1
|
Chen K, Wang J, Yang M, Deng S, Sun L. Immunotherapy in Recurrent Ovarian Cancer. Biomedicines 2025; 13:168. [PMID: 39857752 PMCID: PMC11762523 DOI: 10.3390/biomedicines13010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES It remains challenging to treat recurrent ovarian cancer effectively as traditional interventions like chemotherapy and surgery have limited long-term efficacy, highlighting an urgent need for innovative approaches. Immunotherapy offers potential advantages in modulating the immune response against tumor cells and has emerged as a promising strategy in ovarian cancer management. This review discusses various immunotherapy modalities, including active and passive immune strategies, for recurrent ovarian cancer. METHODS We systematically reviewed recent immunotherapy advances for recurrent ovarian cancer, including the efficacy and mechanisms of single and dual immune checkpoint inhibitors, checkpoint inhibitor combinations with chemotherapy or radiotherapy, anti-angiogenic agents, PARP inhibitors, antibody-drug conjugates (ADC), tumor vaccines, and adoptive cell therapies (ACT). Additionally, we assessed emerging research on biomarkers predictive of immunotherapy responsiveness in ovarian cancer. RESULTS The findings indicate that immunotherapy, particularly combinations involving immune checkpoint inhibitors and other agents, demonstrates promising efficacy in recurrent ovarian cancer, with some therapies showing enhanced benefits in specific subtypes. The immune microenvironment in platinum-sensitive and -resistant cases exhibits distinct immunological profiles, influencing therapy outcomes. Several potential biomarkers have been identified, potentially aiding in patient stratification and treatment optimization. CONCLUSIONS Immunotherapy significantly advances recurrent ovarian cancer treatment, with various combinations potentially improving outcomes. Further research on predictive biomarkers and immune microenvironment characteristics is crucial for personalizing immunotherapy approaches and enhancing their efficacy in managing recurrent ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Li Sun
- Gynecology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (K.C.); (J.W.); (M.Y.); (S.D.)
| |
Collapse
|
2
|
Philips TJ, Erickson BK, Thomas SN. Opportunities for predictive proteogenomic biomarkers of drug treatment sensitivity in epithelial ovarian cancer. Front Oncol 2025; 14:1503107. [PMID: 39839766 PMCID: PMC11746003 DOI: 10.3389/fonc.2024.1503107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Genomic analysis has played a significant role in the identification of driver mutations that are linked to disease progression and response to drug treatment in ovarian cancer. A prominent example is the stratification of epithelial ovarian cancer (EOC) patients with homologous recombination deficiency (HRD) characterized by mutations in DNA damage repair genes such as BRCA1/2 for treatment with PARP inhibitors. However, recent studies have shown that some epithelial ovarian tumors respond to PARP inhibitors irrespective of their HRD or BRCA mutation status. An exclusive focus on the genome overlooks the significant insight that can be gained from other biological analytes, including proteins, which carry out cellular functions. Proteogenomics is the integration of genomics, transcriptomics, epigenomics and proteomics data. This review paper provides novel insight into the role of proteogenomics as an analytical approach to identify predictive biomarkers of drug treatment response in epithelial ovarian cancer. Proteogenomic analysis can facilitate the identification of predictive biomarkers of drug treatment response, consequently greatly improving the stratification of patients with EOC for treatment towards a goal of personalized medicine.
Collapse
Affiliation(s)
- Trudy J. Philips
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Britt K. Erickson
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Stefani N. Thomas
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
3
|
Farzeen Z, Khan RRM, Chaudhry AR, Pervaiz M, Saeed Z, Rasheed S, Shehzad B, Adnan A, Summer M. Dostarlimab: A promising new PD-1 inhibitor for cancer immunotherapy. J Oncol Pharm Pract 2024; 30:1411-1431. [PMID: 39056234 DOI: 10.1177/10781552241265058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Dostarlimab, a humanized monoclonal PD-1 blocking antibody, is being tested as a cancer therapy in this review. Specifically, it addresses mismatch repair failure in endometrial cancer and locally progressed rectal cancer patients. DATA SOURCES A thorough database search found Dostarlimab clinical trials and studies. Published publications and ongoing clinical trials on Dostarlimab's efficacy as a single therapy and in conjunction with other medicines across cancer types were searched. DATA SUMMARY The review recommends Dostarlimab for endometrial cancer mismatch repair failure, as supported by GARNET studies. The analysis also highlights locally advanced rectal cancer findings. In the evolving area of cancer therapy, immune checkpoint inhibitors including pembrolizumab, avelumab, atezolizumab, nivolumab, and durvalumab were discussed. CONCLUSIONS Locally advanced rectal cancer patients responded 100% to Dostarlimab. Many clinical trials, including ROSCAN, AMBER, IOLite, CITRINO, JASPER, OPAL, PRIME, PERLA, and others, are investigating Dostarlimab in combination treatment. This research sheds light on Dostarlimab's current and future possibilities, in improving cancer immunotherapy understanding.
Collapse
Affiliation(s)
- Zubaria Farzeen
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | | | - Ayoub Rashid Chaudhry
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Shahzad Rasheed
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Behram Shehzad
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Ahmad Adnan
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
4
|
Na JR, Liu Y, Fang K, Tan Y, Liang PP, Yan M, Chu JJ, Gao JM, Chen D, Zhang SX. Unraveling the potential biomarkers of immune checkpoint inhibitors in advanced ovarian cancer: a comprehensive review. Invest New Drugs 2024; 42:728-738. [PMID: 39432145 DOI: 10.1007/s10637-024-01478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
The ongoing research on the role of immunotherapy in advanced ovarian cancer (OC) and current clinical trials indicate that patients shown limited response to immune checkpoint inhibitor (ICI) monotherapy. When combined with other treatments or drugs, the efficacy of immunotherapy will be significantly improved. Biomarkers can be used to identify patients with better responses, thereby improving the precision and efficacy of immunotherapy. Key biomarkers for advanced OC include homologous repair deficiency, programmed death-ligand (PD-L) 1 expression, chemokines, and tumor infiltrating lymphocytes. These biomarkers could be applied in the future to select the most suitable patient populations. This review comprehensively examines the research and development of biomarkers in OC immunotherapy from three omics perspectives: genomics, transcriptomics, and proteomics, which may provide guidance for the effectiveness of OC immunotherapy strategies.
Collapse
Affiliation(s)
- Jian-Rong Na
- Department of Respiratory and Critical Care Medicine, the First Clinical College of Ningxia Medical University, Yinchuan, 750004, China
| | - Yaqin Liu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Kun Fang
- Yinchuan Maternal and Child Health Hospital, Yinchuan, 750004, China
| | - Yuan Tan
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Pan-Pan Liang
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Mei Yan
- Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Jiao-Jiao Chu
- Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Jian-Mei Gao
- Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China.
