieb WH. Distinct homologous recombination gene expression profiles after neoadjuvant chemotherapy associated with clinical outcome in patients with ovarian cancer. Gynecol Oncol 2018; 148:553-558. [PMID: 29395310 DOI: 10.1016/j.ygyno.2018.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The expression of homologous recombination (HR) genes in high grade ovarian cancer (HGOC) samples from debulking surgeries were correlated to outcomes in patients selected for chemotherapy treatment regimens. STUDY DESIGN RNA was extracted from 96 fresh frozen tumor samples from debulking surgeries from chemotherapy naïve patients with HGOC (primary derived surgeries (PDS), n = 55) or following neoadjuvant chemotherapy treatment (NACT), n = 41). The samples were selected for high tumor content by a gynecological pathologist, and cancer cell content was further confirmed using a percent tumor content covariate, and mutation score covariate analysis. Gene expression analysis was performed using a tailored NanoString-based Pancancer Pathway Panel. Cox proportional hazard regression models were used to assess the associations between the expression of 19 HR genes and survival. RESULTS In the PDS group, over-expression of six HR genes (C11orf30, NBN, FANCF, FANCC, FANCB, RAD50) was associated with improved outcome, in contrast to the NACT group where four HR genes (BRCA2, TP53, FANCB, RAD51) were associated with worse outcome. With the adding extent of debulking as a covariate, three HR genes (NBN, FANCF, RAD50), and only one HR gene (RAD51) remained significantly associated with survival in PDS and NACT groups, respectively. CONCLUSION Distinct HR expression profiles define subgroups associated with overall outcome in patients that are exposed to neoadjuvant chemotherapy and not only chemotherapy-naïve patients.
Collapse
MESH Headings
- Acid Anhydride Hydrolases
- Aged
- Antineoplastic Agents/therapeutic use
- BRCA1 Protein/genetics
- BRCA2 Protein/genetics
- CA-125 Antigen/blood
- Carcinoma, Endometrioid/blood
- Carcinoma, Endometrioid/drug therapy
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Cell Cycle Proteins/genetics
- Cytoreduction Surgical Procedures
- DNA Repair Enzymes/genetics
- DNA-Binding Proteins/genetics
- Fanconi Anemia Complementation Group C Protein/genetics
- Fanconi Anemia Complementation Group F Protein/genetics
- Fanconi Anemia Complementation Group Proteins/genetics
- Female
- Gene Expression Profiling
- Humans
- Membrane Proteins/blood
- Middle Aged
- Neoadjuvant Therapy
- Neoplasm Grading
- Neoplasm Proteins/genetics
- Neoplasms, Cystic, Mucinous, and Serous/blood
- Neoplasms, Cystic, Mucinous, and Serous/drug therapy
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Nuclear Proteins/genetics
- Ovarian Neoplasms/blood
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovariectomy
- PTEN Phosphohydrolase/genetics
- Prognosis
- Proportional Hazards Models
- Rad51 Recombinase/genetics
- Recombinational DNA Repair/genetics
- Repressor Proteins/genetics
- Survival Rate
- Transcriptome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Roy Kessous
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - David Octeau
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Kathleen Klein
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Patricia N Tonin
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Celia M T Greenwood
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada; Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Manuela Pelmus
- Division of Pathology, Jewish General Hospital, Montréal, Canada
| | - Ido Laskov
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Liron Kogan
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Shannon Salvador
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Susie Lau
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Amber Yasmeen
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada.
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
35
|
Barriers to Primary Debulking Surgery for Advanced Ovarian Cancer in Latin America. Int J Gynecol Cancer 2018; 27:1645-1649. [PMID: 28857784 DOI: 10.1097/igc.0000000000001098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ovarian cancer is gynecologic tumor with particularly high mortality because it is usually diagnosed in advanced stages. In Latin America and the Caribbean, it is the eighth most common malignancy in women, with an estimated 18,000 new cases and 11,500 deaths annually. Standard of care for women diagnosed with advanced ovarian cancer (AOC) is primary cytoreductive surgery followed by systemic chemotherapy using a combination of paclitaxel plus carboplatin. To pursue upfront surgery, highly specialized and well-trained gynecologic oncologists are required, in addition with well-equipped hospitals. Neoadjuvant chemotherapy (NACT) has been gaining greater acceptance in the past decade for patients with AOC. Two phase III randomized clinical trials have demonstrated that NACT is noninferior to primary cytoreductive surgery for women with stages III and IV epithelial ovarian cancer, and since publication of these results, NACT is more commonly used. Apart from medical reasons of inoperability and unresectability, there may be nonmedical barriers to upfront debulking surgery in clinical practice. These barriers include inadequate expertise of the surgeon, inadequate resources, and/or barriers to access. The aim of this article was to discuss patterns of care and barriers to upfront ovarian debulking surgery, as well as a possible shift toward overuse of NACT as the primary approach for patients with AOC (stages III and IV) in Latin America.
