1
|
Mollaoglu G, Tepper A, Falcomatà C, Potak HT, Pia L, Amabile A, Mateus-Tique J, Rabinovich N, Park MD, LaMarche NM, Brody R, Browning L, Lin JR, Zamarin D, Sorger PK, Santagata S, Merad M, Baccarini A, Brown BD. Ovarian cancer-derived IL-4 promotes immunotherapy resistance. Cell 2024; 187:7492-7510.e22. [PMID: 39481380 DOI: 10.1016/j.cell.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/20/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Ovarian cancer is resistant to immunotherapy, and this is influenced by the immunosuppressed tumor microenvironment (TME) dominated by macrophages. Resistance is also affected by intratumoral heterogeneity, whose development is poorly understood. To identify regulators of ovarian cancer immunity, we employed a spatial functional genomics screen (Perturb-map), focused on receptor/ligands hypothesized to be involved in tumor-macrophage communication. Perturb-map recapitulated tumor heterogeneity and revealed that interleukin-4 (IL-4) promotes resistance to anti-PD-1. We find ovarian cancer cells are the key source of IL-4, which directs the formation of an immunosuppressive TME via macrophage control. IL-4 loss was not compensated by nearby IL-4-expressing clones, revealing short-range regulation of TME composition dictating tumor evolution. Our studies show heterogeneous TMEs can emerge from localized altered expression of cancer-derived cytokines/chemokines that establish immune-rich and immune-excluded neighborhoods, which drive clone selection and immunotherapy resistance. They also demonstrate the potential of targeting IL-4 signaling to enhance ovarian cancer response to immunotherapy.
Collapse
Affiliation(s)
- Gurkan Mollaoglu
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Tepper
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Falcomatà
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hunter T Potak
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luisanna Pia
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angelo Amabile
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaime Mateus-Tique
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Matthew D Park
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelson M LaMarche
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Brody
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lindsay Browning
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Dmitriy Zamarin
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessia Baccarini
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Brian D Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Santoro A, Angelico G, Travaglino A, Inzani F, Spadola S, Pettinato A, Mazzucchelli M, Bragantini E, Maccio L, Zannoni GF. The multiple facets of ovarian high grade serous carcinoma: a review on morphological, immunohistochemical and molecular features. Crit Rev Oncol Hematol 2024:104603. [PMID: 39732305 DOI: 10.1016/j.critrevonc.2024.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive subtype of epithelial ovarian cancer and a leading cause of mortality among gynecologic malignancies. This review aims to comprehensively analyze the morphological, immunohistochemical, and molecular features of HGSOC, highlighting its pathogenesis and identifying biomarkers with diagnostic, prognostic, and therapeutic significance. Special emphasis is placed on the role of tumor microenvironment (TME) and genomic instability in shaping the tumor's behavior and therapeutic vulnerabilities. Key advancements, such as the identification of TP53 and BRCA mutations, the classification of homologous recombination repair (HRR) deficiencies, and the clinical implications of biomarkers like folate receptor alpha (FRα) and PD-L1 are discussed. These findings reveal actionable insights into targeted therapies, including immune checkpoint inhibitors and PARP inhibitors, which hold promise for improving outcomes in HGSOC. This synthesis of knowledge aims to bridge gaps in understanding HGSOC's multifaceted biology, enhance clinical decision-making, and foster the development of precision therapies.
Collapse
Affiliation(s)
- Angela Santoro
- Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Pathology Institute, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
| | - Antonio Travaglino
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Frediano Inzani
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Italy
| | - Saveria Spadola
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
| | - Angela Pettinato
- Department of Pathological Anatomy, A.O.E. Cannizzaro, Via Messina, 829, 95126 Catania, Italy
| | - Manuel Mazzucchelli
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Emma Bragantini
- Unit of Surgical Pathology, Santa Chiara Hospital, APSS, Trento
| | - Livia Maccio
- Unit of Surgical Pathology, Santa Chiara Hospital, APSS, Trento
| | - Gian Franco Zannoni
- Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Pathology Institute, Catholic University of Sacred Heart, 00168 Rome, Italy.
| |
Collapse
|
3
|
Rosario SR, Long MD, Chilakapati S, Gomez EC, Battaglia S, Singh PK, Wang J, Wang K, Attwood K, Hess SM, McGray AJR, Odunsi K, Segal BH, Paragh G, Liu S, Wargo JA, Zsiros E. Integrative multi-omics analysis uncovers tumor-immune-gut axis influencing immunotherapy outcomes in ovarian cancer. Nat Commun 2024; 15:10609. [PMID: 39638782 PMCID: PMC11621351 DOI: 10.1038/s41467-024-54565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Recurrent ovarian cancer patients, especially those resistant to platinum, lack effective curative treatments. To address this, we conducted a phase 2 clinical trial (NCT02853318) combining pembrolizumab with bevacizumab, to increase T cell infiltration into the tumor, and oral cyclophosphamide, to reduce the number of regulatory T cells. The trial accrued 40 heavily pretreated recurrent ovarian cancer patients. The primary endpoint, progression free survival, was extended to a median of 10.2 months. The secondary endpoints demonstrated an objective response rate of 47.5%, and disease control in 30% of patients for over a year while maintaining a good quality of life. We performed comprehensive molecular, immune, microbiome, and metabolic profiling on samples of trial patients. Here, we show increased T and B cell clusters and distinct microbial patterns with amino acid and lipid metabolism are linked to exceptional clinical responses. This study suggests the immune milieu and host-microbiome can be leveraged to improve antitumor response in future immunotherapy trials.
Collapse
Affiliation(s)
- Spencer R Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Shanmuga Chilakapati
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, 02111, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Sebastiano Battaglia
- Computational Biology Office of Translational Research, Janssen Pharmaceuticals, Buffalo, NY, 14263, USA
| | - Prashant K Singh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Katy Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Kristopher Attwood
- Department of Clinical Research, American College of Radiology, Reston, VA, 20191, USA
| | - Suzanne M Hess
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - A J Robert McGray
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago Comprehensive Cancer Center, Chicago, IL, 60637, USA
| | - Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
4
|
Monberg MJ, Keefe S, Karantza V, Tryfonidis K, Toker S, Mejia J, Orlowski R, Haiderali A, Prabhu VS, Aktan G. A Narrative Review of the Clinical, Humanistic, and Economic Value of Pembrolizumab-Based Immunotherapy for the Treatment of Breast and Gynecologic Cancers. Oncol Ther 2024; 12:701-734. [PMID: 39453600 PMCID: PMC11573950 DOI: 10.1007/s40487-024-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
Breast and gynecologic cancers are common across the world and are associated with substantial societal and economic burden. Pembrolizumab was among the first immune checkpoint inhibitors targeting programmed cell death protein 1 to be approved for the treatment of patients with triple-negative breast cancer, cervical cancer, and endometrial cancer. Recent clinical trials have established pembrolizumab regimens as a standard of care treatment for these tumor types. Clinical data are further supported by patient-reported outcome, cost-effectiveness, and real-world evidence. Pembrolizumab monotherapy and combination regimens do not negatively influence health-related quality of life and are cost-effective relative to comparators. Ongoing phase 3 studies with pembrolizumab will expand the current understanding of its use in breast and gynecologic cancers. Several of these studies are in patients with early-stage disease with the hope of curing patients. The main objective of this review is to summarize the clinical, humanistic, and economic value of pembrolizumab in these settings and to describe the future challenges for patients, caregivers, clinicians, and payers.
Collapse
Affiliation(s)
| | - Steve Keefe
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | | | - Sarper Toker
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | - Jaime Mejia
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | - Amin Haiderali
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | - Gursel Aktan
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| |
Collapse
|
5
|
Gronauer R, Madersbacher L, Monfort-Lanzas P, Floriani G, Sprung S, Zeimet AG, Marth C, Fiegl H, Hackl H. Integrated immunogenomic analyses of high-grade serous ovarian cancer reveal vulnerability to combination immunotherapy. Front Immunol 2024; 15:1489235. [PMID: 39669575 PMCID: PMC11634877 DOI: 10.3389/fimmu.2024.1489235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Background The efficacy of immunotherapies in high-grade serous ovarian cancer (HGSOC) is limited, but clinical trials investigating the potential of combination immunotherapy including poly-ADP-ribose polymerase inhibitors (PARPis) are ongoing. Homologous recombination repair deficiency or BRCAness and the composition of the tumor microenvironment appear to play a critical role in determining the therapeutic response. Methods We conducted comprehensive immunogenomic analyses of HGSOC using data from several patient cohorts. Machine learning methods were used to develop a classification model for BRCAness from gene expression data. Integrated analysis of bulk and single-cell RNA sequencing data was used to delineate the tumor immune microenvironment and was validated by immunohistochemistry. The impact of PARPi and BRCA1 mutations on the activation of immune-related pathways was studied using ovarian cancer cell lines, RNA sequencing, and immunofluorescence analysis. Results We identified a 24-gene signature that predicts BRCAness. Comprehensive immunogenomic analyses across patient cohorts identified samples with BRCAness and high immune infiltration. Further characterization of these samples revealed increased infiltration of immunosuppressive cells, including tumor-associated macrophages expressing TREM2, C1QA, and LILRB4, as specified by single-cell RNA sequencing data and gene expression analysis of samples from patients receiving combination therapy with PARPi and anti-PD-1. Our findings show also that genomic instability and PARPi activated the cGAS-STING signaling pathway in vitro and the downstream innate immune response in a similar manner to HGSOC patients with BRCAness status. Finally, we have developed a web application (https://ovrseq.icbi.at) and an associated R package OvRSeq, which allow for comprehensive characterization of ovarian cancer patient samples and assessment of a vulnerability score that enables stratification of patients to predict response to the combination immunotherapy. Conclusions Genomic instability in HGSOC affects the tumor immune environment, and TAMs play a crucial role in modulating the immune response. Based on various datasets, we have developed a diagnostic application that uses RNA sequencing data not only to comprehensively characterize HGSOC but also to predict vulnerability and response to combination immunotherapy.
Collapse
Affiliation(s)
- Raphael Gronauer
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Leonie Madersbacher
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Floriani
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Sprung
- Institute of Pathology, Innpath GmbH, Innsbruck, Austria
| | - Alain Gustave Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
7
|
Connor A, Lyons P, Kilgallon A, Simpson J, Perry A, Lysaght J. Examining the evidence for immune checkpoint therapy in high-grade serous ovarian cancer. Heliyon 2024; 10:e38888. [PMID: 39640610 PMCID: PMC11620064 DOI: 10.1016/j.heliyon.2024.e38888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
The 5-year survival rate for ovarian cancer has remained relatively static over the past number of years, which can be attributed in part to the lack of new therapeutic strategies to target this disease. Although numerous other cancer types have benefited from the success of immune checkpoint inhibitors, their use in clinical trials targeting ovarian cancer has shown limited efficacy. Most clinical trials have focused on PD-1/PD-L1 immune checkpoint blockade, either as a monotherapy or in combination with chemotherapies, however inhibiting other pathways may potentially be more efficacious in treating ovarian cancer. For example, drugs targeting some emerging immune checkpoints (such as LAG-3, TIM-3, TIGIT and PVRIG), are entering into clinical trials, which could show improved success for ovarian cancer patients. Similarly, predictive biomarkers that have been approved for use with immune checkpoint inhibitors, such as PD-L1 expression, are limited, as only the presence or absence of PD-L1 is assessed. However, the development of next generation predictive biomarkers, which assesses density and location of tumour infiltrating lymphocytes, could be more beneficial for this heterogenous cancer. In this review we discuss the use of immune checkpoint inhibitors in ovarian cancer, with a focus on high-grade serous disease, and delve into what the future may hold for immunotherapy in this cancer type.
Collapse
Affiliation(s)
- A.E. Connor
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, University College Dublin, Dublin, Ireland
| | - P.M. Lyons
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - A.M. Kilgallon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - J.C. Simpson
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, University College Dublin, Dublin, Ireland
| | - A.S. Perry
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - J. Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Gao W, Yuan H, Yin S, Deng R, Ji Z. Identification of three subtypes of ovarian cancer and construction of prognostic models based on immune-related genes. J Ovarian Res 2024; 17:208. [PMID: 39434163 PMCID: PMC11492668 DOI: 10.1186/s13048-024-01526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Immunotherapy has revolutionized the treatment of ovarian cancer (OC), but different immune microenvironments often constrain the efficacy of immunotherapeutic interventions. Therefore, there is an imperative to delineate novel immune subtypes for development of efficacious immunotherapeutic strategies. METHODS The immune subtypes of OC were identified by consensus cluster analysis. The differences in clinical features, genetic mutations, mRNA stemness (mRNAsi) and immune microenvironments were analyzed among subtypes. Subsequently, prognostic risk models were constructed based on differentially expressed genes (DEGs) of the immune subtypes using weighted correlation network analysis. RESULTS OC patients were classified into three immune subtypes with distinct survival rates and clinical features. Different subtypes exhibited varying tumor mutation burdens, homologous recombination deficiencies, and mRNAsi levels. Significant differences were observed among immune subtypes in terms of immune checkpoint expression and immunogenic cell death. Prognostic risk models were validated as independent prognostic factors demonstrated great predictive performance for survival of OC patients. CONCLUSION In this study, three distinct immune subtypes were identified based on gene sets related to vaccine response, with the C2 subtype exhibiting significantly worse prognosis. While no statistically significant differences in tumor mutation burden (TMB) were observed across the three subtypes, the homologous recombination deficiency (HRD) score and mRNA stemness index (mRNAsi) were notably elevated in the C2 group compared to the others. Immune infiltration analysis indicated that the C2 subtype may have an increased presence of regulatory T (Treg) cells, potentially contributing to a more favorable response to combination therapies involving PARP inhibitors and immunotherapy. These findings offer a precision medicine approach for tailoring immunotherapy in ovarian cancer patients. Moreover, the C3 subtype demonstrated significantly lower expression levels of immune checkpoint genes, a pattern validated by independent datasets, and associated with a better prognosis. Further investigation revealed that the immune-related gene FCRL5 correlates with ovarian cancer prognosis, with in vitro experiments showing that it influences the proliferation and migration of the ovarian cancer cell line SKOV3.