- Cancer Center, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
- Center of Translational Medicine, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Shu-Xiang Zhang
- Department of Respiratory and Critical Care Medicine, the First Clinical College of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
5
|
Xia S, Chen L, Yu M, Li J, Chen J, Xu F, Ni M, Liu C, Wu X, Chen X, Li J. Genetic and therapeutic heterogeneity shape the baseline and longitudinal immune ecosystem of ovarian clear cell carcinoma. J Immunother Cancer 2024; 12:e010069. [PMID: 39608974 PMCID: PMC11603735 DOI: 10.1136/jitc-2024-010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Ovarian clear cell carcinoma (OCCC) is a rare and chemo-resistant subtype of ovarian cancer. While immunotherapy has demonstrated effectiveness in some OCCC cases, the mechanisms for heterogeneous immunoreactivity and potential combinatory strategies remain unclear. METHODS Tumor samples from 13 patients with OCCC underwent single-cell mRNA-seq and TCR-seq to generate 1 40 683 cells transcriptome, while additionally 31 formalin-fixed paraffin-embedded samples were used for immunohistochemistry. Spatial transcriptomics of two OCCC samples and bulk RNA-seq of 58 patients were incorporated for spatial and interpatient level explorations. Serum tumor markers and radiologic images of three patients with OCCC who received combinatory VEGF and PD-1 inhibition were retrospectively analyzed. RESULTS OCCC exhibited a dynamic immune architecture shaped by genetic and therapeutic pressure. ARID1A mutation linked to baseline immune activation, correlated with an enrichment of neoantigen-reactive CXCL13+ CTLA4+ CD8+ T cells (p<0.001) and enhanced FASLG-FAS interactions. Recurrent OCCC was fibrotic, angiogenic, and immunosuppressive, exhibiting metabolic reprogramming towards activated activity in fatty acid metabolism. High CD36 (log-rank p=0.012, HR: 4.515) and CD47 expression (log-rank p=0.037, HR: 3.246) indicated worse progression-free survival. Treatment with bevacizumab increased intratumoral T cell infiltration and activated T cell interferon-γ signaling. Retrospective analysis of clinical cases revealed that combination therapy with anti-VEGF (vascular endothelial growth factor) and anti-PD-1 agents exerted clinical benefits in patients with OCCC with persistent, recurrent, and metastatic disease. CONCLUSIONS ARID1A mutation correlated with OCCC baseline immune activation. Stromal reconstruction and tumor metabolic reprogramming functioned as key processes of OCCC dynamic progression. VEGF inhibition remodeled OCCC stroma, restored T cell function and potentiated immunotherapy. CD36 and CD47 might be potential therapeutic targets for recurrent OCCC.
Collapse
Affiliation(s)
- Siyu Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lihua Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Min Yu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jiana Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jiaxin Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chaohua Liu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Hamze Sinno S, Imperatore JA, Bai S, Gomes-Jourdan N, Mafarachisi N, Coronnello C, Zhang L, Jašarević E, Osmanbeyoglu HU, Buckanovich RJ, Cascio S. Egfl6 promotes ovarian cancer progression by enhancing the immunosuppressive functions of tumor-associated myeloid cells. J Clin Invest 2024; 134:e175147. [PMID: 39312740 PMCID: PMC11527450 DOI: 10.1172/jci175147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) play a critical role in resistance to immunotherapy. In this study, we identified epidermal growth factor-like 6 (Egfl6) as a regulator of myeloid cell functions. Our analyses indicated that Egfl6, via binding with β3 integrins and activation of p38 and SYK signaling, acts as a chemotactic factor for myeloid cell migration and promotes their differentiation toward an immunosuppressive state. In syngeneic mouse models of ovarian cancer (OvCa), tumor expression of Egfl6 increased the intratumoral accumulation of polymorphonuclear (PMN) MDSCs and TAMs and their expression of immunosuppressive factors, including CXCL2, IL-10, and PD-L1. Consistent with this, in an immune 'hot' tumor model, Egfl6 expression eliminated response to anti-PD-L1 therapy, while Egfl6 neutralizing antibody decreased the accumulation of tumor-infiltrating CD206+ TAMs and PMN-MDSCs and restored the efficacy of anti-PD-L1 therapy. Supporting a role in human tumors, in human OvCa tissue samples, areas of high EGFL6 expression colocalized with myeloid cell infiltration. scRNA-Seq analyses revealed a correlation between EGFL6 and immune cell expression of immunosuppressive factors. Our data provide mechanistic insights into the oncoimmunologic functions of EGFL6 in mediating tumor immune suppression and identified EGFL6 as a potential therapeutic target to enhance immunotherapy in patients with OvCa.
Collapse
Affiliation(s)
- Sarah Hamze Sinno
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Shoumei Bai
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Linan Zhang
- Department of Applied Mathematics, School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang, China
| | - Eldin Jašarević
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, Pittsburgh, Pennsylvania, USA
| | - Hatice U. Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine
- UPMC Hillman Cancer Center
- Department of Bioengineering, School of Engineering, and
| | - Ronald J. Buckanovich
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sandra Cascio
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center
| |
Collapse
|
7
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
8
|
Yu M, Li D, Zhang L, Wang K. Identification and validation of a prognostic model based on immune-related genes in ovarian carcinoma. PeerJ 2024; 12:e18235. [PMID: 39494284 PMCID: PMC11531744 DOI: 10.7717/peerj.18235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/15/2024] [Indexed: 11/05/2024] Open
Abstract
Background A novel valuable prognostic model has been developed on the basis of immune-related genes (IRGs), which could be used to estimate overall survival (OS) in ovarian cancer (OC) patients in The Cancer Genome Atlas (TCGA) dataset and the International Cancer Genome Consortium (ICGC) dataset. Methods This prognostic model was engineered by employing LASSO regression in training cohort (TCGA dataset). The corresponding growth predictive values of this model for individualized survival was evaluated using survival analysis, receiver operating characteristic curve (ROC curve), and risk curve analysis. Combined with clinical characteristics, a model risk score nomogram for OS was well built. Thereafter, depended on the model risk score, patients were divided into high and low risk subgroups. The survival difference between these subgroups was measured using Kaplan-Meier survival method. In addition, correlations containing pathway enrichment, treatment, immune cell infiltration and the prognostic model were also analyzed. We established the ovarian cancer cell line W038 for this study and identified the performances of GBP1P1 knockdown on a series of activities including cellular proliferation, apoptosis, migration, and invasion of W038 cells in vitro. Results We constructed a 25-genes prognostic model (TNFAIP8L3, PI3, TMEM181, GBP1P1 (LOC400759), STX18, KIF26B, MRPS11, CACNA1C, PACSIN3, GMPR, MANF, PYGB, SNRPA1, ST7L, ZBP1, BMPR1B-DT, STAC2, LINC02585, LYPD6, NSG1, ACOT13, FAM120B, LEFTY1, SULT1A2, FZD3). The areas under the curves (AUC) of 1, 2 and 3 years were 0.806, 0.773 and 0.762, in the TCGA cohort, respectively. Besides, the effectiveness of the model was verified using ICGC testing data. Univariate and multivariate Cox regression analysis exposes the risk score as an independent prognosis predictor for OS both in the TCGA and ICGC cohort. In summary, we utilized comprehensive bioinformatics analysis to build an effective prognostic gene model for OC patients. These bioinformatic results suggested that GBP1P1 could act as a novel biomarker for OC. GBP1P1 knockdown substantially inhibited the proliferation, migration, and invasion of W038 cells in vitro, and increased the percentage of apoptotic W038 cells. Conclusions The analyses of genetic status of patients with 25-genes model might improve the ability to predict the prognosis of patients with OC and help to select patients suit able to therapies. Immune-related gene GBP1P1 might serve as prognostic biomarker for OC.