Collapse
|
36
|
A Comparison of Thermal Plasma Energy Versus Argon Beam Coagulator-Induced Intestinal Injury After Vaporization in a Porcine Model. Int J Gynecol Cancer 2018; 27:177-182. [PMID: 27922979 DOI: 10.1097/igc.0000000000000849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Complete cytoreduction of ovarian cancer often requires excision or ablation of bowel serosa implants. Both argon beam coagulator (ABC) and thermal plasma energy (TPE) (PlasmaJet; PlasmaSurgical, Roswell, Ga) have been used to ablate bowel serosa implants. Our objective was to identify comparable power settings as well as determine the rate of bowel perforation, depth of thermal injury, and extent of inflammatory response with ABC versus TPE in a porcine model. MATERIALS AND METHODS Nine pigs underwent vaporization of small bowel and colon serosa according to assigned treatment group (TPE vs ABC) and settings (ABC: 30, 50, and 70 W; TPE: Cut 10U, 20U, and 30U and Coagulation 10U, 20U, and 30U). Animals underwent necropsy with blinded histomorphologic evaluation on days 0, 3, and 10 postprocedure to assess for presence of bowel perforation, depth of thermal injury, and extent of inflammatory response. RESULTS At necropsy, bowel perforation was not identified in any animals. Depth of treatment with ABC in the porcine colon was variable and unrelated to power settings whereas TPE was associated with a consistent treatment depth of 1.0 mm regardless of location or power. Treatment with ABC resulted in greater tissue coagulation and desiccation as well as increased rates of mucosal necrosis, especially at higher settings (>50 W). Treatment with TPE primarily resulted in tissue ablation and minimal mucosal necrosis at low settings (Coag 10U-20U). The inflammatory response associated with TPE treatments was interpreted as biologically benign, and less than that observed with the ABC regardless of treatment settings. CONCLUSIONS Both ABC and TPE effectively ablate bowel serosa in a porcine model. The TPE seems to result in a more predictable tissue effect with less inflammatory response, especially when used at low power settings such as Coag 10U or 20U. These characteristics are appealing for ablation of bowel serosa implants during ovarian cancer surgery and warrant further investigation.
Collapse
|
37
|
Liu Z, Sun F, McGovern DP. Sparse generalized linear model with L0 approximation for feature selection and prediction with big omics data. BioData Min 2017; 10:39. [PMID: 29270229 PMCID: PMC5735537 DOI: 10.1186/s13040-017-0159-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Feature selection and prediction are the most important tasks for big data mining. The common strategies for feature selection in big data mining are L1, SCAD and MC+. However, none of the existing algorithms optimizes L0, which penalizes the number of nonzero features directly. Results In this paper, we develop a novel sparse generalized linear model (GLM) with L0 approximation for feature selection and prediction with big omics data. The proposed approach approximate the L0 optimization directly. Even though the original L0 problem is non-convex, the problem is approximated by sequential convex optimizations with the proposed algorithm. The proposed method is easy to implement with only several lines of code. Novel adaptive ridge algorithms (L0ADRIDGE) for L0 penalized GLM with ultra high dimensional big data are developed. The proposed approach outperforms the other cutting edge regularization methods including SCAD and MC+ in simulations. When it is applied to integrated analysis of mRNA, microRNA, and methylation data from TCGA ovarian cancer, multilevel gene signatures associated with suboptimal debulking are identified simultaneously. The biological significance and potential clinical importance of those genes are further explored. Conclusions The developed Software L0ADRIDGE in MATLAB is available at https://github.com/liuzqx/L0adridge. Electronic supplementary material The online version of this article (doi:10.1186/s13040-017-0159-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, 90048 CA USA