Collapse
Affiliation(s)
- Wen Gao
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital,Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hui Yuan
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd, Hangzhou City, Zhejiang, 310022, China
| | - Sheng Yin
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Renfang Deng
- Department of Oncology, The Second Hospital of Zhuzhou City, Zhuzhou, 412000, China.
| | - Zhaodong Ji
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
9
|
Peng Z, Li H, Gao Y, Sun L, Jiang J, Xia B, Huang Y, Zhang Y, Xia Y, Zhang Y, Shen Y, Huang B, Nie J, Chen X, Liu X, Feng C, Li Z, Zhang W, Tao K, Zhang Q, Duan S, Chen Y, Chen Y, Wang W, Zheng H, Lu Y, Liu Y, Wang L, Qi W, He Y, Tian Y, Li G, Ma D, Gao Q. Sintilimab combined with bevacizumab in relapsed or persistent ovarian clear cell carcinoma (INOVA): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2024; 25:1288-1297. [PMID: 39276785 DOI: 10.1016/s1470-2045(24)00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Ovarian clear cell carcinoma rarely responds to second-line chemotherapy, the recommended treatment for relapsed epithelial ovarian cancer. Here, we report the activity and safety of sintilimab in combination with bevacizumab in patients with relapsed or persistent ovarian clear cell carcinoma. METHODS In the prospective, multicentre, single-arm, phase 2 INOVA trial, patients aged 18-75 years with histologically confirmed relapsed or persistent ovarian clear cell carcinoma were enrolled from eight tertiary hospitals in China. Eligible patients had an Eastern Cooperative Oncology Group performance status score of 0-2 and previous exposure to at least one cycle of platinum-containing chemotherapy. Enrolled patients received sintilimab (200 mg) and bevacizumab (15 mg/kg) intravenously every 3 weeks until disease progression. The primary endpoint was objective response rate assessed by independent central review based on Response Evaluation Criteria in Solid Tumours version 1.1. Eligible enrolled patients who received at least one cycle of treatment and had at least one tumour response assessment following the baseline assessment per protocol were included in the activity analysis. Patients who received at least one dose of study drug were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT04735861) and is ongoing. FINDINGS Between April 8, 2021, and July 3, 2023, 51 patients were screened and 41 patients received at least one dose of sintilimab in combination with bevacizumab. Response evaluation was completed in 37 patients. Objective responses were observed in 15 patients (objective response rate 40·5%; 95% CI 24·8-57·9), of which five (14%) were complete responses and ten (27%) were partial responses. At data cutoff (Jan 29, 2024), the median follow-up was 16·9 months (IQR 7·5-23·4). Three (7%) patients developed grade 3 treatment-related adverse events including one patient with proteinuria, one patient with myocarditis, and one patient with rash. No treatment-related adverse events of worse than grade 3 severity were recorded. Treatment-related serious adverse events occurred in two (5%) patients including one patient with immune-related myocarditis and another with hypertension and renal dysfunction. No treatment-related deaths occurred. INTERPRETATION Sintilimab in combination with bevacizumab showed promising anti-tumour activity and manageable safety in patients with relapsed or persistent ovarian clear cell carcinoma. Larger, randomised trials are warranted to compare this low-toxicity, chemotherapy-free combinatorial regimen with standard chemotherapy. FUNDING National Key Technology Research and Development Program of China, National Natural Science Foundation of China, Beijing Xisike Clinical Oncology Research Foundation, and Innovent Biologics. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
MESH Headings
- Humans
- Bevacizumab/administration & dosage
- Bevacizumab/adverse effects
- Female
- Middle Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Adult
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Aged
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Prospective Studies
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/pathology
- Young Adult
- Carcinoma, Ovarian Epithelial/drug therapy
- Adolescent
- China
Collapse
Affiliation(s)
- Zikun Peng
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunong Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gynaecological Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Li Sun
- Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jie Jiang
- Department of Obstetrics and Gynaecology, Qilu Hospital, Shandong University, Jinan, China
| | - Bairong Xia
- Department of Gynaecology Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Huang
- Department of Gynaecological Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Gynaecology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Xia
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Zhang
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyang Shen
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Huang
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayu Nie
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrong Chen
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Liu
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangjia Tao
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuxue Zhang
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shican Duan
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaheng Chen
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yeshan Chen
- Department of Gynaecological Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gynaecological Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hong Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gynaecological Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yudong Lu
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Limei Wang
- Department of Obstetrics and Gynaecology, Qilu Hospital, Shandong University, Jinan, China
| | - Wencai Qi
- Department of Gynaecology Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang He
- Department of Gynaecological Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Tian
- Department of Gynaecology, Xiangya Hospital, Central South University, Changsha, China
| | - Guiling Li
- Department of Gynaecological Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynaecology, National Clinical Research Centre for Obstetrics and Gynaecology, Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumour Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Chen SF, Wang LY, Lin YS, Chen CY. Novel protein-based prognostic signature linked to immunotherapeutic efficiency in ovarian cancer. J Ovarian Res 2024; 17:190. [PMID: 39342345 PMCID: PMC11437962 DOI: 10.1186/s13048-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Personalized medicine remains an unmet need in ovarian cancer due to its heterogeneous nature and complex immune microenvironments, which has gained increasing attention in the era of immunotherapy. A key obstacle is the lack of reliable biomarkers to identify patients who would benefit significantly from the therapy. While conventional clinicopathological factors have exhibited limited efficacy as prognostic indicators in ovarian cancer, multi-omics profiling presents a promising avenue for comprehending the interplay between the tumor and immune components. Here we aimed to leverage the individual proteomic and transcriptomic profiles of ovarian cancer patients to develop an effective protein-based signature capable of prognostication and distinguishing responses to immunotherapy. METHODS The workflow was demonstrated based on the Reverse Phase Protein Array (RPPA) and RNA-sequencing profiles of ovarian cancer patients from The Cancer Genome Atlas (TCGA). The algorithm began by clustering patients using immune-related gene sets, which allowed us to identify immune-related proteins of interest. Next, a multi-stage process involving LASSO and Cox regression was employed to distill a prognostic signature encompassing five immune-related proteins. Based on the signature, we subsequently calculated the risk score for each patient and evaluated its prognostic performance by comparing this model with conventional clinicopathological characteristics. RESULTS We developed and validated a protein-based prognostic signature in a cohort of 377 ovarian cancer patients. The risk signature outperformed conventional clinicopathological factors, such as age, grade, stage, microsatellite instability (MSI), and homologous recombination deficiency (HRD) status, in terms of prognoses. Patients in the high-risk group had significantly unfavorable overall survival (p < 0.001). Moreover, our signature effectively stratified patients into subgroups with distinct immune landscapes. The high-risk group exhibited higher levels of CD8 T-cell infiltration and a potentially greater proportion of immunotherapy responders. The co-activation of the TGF-β pathway and cancer-associated fibroblasts could impair the ability of cytotoxic T cells to eliminate cancer cells, leading to poor outcomes in the high-risk group. CONCLUSIONS The protein-based signature not only aids in evaluating the prognosis but also provides valuable insights into the tumor immune microenvironments in ovarian cancer. Together our findings highlight the importance of a thorough understanding of the immunosuppressive tumor microenvironment in ovarian cancer to guide the development of more effective immunotherapies.
Collapse
Affiliation(s)
- Shuo-Fu Chen
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Liang-Yun Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yi-Sian Lin
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
11
|
Zhao J, Wang Z, Tian Y, Ning J, Ye H. T cell exhaustion and senescence for ovarian cancer immunotherapy. Semin Cancer Biol 2024; 104-105:1-15. [PMID: 39032717 DOI: 10.1016/j.semcancer.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ovarian cancer is a common gynecological malignancy, and its treatment remains challenging. Although ovarian cancer may respond to immunotherapy because of endogenous immunity at the molecular or T cell level, immunotherapy has so far not had the desired effect. The functional status of preexisting T cells is an indispensable determinant of powerful antitumor immunity and immunotherapy. T cell exhaustion and senescence are two crucial states of T cell dysfunction, which share some overlapping phenotypic and functional features, but each status possesses unique molecular and developmental signatures. It has been widely accepted that exhaustion and senescence of T cells are important strategies for cancer cells to evade immunosurveillance and maintain the immunosuppressive microenvironment. Herein, this review summarizes the phenotypic and functional features of exhaust and senescent T cells, and describes the key drivers of the two T cell dysfunctional states in the tumor microenvironment and their functional roles in ovarian cancer. Furthermore, we present a summary of the molecular machinery and signaling pathways governing T cell exhaustion and senescence. Possible strategies that can prevent and/or reverse T cell dysfunction are also explored. An in-depth understanding of exhausted and senescent T cells will provide novel strategies to enhance immunotherapy of ovarian cancer through redirecting tumor-specific T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Gynecology Surgery 3, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yingying Tian
- Department of Oncology Radiotherapy 2, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Ning
- Department of General Internal Medicine (VIP Ward), Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Huinan Ye
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
12
|
Fröhlich A, Welter J, Witzel I, Voppichler J, Fehr MK. Does an Autoimmune Disorder Following Ovarian Cancer Diagnosis Affect Prognosis? Curr Oncol 2024; 31:4613-4623. [PMID: 39195327 DOI: 10.3390/curroncol31080344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
We investigated whether developing an autoimmune disorder (AID) following a high-grade epithelial ovarian cancer diagnosis improves overall survival. This retrospective study included data from women treated for high-grade serous, endometrioid, or transitional cell ovarian, fallopian tube, or peritoneal cancer FIGO stage III or IV at a Swiss cantonal gynecological cancer center (2008-2023). We used Kaplan-Meier estimates and the Cox proportional hazards model using time-varying covariates for the survival function estimation. In all, 9 of 128 patients developed an AID following a cancer diagnosis. The median time from cancer diagnosis to AID was 2 years (IQR 2-5). These women survived for a median of 3031 days (IQR 1765-3963) versus 972 days (IQR 568-1819) for those who did not develop an AID (p = 0.001). The median overall survival of nine women with a pre-existing AID was 1093 days (IQR 716-1705), similar to those who never had an AID. The multivariate analyses showed older age (p = 0.003, HR 1.04, 95% CI 1.013-1.064) was associated with a poorer prognosis, and developing an AID after a cancer diagnosis was associated with longer survival (p = 0.033, HR 0.113, 95% CI 0.015-0.837). Clinical manifestations of autoimmune disorders following ovarian cancer diagnoses were associated with better overall survival (8 versus 2.7 years), indicating an overactive immune response may improve cancer control.