Collapse
Affiliation(s)
- Min Yu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Dan Li
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Zhang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ke Wang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
9
|
Huang D, Li S, Bai Y, Wang Y. Efficacy and safety of immune checkpoint inhibitors for advanced or recurrent endometrial cancer: a systematic review and network meta-analysis. BMC Cancer 2024; 24:1298. [PMID: 39433998 PMCID: PMC11494949 DOI: 10.1186/s12885-024-13058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Currently, several randomized controlled trials (RCTs) have been conducted to investigate the efficacy of combining immune checkpoint inhibitors (ICIs) with chemotherapy as a first-line treatment for advanced or recurrent endometrial cancer; however, the optimal treatment strategy remains undetermined. METHODS A comprehensive search of online databases was conducted to identify RCTs published until December 31, 2023. Network meta-analysis was performed to evaluate PFS, OS, TRAEs, irAEs, and the ranking of different treatment regimens. RESULTS A total of 2702 patients from five RCTs (six reports) were included in the analysis. The combination therapy of ICIs significantly prolonged PFS (HR = 0.69, 95%CI 0.63-0.76, p < 0.0001) and OS (HR = 0.73, 95%CI 0.63-0.85, p < 0.0001) in the overall population. Among the different ICIs combinations evaluated, Durva-Olap-CP exhibited superior efficacy for both PFS and OS outcomes. In the pMMR population, both Durva-Olap-CP and Pembro-CP significantly reduced the risk of disease progression or death compared to Avelu-CP and Atezo-CP treatments; however, no significant differences were observed among various ICI combination therapies in patients with dMMR. In the dMMR population, Dostar-CP demonstrates a 42.2% probability of achieving first rank in terms of PFS, whereas in the pMMR population, Pembro-CP exhibits a 60% likelihood of securing the top position. Importantly, the toxicity associated with ICIs combination therapy was manageable and well-tolerated. CONCLUSIONS The combination of ICIs and chemotherapy as first-line treatment for advanced or recurrent endometrial cancer has demonstrated superior survival outcomes compared to chemotherapy alone. Durva-Olap-CP exhibited the most favorable PFS and OS benefits in the overall population. In patients with dMMR, Dostar-CP showed the greatest improvement in PFS, while Pembro-CP demonstrated the most pronounced PFS benefit in patients with pMMR.
Collapse
Affiliation(s)
- Danxue Huang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yang Bai
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yan Wang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
10
|
Grundy EE, Shaw LC, Wang L, Lee AV, Argueta JC, Powell DJ, Ostrowski M, Jones RB, Cruz CRY, Gordish-Dressman H, Chappell NP, Bollard CM, Chiappinelli KB. A T cell receptor specific for an HLA-A*03:01-restricted epitope in the endogenous retrovirus ERV-K-Env exhibits limited recognition of its cognate epitope. Mob DNA 2024; 15:19. [PMID: 39385229 PMCID: PMC11462856 DOI: 10.1186/s13100-024-00333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Transposable elements (TEs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the TE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of previously identified epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity against cancer cells. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, in vitro priming of several healthy donors with this epitope of ERV-K-Env did not result in target antigen specificity. These data suggest that the T cell receptor is a poor candidate for targeting this specific ERV-K-Env epitope and has limited potential as a T cell therapy for OC.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - Lauren C Shaw
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Loretta Wang
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
| | - Abigail V Lee
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - James Castro Argueta
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto, Canada
| | - R Brad Jones
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - C Russell Y Cruz
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Heather Gordish-Dressman
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
- The Center for Translational Research, Children's National Hospital, Washington, DC, USA
| | | | - Catherine M Bollard
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA.
- The George Washington University Cancer Center, Washington, DC, USA.
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA.
| |
Collapse
|
11
|
Pan Y, Yang X, Chen M, Shi K, Lyu Y, Meeson AP, Lash GE. Role of Cancer Side Population Stem Cells in Ovarian Cancer Angiogenesis. Med Princ Pract 2024; 33:403-413. [PMID: 39068919 PMCID: PMC11460956 DOI: 10.1159/000539642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
Ovarian cancer is one of the most common gynecologic malignancies. Recurrence and metastasis often occur after treatment, and it has the highest mortality rate of all gynecological tumors. Cancer stem cells (CSCs) are a small population of cells with the ability of self-renewal, multidirectional differentiation, and infinite proliferation. They have been shown to play an important role in tumor growth, metastasis, drug resistance, and angiogenesis. Ovarian cancer side population (SP) cells, a type of CSC, have been shown to play roles in tumor formation, colony formation, xenograft tumor formation, ascites formation, and tumor metastasis. The rapid progression of tumor angiogenesis is necessary for tumor growth; however, many of the mechanisms driving this process are unclear as is the contribution of CSCs. The aim of this review was to document the current state of knowledge of the molecular mechanism of ovarian cancer stem cells (OCSCs) in regulating tumor angiogenesis.
Collapse
Affiliation(s)
- Yue Pan
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - XueFen Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaojuan Chen
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kun Shi
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | | | - Gendie E. Lash
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Third Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Grundy EE, Shaw LC, Wang L, Powell DJ, Ostrowski M, Jones RB, Cruz CRY, Gordish-Dressman H, Bollard CM, Chiappinelli KB. Limited Immunogenicity of an HLA-A*03:01-restricted Epitope of Erv-k-env in Non-hiv-1 Settings: Implications for Adoptive Cell Therapy in Cancer. RESEARCH SQUARE 2024:rs.3.rs-4432372. [PMID: 38854052 PMCID: PMC11160923 DOI: 10.21203/rs.3.rs-4432372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Repetitive elements (REs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the RE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of a previously identified immunogenic epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity in non-HIV-1 settings. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, these transduced T cells were not specific for HLA-A*03:01 + OC cells nor for the cognate peptide in HLA-matched systems from multiple healthy donors. These data suggest that the ERV-K-Env epitope recognized by this T cell receptor is of low immunogenicity and has limited potential as a T cell target for OC.