| | - Fengzhu Sun
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, 90089 CA USA
| | - Dermot P McGovern
- Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, 90048 CA USA
| |
Collapse
|
38
|
Wang C, Armasu SM, Kalli KR, Maurer MJ, Heinzen EP, Keeney GL, Cliby WA, Oberg AL, Kaufmann SH, Goode EL. Pooled Clustering of High-Grade Serous Ovarian Cancer Gene Expression Leads to Novel Consensus Subtypes Associated with Survival and Surgical Outcomes. Clin Cancer Res 2017. [PMID: 28280090 DOI: 10.1158/1078-0432.ccr-17-0246] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Here we assess whether molecular subtyping identifies biological features of tumors that correlate with survival and surgical outcomes of high-grade serous ovarian cancer (HGSOC).Experimental Design: Consensus clustering of pooled mRNA expression data from over 2,000 HGSOC cases was used to define molecular subtypes of HGSOCs. This de novo classification scheme was then applied to 381 Mayo Clinic HGSOC patients with detailed survival and surgical outcome information.Results: Five molecular subtypes of HGSOC were identified. In the pooled dataset, three subtypes were largely concordant with prior studies describing proliferative, mesenchymal, and immunoreactive tumors (concordance > 70%), and the group of tumors previously described as differentiated type was segregated into two new types, one of which (anti-mesenchymal) had downregulation of genes that were typically upregulated in the mesenchymal subtype. Molecular subtypes were significantly associated with overall survival (P < 0.001) and with rate of optimal surgical debulking (≤1 cm, P = 1.9E-4) in the pooled dataset. Among stage III-C or IV Mayo Clinic patients, molecular subtypes were also significantly associated with overall survival (P = 0.001), as well as rate of complete surgical debulking (no residual disease; 16% in mesenchymal tumors compared with >28% in other subtypes; P = 0.02).Conclusions: HGSOC tumors may be categorized into five molecular subtypes that associate with overall survival and the extent of residual disease following debulking surgery. Because mesenchymal tumors may have features that were associated with less favorable surgical outcome, molecular subtyping may have future utility in guiding neoadjuvant treatment decisions for women with HGSOC. Clin Cancer Res; 23(15); 4077-85. ©2017 AACR.
Collapse
Affiliation(s)
- Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Sebastian M Armasu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Matthew J Maurer
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ethan P Heinzen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Gary L Keeney
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - William A Cliby
- Department of Gynecologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
39
|
Mittempergher L. Genomic Characterization of High-Grade Serous Ovarian Cancer: Dissecting Its Molecular Heterogeneity as a Road Towards Effective Therapeutic Strategies. Curr Oncol Rep 2017; 18:44. [PMID: 27241520 DOI: 10.1007/s11912-016-0526-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High-grade serous ovarian carcinoma (HGSOC) accounts for the majority of the ovarian cancer deaths, but over the last years little improvement in overall survival has been achieved. HGSOC is a molecularly and clinically heterogeneous disease. At genomic level, it represents a C-class malignancy having frequent gene losses (NF1, RB1, PTEN) and gains (CCNE1, MYC). HGSOC shows a simple mutational profile with TP53 nearly always mutated and with other genes mutated at low frequency. Importantly, 50 % of all HGSOCs have genetic features indicating a homologous recombination (HR) deficiency. HR deficient tumors are highly sensitive to PARP inhibitor anticancer agents, which exhibit synthetic lethality with a defective HR pathway. Transcriptionally, HGSOCs can be grouped into different molecular subtypes with distinct biology and prognosis. Molecular stratification of HGSOC based on these genomic features may result in improved therapeutic strategies.