Collapse
Affiliation(s)
- Anaïs Fröhlich
- Department of Obstetrics and Gynecology, Spital Thurgau AG, 8501 Frauenfeld, Switzerland
| | - JoEllen Welter
- Department of Obstetrics and Gynecology, Spital Thurgau AG, 8501 Frauenfeld, Switzerland
| | - Isabell Witzel
- Department of Gynecology, University Hospital Zürich, University of Zurich, 8091 Zurich, Switzerland
| | - Julia Voppichler
- Department of Obstetrics and Gynecology, Spital Thurgau AG, 8501 Frauenfeld, Switzerland
| | - Mathias K Fehr
- Department of Obstetrics and Gynecology, Spital Thurgau AG, 8501 Frauenfeld, Switzerland
| |
Collapse
|
13
|
Zhou Y, Wei R, Wang L, Li J, Wang W, Jiang G, Tan S, Li F, Wang X, Ma X, Xi L. Tumor targeting peptide TMTP1 modified Antigen capture Nano-vaccine combined with chemotherapy and PD-L1 blockade effectively inhibits growth of ovarian cancer. J Nanobiotechnology 2024; 22:483. [PMID: 39138475 PMCID: PMC11320875 DOI: 10.1186/s12951-024-02744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
The mortality of ovarian cancer (OC) has long been the highest among gynecological malignancies. Although OC is considered to be an immunogenic tumor, the effect of immunotherapy is not satisfactory. The immunosuppressive microenvironment is one reason for this, and the absence of recognized effective antigens for vaccines is another. Chemotherapy, as one of the most commonly used treatment for OC, can produce chemotherapy-associated antigens (CAAs) during treatment and show the effect of in situ vaccine. Herein, we designed an antigen capture nano-vaccine NP-TP1@M-M with tumor targeting peptide TMTP1 and dendritic cell (DC) receptor mannose assembled on the surface and adjuvant monophosphoryl lipid A (MPLA) encapsulated in the core of poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles. PLGA itself possessed the ability of antigen capture. TMTP1 was a tumor-homing peptide screened by our research team, which held extensive and excellent tumor targeting ability. After these modifications, NP-TP1@M-M could capture and enrich more tumor-specific antigens after chemotherapy, stimulate DC maturation, activate the adaptive immunity and combined with immune checkpoint blockade to maximize the release of the body's immune potential, providing an eutherapeutic strategy for the treatment of OC.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiying Jiang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueqian Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling Xi
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Ray-Coquard IL, Savoye AM, Schiffler C, Mouret-Reynier MA, Derbel O, Kalbacher E, LeHeurteur M, Martinez A, Cornila C, Martinez M, Bengrine Lefevre L, Priou F, Cloarec N, Venat L, Selle F, Berton D, Collard O, Coquan E, Le Saux O, Treilleux I, Gouerant S, Angelergues A, Joly F, Tredan O. Neoadjuvant and adjuvant pembrolizumab in advanced high-grade serous carcinoma: the randomized phase II NeoPembrOV clinical trial. Nat Commun 2024; 15:5931. [PMID: 39013870 PMCID: PMC11252284 DOI: 10.1038/s41467-024-46999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/18/2024] [Indexed: 07/18/2024] Open
Abstract
This open-label, non-comparative, 2:1 randomized, phase II trial (NCT03275506) in women with stage IIIC/IV high-grade serous carcinoma (HGSC) for whom upfront complete resection was unachievable assessed whether adding pembrolizumab (200 mg every 3 weeks) to standard-of-care carboplatin plus paclitaxel yielded a complete resection rate (CRR) of at least 50%. Postoperatively patients continued assigned treatment for a maximum of 2 years. Postoperative bevacizumab was optional. The primary endpoint was independently assessed CRR at interval debulking surgery. Secondary endpoints were Completeness of Cytoreduction Index (CCI) and peritoneal cancer index (PCI) scores, objective and best response rates, progression-free survival, overall survival, safety, postoperative morbidity, and pathological complete response. The CRR in 61 pembrolizumab-treated patients was 74% (one-sided 95% CI = 63%), exceeding the prespecified ≥50% threshold and meeting the primary objective. The CRR without pembrolizumab was 70% (one-sided 95% CI = 54%). In the remaining patients CCI scores were ≥3 in 27% of the standard-of-care group and 18% of the investigational group and CC1 in 3% of the investigational group. PCI score decreased by a mean of 9.6 in the standard-of-care group and 10.2 in the investigational group. Objective response rates were 60% and 72%, respectively, and best overall response rates were 83% and 90%, respectively. Progression-free survival was similar with the two regimens (median 20.8 versus 19.4 months in the standard-of-care versus investigational arms, respectively) but overall survival favored pembrolizumab-containing therapy (median 35.3 versus 49.8 months, respectively). The most common grade ≥3 adverse events with pembrolizumab-containing therapy were anemia during neoadjuvant therapy and infection/fever postoperatively. Pembrolizumab was discontinued prematurely because of adverse events in 23% of pembrolizumab-treated patients. Combining pembrolizumab with neoadjuvant chemotherapy is feasible for HGSC considered not completely resectable; observed activity in some subgroups justifies further evaluation to improve understanding of the role of immunotherapy in HGSC.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Female
- Middle Aged
- Aged
- Neoadjuvant Therapy/methods
- Carboplatin/therapeutic use
- Carboplatin/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Paclitaxel/therapeutic use
- Paclitaxel/administration & dosage
- Paclitaxel/adverse effects
- Chemotherapy, Adjuvant/methods
- Adult
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/surgery
- Ovarian Neoplasms/mortality
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/surgery
- Cystadenocarcinoma, Serous/mortality
- Progression-Free Survival
- Cytoreduction Surgical Procedures
- Neoplasm Staging
Collapse
Affiliation(s)
- Isabelle L Ray-Coquard
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO) and Centre Léon Bérard, University Claude Bernard, Lyon, France.
| | | | - Camille Schiffler
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO) and Centre Léon Bérard, University Claude Bernard, Lyon, France
| | | | - Olfa Derbel
- GINECO and Institut de Cancérologie, Hôpital Privé Jean Mermoz, Lyon, France
| | - Elsa Kalbacher
- GINECO and Centre Hospitalier Universitaire Jean Minjoz, Besançon, France
| | - Marianne LeHeurteur
- GINECO and Medical Oncology Department, Centre Henri-Becquerel, Rouen, France
| | - Alejandra Martinez
- GINECO and Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse (IUCT) Oncopole, Toulouse, France
| | - Corina Cornila
- GINECO and Centre Hospitalier Régional d'Orléans, Orleans, France
| | | | | | - Frank Priou
- GINECO and Centre Hospitalier Départemental Vendée, La Roche-Sur-Yon, France
| | - Nicolas Cloarec
- GINECO and Centre Hospitalier Henri Duffaut d'Avignon, Avignon, France
| | - Laurence Venat
- GINECO and Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | - Frédéric Selle
- GINECO and Groupe Hospitalier Diaconesses Croix Saint-Simon, Paris, France
| | - Dominique Berton
- GINECO and Institut de Cancérologie de l'Ouest, Centre René Gauducheau, Saint-Herblain, France
| | - Olivier Collard
- GINECO and Institut de Cancérologie de la Loire, Saint-Priest-en-Jarez, France
- Center of Medical Oncology, Hôpital Privé de la Loire, Saint-Etienne, France
| | - Elodie Coquan
- GINECO and Department of Medical Oncology, Centre François Baclesse, University Caen Normandie, Caen, France
| | - Olivia Le Saux
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO) and Centre Léon Bérard, University Claude Bernard, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR INSERM 1052, Centre Léon Bérard, CNRS 5286, Lyon, France
| | - Isabelle Treilleux
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO) and Centre Léon Bérard, University Claude Bernard, Lyon, France
| | - Sophie Gouerant
- GINECO and Medical Oncology Department, Centre Henri-Becquerel, Rouen, France
| | | | - Florence Joly
- GINECO and Department of Medical Oncology, Centre François Baclesse, University Caen Normandie, Caen, France
| | - Olivier Tredan
- GINECO and Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
15
|
González-Martín A, Chung HC, Saada-Bouzid E, Yanez E, Senellart H, Cassier PA, Basu B, Corr BR, Girda E, Dutcus C, Okpara CE, Ghori R, Jin F, Groisberg R, Lwin Z. Lenvatinib plus pembrolizumab for patients with previously treated advanced ovarian cancer: Results from the phase 2 multicohort LEAP-005 study. Gynecol Oncol 2024; 186:182-190. [PMID: 38718741 DOI: 10.1016/j.ygyno.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVES The phase 2, multicohort, open-label LEAP-005 study evaluated lenvatinib plus pembrolizumab in patients with previously treated advanced solid tumors. We report outcomes from the ovarian cancer cohort. METHODS Eligible patients had metastatic/unresectable ovarian cancer and had received 3 previous lines of therapy. Patients received lenvatinib 20 mg/day plus pembrolizumab 200 mg every 3 weeks. Treatment continued until progression, unacceptable toxicity, or (for pembrolizumab) completion of 35 cycles. Primary endpoints were objective response rate (ORR) per RECIST version 1.1 and safety. Secondary endpoints included duration of response (DOR), progression-free survival (PFS), and overall survival (OS). RESULTS Thirty-one patients were enrolled. 39% had high grade serous ovarian cancer, 23% were platinum-sensitive, 55% were platinum-resistant, 23% were platinum-refractory, and 84% had tumors that had a PD-L1 combined positive (CPS) score ≥1. ORR (95% CI) was 26% (12%-45%) by investigator assessment and 35% (19%-55%) by blinded independent central review (BICR). Per BICR, median DOR was 9.2 (1.5+ to 37.8+) months. ORRs (95% CI) by BICR were 35% (9/26 patients; 17%-56%) for PD-L1 CPS ≥ 1 disease and 50% (2/4 patients; 7%-93%) for PD-L1 CPS < 1 disease. Median (95% CI) PFS by BICR and OS were 6.2 (4.0-8.5) months and 21.3 (11.7-32.3) months, respectively. Treatment-related AEs occurred in 94% of patients (grade 3-4, 77%). One patient died from treatment-related hypovolemic shock. CONCLUSIONS Lenvatinib plus pembrolizumab demonstrated antitumor activity as fourth line therapy in patients with advanced ovarian cancer, and no unanticipated safety signals were identified. Responses were observed regardless of PD-L1 status.
Collapse
Affiliation(s)
- Antonio González-Martín
- Department of Medical Oncology, Cancer Center Clinica Universidad de Navarra, Madrid, Spain.
| | - Hyun Cheol Chung
- Department of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Esma Saada-Bouzid
- Department of Medical Oncology, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.
| | - Eduardo Yanez
- Oncology-Hematology Unit, University of Frontera, Araucanía, Chile.
| | | | | | - Bristi Basu
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
| | | | - Eugenia Girda
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | | | | | | | - Fan Jin
- Merck & Co., Inc., Rahway, NJ, USA.
| | | | - Zarnie Lwin
- Royal Brisbane and Women's Hospital and University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
16
|
Satora M, Kułak K, Zaremba B, Grunwald A, Świechowska-Starek P, Tarkowski R. New hopes and promises in the treatment of ovarian cancer focusing on targeted treatment-a narrative review. Front Pharmacol 2024; 15:1416555. [PMID: 38948462 PMCID: PMC11212463 DOI: 10.3389/fphar.2024.1416555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Unfortunately, ovarian cancer is still diagnosed most often only in an advanced stage and is also the most lethal gynecological cancer. Another problem is the fact that treated patients have a high risk of disease recurrence. Moreover, ovarian cancer is very diverse in terms of molecular, histological features and mutations. Many patients may also develop platinum resistance, resulting in poor response to subsequent lines of treatment. To improve the prognosis of patients with ovarian cancer, it is expected to make better existing and implement new, promising treatment methods. Targeted therapies seem very promising. Currently, bevacizumab - a VEGF inhibitor and therapy with olaparib - a polyADP-ribose polymerase inhibitor are approved. Other methods worth considering in the future include: folate receptor α, immune checkpoints or other immunotherapy methods. To improve the treatment of ovarian cancer, it is also important to ameliorate the determination of molecular features to describe and understand which group of patients will benefit most from a given treatment method. This is important because a larger group of patients treated for ovarian cancer can have a greater chance of surviving longer without recurrence.
Collapse
Affiliation(s)
- Małgorzata Satora
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Kułak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| | - Bartłomiej Zaremba
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Grunwald
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | | | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
17
|
Park K, Kwon JY, Song JM, Pyeon SY, Lee SH, Chung YS, Lee JM. Prognostic impact of suspicious extraabdominal lymph nodes on patient survival in advanced ovarian cancer. PLoS One 2024; 19:e0299205. [PMID: 38805507 PMCID: PMC11132458 DOI: 10.1371/journal.pone.0299205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/07/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE To evaluate the clinical impact of suspicious extra-abdominal lymph nodes (EALNs) identified preoperatively on CT and/or PET/CT images in advanced ovarian cancer. METHODS A retrospective study was conducted with 122 patients diagnosed with stage III or IV ovarian cancer with preoperative CT and/or PET/CT images from 2006 to 2022. Imaging studies were evaluated for the presence, size and location of suspicious EALNs. Suspicious lymph node enlargement was defined by a cut-off ≥5mm short-axis dimension on CT and/or lesions with maximum standardized uptake values of ≥2.5 on PET/CT. This study only included patients who did not have their EALNs surgically removed. RESULTS A total 109 patients met the inclusion criteria; 36 (33%) had suspicious EALNs and were categorized as "node-positive". The median overall survival (OS) was 45.73 months for the "node-positive" and 46.50 months for the "node-negative" patients (HR 1.17, 95% CI 0.68-2.00, p = 0.579). In multivariate analysis, after adjusting for other variables selected by process of backward elimination using a significance level of p<0.20, suspicious EALNs still showed no clinical significance on OS (aHR 1.20, 95% CI 0.67-2.13, p = 0.537) as well as progression-free survival (aHR 1.43, 95% CI 0.85-2.41, p = 0.174). Old age (aHR 2.23, 95% CI 1.28-3.89, p = 0.005) and platinum resistance (aHR 1.92, 95% CI 1.10-3.36, p = 0.023) affects adversely on OS. CONCLUSION Suspicious EALNs did not worsen the prognosis of patients with advanced ovarian cancer. However, its impact on survival is not yet clarified. Further investigation is required to assess the clinical significance of suspicious EALNs on preoperative imaging studies.