Collapse
Affiliation(s)
| | | | | | | | | | - R Brad Jones
- Weill Cornell Graduate School of Medical Medical Sciences
| | | | | | | | | |
Collapse
|
13
|
Friedman CF, Manning-Geist BL, Zhou Q, Soumerai T, Holland A, Da Cruz Paula A, Green H, Ozsoy MA, Iasonos A, Hollmann T, Leitao MM, Mueller JJ, Makker V, Tew WP, O'Cearbhaill RE, Liu YL, Rubinstein MM, Troso-Sandoval T, Lichtman SM, Schram A, Kyi C, Grisham RN, Causa Andrieu P, Wherry EJ, Aghajanian C, Weigelt B, Hensley ML, Zamarin D. Nivolumab for mismatch-repair-deficient or hypermutated gynecologic cancers: a phase 2 trial with biomarker analyses. Nat Med 2024; 30:1330-1338. [PMID: 38653864 PMCID: PMC11108776 DOI: 10.1038/s41591-024-02942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Programmed death-1 (PD-1) inhibitors are approved for therapy of gynecologic cancers with DNA mismatch repair deficiency (dMMR), although predictors of response remain elusive. We conducted a single-arm phase 2 study of nivolumab in 35 patients with dMMR uterine or ovarian cancers. Co-primary endpoints included objective response rate (ORR) and progression-free survival at 24 weeks (PFS24). Secondary endpoints included overall survival (OS), disease control rate (DCR), duration of response (DOR) and safety. Exploratory endpoints included biomarkers and molecular correlates of response. The ORR was 58.8% (97.5% confidence interval (CI): 40.7-100%), and the PFS24 rate was 64.7% (97.5% one-sided CI: 46.5-100%), meeting the pre-specified endpoints. The DCR was 73.5% (95% CI: 55.6-87.1%). At the median follow-up of 42.1 months (range, 8.9-59.8 months), median OS was not reached. One-year OS rate was 79% (95% CI: 60.9-89.4%). Thirty-two patients (91%) had a treatment-related adverse event (TRAE), including arthralgia (n = 10, 29%), fatigue (n = 10, 29%), pain (n = 10, 29%) and pruritis (n = 10, 29%); most were grade 1 or grade 2. Ten patients (29%) reported a grade 3 or grade 4 TRAE; no grade 5 events occurred. Exploratory analyses show that the presence of dysfunctional (CD8+PD-1+) or terminally dysfunctional (CD8+PD-1+TOX+) T cells and their interaction with programmed death ligand-1 (PD-L1)+ cells were independently associated with PFS24. PFS24 was associated with presence of MEGF8 or SETD1B somatic mutations. This trial met its co-primary endpoints (ORR and PFS24) early, and our findings highlight several genetic and tumor microenvironment parameters associated with response to PD-1 blockade in dMMR cancers, generating rationale for their validation in larger cohorts.ClinicalTrials.gov identifier: NCT03241745 .
Collapse
Affiliation(s)
- Claire F Friedman
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Beryl L Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tara Soumerai
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aliya Holland
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hunter Green
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melih Arda Ozsoy
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Travis Hollmann
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mario M Leitao
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Jennifer J Mueller
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - William P Tew
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Roisin E O'Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ying L Liu
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria M Rubinstein
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Tiffany Troso-Sandoval
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Stuart M Lichtman
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alison Schram
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Chrisann Kyi
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Rachel N Grisham
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Pamela Causa Andrieu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E John Wherry
- Institute of Immunology,University of Pennsylvania, Philadelphia, PA, USA
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martee L Hensley
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute,Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
He G, Mei C, Chen C, Liu X, Wu J, Deng Y, Liao Y. Application and progress of nanozymes in antitumor therapy. Int J Biol Macromol 2024; 265:130960. [PMID: 38518941 DOI: 10.1016/j.ijbiomac.2024.130960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Tumors remain one of the major threats to public health and there is an urgent need to design new pharmaceutical agents for their diagnosis and treatment. In recent years, due to the rapid development of nanotechnology, biotechnology, catalytic science, and theoretical computing, subtlety has gradually made great progress in research related to tumor diagnosis and treatment. Compared to conventional drugs, enzymes can improve drug distribution and enhance drug enrichment at the tumor site, thereby reducing drug side effects and enhancing drug efficacy. Nanozymes can also be used as tumor tracking imaging agents to reshape the tumor microenvironment, providing a versatile platform for the diagnosis and treatment of malignancies. In this paper, we review the current status of research on enzymes in oncology and analyze novel oncology therapeutic approaches and related mechanisms. To date, a large number of nanomaterials, such as noble metal nanomaterials, nonmetallic nanomaterials, and carbon-based nanomaterials, have been shown to be able to function like natural enzymes, particularly with significant advantages in tumor therapy. In light of this, the authors in this review have systematically summarized and evaluated the construction, enzymatic activity, and their characteristics of nanozymes with respect to current modalities of tumor treatment. In addition, the application and research progress of different types of nicknames and their features in recent years are summarized in detail. We conclude with a summary and outlook on the study of nanozymes in tumor diagnosis and treatment. It is hoped that this review will inspire researchers in the fields of nanotechnology, chemistry, biology, materials science and theoretical computing, and contribute to the development of nano-enzymology.
Collapse
Affiliation(s)
- Gaihua He
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | - Chao Mei
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Chenbo Chen
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Xiao Liu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Jiaxuan Wu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Yue Deng
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Ye Liao
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; College of Veterinary Medicine, Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
15
|
Yan L, Fan E, Tan B. Characteristics of Ovarian Cancer Immune Cell Invasion and Bioinformatics to Predict the Effect of Immunotherapy. Horm Metab Res 2024; 56:197-205. [PMID: 38242159 DOI: 10.1055/a-2231-8475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Recent studies have confirmed that tumor immune cell infiltration (ICI) is associated with sensitivity of ovarian cancer (OC) immunotherapy and disease progression of OC patients. However, studies related to immune infiltration in OC, has not been elucidated. Two algorithms are used to analyze the OC data in the TCGA and GEO databases. After combining the two data sets, the immune cell content of the sample was estimated by Cell-type Identification By Estimate Relative Subsets of RNA Transcripts (CIBERSORT method). An unsupervised consistent clustering algorithm was used to analyze ICI subtypes and their differentially expressed genes (DEGs). Two subgroups and three ICI gene clusters were identified by unsupervised consensus clustering algorithm. The ICI score was obtained by analyzing the gene characteristics through principal component analysis (PCA). The ICI score ranged from -15.8132 to 18.7211, which was associated with the prognosis of OC patients with immunotherapy. The Toll-like receptor pathway, B-cell receptor pathway, antigen processing and presentation pathway, NK-cell-mediated cytotoxicity pathway, and arginine-proline metabolism pathway were activated in the high ICI score group, suggesting that immune cells in the high ICI score group were activated, thus leading to a better prognosis in this group of patients. Patients with G3-G4 in the high ICI rating group were more sensitive to immunotherapy and had a better prognosis in patients with high tumor mutation burden (TMB). This study suggests that ICI scores can be used as a feasible auxiliary indicator for predicting the prognosis of patients with OC.