Collapse
Affiliation(s)
- Lorenza Mittempergher
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Wang C, Armasu SM, Kalli KR, Maurer MJ, Heinzen EP, Keeney GL, Cliby WA, Oberg AL, Kaufmann SH, Goode EL. Pooled Clustering of High-Grade Serous Ovarian Cancer Gene Expression Leads to Novel Consensus Subtypes Associated with Survival and Surgical Outcomes. Clin Cancer Res 2017; 23:4077-4085. [PMID: 28280090 DOI: 10.1158/1078-0432.ccr-17-0246] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 01/27/2023]
Abstract
Purpose: Here we assess whether molecular subtyping identifies biological features of tumors that correlate with survival and surgical outcomes of high-grade serous ovarian cancer (HGSOC).Experimental Design: Consensus clustering of pooled mRNA expression data from over 2,000 HGSOC cases was used to define molecular subtypes of HGSOCs. This de novo classification scheme was then applied to 381 Mayo Clinic HGSOC patients with detailed survival and surgical outcome information.Results: Five molecular subtypes of HGSOC were identified. In the pooled dataset, three subtypes were largely concordant with prior studies describing proliferative, mesenchymal, and immunoreactive tumors (concordance > 70%), and the group of tumors previously described as differentiated type was segregated into two new types, one of which (anti-mesenchymal) had downregulation of genes that were typically upregulated in the mesenchymal subtype. Molecular subtypes were significantly associated with overall survival (P < 0.001) and with rate of optimal surgical debulking (≤1 cm, P = 1.9E-4) in the pooled dataset. Among stage III-C or IV Mayo Clinic patients, molecular subtypes were also significantly associated with overall survival (P = 0.001), as well as rate of complete surgical debulking (no residual disease; 16% in mesenchymal tumors compared with >28% in other subtypes; P = 0.02).Conclusions: HGSOC tumors may be categorized into five molecular subtypes that associate with overall survival and the extent of residual disease following debulking surgery. Because mesenchymal tumors may have features that were associated with less favorable surgical outcome, molecular subtyping may have future utility in guiding neoadjuvant treatment decisions for women with HGSOC. Clin Cancer Res; 23(15); 4077-85. ©2017 AACR.
Collapse
Affiliation(s)
- Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Sebastian M Armasu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Matthew J Maurer
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ethan P Heinzen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Gary L Keeney
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - William A Cliby
- Department of Gynecologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
41
|
|
42
|
Kessous R, Laskov I, Abitbol J, Bitharas J, Yasmeen A, Salvador S, Lau S, Gotlieb WH. Clinical outcome of neoadjuvant chemotherapy for advanced ovarian cancer. Gynecol Oncol 2016; 144:474-479. [PMID: 28041690 DOI: 10.1016/j.ygyno.2016.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To evaluate clinical outcome in patients selected to receive neoadjuvant chemotherapy (NACT) compared to primary debulking surgery (PDS). METHODS Retrospective study including all consecutive patients diagnosed and treated for advanced (stages III-IV) ovarian cancers between the years 2003-2015. RESULTS 263 women were included in the study, of these, 127 patients were selected to receive NACT and 136 were treated with PDS followed by adjuvant chemotherapy. PDS was associated with longer OS in stage IIIc disease (median OS: 60.2 vs. 48.8months; p-value 0.039) compared with NACT. Patients achieved higher rates of complete cytoreduction in the NACT group compared to the PDS group (65.9% vs. 40.2%; p=0.001). Patients attaining complete cytoreduction after PDS had the best survival, (median OS 106months) followed by those with complete cytoreduction after NACT (median OS 71months), followed by those with residual disease after PDS (median OS 55months). Patients with residual disease following interval debulking after NACT had the worst outcome (median OS 36months). Platinum sensitivity following first line and second line chemotherapy was similar whether patients received neoadjuvant chemotherapy or not. CONCLUSION PDS was associated with improved outcome. NACT appears to improve survival outcome in patients that would have had residual disease after PDS, and attain complete cytoreduction at the time of interval cytoreduction. This treatment option can be used in selected patients that are not candidates for complete cytoreduction at PDS.
Collapse
Affiliation(s)
- Roy Kessous
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Ido Laskov
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Jeremie Abitbol
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Joanna Bitharas
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Amber Yasmeen
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Shannon Salvador
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Susie Lau
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada.