Collapse
Affiliation(s)
- Kena Park
- Department of Obstetrics and Gynecology, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
- Department of Medicine, Graduate School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji Young Kwon
- Department of Obstetrics and Gynecology, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
- Department of Medicine, Graduate School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jeong Min Song
- Department of Obstetrics and Gynecology, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
- Department of Medicine, Graduate School of Medicine, Kyung Hee University, Seoul, Korea
| | - Seung Yeon Pyeon
- Department of Obstetrics and Gynecology, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Seon Hwa Lee
- Research Institute of Clinical Medicine, Medical Big Data Research Center, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Young Shin Chung
- Department of Obstetrics and Gynecology, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Jong-Min Lee
- Department of Obstetrics and Gynecology, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| |
Collapse
|
18
|
Santoro A, Angelico G, Inzani F, Arciuolo D, d'Amati A, Addante F, Travaglino A, Scaglione G, D'Alessandris N, Valente M, Tinnirello G, Raffone A, Narducci N, Piermattei A, Cianfrini F, Bragantini E, Zannoni GF. The emerging and challenging role of PD-L1 in patients with gynecological cancers: An updating review with clinico-pathological considerations. Gynecol Oncol 2024; 184:57-66. [PMID: 38295614 DOI: 10.1016/j.ygyno.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
Over recent years, there has been significant progress in the development of immunotherapeutic molecules designed to block the PD-1/PD-L1 axis. These molecules have demonstrated their ability to enhance the immune response by prompting T cells to identify and suppress neoplastic cells. PD-L1 is a type 1 transmembrane protein ligand expressed on T lymphocytes, B lymphocytes, and antigen-presenting cells and is considered a key inhibitory checkpoint involved in cancer immune regulation. PD-L1 immunohistochemical expression in gynecological malignancies is extremely variable based on tumor stage and molecular subtypes. As a result, a class of monoclonal antibodies targeting the PD-1 receptor and PD-L1, known as immune checkpoint inhibitors, has found successful application in clinical settings. In clinical practice, the standard method for identifying suitable candidates for immune checkpoint inhibitor therapy involves immunohistochemical assessment of PD-L1 expression in neoplastic tissues. The most commonly used PD-L1 assays in clinical trials are SP142, 28-8, 22C3, and SP263, each of which has been rigorously validated on specific platforms. Gynecologic cancers encompass a wide spectrum of malignancies originating from the ovaries, uterus, cervix, and vulva. These neoplasms have shown variable response to immunotherapy which appears to be influenced by genetic and protein expression profiles, including factors such as mismatch repair status, tumor mutational burden, and checkpoint ligand expression. In the present paper, an extensive review of PD-L1 expression in various gynecologic cancer types is discussed, providing a guide for their pathological assessment and reporting.
Collapse
Affiliation(s)
- Angela Santoro
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy; Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Frediano Inzani
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Italy
| | - Damiano Arciuolo
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Antonio d'Amati
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Francesca Addante
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Antonio Travaglino
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Giulia Scaglione
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Nicoletta D'Alessandris
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Michele Valente
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Antonio Raffone
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Nadine Narducci
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Alessia Piermattei
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Federica Cianfrini
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Emma Bragantini
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | - Gian Franco Zannoni
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy; Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Roma, Italy.
| |
Collapse
|
19
|
Knisely A, Hinchcliff E, Fellman B, Mosley A, Lito K, Hull S, Westin SN, Sood AK, Schmeler KM, Taylor JS, Huang SY, Sheth RA, Lu KH, Jazaeri AA. Phase 1b study of intraperitoneal ipilimumab and nivolumab in patients with recurrent gynecologic malignancies with peritoneal carcinomatosis. MED 2024; 5:311-320.e3. [PMID: 38471508 PMCID: PMC11015975 DOI: 10.1016/j.medj.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Intravenous immune checkpoint blockade (ICB) has shown poor response rates in recurrent gynecologic malignancies. Intraperitoneal (i.p.) ICB may result in enhanced T cell activation and anti-tumor immunity. METHODS In this phase 1b study, registered at Clinical. TRIALS gov (NCT03508570), initial cohorts received i.p. nivolumab monotherapy, and subsequent cohorts received combination i.p. nivolumab every 2 weeks and i.p. ipilimumab every 6 weeks, guided by a Bayesian design. The primary objective was determination of the recommended phase 2 dose (RP2D) of the combination. Secondary outcomes included toxicity, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). FINDINGS The trial enrolled 23 patients: 18 with ovarian cancer, 2 with uterine cancer, and 3 with cervical cancer. Study evaluable patients (n = 16) received a median of 2 prior lines of therapy (range: 1-8). Partial response was observed in 2 patients (12.5%; 1 ovarian, 1 uterine), and complete response was observed in 1 patient (6.3%) with cervical cancer, for an ORR of 18.8% (95% confidence interval: 4.0%-45.6%). The median duration of response was 14.8 months (range: 4.1-20.8), with one complete response ongoing. Median PFS and OS were 2.7 months and not reached, respectively. Grade 3 or higher immune-related adverse events occurred in 2 (8.7%) patients. CONCLUSIONS i.p. administration of dual ICB is safe and demonstrated durable responses in a subset of patients with advanced gynecologic malignancy. The RP2D is 3 mg/kg i.p. nivolumab every 2 weeks plus 1 mg/kg ipilimumab every 6 weeks. FUNDING This work was funded by Bristol Myers Squibb (CA209-9C7), an MD Anderson Cancer Center Support Grant (CA016672), the Ovarian Cancer Moon Shots Program, the Emerson Collective Fund, and a T32 training grant (CA101642).
Collapse
Affiliation(s)
- Anne Knisely
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Hinchcliff
- Division of Gynecologic Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern Medicine, Chicago, IL, USA
| | - Bryan Fellman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ann Mosley
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn Lito
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Hull
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jolyn S Taylor
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Y Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Nie H, Saini P, Miyamoto T, Liao L, Zielinski RJ, Liu H, Zhou W, Wang C, Murphy B, Towers M, Yang T, Qi Y, Kannan T, Kossenkov A, Tateno H, Claiborne DT, Zhang N, Abdel-Mohsen M, Zhang R. Targeting branched N-glycans and fucosylation sensitizes ovarian tumors to immune checkpoint blockade. Nat Commun 2024; 15:2853. [PMID: 38565883 PMCID: PMC10987604 DOI: 10.1038/s41467-024-47069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Aberrant glycosylation is a crucial strategy employed by cancer cells to evade cellular immunity. However, it's unclear whether homologous recombination (HR) status-dependent glycosylation can be therapeutically explored. Here, we show that the inhibition of branched N-glycans sensitizes HR-proficient, but not HR-deficient, epithelial ovarian cancers (EOCs) to immune checkpoint blockade (ICB). In contrast to fucosylation whose inhibition sensitizes EOCs to anti-PD-L1 immunotherapy regardless of HR-status, we observe an enrichment of branched N-glycans on HR-proficient compared to HR-deficient EOCs. Mechanistically, BRCA1/2 transcriptionally promotes the expression of MGAT5, the enzyme responsible for catalyzing branched N-glycans. The branched N-glycans on HR-proficient tumors augment their resistance to anti-PD-L1 by enhancing its binding with PD-1 on CD8+ T cells. In orthotopic, syngeneic EOC models in female mice, inhibiting branched N-glycans using 2-Deoxy-D-glucose sensitizes HR-proficient, but not HR-deficient EOCs, to anti-PD-L1. These findings indicate branched N-glycans as promising therapeutic targets whose inhibition sensitizes HR-proficient EOCs to ICB by overcoming immune evasion.
Collapse
Affiliation(s)
- Hao Nie
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Pratima Saini
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Taito Miyamoto
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Liping Liao
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Rafal J Zielinski
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Chen Wang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Brennah Murphy
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Martina Towers
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Tyler Yang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yuan Qi
- Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Toshitha Kannan
- Bioinformatics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Daniel T Claiborne
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nan Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| | - Rugang Zhang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Kim SI, Joung JG, Kim YN, Park J, Park E, Kim JW, Lee S, Lee JB, Kim S, Choi CH, Kim HS, Lim J, Chung J, Kim BG, Lee JY. Durvalumab with or without tremelimumab plus chemotherapy in HRR non-mutated, platinum-resistant ovarian cancer (KGOG 3045): A phase II umbrella trial. Gynecol Oncol 2024; 182:7-14. [PMID: 38246047 DOI: 10.1016/j.ygyno.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
AIM We investigated the efficacy and safety of durvalumab (D) with or without tremelimumab (T) in addition to single-agent chemotherapy (CT) in patients with platinum-resistant recurrent ovarian cancer (PROC) lacking homologous recombination repair (HRR) gene mutations. PATIENTS AND METHODS KGOG 3045 was an open-label, investigator-initiated phase II umbrella trial. Patients with PROC without HRR gene mutations who had received ≥2 prior lines of therapy were enrolled. Patients with high PD-L1 expression (TPS ≥25%) were assigned to arm A (D + CT), whereas those with low PD-L1 expression were assigned to arm B (D + T75 + CT). After completing arm B recruitment, patients were sequentially assigned to arms C (D + T300 + CT) and D (D + CT). RESULTS Overall, 58 patients were enrolled (5, 18, 17, and 18 patients in arms A, B, C, and D, respectively). The objective response rates were 20.0, 33.3, 29.4, and 22.2%, respectively. Grade 3-4 treatment-related adverse events were observed in 20.0, 66.7, 47.1, and 66.7 of patients, respectively, but were effectively managed. Multivariable analysis demonstrated that adding T to D + CT improved progression-free survival (adjusted HR, 0.435; 95% CI, 0.229-0.824; P = 0.011). Favorable response to chemoimmunotherapy was associated with MUC16 mutation (P = 0.0214), high EPCAM expression (P = 0.020), high matrix remodeling gene signature score (P = 0.017), and low FOXP3 expression (P = 0.047). Patients showing favorable responses to D + T + CT exhibited significantly higher EPCAM expression levels (P = 0.008) and matrix remodeling gene signature scores (P = 0.031) than those receiving D + CT. CONCLUSIONS Dual immunotherapy with chemotherapy showed acceptable response rates and tolerable safety in HRR non-mutated PROC, warranting continued clinical investigation.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Je-Gun Joung
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Bok Lee
- Department of Clinical Epidemiology & Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinyeong Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | | | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Uyar D, Michener CM, Bishop E, Hopp E, Simpson P, Zhang L, Rader JS, Rose PG, Mahdi HS, Debernardo R, Christian Q, Bradley W. Carboplatin, paclitaxel, and pembrolizumab followed by pembrolizumab maintenance for primary treatment of incompletely resected epithelial ovarian cancer. Front Oncol 2024; 14:1291090. [PMID: 38410102 PMCID: PMC10894939 DOI: 10.3389/fonc.2024.1291090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024] Open
Abstract
Objective Incompletely resected epithelial ovarian cancer represents a poor prognostic subset of patients. Novel treatment strategies are needed to improve outcomes for this population. We evaluated a treatment strategy combining platinum-based chemotherapy with pembrolizumab followed by pembrolizumab maintenance therapy in the first-line treatment after incomplete resection of epithelial ovarian cancer patients. Methods This was a single-arm, non-randomized pilot study of carboplatin, taxane, and immune checkpoint inhibitor, pembrolizumab, followed by 12 months of maintenance pembrolizumab in patients with incompletely resected epithelial ovarian cancer (EOC). Results A total of 29 patients were enrolled and evaluated for efficacy and safety. The best response to therapy was complete response in 16 (55%) patients, partial response in 9 (31%) patients, and 3 (10%) patients with progression of disease. The median progression-free survival (PFS) was 13.2 months. Grade 3 and 4 toxicities occurred in 20% of patients. In all, 7 patients discontinued therapy due to adverse events. Quality-of-life scores remained high during therapy. Response to therapy did not correlate with PD-L1 tumor expression. Conclusions Combination platinum-taxane therapy with pembrolizumab did not increase median progression-free survival in this cohort of patients. Key message EOC is an immunogenic disease, but immune checkpoint inhibitor therapy has yet to impact outcomes. The current study utilized pembrolizumab in combination with standard chemotherapy followed by a maintenance treatment strategy in incompletely resected EOC. Progression-free survival was not extended in this poor prognostic group with combined chemotherapy and immunotherapy. Clinical trial registration https://clinicaltrials.gov/, identifier NCT 027766582.
Collapse
Affiliation(s)
- Denise Uyar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chad M. Michener
- Obstetrics and Gynecology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Erin Bishop
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elizabeth Hopp
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pippa Simpson
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Liyun Zhang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Janet S. Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter G. Rose
- Obstetrics and Gynecology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Haider S. Mahdi
- Obstetrics and Gynecology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Robert Debernardo
- Obstetrics and Gynecology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Qiana Christian
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - William Bradley
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
23
|
Luo X, Mo J, Zhang M, Huang W, Bao Y, Zou R, Yao L, Yuan L. CD47-a novel prognostic predicator in epithelial ovarian cancer and correlations with clinicopathological and gene mutation features. World J Surg Oncol 2024; 22:44. [PMID: 38317230 PMCID: PMC10845810 DOI: 10.1186/s12957-024-03308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is insensitive to immunotherapy due to its poor immunogenicity; thus, suitable biomarkers need to be identified for better prognostic stratification and individualized treatment. CD47 is a novel immunotherapy target; however, its impact on EOC prognosis is controversial and correlation with genetic features is unclear. The aim of this study was to investigate the prognostic significance of CD47 and its correlations with biological behaviors and genetic features of EOC. METHODS Immunohistochemistry (IHC) and next-generation sequencing (NGS) were performed to examine expressions of CD47, PD-L1, and genomic mutations in the tissue samples of 75 EOC patients. Various clinicopathologic and genomic features were then evaluated to determine their correlation with CD47 expression. Kaplan-Meier analysis and Cox regression analysis were used to identify independent prognostic factors. Risk score modeling was then established, and the predictive capacity of this model was further confirmed by nomogram analysis. RESULTS CD47 was mainly expressed in the tumor cell membrane and cytoplasm, and the rate of high CD47 expression was 63.7%. CD47 expression was associated with various clinicopathological factors, including FIGO stage, CA125 and HE4 value, presence of multidisciplinary surgeries, presence and volume of ascites, lymph-node metastasis, Ki-67 index and platinum-resistant, as well as genetic characteristics like BRCA mutation, HRD status, and TP53 mutation in EOC. Patients with high CD47 expression showed worse prognosis than the low-expression group. Cox regression analysis demonstrated that CA125, CD47, and BRCA mutation were independent factors for EOC prognosis. Patients were then categorized into high-risk and low-risk subgroups based on the risk score of the aforementioned independent factors, and the prognosis of the high-risk group was worse than those of the low-risk group. The nomogram showed adequate discrimination with a concordance index of 0.777 (95% CI, 0.732-0.822). The calibration curve showed good consistency. CONCLUSION CD47 correlated with various malignant biology and genetic characteristics of EOC and may play pivotal and multifaceted roles in the tumor microenvironment of EOC Finally, we constructed a reliable prediction model centered on CD47 and integrated CA125 and BRCA to better guide high-risk population management.