Collapse
Affiliation(s)
- Lingli Yan
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Erxi Fan
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Tan
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Richardson M, Chase DM. Latest advances in immuno-oncology for endometrial cancer: single-agent and combination regimens. Curr Opin Obstet Gynecol 2024; 36:1-8. [PMID: 37792525 DOI: 10.1097/gco.0000000000000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
PURPOSE OF REVIEW The scope of immuno-oncology in endometrial cancer has changed rapidly in the last several years, requiring up-to-date knowledge for those who treat these patients. RECENT FINDINGS This article will focus on molecular profiling, recent trials, and FDA approvals of targeted immuno-oncology medications in endometrial cancer. These include immune checkpoint inhibitors alone or with combination treatment. SUMMARY The publication of the TCGA has led to significant focus on molecular subgroupings into POLEm, MMRd, NSMP, and p53m groups. For those patients with MMRd vs. MMRp tumors, there are indications for single agent immune checkpoint inhibitors with dostarlimab or pembrolizumab. For those with MMRp tumors, the addition of lenvatinib to pembrolizumab has proven clinical benefit. The recent publication of the RUBY and NRG-GY018 trials have shown clinical benefit in both subgroups with addition of immune checkpoint inhibitor to platinum-based chemotherapy. Now there is approval for use of dostarlimab in frontline chemotherapy and maintenance for advanced stage or recurrent endometrial cancer. Several upcoming trials investigating molecular subgroups from the TCGA are eagerly anticipated.
Collapse
Affiliation(s)
- Michael Richardson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
17
|
Bao W, Li Z. Efficacy and safety of neoadjuvant chemotherapy containing anti-angiogenic drugs, immunotherapy, or PARP inhibitors for ovarian cancer. Crit Rev Oncol Hematol 2024; 194:104238. [PMID: 38128630 DOI: 10.1016/j.critrevonc.2023.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. The standard treatment involves chemotherapy with platinum-paclitaxel following cytoreductive surgery. For patients battling widespread and aggressive tumor spread, neoadjuvant chemotherapy (NACT) followed by interval debulking surgery emerges as an encouraging alternative. However, the effectiveness of this strategy is often limited by advanced-stage diagnosis and high likelihood of recurrence. The high mortality rate necessitates the exploration of targeted therapies. Present results signal promising efficacy and acceptable toxicities of anti-angiogenic drugs, immunotherapy, or PARP inhibitors used in chemotherapy. However, the potential integration of these drugs into NACT raises questions about response rates, surgical outcomes, and adverse events. This review delves into the findings from all published articles and ongoing studies, aiming to summarize the clinical use of anti-angiogenic drugs, immunotherapy, or PARP inhibitors in NACT, highlight the positive and negative aspects, and outline future perspectives.
Collapse
Affiliation(s)
- Wanying Bao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Yang Y, Wu SF, Bao W. Molecular subtypes of endometrial cancer: Implications for adjuvant treatment strategies. Int J Gynaecol Obstet 2024; 164:436-459. [PMID: 37525501 DOI: 10.1002/ijgo.14969] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND When determining adjuvant treatment for endometrial cancer, the decision typically relies on factors such as cancer stage, histologic grade, subtype, and a few histopathologic markers. The Cancer Genome Atlas revealed molecular subtyping of endometrial cancer, which can provide more accurate prognostic information and guide personalized treatment plans. OBJECTIVE To summarize the expression and molecular basis of the main biomarkers of endometrial cancer. SEARCH STRATEGY PubMed was searched from January 2000 to March 2023. SELECTION CRITERIA Studies evaluating molecular subtypes of endometrial cancer and implications for adjuvant treatment strategies. DATA COLLECTION AND ANALYSIS Three authors independently performed a comprehensive literature search, collected and extracted data, and assessed the methodological quality of the included studies. MAIN RESULTS We summarized the molecular subtyping of endometrial cancer, including mismatch repair deficient, high microsatellite instability, polymerase epsilon (POLE) exonuclease domain mutated, TP53 gene mutation, and non-specific molecular spectrum. We also summarized planned and ongoing clinical trials and common therapy methods in endometrial cancer. POLE mutated endometrial cancer consistently exhibits favorable patient outcomes, regardless of adjuvant therapy. Genomic similarities between p53 abnormality endometrial cancer and high-grade serous ovarian cancer suggested possible overlapping treatment strategies. High levels of immune checkpoint molecules, such as programmed cell death 1 and programmed cell death 1 ligand 1 can counterbalance mismatch repair deficient endometrial cancer immune phenotype. Hormonal treatment is an appealing option for high-risk non-specific molecular spectrum endometrial cancers, which are typically endometrioid and hormone receptor positive. Combining clinical and pathologic characteristics to guide treatment decisions for patients, including concurrent radiochemotherapy, chemotherapy, inhibitor therapy, endocrine therapy, and immunotherapy, might improve the management of endometrial cancer and provide more effective treatment options for patients. CONCLUSIONS We have characterized the molecular subtypes of endometrial cancer and discuss their value in terms of a patient-tailored therapy in order to prevent significant under- or overtreatment.