| |
Collapse
|
43
|
Kind T, Cho E, Park TD, Deng N, Liu Z, Lee T, Fiehn O, Kim J. Interstitial Cystitis-Associated Urinary Metabolites Identified by Mass-Spectrometry Based Metabolomics Analysis. Sci Rep 2016; 6:39227. [PMID: 27976711 PMCID: PMC5156939 DOI: 10.1038/srep39227] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/18/2016] [Indexed: 11/09/2022] Open
Abstract
This study on interstitial cystitis (IC) aims to identify a unique urine metabolomic profile associated with IC, which can be defined as an unpleasant sensation including pain and discomfort related to the urinary bladder, without infection or other identifiable causes. Although the burden of IC on the American public is immense in both human and financial terms, there is no clear diagnostic test for IC, but rather it is a disease of exclusion. Very little is known about the clinically useful urinary biomarkers of IC, which are desperately needed. Untargeted comprehensive metabolomic profiling was performed using gas-chromatography/mass-spectrometry to compare urine specimens of IC patients or health donors. The study profiled 200 known and 290 unknown metabolites. The majority of the thirty significantly changed metabolites before false discovery rate correction were unknown compounds. Partial least square discriminant analysis clearly separated IC patients from controls. The high number of unknown compounds hinders useful biological interpretation of such predictive models. Given that urine analyses have great potential to be adapted in clinical practice, research has to be focused on the identification of unknown compounds to uncover important clues about underlying disease mechanisms.
Collapse
Affiliation(s)
- Tobias Kind
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Eunho Cho
- University of California Los Angeles, CA, USA
| | | | - Nan Deng
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhenqiu Liu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tack Lee
- Department of Urology, Inha University College of Medicine, Incheon, South Korea
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA.,King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jayoung Kim
- University of California Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
44
|
Impact of Abdominal Wall Metastases on Prognosis in Epithelial Ovarian Cancer. Int J Gynecol Cancer 2016; 26:1594-1600. [DOI: 10.1097/igc.0000000000000826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ObjectiveEpithelial ovarian cancer (EOC) patients with the presence of abdominal wall metastasis (AWM) are categorized as stage International Federation of Gynecology and Obstetrics (FIGO) IVB, irrespective of other biologic factors or preceding invasive intervention before final surgery. We evaluated the impact of AWM on patients’ overall survival (OS).Patients and MethodsIn this exploratory study, 634 consecutive patients with advanced EOC treated in our center from 2000 to 2014 were included. Patients were categorized into FIGO IIIC (n = 308), FIGO IVB AWM only (n = 86), and FIGO IV others (metastases other than AWM, n = 240). Clinicopathological parameters and survival data were extracted from our prospectively maintained tumor registry. Survival analyses were calculated using Kaplan-Meier method and Cox regression models.ResultsIn 75 (87.2%) of 86 cases, AWM was seen after a preceding intervention, and only in 12.7%, the deposits were spontaneously established. The median OS in patients with stage FIGO IIIC, FIGO IVB AWM only, and FIGO IV others was 37, 58, and 25 months (P < 0.001), respectively. Patients with FIGO IVB AWM only had a significantly better OS than patients with FIGO IV others (P < 0.001). The numeric longer OS of patients with FIGO IVB AWM only compared with patients with FIGO IIIC was not statistically significant (P = 0.151). In multivariate analysis considering all confounding factors including residual disease, OS of patients with FIGO IIIC did not differ from patients with FIGO AWM only (hazard ratio, 0.84; 95% confidence interval, 0.56–12.26; P = 0.398).ConclusionsMost AWM are acquired after preceding intervention (puncture or laparoscopy). Prognosis of patients with AWM as the only site of distant metastasis is superior compared with other stage FIGO IV patients. Therefore, up-staging of patients only because of AWM to FIGO IVB may be questioned. A revision/clarification of the FIGO classification system should be considered to avoid unnecessary stigmatization of patients and to classify these patients more appropriately according to prognosis.