Collapse
Affiliation(s)
- Xukai Luo
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jiahang Mo
- Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Min Zhang
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Wu Huang
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yiting Bao
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Ruoyao Zou
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Liangqing Yao
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Lei Yuan
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
24
|
Knisely A, Ahmed J, Stephen B, Piha-Paul SA, Karp D, Zarifa A, Fu S, Hong DS, Rodon Ahnert J, Yap TA, Tsimberidou AM, Alshawa A, Dumbrava EE, Yang Y, Song J, Meric-Bernstam F, Jazaeri AA, Naing A. Phase 1/2 trial of avelumab combined with utomilumab (4-1BB agonist), PF-04518600 (OX40 agonist), or radiotherapy in patients with advanced gynecologic malignancies. Cancer 2024; 130:400-409. [PMID: 37864520 PMCID: PMC10841432 DOI: 10.1002/cncr.35063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Immune checkpoint blockade has shown mixed results in advanced/recurrent gynecologic malignancies. Efficacy may be improved through costimulation with OX40 and 4-1BB agonists. The authors sought to evaluate the safety and efficacy of avelumab combined with utomilumab (a 4-1BB agonist), PF-04518600 (an OX40 agonist), and radiotherapy in patients with recurrent gynecologic malignancies. METHODS The primary end point in this six-arm, phase 1/2 trial was safety of the combination regimens. Secondary end points included the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors and immune-related Response Evaluation Criteria in Solid Tumors, the disease control rate (DCR), the duration of response, progression-free survival, and overall survival. RESULTS Forty patients were included (35% with cervical cancer, 30% with endometrial cancer, and 35% with ovarian cancer). Most patients (n = 33; 83%) were enrolled in arms A-C (no radiation). Among 35 patients who were evaluable for efficacy, the ORR was 2.9%, and the DCR was 37.1%, with a median duration of stable disease of 5.4 months (interquartile range, 4.1-7.3 months). Patients with cervical cancer in arm A (avelumab and utomilumab; n = 9 evaluable patients) achieved an ORR of 11% and a DCR of 78%. The median progression-free survival was 2.1 months (95% CI, 1.8-3.5 months), and overall survival was 9.4 months (95% CI, 5.6-11.9 months). No dose-limiting toxicities or grade 3-5 immune-related adverse events were observed. CONCLUSIONS The findings from this trial highlight that, in heavily pretreated patients with gynecologic cancer, even multidrug regimens targeting multiple immunologic pathways, although safe, did not produce significant responses. A DCR of 78% in patients with cervical cancer who received avelumab and utomilumab indicates that further research on this combination in select patients may be warranted.
Collapse
Affiliation(s)
- Anne Knisely
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jibran Ahmed
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel Karp
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abdulrazzak Zarifa
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Sanghyun Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anas Alshawa
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yali Yang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Bao W, Li Z. Efficacy and safety of neoadjuvant chemotherapy containing anti-angiogenic drugs, immunotherapy, or PARP inhibitors for ovarian cancer. Crit Rev Oncol Hematol 2024; 194:104238. [PMID: 38128630 DOI: 10.1016/j.critrevonc.2023.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. The standard treatment involves chemotherapy with platinum-paclitaxel following cytoreductive surgery. For patients battling widespread and aggressive tumor spread, neoadjuvant chemotherapy (NACT) followed by interval debulking surgery emerges as an encouraging alternative. However, the effectiveness of this strategy is often limited by advanced-stage diagnosis and high likelihood of recurrence. The high mortality rate necessitates the exploration of targeted therapies. Present results signal promising efficacy and acceptable toxicities of anti-angiogenic drugs, immunotherapy, or PARP inhibitors used in chemotherapy. However, the potential integration of these drugs into NACT raises questions about response rates, surgical outcomes, and adverse events. This review delves into the findings from all published articles and ongoing studies, aiming to summarize the clinical use of anti-angiogenic drugs, immunotherapy, or PARP inhibitors in NACT, highlight the positive and negative aspects, and outline future perspectives.
Collapse
Affiliation(s)
- Wanying Bao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Nersesian S, Arseneau RJ, Mejia JP, Lee SN, Westhaver LP, Griffiths NW, Grantham SR, Meunier L, Communal L, Mukherjee A, Mes-Masson AM, Arnason T, Nelson BH, Boudreau JE. Improved overall survival in patients with high-grade serous ovarian cancer is associated with CD16a+ immunologic neighborhoods containing NK cells, T cells and macrophages. Front Immunol 2024; 14:1307873. [PMID: 38318505 PMCID: PMC10838965 DOI: 10.3389/fimmu.2023.1307873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
Background For patients with high grade serous carcinoma of the ovary (HGSC), survival rates have remained static for the last half century. Despite the presence of tumor mutations and infiltration of immune cells, existing immunotherapies have achieved little success against HGSC. These observations highlight a gap in the understanding of how the immune system functions and interacts within HGSC tumors. Methods We analyzed duplicate core samples from 939 patients with HGSC to understand patterns of immune cell infiltration, localization, and associations with clinical features. We used high-parameter immunohistochemical/Opal multiplex, digital pathology, computational biology, and multivariate analysis to identify immune cell subsets and their associations with HGSC tumors. Results We defined six patterns of cellular infiltration by spatially restricted unsupervised clustering of cell subsets. Each pattern was represented to some extent in most patient samples, but their specific distributions differed. Overall (OS) and progression-free survival (PFS) corresponded with higher infiltration of CD16a+ cells, and their co-localization with macrophages, T cells, NK cells, in one of six cellular neighborhoods that we defined with our spatial assessment. Conclusions Immune cell neighborhoods containing CD16a+ cells are associated with improved OS and PFS for patients with HGSC. Patterns of immunologic neighborhoods differentiate patient outcomes, and could inform future, more precise approaches to treatment.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Riley J. Arseneau
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jorge P. Mejia
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | | | | | - Liliane Meunier
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
| | - Laudine Communal
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
| | | | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Thomas Arnason
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology & Laboratory Medicine, QEII Health Sciences Centre, Nova Scotia Health (Central Zone), Halifax, NS, Canada
| | - Brad H. Nelson
- Deeley Research Centre, British Columbia Cancer Research Institute, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
27
|
Shao D, Zhou H, Yu H, Zhu X. CX3CR1 is a potential biomarker of immune microenvironment and prognosis in epithelial ovarian cancer. Medicine (Baltimore) 2024; 103:e36891. [PMID: 38241595 PMCID: PMC10798769 DOI: 10.1097/md.0000000000036891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
Immunotherapy is less efficient for epithelial ovarian cancer and lacks ideal biomarkers to select the best beneficiaries for immunotherapy. CX3CR1 as chemokine receptor mainly expressed on immune cell membranes, and combined with its unique ligand CX3CL1, mediates tissue chemotaxis and adhesion of immune cells. However, the immune functional and prognostic value of CX3CR1 in epithelial ovarian cancer has not been clarified. A comprehensive retrospective analysis was performed by using the online database to identify the underlying immunological mechanisms and prognostic value of CX3CR1. The Human Protein Atlas, gene expression profiling interactive analysis, and TISIDB (an integrated repository portal for tumor-immune system interactions) database showed that CX3CR1 expressed higher in epithelial ovarian cancer than that in normal ovarian tissue. Four hundred twenty-two cases from Gene Expression Profiling Interactive Analysis and 1656 cases from Kaplan-Meier plotter database showed higher expression of CX3CR1 (above median) was associated with unfavorable overall survival. TIMER, UALCAN, and TISIDB database were applied to validate CX3CR1 negative impact on overall survival. In addition, correlation analysis showed that the expression level of CX3CR1 was positive association with infiltrating levels of B cells (R = 0.31, P = 3.10e-12), CD8+ T cells (R = 0.26, P = 7.93e-09), CD4+ T cells (R = 0.11, P = 1.41e-02), macrophages (R = 0.32, P = 4.29e-13), dendritic cells (R = 0.27, P = 2.98e-09), and neutrophil (R = 0.25, P = 3.25e-08) in epithelial ovarian cancer. Therefore, CX3CR1 involved in reshaping the immune microenvironment for epithelial ovarian cancer and maybe a potential immunotherapy target and prognostic marker for ovarian cancer.
Collapse
Affiliation(s)
- Danfeng Shao
- Department of Gynecology, Hangzhou Fuyang First People’s Hospital, Hangzhou, China
| | - Honger Zhou
- Department of Gynecology, Hangzhou Fuyang First People’s Hospital, Hangzhou, China
| | - Huaiying Yu
- Department of Gynecology, Hangzhou Fuyang First People’s Hospital, Hangzhou, China
| | - Xiaoqing Zhu
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Habel A, Weili X, Hadj Ahmed M, Stayoussef M, Bouaziz H, Ayadi M, Mezlini A, Larbi A, Yaacoubi-Loueslati B. Immune checkpoints as potential theragnostic biomarkers for epithelial ovarian cancer. Int J Biol Markers 2023; 38:203-213. [PMID: 37518940 DOI: 10.1177/03936155231186163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the leading cause of death associated with gynecologic tumors. EOC is asymptomatic in early stages, so most patients are not diagnosed until late stages, highlighting the need to develop new diagnostic biomarkers. Mediators of the tumoral microenvironment may influence EOC progression and resistance to treatment. AIM To analyze immune checkpoints to evaluate them as theranostic biomarkers for EOC. PATIENTS AND METHODS Serum levels of 16 immune checkpoints were determined in EOC patients and healthy controls using the MILLIPLEX MAP® Human Immuno-Oncology Checkpoint Protein Magnetic Bead Panel. RESULTS Seven receptors: BTLA, CD40, CD80/B7-1, GITRL, LAG-3, TIM-3, TLR-2 are differentially expressed between EOC and healthy controls. Serum levels of immune checkpoints in EOC patients are positively significantly correlated with levels of their ligands, with a higher significant correlation between CD80 and CTLA4 than between CD28 and CD80. Four receptors, CD40, HVEM, PD-1, and PD-L1, are positively associated with the development of resistance to Taxol-platinum-based chemotherapy. All of them have an acceptable area under the curve (>0.7). CONCLUSION This study has yielded a first panel of seven immune checkpoints (BTLA, CD40, CD80/B7-1, GITRL, LAG-3, TIM-3, TLR-2) associated with a higher risk of EOC and a second panel of four immune checkpoints (CD40, HVEM, PD-1, PD-L1) that may help physicians to identify EOC patients who are at high risk of developing resistance to EOC chemotherapy.
Collapse
Affiliation(s)
- Azza Habel
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Xu Weili
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Mariem Hadj Ahmed
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mouna Stayoussef
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | | | - Mouna Ayadi
- Salah Azaiez Oncology Institute, Tunis, Tunisia
| | | | - Anis Larbi
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Beckman Coulter Life Sciences, Villepinte, France
| | - Basma Yaacoubi-Loueslati
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
29
|
Yang Y, Zhu G, Yang L, Yang Y. Targeting CD24 as a novel immunotherapy for solid cancers. Cell Commun Signal 2023; 21:312. [PMID: 37919766 PMCID: PMC10623753 DOI: 10.1186/s12964-023-01315-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023] Open
Abstract
Cluster of differentiation 24 (CD24), a mucin-like highly glycosylated molecule has been extensively studied as a cancer stem cell marker in a variety of solid cancers. The functional role of CD24 is either fulfilled by combining with ligands or participating in signal transduction, which mediate the initiation and progression of neoplasms. Recently, CD24 was also described as an innate immune checkpoint with apparent significance in several types of solid cancers. Herein, we review the current understanding of the molecular fundamentals of CD24, the role of CD24 in tumorigenesis and cancer progression, the possibility as a promising therapeutic target and summarized different therapeutic agents or strategies targeting CD24 in solid cancers. Video Abstract.