Collapse
Affiliation(s)
- Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Su Fang Wu
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Bao
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
19
|
Hamade DF, Epperly MW, Fisher R, Hou W, Shields D, van Pijkeren JP, Leibowitz BJ, Coffman LG, Wang H, Huq MS, Huang Z, Rogers CJ, Vlad AM, Greenberger JS, Mukherjee A. Genetically Engineered Probiotic Limosilactobacillus reuteri Releasing IL-22 (LR-IL-22) Modifies the Tumor Microenvironment, Enabling Irradiation in Ovarian Cancer. Cancers (Basel) 2024; 16:474. [PMID: 38339228 PMCID: PMC10854600 DOI: 10.3390/cancers16030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Despite recent advances in cancer therapy, ovarian cancer remains the most lethal gynecological cancer worldwide, making it crucial and of the utmost importance to establish novel therapeutic strategies. Adjuvant radiotherapy has been assessed historically, but its use was limited by intestinal toxicity. We recently established the role of Limosilactobacillus reuteri in releasing IL-22 (LR-IL-22) as an effective radiation mitigator, and we have now assessed its effect in an ovarian cancer mouse model. We hypothesized that an LR-IL-22 gavage would enable intestinal radioprotection by modifying the tumor microenvironment and, subsequently, improving overall survival in female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer. Herein, we report that the LR-IL-22 gavage not only improved overall survival in mice when combined with a PD-L1 inhibitor by inducing differential gene expression in irradiated stem cells but also induced PD-L1 protein expression in ovarian cancer cells and mobilized CD8+ T cells in whole abdomen irradiated mice. The addition of LR-IL-22 to a combined treatment modality with fractionated whole abdomen radiation (WAI) and systemic chemotherapy and immunotherapy regimens can facilitate a safe and effective protocol to reduce tumor burden, increase survival, and improve the quality of life of a locally advanced ovarian cancer patient.
Collapse
Affiliation(s)
- Diala F. Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | | | - Brian J. Leibowitz
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Lan G. Coffman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.W.); (Z.H.)
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Ziyu Huang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.W.); (Z.H.)
| | | | - Anda M. Vlad
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| |
Collapse
|
20
|
Nersesian S, Arseneau RJ, Mejia JP, Lee SN, Westhaver LP, Griffiths NW, Grantham SR, Meunier L, Communal L, Mukherjee A, Mes-Masson AM, Arnason T, Nelson BH, Boudreau JE. Improved overall survival in patients with high-grade serous ovarian cancer is associated with CD16a+ immunologic neighborhoods containing NK cells, T cells and macrophages. Front Immunol 2024; 14:1307873. [PMID: 38318505 PMCID: PMC10838965 DOI: 10.3389/fimmu.2023.1307873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
Background For patients with high grade serous carcinoma of the ovary (HGSC), survival rates have remained static for the last half century. Despite the presence of tumor mutations and infiltration of immune cells, existing immunotherapies have achieved little success against HGSC. These observations highlight a gap in the understanding of how the immune system functions and interacts within HGSC tumors. Methods We analyzed duplicate core samples from 939 patients with HGSC to understand patterns of immune cell infiltration, localization, and associations with clinical features. We used high-parameter immunohistochemical/Opal multiplex, digital pathology, computational biology, and multivariate analysis to identify immune cell subsets and their associations with HGSC tumors. Results We defined six patterns of cellular infiltration by spatially restricted unsupervised clustering of cell subsets. Each pattern was represented to some extent in most patient samples, but their specific distributions differed. Overall (OS) and progression-free survival (PFS) corresponded with higher infiltration of CD16a+ cells, and their co-localization with macrophages, T cells, NK cells, in one of six cellular neighborhoods that we defined with our spatial assessment. Conclusions Immune cell neighborhoods containing CD16a+ cells are associated with improved OS and PFS for patients with HGSC. Patterns of immunologic neighborhoods differentiate patient outcomes, and could inform future, more precise approaches to treatment.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Riley J. Arseneau
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jorge P. Mejia
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | | | | | - Liliane Meunier
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
| | - Laudine Communal
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
| | | | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Thomas Arnason
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology & Laboratory Medicine, QEII Health Sciences Centre, Nova Scotia Health (Central Zone), Halifax, NS, Canada
| | - Brad H. Nelson
- Deeley Research Centre, British Columbia Cancer Research Institute, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
21
|
Verma N, Renauer PA, Dong C, Xin S, Lin Q, Zhang F, Glazer PM, Chen S. Genome scale CRISPR screens identify actin capping proteins as key modulators of therapeutic responses to radiation and immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575614. [PMID: 38293095 PMCID: PMC10827061 DOI: 10.1101/2024.01.14.575614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Radiotherapy (RT), is a fundamental treatment for malignant tumors and is used in over half of cancer patients. As radiation can promote anti-tumor immune effects, a promising therapeutic strategy is to combine radiation with immune checkpoint inhibitors (ICIs). However, the genetic determinants that impact therapeutic response in the context of combination therapy with radiation and ICI have not been systematically investigated. To unbiasedly identify the tumor intrinsic genetic factors governing such responses, we perform a set of genome-scale CRISPR screens in melanoma cells for cancer survival in response to low-dose genotoxic radiation treatment, in the context of CD8 T cell co-culture and with anti-PD1 checkpoint blockade antibody. Two actin capping proteins, Capza3 and Capg, emerge as top hits that upon inactivation promote the survival of melanoma cells in such settings. Capza3 and Capg knockouts (KOs) in mouse and human cancer cells display persistent DNA damage due to impaired homology directed repair (HDR); along with increased radiation, chemotherapy, and DNA repair inhibitor sensitivity. However, when cancer cells with these genes inactivated were exposed to sublethal radiation, inactivation of such actin capping protein promotes activation of the STING pathway, induction of inhibitory CEACAM1 ligand expression and resistance to CD8 T cell killing. Patient cancer genomics analysis reveals an increased mutational burden in patients with inactivating mutations in CAPG and/or CAPZA3, at levels comparable to other HDR associated genes. There is also a positive correlation between CAPG expression and activation of immune related pathways and CD8 T cell tumor infiltration. Our results unveil the critical roles of actin binding proteins for efficient HDR within cancer cells and demonstrate a previously unrecognized regulatory mechanism of therapeutic response to radiation and immunotherapy.