Collapse
|
45
|
Gao B, Lindemann K, Anderson L, Fereday S, Hung J, Alsop K, Tothill RW, Gebski V, Kennedy C, Balleine RL, Harnett PR, Bowtell DDL, DeFazio A. Serous ovarian and primary peritoneal cancers: A comparative analysis of clinico-pathological features, molecular subtypes and treatment outcome. Gynecol Oncol 2016; 142:458-64. [PMID: 27444035 DOI: 10.1016/j.ygyno.2016.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Primary peritoneal cancer is rare and considered equivalent to stage III/IV ovarian cancer, but questions remain concerning its underlying biology, prognosis and optimal management. METHODS Clinico-pathological and treatment details of primary peritoneal (n=120) and ovarian cancer (n=635) were obtained on women recruited to the Australian Ovarian Cancer Study. Log-rank test was used to compare survival and cox proportional hazards models were fitted to obtain hazard ratios and 95% confidence intervals, both unadjusted and adjusted for age, grade, FIGO stage, residual disease and treatment with neoadjuvant chemotherapy. Molecular subtype was determined by gene expression profiling using published data. RESULTS Compared with advanced serous ovarian cancer, primary peritoneal cancer patients were older (mean age 65.5 vs. 60.2years, p<0.001), more often treated with neoadjuvant chemotherapy (38.4% vs. 11.4%, p<0.001). Gene expression profiling classified a substantially higher proportion of primary peritoneal carcinomas as C1 (mesenchymal, reactive stromal infiltration) subtype (70.6% vs. 32.1%, p=0.029), which was associated with lower complete surgical resection rate. Women with primary peritoneal cancer had significantly shorter progression-free (11.6 vs. 13.6months, p=0.007) and overall survival (31.7 vs. 39.8months, p=0.012). In multivariate analysis, residual disease and neoadjuvant chemotherapy were both independently associated with increased risk of progression and death. CONCLUSIONS Primary peritoneal cancer patients were more frequently treated with neoadjuvant chemotherapy and had inferior survival. Different tumor biology characterized by activated stromal fibrosis in primary peritoneal cancer may underlie the differences in treatment and clinical outcome.
Collapse
Affiliation(s)
- Bo Gao
- Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney, NSW, Australia; The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Kristina Lindemann
- Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney, NSW, Australia; NHMRC Clinical Trials Centre, Sydney, NSW, Australia; Department of Gynecological Cancer, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jillian Hung
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia; Department of Gynecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Val Gebski
- NHMRC Clinical Trials Centre, Sydney, NSW, Australia
| | - Catherine Kennedy
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia; Department of Gynecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Rosemary L Balleine
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia; Pathology West ICPMR, Westmead, NSW, Australia
| | | | - Paul R Harnett
- Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney, NSW, Australia; The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, UK; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Anna DeFazio
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia; Department of Gynecological Oncology, Westmead Hospital, Sydney, NSW, Australia.
| |
Collapse
|
46
|
FIGO stage IV epithelial ovarian, fallopian tube and peritoneal cancer revisited. Gynecol Oncol 2016; 142:597-607. [PMID: 27335253 DOI: 10.1016/j.ygyno.2016.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Abstract
Epithelial ovarian, fallopian tube and peritoneal cancer (EOC) is the seventh most common cancer diagnosis among women worldwide and shows the highest mortality rate of all gynecologic tumors. Different histological and anatomic spread patterns as well as multiple gene-expression based studies have demonstrated that EOC is indeed a heterogeneous disease. The prognostic factors that best predict the survival in this disease include: age, performance status and patient's comorbidities at the time of diagnosis; tumor biology, histological type, amount of residual tumor after surgery and finally tumor stage as surrogate for pre-operative tumor burden and growth pattern. In the majority of patients, the disease is diagnosed in advanced stage, disseminated intra- and/or extra-abdominally. It is unclear whether this is a consequence of distinct tumor biology, absence of anatomic barriers between ovary and the abdominal cavity, delay of diagnosis and/or the lack of sufficient early detection methods. FIGO stage IV disease, defined as tumor spread outside the abdominal cavity (including malignant pleural effusion) and/or visceral metastases, will be present in 12-33% of the patients at initial diagnosis. Overall, median survival for patients with stage IV disease ranges from 15 to 29months, with an estimated 5-year survival of approximately 20%. Unfortunately, over the past decades the overall survival gain compared to stage III remains disappointing. The current review aims to summarize the current data published in the international literature concerning FIGO stage IV EOC and discusses the published evidence for the clinical management of these patients.
Collapse
|
47
|
Adams S. Suboptimal cytoreduction: the confounding effects of tumor biology. Gynecol Oncol 2015; 139:389-90. [PMID: 26651457 DOI: 10.1016/j.ygyno.2015.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Sarah Adams
- Assistant Professor, Gynecologic Oncology, The Victor and Ruby Hansen Surface Professor in Ovarian Cancer Research, The University of New Mexico Cancer Center, 1201 Camino de Salud, MSC 07-4025, Albuquerque, NM 87131-0001.
| |
Collapse
|