Collapse
Affiliation(s)
- Yan Yang
- Xinxiang Engineering Technology Research Center of Tumor-Targeted Drug Development, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Guangming Zhu
- Clinical Laboratory, The First People's Hospital of Taian, Taian 271000, Shandong, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, Zhengzhou, 450052, Henan, China
| | - Yun Yang
- Xinxiang Engineering Technology Research Center of Tumor-Targeted Drug Development, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, Henan, China.
| |
Collapse
|
30
|
Ledermann JA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, Raspagliesi F, Sonke GS, Birrer M, Provencher DM, Sehouli J, Colombo N, González-Martín A, Oaknin A, Ottevanger PB, Rudaitis V, Kobie J, Nebozhyn M, Edmondson M, Sun Y, Cristescu R, Jelinic P, Keefe SM, Matulonis UA. Molecular determinants of clinical outcomes of pembrolizumab in recurrent ovarian cancer: Exploratory analysis of KEYNOTE-100. Gynecol Oncol 2023; 178:119-129. [PMID: 37862791 DOI: 10.1016/j.ygyno.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVE This prespecified exploratory analysis evaluated the association of gene expression signatures, tumor mutational burden (TMB), and multiplex immunohistochemistry (mIHC) tumor microenvironment-associated cell phenotypes with clinical outcomes of pembrolizumab in advanced recurrent ovarian cancer (ROC) from the phase II KEYNOTE-100 study. METHODS Pembrolizumab-treated patients with evaluable RNA-sequencing (n = 317), whole exome sequencing (n = 293), or select mIHC (n = 125) data were evaluated. The association between outcomes (objective response rate [ORR], progression-free survival [PFS], and overall survival [OS]) and gene expression signatures (T-cell-inflamed gene expression profile [TcellinfGEP] and 10 non-TcellinfGEP signatures), TMB, and prespecified mIHC cell phenotype densities as continuous variables was evaluated using logistic (ORR) and Cox proportional hazards regression (PFS; OS). One-sided p-values were calculated at prespecified α = 0.05 for TcellinfGEP, TMB, and mIHC cell phenotypes and at α = 0.10 for non-TcellinfGEP signatures; all but TcellinfGEP and TMB were adjusted for multiplicity. RESULTS No evidence of associations between ORR and key axes of gene expression was observed. Negative associations were observed between outcomes and TcellinfGEP-adjusted glycolysis (PFS, adjusted-p = 0.019; OS, adjusted-p = 0.085) and hypoxia (PFS, adjusted-p = 0.064) signatures. TMB as a continuous variable was not associated with outcomes (p > 0.05). Positive associations were observed between densities of myeloid cell phenotypes CD11c+ and CD11c+/MHCII-/CD163-/CD68- in the tumor compartment and ORR (adjusted-p = 0.025 and 0.013, respectively). CONCLUSIONS This exploratory analysis in advanced ROC did not find evidence for associations between gene expression signatures and outcomes of pembrolizumab. mIHC analysis suggests CD11c+ and CD11c+/MHCII-/CD163-/CD68- phenotypes representing myeloid cell populations may be associated with improved outcomes with pembrolizumab in advanced ROC. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT02674061.
Collapse
Affiliation(s)
- Jonathan A Ledermann
- Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom.
| | - Ronnie Shapira-Frommer
- The Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Tel HaShomer Hospital, Ramat Gan, Israel
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, CT, United States
| | - Alla S Lisyanskaya
- Department of Oncogynecology, St. Petersburg City Clinical Oncology Dispensary, St. Petersburg, Russia
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Ignace Vergote
- Department of Obstetrics and Gynaecology, Division of Gynecologic Oncology, University Hospital Leuven, Leuven, Belgium
| | | | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Michael Birrer
- UAMS Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, United States
| | - Diane M Provencher
- Centre Hospitalier de l'Université de Montréal (CHUM), Institut du Cancer de Montréal, Montreal, Canada
| | - Jalid Sehouli
- Gynecology with Center of Oncological Surgery, Charité-Medical University of Berlin, Berlin, Germany
| | - Nicoletta Colombo
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy; European Institute of Oncology, IRCCS, Milan, Italy
| | - Antonio González-Martín
- Department of Medical Oncology and Program in Solid Tumors-Cima, Cancer Center Clínica Universidad de Navarra, Madrid, Spain
| | - Ana Oaknin
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - P B Ottevanger
- Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vilius Rudaitis
- Clinic of Obstetrics and Gynecology, Vilnius University Institute of Clinical Medicine, Vilnius, Lithuania
| | - Julie Kobie
- Merck & Co., Inc., Rahway, NJ, United States
| | | | | | - Yuan Sun
- Merck & Co., Inc., Rahway, NJ, United States
| | | | | | | | - Ursula A Matulonis
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
31
|
Davis L, Miller RE, Wong YNS. The Landscape of Adoptive Cellular Therapies in Ovarian Cancer. Cancers (Basel) 2023; 15:4814. [PMID: 37835509 PMCID: PMC10571827 DOI: 10.3390/cancers15194814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Ovarian cancers are typically poorly immunogenic and have demonstrated disappointing responses to immune checkpoint inhibitor (ICI) therapy. Adoptive cellular therapy (ACT) offers an alternative method of harnessing the immune system that has shown promise, especially with the success of chimeric antigen receptor T-cell (CAR-T) therapy in haematologic malignancies. So far, ACT has led to modest results in the treatment of solid organ malignancies. This review explores the possibility of ACT as an effective alternative or additional treatment to current standards of care in ovarian cancer. We will highlight the potential of ACTs, such as CAR-T, T-cell receptor therapy (TCR-T), tumour-infiltrating lymphocytes (TILs) and cell-based vaccines, whilst also discussing their challenges. We will present clinical studies for these approaches in the treatment of immunologically 'cold' ovarian cancer and consider the rationale for future research.
Collapse
Affiliation(s)
- Lucy Davis
- Royal Free Hospital, London NW3 2QG, UK;
| | - Rowan E Miller
- Department of Medical Oncology, University College London Hospital, London NW1 3PG, UK;
- Department of Medical Oncology, St Bartholomew’s Hospital, London EC1A 7BE, UK
| | - Yien Ning Sophia Wong
- Royal Free Hospital, London NW3 2QG, UK;
- Department of Medical Oncology, University College London Hospital, London NW1 3PG, UK;
| |
Collapse
|
32
|
Zhang C, Sheng Y, Sun X, Wang Y. New insights for gynecological cancer therapies: from molecular mechanisms and clinical evidence to future directions. Cancer Metastasis Rev 2023; 42:891-925. [PMID: 37368179 PMCID: PMC10584725 DOI: 10.1007/s10555-023-10113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Advanced and recurrent gynecological cancers lack effective treatment and have poor prognosis. Besides, there is urgent need for conservative treatment for fertility protection of young patients. Therefore, continued efforts are needed to further define underlying therapeutic targets and explore novel targeted strategies. Considerable advancements have been made with new insights into molecular mechanisms on cancer progression and breakthroughs in novel treatment strategies. Herein, we review the research that holds unique novelty and potential translational power to alter the current landscape of gynecological cancers and improve effective treatments. We outline the advent of promising therapies with their targeted biomolecules, including hormone receptor-targeted agents, inhibitors targeting epigenetic regulators, antiangiogenic agents, inhibitors of abnormal signaling pathways, poly (ADP-ribose) polymerase (PARP) inhibitors, agents targeting immune-suppressive regulators, and repurposed existing drugs. We particularly highlight clinical evidence and trace the ongoing clinical trials to investigate the translational value. Taken together, we conduct a thorough review on emerging agents for gynecological cancer treatment and further discuss their potential challenges and future opportunities.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yaru Sheng
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
33
|
Bhat BA, Saifi I, Khamjan NA, Hamdani SS, Algaissi A, Rashid S, Alshehri MM, Ganie SA, Lohani M, Abdelwahab SI, Dar SA. Exploring the tumor immune microenvironment in ovarian cancer: a way-out to the therapeutic roadmap. Expert Opin Ther Targets 2023; 27:841-860. [PMID: 37712621 DOI: 10.1080/14728222.2023.2259096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite cancer treatment strides, mortality due to ovarian cancer remains high globally. While immunotherapy has proven effective in treating cancers with low cure rates, it has limitations. Growing evidence suggests that both tumoral and non-tumoral components of the tumor immune microenvironment (TIME) play a significant role in cancer growth. Therefore, developing novel and focused therapy for ovarian cancer is critical. Studies indicate that TIME is involved in developing ovarian cancer, particularly genome-, transcriptome-, and proteome-wide studies. As a result, TIME may present a prospective therapeutic target for ovarian cancer patients. AREAS COVERED We examined several TIME-targeting medicines and the connection between TIME and ovarian cancer. The key protagonists and events in the TIME and therapeutic strategies that explicitly target these events in ovarian cancer are discussed. EXPERT OPINION We highlighted various targeted therapies against TIME in ovarian cancer, including anti-angiogenesis therapies and immune checkpoint inhibitors. While these therapies are in their infancy, they have shown promise in controlling ovarian cancer progression. The use of 'omics' technology is helping in better understanding of TIME in ovarian cancer and potentially identifying new therapeutic targets. TIME-targeted strategies could account for an additional treatment strategy when treating ovarian cancer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Ifra Saifi
- Department of Botany, Chaudhary Charan Singh University, Meerut India
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Syed Suhail Hamdani
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Safeena Rashid
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohtashim Lohani
- Department of Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
34
|
Millar DG, Yang SYC, Sayad A, Zhao Q, Nguyen LT, Warner K, Sangster AG, Nakatsugawa M, Murata K, Wang BX, Shaw P, Clarke B, Bernardini MQ, Pugh T, Thibault P, Hirano N, Perreault C, Ohashi PS. Identification of antigenic epitopes recognized by tumor infiltrating lymphocytes in high grade serous ovarian cancer by multi-omics profiling of the auto-antigen repertoire. Cancer Immunol Immunother 2023; 72:2375-2392. [PMID: 36943460 PMCID: PMC10264507 DOI: 10.1007/s00262-023-03413-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023]
Abstract
Immunotherapeutic strategies aimed at enhancing tumor cell killing by tumor-specific T cells hold great potential for reducing tumor burden and prolonging survival of cancer patients. Although many potential tumor antigens have been described, identifying relevant targets when designing anti-cancer vaccines or targeted cell therapies remains a challenge. To identify novel, potentially immunogenic candidate tumor antigens, we performed integrated tumor transcriptomic, seromic, and proteomic analyses of high grade serous ovarian cancer (HGSC) patient tumor samples. We identified tumor neo-antigens and over-expressed antigens using whole exome and RNA sequencing and examined these in relation to patient-matched auto-antibody repertoires. Focusing on MHC class I epitopes recognized by CD8+ T cells, HLA-binding epitopes were identified or predicted from the highly expressed, mutated, or auto-antibody target antigen, or MHC-associated peptides (MAPs). Recognition of candidate antigenic peptides was assessed within the tumor-infiltrating T lymphocyte (TIL) population expanded from each patient. Known tumor-associated antigens (TAA) and cancer/testis antigens (CTA) were commonly found in the auto-antibody and MAP repertoires and CD8+ TILs recognizing epitopes from these antigens were detected, although neither expression level nor the presence of auto-antibodies correlated with TIL recognition. Auto-antibodies against tumor-mutated antigens were found in most patients, however, no TIL recognition of the highest predicted affinity neo-epitopes was detected. Using high expression level, auto-antibody recognition, and epitope prediction algorithms, we identified epitopes in 5 novel antigens (MOB1A, SOCS3, TUBB, PRKAR1A, CCDC6) recognized by HGSC patient TILs. Furthermore, selection of epitopes from the MAP repertoire identified 5 additional targets commonly recognized by multiple patient TILs. We find that the repertoire of TIL specificities includes recognition of highly expressed and immunogenic self-antigens that are processed and presented by tumors. These results indicate an ongoing autoimmune response against a range of self-antigens targeted by HGSC TILs.
Collapse
Affiliation(s)
- Douglas G Millar
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - S Y Cindy Yang
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Azin Sayad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Qingchuan Zhao
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Linh T Nguyen
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Kathrin Warner
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Ami G Sangster
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Kenji Murata
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Ben X Wang
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Patricia Shaw
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Blaise Clarke
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Marcus Q Bernardini
- Division of Gynecologic Oncology, Cancer Clinical Research Unit (CCRU), Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trevor Pugh
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Pamela S Ohashi
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Colombo I, Karakasis K, Suku S, Oza AM. Chasing Immune Checkpoint Inhibitors in Ovarian Cancer: Novel Combinations and Biomarker Discovery. Cancers (Basel) 2023; 15:3220. [PMID: 37370830 DOI: 10.3390/cancers15123220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
A deep understanding of the tumor microenvironment and the recognition of tumor-infiltrating lymphocytes as a prognostic factor have resulted in major milestones in immunotherapy that have led to therapeutic advances in treating many cancers. Yet, the translation of this knowledge to clinical success for ovarian cancer remains a challenge. The efficacy of immune checkpoint inhibitors as single agents or combined with chemotherapy has been unsatisfactory, leading to the exploration of alternative combination strategies with targeted agents (e.g., poly-ADP-ribose inhibitors (PARP)and angiogenesis inhibitors) and novel immunotherapy approaches. Among the different histological subtypes, clear cell ovarian cancer has shown a higher sensitivity to immunotherapy. A deeper understanding of the mechanism of immune resistance within the context of ovarian cancer and the identification of predictive biomarkers remain central discovery benchmarks to be realized. This will be critical to successfully define the precision use of immune checkpoint inhibitors for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ilaria Colombo
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Via A. Gallino, 6500 Bellinzona, Switzerland
| | - Katherine Karakasis
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Sneha Suku
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
36
|
Rives TA, Pavlik H, Li N, Qasrawi L, Yan D, Pickarski J, Dietrich CS, Miller RW, Ueland FR, Kolesar JM. Implementation of Nurse Navigation Improves Rate of Molecular Tumor Testing for Ovarian Cancer in a Gynecologic Oncology Practice. Cancers (Basel) 2023; 15:3192. [PMID: 37370804 DOI: 10.3390/cancers15123192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE The purpose of this study was to assess the impact of implementing a Nurse Navigator (NN) to improve the rate and timeliness of molecular tumor testing. METHODS This is an evaluation of the impact of education sessions, consensus building, and NN implementation for molecular tumor testing in patients with epithelial ovarian cancer. The NNs' responsibilities included attending tumor boards and ensuring Next Generation Sequencing (NGS) is ordered, reviewed, and coordinated for appropriate patients. RESULTS NNs significantly improved NGS testing rates from 35.29% to 77.27%, p = 0.002. Ordering a targeted panel test (TPT) was the most common reason for not ordering NGS in the pre-NN cohort (13/22, 59%). The total turnaround time for testing was reduced after the introduction of NNs from 145.2 days to 42.8 days, p < 0.0001. The post-NN group had a significantly higher rate of actionable mutations identified for the recurrent setting [67.6% versus 20.8% (p = 0.0005)] and a trend towards a higher rate of actionable mutations identified in the frontline setting [41.2% versus 33.3% (p = 0.41)]. CONCLUSION NNs significantly improved somatic tumor testing rates and timeliness for patients with ovarian cancer. Discontinuing TPT in favor of NGS revealed a higher rate of actionable tumor mutations that would have been missed with TPT alone.