Collapse
Affiliation(s)
- Nipun Verma
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
| | - Paul A. Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Chuanpeng Dong
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Feifei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Immunobiology Program, Yale University, New Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Wang R, Ye H, Yang B, Ao M, Yu X, Wu Y, Xi M, Hou M. m6A-modified circNFIX promotes ovarian cancer progression and immune escape via activating IL-6R/JAK1/STAT3 signaling by sponging miR-647. Int Immunopharmacol 2023; 124:110879. [PMID: 37713785 DOI: 10.1016/j.intimp.2023.110879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common gynecological malignant cancers. Our previous work confirmed that circNFIX acted as an oncogene in OC, which could promote malignant proliferation, metastasis and angiogenesis. However, the role and mechanism of circNFIX in OC immune escape remain unclear. METHODS The RNA and protein levels were determined by qRT-PCR and western blot assays. The malignant phenotypes were tested by cell count kit-8, EdU staining, flow cytometry and transwell assays. The immune cytokines levels were measured by ELISA analysis. Molecular interactions were verified employing RNA immunoprecipitation, meRIP and dual luciferase methods. In vivo validation was performed by xenograft tumor and lung metastasis model. Hematoxylin & eosin and immunohistochemistry staining were used to observe the pathological changes. RESULTS The levels of circNFIX, PD-L1, and IL-6R were upregulated in OC tissues and cell lines, while miR-647 was downregulated. Functional assays showed that loss of circNFIX suppressed the growth, metastasis and immune escape of OC cells both in vitro and in vivo. On the molecular level, the m6A modification of circNFIX was elevated in OC cells, and its expression was positively correlated to m6A modification and depended on IGF2BP1 ∼ 3 recognition. Moreover, circNFIX acted as a competing endogenous RNA for miR-647 to upregulate IL-6R expression, thereby activating JAK/STAT3 signaling and elevating PD-L1 expression. Rescue assays revealed that co-silencing of miR-647 reversed the antitumor effects of circNFIX knockdown on cell proliferation, metastasis and immune escape of OC cells. CONCLUSION This study provided a comprehensive understanding of the molecular mechanism about circNFIX in OC, demonstrating m6A activated-circNFIX accelerated OC development and immune escape via regulating miR-647/IL-6R/PD-L1 pathway.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Hui Ye
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Bowen Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Mengyin Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Xiuzhang Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Yuke Wu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China
| | - Minmin Hou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
23
|
Johnson RL, Ganesan S, Thangavelu A, Theophilou G, de Jong D, Hutson R, Nugent D, Broadhead T, Laios A, Cummings M, Orsi NM. Immune Checkpoint Inhibitors Targeting the PD-1/PD-L1 Pathway in Advanced, Recurrent Endometrial Cancer: A Scoping Review with SWOT Analysis. Cancers (Basel) 2023; 15:4632. [PMID: 37760602 PMCID: PMC10527181 DOI: 10.3390/cancers15184632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Results of recent clinical trials using the immune check point inhibitors (ICI) pembrolizumab or dostarlimab with/without lenvatinib has led to their approval for specific molecular subgroups of advanced recurrent endometrial cancer (EC). Herein, we summarise the clinical data leading to this first tissue-agnostic approval. As this novel therapy is not yet available in the United Kingdom standard care setting, we explore the strengths, weaknesses, opportunities, and threats (SWOT) of ICI treatment in EC. Major databases were searched focusing on clinical trials using programmed cell death protein 1 (PD-1) and its ligand (PD-L1) ICI which ultimately contributed to anti-PD-1 approval in EC. We performed a data quality assessment, reviewing survival and safety analysis. We included 15 studies involving 1609 EC patients: 458 with mismatch repair deficiency (MMRd)/microsatellite instability-high (MSI-H) status and 1084 with mismatch repair proficiency/microsatellite stable (MMRp/MSS) status. Pembrolizumab/dostarlimab have been approved for MMRd ECs, with the addition of lenvatinib for MMRp cases in the recurrent setting. Future efforts will focus on the pathological assessment of biomarkers to determine molecular phenotypes that correlate with response or resistance to ICI in order to identify patients most likely to benefit from this treatment.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Subhasheenee Ganesan
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Amudha Thangavelu
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Georgios Theophilou
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Diederick de Jong
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Richard Hutson
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - David Nugent
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Timothy Broadhead
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Alexandros Laios
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Michele Cummings
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
24
|
Yang D, Duan MH, Yuan QE, Li ZL, Luo CH, Cui LY, Li LC, Xiao Y, Zhu XY, Zhang HL, Feng GK, Liu GC, Deng R, Li JD, Zhu XF. Suppressive stroma-immune prognostic signature impedes immunotherapy in ovarian cancer and can be reversed by PDGFRB inhibitors. J Transl Med 2023; 21:586. [PMID: 37658364 PMCID: PMC10472577 DOI: 10.1186/s12967-023-04422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/06/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND As the most lethal gynecologic cancer, ovarian cancer (OV) holds the potential of being immunotherapy-responsive. However, only modest therapeutic effects have been achieved by immunotherapies such as immune checkpoint blockade. This study aims to propose a generalized stroma-immune prognostic signature (SIPS) to identify OV patients who may benefit from immunotherapy. METHODS The 2097 OV patients included in the study were significant with high-grade serous ovarian cancer in the III/IV stage. The 470 immune-related signatures were collected and analyzed by the Cox regression and Lasso algorithm to generalize a credible SIPS. Correlations between the SIPS signature and tumor microenvironment were further analyzed. The critical immunosuppressive role of stroma indicated by the SIPS was further validated by targeting the major suppressive stroma component (CAFs, Cancer-associated fibroblasts) in vitro and in vivo. With four machine-learning methods predicting tumor immune subtypes, the stroma-immune signature was upgraded to a 23-gene signature. RESULTS The SIPS effectively discriminated the high-risk individuals in the training and validating cohorts, where the high SIPS succeeded in predicting worse survival in several immunotherapy cohorts. The SIPS signature was positively correlated with stroma components, especially CAFs and immunosuppressive cells in the tumor microenvironment, indicating the critical suppressive stroma-immune network. The combination of CAFs' marker PDGFRB inhibitors and frontline PARP inhibitors substantially inhibited tumor growth and promoted the survival of OV-bearing mice. The stroma-immune signature was upgraded to a 23-gene signature to improve clinical utility. Several drug types that suppress stroma-immune signatures, such as EGFR inhibitors, could be candidates for potential immunotherapeutic combinations in ovarian cancer. CONCLUSIONS The stroma-immune signature could efficiently predict the immunotherapeutic sensitivity of OV patients. Immunotherapy and auxiliary drugs targeting stroma could enhance immunotherapeutic efficacy in ovarian cancer.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Mei-Han Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiu-Er Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Gynecological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Chuang-Hua Luo
- Department of Gynecological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lan-Yue Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Li-Chao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Ying Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Guo-Chen Liu
- Department of Gynecological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| | - Jun-Dong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- Department of Gynecological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
25
|
Zhao L, Chen X, Wu H, He Q, Ding L, Yang B. Strategies to synergize PD-1/PD-L1 targeted cancer immunotherapies to enhance antitumor responses in ovarian cancer. Biochem Pharmacol 2023; 215:115724. [PMID: 37524205 DOI: 10.1016/j.bcp.2023.115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Anti-programmed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) antibodies have developed rapidly but exhibited modest activity in ovarian cancer (OC), achieving a clinical response rate ranging from 5.9% to 19%. Current evidence indicate that the establishment of an integrated cancer-immunity cycle is a prerequisite for anti-PD-1/PD-L1 antibodies. Any impairment in this cycle, including lack of cancer antigens release, impaired antigen-presenting, decreased T cell priming and activation, less T cells that are trafficked or infiltrated in tumor microenvironment (TME), and low tumor recognition and killings, will lead to decreased infiltrated cytotoxic T cells to tumor bed and treatment failure. Therefore, combinatorial strategies aiming to modify cancer-immunity cycle and reprogram tumor immune microenvironment are of great interest. By far, various strategies have been studied to enhance responsiveness to PD-1/PD-L1 inhibitors in OC. Platinum-based chemotherapy increases neoantigens release; poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) improve the function of antigen-presenting cells and promote the trafficking of T cells into tumors; epigenetic drugs help to complete the immune cycle by affecting multiple steps; immunotherapies like anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies reactivate T cells, and other treatment strategies like radiotherapy helps to increase the expression of tumor antigens. In this review, we will summarize the preclinical studies by analyzing their contribution in modifying the cancer immunity cycle and remodeling tumor environment, and we will also summarize recent progress in clinical trials and discuss some perspectives to improve these treatment strategies.