Collapse
Affiliation(s)
- Taylor A Rives
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
| | - Heather Pavlik
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ning Li
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Lien Qasrawi
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Donglin Yan
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Justine Pickarski
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Charles S Dietrich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Rachel W Miller
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Frederick R Ueland
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jill M Kolesar
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
37
|
Yoon WH, DeFazio A, Kasherman L. Immune checkpoint inhibitors in ovarian cancer: where do we go from here? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:358-377. [PMID: 37457131 PMCID: PMC10344730 DOI: 10.20517/cdr.2023.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and despite advancements in therapeutics, most women unfortunately still succumb to their disease. Immunotherapies, in particular immune checkpoint inhibitors (ICI), have been therapeutically transformative in many tumour types, including gynaecological malignancies such as cervical and endometrial cancer. Unfortunately, these therapeutic successes have not been mirrored in ovarian cancer clinical studies. This review provides an overview of the ovarian tumour microenvironment (TME), particularly factors associated with survival, and explores current research into immunotherapeutic strategies in EOC, with an exploratory focus on novel therapeutics in navigating drug resistance.
Collapse
Affiliation(s)
- Won-Hee Yoon
- Department of Medical Oncology, Blacktown Cancer and Haematology Centre, Blacktown Hospital, Blacktown 2148, Australia
- Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Department of Gynecological Oncology, Westmead Hospital, Westmead 2145, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council New South Wales, Sydney 2011, Australia
| | - Lawrence Kasherman
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Department of Medical Oncology, Illawarra Cancer Care Centre, Wollongong 2500, Australia
| |
Collapse
|
38
|
Peng Z, Li M, Li H, Gao Q. PD-1/PD-L1 immune checkpoint blockade in ovarian cancer: dilemmas and opportunities. Drug Discov Today 2023:103666. [PMID: 37302543 DOI: 10.1016/j.drudis.2023.103666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized treatment in oncology. Antibodies against PD-1/PD-L1 and ICI-based combinations are under clinical investigations in multiple cancers, including ovarian cancer. However, the success of ICIs has not materialized in ovarian cancer, which remains one of the few malignancies where ICIs exhibit modest efficacy as either monotherapy or combination therapy. In this review, we summarize completed and ongoing clinical trials of PD-1/PD-L1 blockade in ovarian cancer, categorize the underlying mechanisms of resistance emergence, and introduce candidate approaches to rewire the tumor microenvironment (TME) to potentiate anti-PD-1/PD-L1 antibodies. Teaser: The intrinsic resistance of ovarian cancer to PD-1/PD-L1 blockade could be overcome by advanced understanding of underlying mechanisms and discoveries of new actionable targets for combinatory treatment.
Collapse
Affiliation(s)
- Zikun Peng
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Li
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
39
|
Wang M, Zhang J, Wu Y. Tumor metabolism rewiring in epithelial ovarian cancer. J Ovarian Res 2023; 16:108. [PMID: 37277821 DOI: 10.1186/s13048-023-01196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/29/2023] [Indexed: 06/07/2023] Open
Abstract
The mortality rate of epithelial ovarian cancer (EOC) remains the first in malignant tumors of the female reproductive system. The characteristics of rapid proliferation, extensive implanted metastasis, and treatment resistance of cancer cells require an extensive metabolism rewiring during the progression of cancer development. EOC cells satisfy their rapid proliferation through the rewiring of perception, uptake, utilization, and regulation of glucose, lipids, and amino acids. Further, complete implanted metastasis by acquiring a superior advantage in microenvironment nutrients competing. Lastly, success evolves under the treatment stress of chemotherapy and targets therapy. Understanding the above metabolic characteristics of EOCs helps to find new methods of its treatment.
Collapse
Affiliation(s)
- Ming Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Jingjing Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China.
| |
Collapse
|
40
|
Qian L, Sun R, Xue Z, Guo T. Mass Spectrometry-based Proteomics of Epithelial Ovarian Cancers: a Clinical Perspective. Mol Cell Proteomics 2023:100578. [PMID: 37209814 PMCID: PMC10388592 DOI: 10.1016/j.mcpro.2023.100578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Increasing proteomic studies focused on epithelial ovarian cancer (EOC) have attempted to identify early disease biomarkers, establish molecular stratification, and discover novel druggable targets. Here we review these recent studies from a clinical perspective. Multiple blood proteins have been used clinically as diagnostic markers. The ROMA test integrates CA125 and HE4, while the OVA1 and OVA2 tests analyze multiple proteins identified by proteomics. Targeted proteomics has been widely used to identify and validate potential diagnostic biomarkers in EOCs, but none has yet been approved for clinical adoption. Discovery proteomic characterization of bulk EOC tissue specimens has uncovered a large number of dysregulated proteins, proposed new stratification schemes, and revealed novel targets of therapeutic potential. A major hurdle facing clinical translation of these stratification schemes based on bulk proteomic profiling is intra-tumor heterogeneity, namely that single tumor specimens may harbor molecular features of multiple subtypes. We reviewed over 2500 interventional clinical trials of ovarian cancers since 1990, and cataloged 22 types of interventions adopted in these trials. Among 1418 clinical trials which have been completed or are not recruiting new patients, about 50% investigated chemotherapies. Thirty-seven clinical trials are at phase 3 or 4, of which 12 focus on PARP, 10 on VEGFR, 9 on conventional anti-cancer agents, and the remaining on sex hormones, MEK1/2, PD-L1, ERBB, and FRα. Although none of the foregoing therapeutic targets were discovered by proteomics, newer targets discovered by proteomics, including HSP90 and cancer/testis antigens, are being tested also in clinical trials. To accelerate the translation of proteomic findings to clinical practice, future studies need to be designed and executed to the stringent standards of practice-changing clinical trials. We anticipate that the rapidly evolving technology of spatial and single-cell proteomics will deconvolute the intra-tumor heterogeneity of EOCs, further facilitating their precise stratification and superior treatment outcomes.
Collapse
Affiliation(s)
- Liujia Qian
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China.
| | - Rui Sun
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zhangzhi Xue
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Tiannan Guo
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China.
| |
Collapse
|
41
|
Griesinger L, Nyarko-Odoom A, Martinez SA, Shen NW, Ring KL, Gaughan EM, Mills AM. PD-L1 and MHC Class I Expression in High-grade Ovarian Cancers, Including Platinum-resistant Recurrences Treated With Checkpoint Inhibitor Therapy. Appl Immunohistochem Mol Morphol 2023; 31:197-203. [PMID: 36812389 DOI: 10.1097/pai.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023]
Abstract
Immune-modulating therapies targeting the programmed cell death-1/programmed cell death ligand-1 (PD-L1) immunosuppressive system have been used successfully in many solid tumor types. There is evidence that biomarkers such as PD-L1 and major histocompatibility complex (MHC) class I help identify candidates for anti-programmed cell death-1/PD-L1 checkpoint inhibition, though the evidence is limited in ovarian malignancies. PD-L1 and MHC Class I immunostaining was performed on pretreatment whole tissue sections in 30 cases of high-grade ovarian carcinoma. The PD-L1 combined positive score was calculated (a score of ≥1 is considered positive). MHC class I status was categorized as an intact or subclonal loss. In patients who received immunotherapy, drug response was assessed using RECIST criteria. PD-L1 was positive in 26 of 30 cases (87%; combined positive score: 1 to 100). Seven of 30 patients showed subclonal loss of MHC class I (23%), and this occurred in both PD-L1 negative (3/4; 75%) and PD-L1 positive (4/26; 15%) cases. Only 1 of 17 patients who received immunotherapy in the setting of a platinum-resistant recurrence responded to the addition of immunotherapy, and all 17 died of disease. In the setting of recurrent disease, patients did not respond to immunotherapy regardless of PD-L1/MHC class I status, suggesting that these immunostains may not be effective predictive biomarkers in this setting. Subclonal loss of expression of MHC class I occurs in ovarian carcinoma, including in PD-L1 positive cases, suggesting that the 2 pathways of immune evasion may not be mutually exclusive and that it may be important to interrogate MHC class I status in PD-L1 positive tumors to identify additional immune evasion mechanisms in these tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth M Gaughan
- Department of Hematology and Oncology, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
42
|
Parashar S, Akhter N, Paplomata E, Elgendy IY, Upadhyaya D, Scherrer-Crosbie M, Okwuosa TM, Sanghani RM, Chalas E, Lindley KJ, Dent S. Cancer Treatment-Related Cardiovascular Toxicity in Gynecologic Malignancies: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:159-173. [PMID: 37144116 PMCID: PMC10152205 DOI: 10.1016/j.jaccao.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/06/2023] Open
Abstract
Improvements in early detection and treatment of gynecologic malignancies have led to an increasing number of survivors who are at risk of long-term cardiac complications from cancer treatment. Multimodality therapies for gynecologic malignancies, including conventional chemotherapy, targeted therapeutics, and hormonal agents, place patients at risk of cancer therapy-related cardiovascular toxicity during and following treatment. Although the cardiotoxicity associated with some female predominant cancers (eg, breast cancer) have been well recognized, there has been less recognition of the potential adverse cardiovascular effects of anticancer therapies used to treat gynecologic malignancies. In this review, the authors provide a comprehensive overview of the cancer therapeutic agents used in gynecologic malignancies, associated cardiovascular toxicities, risk factors for cardiotoxicity, cardiac imaging, and prevention strategies.
Collapse
Affiliation(s)
- Susmita Parashar
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Address for correspondence: Dr Susmita Parashar, Division of Cardiology, Department of Medicine, Emory University, Atlanta, 2665 North Decatur Road, Suite #240, Decatur, Georgia 30033, USA. @emorywomenheart
| | - Nausheen Akhter
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Islam Y. Elgendy
- Division of Cardiology, Department of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Deepa Upadhyaya
- Division of Cardiology, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Marielle Scherrer-Crosbie
- Cardiovascular Medicine Division, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tochukwu M. Okwuosa
- Division of Cardio-Oncology, Department of Medicine, Rush University, Chicago, Illinois, USA
| | - Rupa M. Sanghani
- Division of Cardiology, Department of Medicine, Rush University, Chicago, Illinois, USA
| | - Eva Chalas
- Division of Obstetrics and Gynecology, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Kathryn J. Lindley
- Division of Cardiology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan Dent
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
43
|
Castaño M, Tomás-Pérez S, González-Cantó E, Aghababyan C, Mascarós-Martínez A, Santonja N, Herreros-Pomares A, Oto J, Medina P, Götte M, Mc Cormack BA, Marí-Alexandre J, Gilabert-Estellés J. Neutrophil Extracellular Traps and Cancer: Trapping Our Attention with Their Involvement in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24065995. [PMID: 36983067 PMCID: PMC10056926 DOI: 10.3390/ijms24065995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, play a well-known role in defense against pathogens through phagocytosis and degranulation. However, a new mechanism involving the release of neutrophil extracellular traps (NETs) composed of DNA, histones, calprotectin, myeloperoxidase, and elastase, among others, has been described. The so-called NETosis process can occur through three different mechanisms: suicidal, vital, and mitochondrial NETosis. Apart from their role in immune defense, neutrophils and NETs have been involved in physiopathological conditions, highlighting immunothrombosis and cancer. Notably, neutrophils can either promote or inhibit tumor growth in the tumor microenvironment depending on cytokine signaling and epigenetic modifications. Several neutrophils' pro-tumor strategies involving NETs have been documented, including pre-metastatic niche formation, increased survival, inhibition of the immune response, and resistance to oncologic therapies. In this review, we focus on ovarian cancer (OC), which remains the second most incidental but the most lethal gynecologic malignancy, partly due to the presence of metastasis, often omental, at diagnosis and the resistance to treatment. We deepen the state-of-the-art on the participation of NETs in OC metastasis establishment and progression and their involvement in resistance to chemo-, immuno-, and radiotherapies. Finally, we review the current literature on NETs in OC as diagnostic and/or prognostic markers, and their contribution to disease progression at early and advanced stages. The panoramic view provided in this article might pave the way for enhanced diagnostic and therapeutic strategies to improve the prognosis of cancer patients and, specifically, OC patients.
Collapse
Affiliation(s)
- María Castaño
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Cristina Aghababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Andrea Mascarós-Martínez
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Nuria Santonja
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | | | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Bárbara Andrea Mc Cormack
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
- Department of Pediatrics, Obstetrics, and Gynaecology, University of Valencia, 46014 Valencia, Spain
| |
Collapse
|
44
|
Zeng S, Liu D, Yu Y, Zou L, Jin X, Liu B, Liu L. Efficacy and safety of PD-1/PD-L1 inhibitors in the treatment of recurrent and refractory ovarian cancer: A systematic review and a meta-analysis. Front Pharmacol 2023; 14:1111061. [PMID: 36992842 PMCID: PMC10042289 DOI: 10.3389/fphar.2023.1111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
Objective: To explore the efficacy and safety of PD-1/PD-L1 inhibitors in treating recurrent/refractory ovarian cancer (OC).Methods: The online databases, including PubMed, Embase and Cochrane Library, were searched for relevant literatures on exploring the efficacy and safety of PD-1/PD-L1 inhibitors in the treatment of recurrent/refractory OC. The keywords are as follows: Ovarian neoplasms, programmed death receptor, PD-1, PD-L1, immunotherapy, and immune checkpoint inhibitor. Furthermore, qualified studies were screened for further meta-analysis.Results: In this study, 11 studies (990 patients) were analyzed to evaluate the efficacy of PD-1/PD-L1 inhibitors in the treatment of recurrent/refractory OC. The combined results proved that the objective response rate (ORR) was 6.7%, 95% CI (4.6%,9.2%), disease control rate (DCR) was 37.9%, 95% CI (33.0%, 42.8%), median overall survival (OS) was 10.70 months, 95% CI (9.23, 12.17), and median progression free survival (PFS) was 2.24 months, 95% CI (2.05, 2.43). In addition, in terms of the safety of patients suffering from recurrent/refractory OC and receiving PD-1/PD-L1 inhibitors, the combined treatment related adverse events (TRAEs) were 70.9% (61.7%–80.2%), and the combined immune related adverse events (iAEs) were 29%, 95% CI (14.7%, 43.3%).Conclusion: In patients with recurrent/refractory OC, PD-1/PD-L1 inhibitors were used alone and there was no obvious evidence of improved efficacy and survival. As for safety, the incidences of TRAEs and iAEs are high, so PD1/PD-L1 inhibitors should be applied according to individual conditions.Clinical Trial Registration:https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=367525, identifier CRD42022367525.
Collapse
Affiliation(s)
- Siyuan Zeng
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
- Dalian municipal Central Hospital, China Medical University, Shenyang, China
| | - Daju Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Yongai Yu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Lei Zou
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Xianyu Jin
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Bing Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
- *Correspondence: Lifeng Liu, ; Bing Liu,
| | - Lifeng Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
- Dalian municipal Central Hospital, China Medical University, Shenyang, China
- *Correspondence: Lifeng Liu, ; Bing Liu,
| |
Collapse
|
45
|
Mei C, Gong W, Wang X, Lv Y, Zhang Y, Wu S, Zhu C. Anti-angiogenic therapy in ovarian cancer: Current understandings and prospects of precision medicine. Front Pharmacol 2023; 14:1147717. [PMID: 36959862 PMCID: PMC10027942 DOI: 10.3389/fphar.2023.1147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Ovarian cancer (OC) remains the most fatal disease of gynecologic malignant tumors. Angiogenesis refers to the development of new vessels from pre-existing ones, which is responsible for supplying nutrients and removing metabolic waste. Although not yet completely understood, tumor vascularization is orchestrated by multiple secreted factors and signaling pathways. The most central proangiogenic signal, vascular endothelial growth factor (VEGF)/VEGFR signaling, is also the primary target of initial clinical anti-angiogenic effort. However, the efficiency of therapy has so far been modest due to the low response rate and rapidly emerging acquiring resistance. This review focused on the current understanding of the in-depth mechanisms of tumor angiogenesis, together with the newest reports of clinical trial outcomes and resistance mechanism of anti-angiogenic agents in OC. We also emphatically summarized and analyzed previously reported biomarkers and predictive models to describe the prospect of precision therapy of anti-angiogenic drugs in OC.
Collapse
Affiliation(s)
- Chao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijing Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Chunqi Zhu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Győrffy B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. GeroScience 2023:10.1007/s11357-023-00742-4. [PMID: 36856946 PMCID: PMC10400493 DOI: 10.1007/s11357-023-00742-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Progress in ovarian cancer treatment lags behind other tumor types. With diagnosis usually at an advanced stage, there is a high demand for reliable prognostic biomarkers capable of the selection of effective chemo- and targeted therapies. Our goal was to establish a large-scale transcriptomic database and use it to uncover and rank survival-associated genes. Ovarian cancer cohorts with transcriptome-level gene expression data and clinical follow-up were identified from public repositories. All samples were normalized and entered into an integrated database. Cox univariate survival analysis was performed for all genes and was followed by multivariate analysis for selected genes involving clinical and pathological variables. False discovery rate was computed for multiple hypothesis testing and a 1% cutoff was used to determine statistical significance. The complete integrated database comprises 1816 samples from 17 datasets. Altogether, 2468 genes were correlated to progression-free survival (PFS), and 704 genes were correlated with overall survival (OS). The most significant genes were WBP1L, ASAP3, CNNM2, and NCAPH2 for progression-free survival and CSE1L, NUAK1, ALPK2, and SHKBP1 for overall survival. Genes significant for PFS were also preferentially significant for predicting OS as well. All data including HR and p values as well as the used cutoff values for all genes for both PFS and OS are provided to enable the ranking of future biomarker candidates across all genes. Our results help to prioritize genes and to neglect those which are most likely to fail in studies aiming to establish new clinically useful biomarkers and therapeutic targets in serous ovarian cancer.
Collapse
Affiliation(s)
- Balázs Győrffy
- Dept. of Bioinformatics, Semmelweis University, Tuzolto U. 7-9, 1094, Budapest, Hungary.
| |
Collapse
|
47
|
Luo X, Shen Y, Huang W, Bao Y, Mo J, Yao L, Yuan L. Blocking CD47-SIRPα Signal Axis as Promising Immunotherapy in Ovarian Cancer. Cancer Control 2023; 30:10732748231159706. [PMID: 36826231 PMCID: PMC9969460 DOI: 10.1177/10732748231159706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Among the three primary gynecological malignancies, ovarian cancer has the lowest incidence but the worst prognosis. Because of the poor prognosis of ovarian cancer patients treated with existing treatments, immunotherapy is emerging as a potentially ideal alternative to surgery, chemotherapy, and targeted therapy. Among immunotherapies, immune checkpoint inhibitors have been the most thoroughly studied, and many drugs have been successfully used in the clinic. CD47, a novel immune checkpoint, provides insights into ovarian cancer immunotherapy. This review highlights the mechanisms of tumor immune evasion via CD47-mediated inhibition of phagocytosis and provides a comprehensive insight into the progress of the relevant targeted agents in ovarian cancer.
Collapse
Affiliation(s)
- Xukai Luo
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Yini Shen
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Wu Huang
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Yiting Bao
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Jiahang Mo
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Liangqing Yao
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Lei Yuan
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China,Lei Yuan, MD, Obstetrics and Gynecology
Hospital, Fudan University, 419 Fangxie Road, Huangpu District, Shanghai 200011,
China.
| |
Collapse
|
48
|
Discordance of PD-L1 expression in primary and metastatic ovarian high-grade serous carcinoma and its correlation with CD8 + tumor-infiltrating lymphocytes and patient prognosis. Virchows Arch 2023; 482:755-766. [PMID: 36806916 DOI: 10.1007/s00428-023-03512-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
Differential expression of programmed death-1 ligand (PD-L1) and its clinical significance in primary and metastatic ovarian high-grade serous carcinoma (HGSC) have not been defined. Thus, we investigated the PD-L1 expression of paired ovarian primary and omental metastatic HGSC and its correlation with CD8 + tumor-infiltrating lymphocyte (TILs) and patient survival. A total of 212 cases of ovarian HGSCs with matched primary ovarian and metastatic omental tumors accessioned between 2003 and 2018 were selected for further analysis. Using immunohistochemistry, we evaluated the density of CD8 + TILs and expression of PD-L1 on whole tissue sections. Applying tumor proportion score (TPS, cutoff 1%) and combined positive score (CPS, cutoff 1), the prevalence of PD-L1 expression was similar but with significant discordance in ovarian and omental tumor. Using TPS, patients with PD-L1-positive tumors demonstrated significantly worse recurrence free survival (RFS) and overall survival (OS) than patients with PD-L1-negative tumors. Using CPS, patients with PD-L1-positive ovarian tumors demonstrated significantly worse OS while no significant difference in RFS was found. Patients with PD-L1-positive omental tumors demonstrated significantly worse RFS and OS. Patients with omental PD-L1-positive tumors (TPS) were associated with poorer RFS and OS, while patients with ovarian PD-L1-positive tumors (TPS) were associated with OS not RFS, in COX multivariant analysis. Nonetheless, ovarian and omental high CD8 TILs density was not associated with worse OS in univariant and COX multivariant analysis. PD-L1 expression in ovarian and omental tumor associated with an increased CD8 + TILs density. PD-L1 expression by TPS was better correlated with survival than by CPS, and PD-L1 expression in omental tumors was a stronger prognostic indicator than that in ovarian tumors.
Collapse
|
49
|
Mastelic-Gavillet B, Sarivalasis A, Lozano LE, Lofek S, Wyss T, Melero I, de Vries IJM, Harari A, Romero P, Kandalaft LE, Viganó S. Longitudinal analysis of DC subsets in patients with ovarian cancer: Implications for immunotherapy. Front Immunol 2023; 14:1119371. [PMID: 36845155 PMCID: PMC9950108 DOI: 10.3389/fimmu.2023.1119371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Background The use of circulating cDC1 to generate anti-cancer vaccines is among the most promising approaches to overcome the limited immunogenicity and clinical efficacy of monocyte-derived DC. However, the recurrent lymphopenia and the reduction of DC numbers and functionality in patients with cancer may represent an important limitation of such approach. In patients with ovarian cancer (OvC) that had received chemotherapy, we previously showed that cDC1 frequency and function were reduced. Methods We recruited healthy donors (HD, n=7) and patients with OvC at diagnosis and undergoing interval debulking surgery (IDS, n=6), primary debulking surgery (PDS, n=6) or at relapse (n=8). We characterized longitudinally phenotypic and functional properties of peripheral DC subsets by multiparametric flow cytometry. Results We show that the frequency of cDC1 and the total CD141+ DC capacity to take up antigen are not reduced at the diagnosis, while their TLR3 responsiveness is partially impaired in comparison with HD. Chemotherapy causes cDC1 depletion and increase in cDC2 frequency, but mainly in patients belonging to the PDS group, while in the IDS group both total lymphocytes and cDC1 are preserved. The capacity of total CD141+ DC and cDC2 to take up antigen is not impacted by chemotherapy, while the activation capacity upon Poly(I:C) (TLR3L) stimulation is further decreased. Conclusions Our study provides new information about the impact of chemotherapy on the immune system of patients with OvC and sheds a new light on the importance of considering timing with respect to chemotherapy when designing new vaccination strategies that aim at withdrawing or targeting specific DC subsets.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University Hospital, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University Hospital, Lausanne, Switzerland
| | - Leyder Elena Lozano
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University Hospital, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sebastien Lofek
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University Hospital, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Tania Wyss
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University Hospital, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Instituto de Investigacion Sanitaria de Navarra, Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, University Clinic, University of Navarra, Pamplona, Spain
- Program of Immunology and Immunotherapy, Centro de Investigacion Biomedica en Red Cancer, Madrid, Spain
| | - I. Jolanda M. de Vries
- Department of Tumour Immunology, Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands
| | - Alexandre Harari
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University Hospital, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University Hospital, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana Elias Kandalaft
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University Hospital, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Selena Viganó
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University Hospital, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
50
|
Molecular portraits of clear cell ovarian and endometrial carcinoma with comparison to clear cell renal cell carcinoma. Gynecol Oncol 2023; 169:164-171. [PMID: 36333181 DOI: 10.1016/j.ygyno.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Advanced clear cell gynecologic malignancies remain among the most challenging diseases to manage. We evaluated ovarian and endometrial clear cell carcinoma (OCCC and ECCC) specimens using comprehensive sequencing technology to identify mutational targets and compared their molecular profiles to histologically similar clear cell renal cell carcinoma (ccRCC). METHODS Using next-generation sequencing (NGS), fragment analysis (FA), and in situ hybridization (ISH), 164 OCCC, 75 ECCC and 234 ccRCC specimens from 2015 to 2018 were evaluated and compared. RESULTS The highest mutation rates in ECCC and OCCC were noted in: ARID1A (75.0%, 87.5%), TP53 (34.8%, 11.1%), PIK3CA (25.0%, 46.8%), PPP2R1A (8.7%, 16.7%), MSI-high (8.8%, 6.4%) and PTEN (8.3%, 7.1%). Among these mutations, there was no significant difference between OCCC and ECCC mutation prevalence except in TP53, with higher mutation rates in ECCC versus OCCC (34.8 vs. 11.1%, respectively, p < 0.05). ccRCC demonstrated different mutation profiles with higher mutation rates in VHL (80.3%), PBRM1 (43.9%), SETD2 (31.1%), and KDM5C (29.2%). By contrast, VHL, PBRM1, and SETD2 mutations were not found in ECCC and OCCC (0.0%). Compared to ccRCC and ECCC, OCCC was found to have a significantly higher tumor mutation burden (TMB) (19.1%). CONCLUSION Gynecologic and renal CCC demonstrate separate and disparate somatic profiles. However, OCCC and ECCC are diseases with similar profiles. TMB and MSI analyses indicate that a subset of OCCC may benefit from immunotherapy. Prospective clinical trials are needed and are underway to examine targeted therapies in these gynecologic disease subtypes.
Collapse
|