Collapse
Affiliation(s)
- Lin Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Bian X, Sun C, Cheng J, Hong B. Targeting DNA Damage Repair and Immune Checkpoint Proteins for Optimizing the Treatment of Endometrial Cancer. Pharmaceutics 2023; 15:2241. [PMID: 37765210 PMCID: PMC10536053 DOI: 10.3390/pharmaceutics15092241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
The dependence of cancer cells on the DNA damage response (DDR) pathway for the repair of endogenous- or exogenous-factor-induced DNA damage has been extensively studied in various cancer types, including endometrial cancer (EC). Targeting one or more DNA damage repair protein with small molecules has shown encouraging treatment efficacy in preclinical and clinical models. However, the genes coding for DDR factors are rarely mutated in EC, limiting the utility of DDR inhibitors in this disease. In the current review, we recapitulate the functional role of the DNA repair system in the development and progression of cancer. Importantly, we discuss strategies that target DDR proteins, including PARP, CHK1 and WEE1, as monotherapies or in combination with cytotoxic agents in the treatment of EC and highlight the compounds currently being evaluated for their efficacy in EC in clinic. Recent studies indicate that the application of DNA damage agents in cancer cells leads to the activation of innate and adaptive immune responses; targeting immune checkpoint proteins could overcome the immune suppressive environment in tumors. We further summarize recently revolutionized immunotherapies that have been completed or are now being evaluated for their efficacy in advanced EC and propose future directions for the development of DDR-based cancer therapeutics in the treatment of EC.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Jin Cheng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
27
|
Parashar S, Akhter N, Paplomata E, Elgendy IY, Upadhyaya D, Scherrer-Crosbie M, Okwuosa TM, Sanghani RM, Chalas E, Lindley KJ, Dent S. Cancer Treatment-Related Cardiovascular Toxicity in Gynecologic Malignancies: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:159-173. [PMID: 37144116 PMCID: PMC10152205 DOI: 10.1016/j.jaccao.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/06/2023] Open
Abstract
Improvements in early detection and treatment of gynecologic malignancies have led to an increasing number of survivors who are at risk of long-term cardiac complications from cancer treatment. Multimodality therapies for gynecologic malignancies, including conventional chemotherapy, targeted therapeutics, and hormonal agents, place patients at risk of cancer therapy-related cardiovascular toxicity during and following treatment. Although the cardiotoxicity associated with some female predominant cancers (eg, breast cancer) have been well recognized, there has been less recognition of the potential adverse cardiovascular effects of anticancer therapies used to treat gynecologic malignancies. In this review, the authors provide a comprehensive overview of the cancer therapeutic agents used in gynecologic malignancies, associated cardiovascular toxicities, risk factors for cardiotoxicity, cardiac imaging, and prevention strategies.
Collapse
Affiliation(s)
- Susmita Parashar
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Address for correspondence: Dr Susmita Parashar, Division of Cardiology, Department of Medicine, Emory University, Atlanta, 2665 North Decatur Road, Suite #240, Decatur, Georgia 30033, USA. @emorywomenheart
| | - Nausheen Akhter
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Islam Y. Elgendy
- Division of Cardiology, Department of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Deepa Upadhyaya
- Division of Cardiology, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Marielle Scherrer-Crosbie
- Cardiovascular Medicine Division, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tochukwu M. Okwuosa
- Division of Cardio-Oncology, Department of Medicine, Rush University, Chicago, Illinois, USA
| | - Rupa M. Sanghani
- Division of Cardiology, Department of Medicine, Rush University, Chicago, Illinois, USA
| | - Eva Chalas
- Division of Obstetrics and Gynecology, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Kathryn J. Lindley
- Division of Cardiology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan Dent
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
28
|
Xu C, Xia Y, Zhang B, Drokow EK, Li H, Xu S, Wang Z, Wang S, Jin P, Fang T, Xiong X, Huang P, Jin N, Tan J, Zhong Q, Chen Y, Zhang Q, Fang Y, Ye F, Gao Q. Macrophages facilitate tumor cell PD-L1 expression via an IL-1β-centered loop to attenuate immune checkpoint blockade. MedComm (Beijing) 2023; 4:e242. [PMID: 37009412 PMCID: PMC10063777 DOI: 10.1002/mco2.242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Tumor-associated macrophages (TAMs) play critical roles in reprogramming other immune cells and orchestrating antitumor immunity. However, the interplay between TAMs and tumor cells responsible for enhancing immune evasion remains insufficiently understood. Here, we revealed that interleukin (IL)-1β was among the most abundant cytokines within the in vitro tumor-macrophage coculture system, and enhanced IL-1β expression was associated with impaired cytotoxicity of CD8+ T cells in human ovarian cancer, indicating the possibility that IL-1β mediated immunosuppression during tumor-TAMs crosstalk. Mechanistically, we demonstrated that IL-1β significantly boosted programmed death-ligand 1 (PD-L1) expression in tumor cells via the activation of the nuclear factor-κb signaling cascade. Specifically, IL-1β released from TAMs was triggered by lactate, the anaerobic metabolite of tumor cells, in an inflammasome activation-dependent manner. IL-1β sustained and intensified immunosuppression by promoting C-C motif chemokine ligand 2 secretion in tumor cells to fuel TAMs recruitment. Importantly, IL-1β neutralizing antibody significantly curbed tumor growth and displayed synergistic antitumor efficacies with anti-PD-L1 antibody in tumor-bearing mouse models. Together, this study presents an IL-1β-centered immunosuppressive loop between TAMs and tumor cells, highlighting IL-1β as a candidate therapeutic target to reverse immunosuppression and potentiate immune checkpoint blockade.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Xia
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bai‐Wei Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Emmanuel Kwateng Drokow
- Department of Radiation OncologyZhengzhou University People's Hospital & Henan Provincial People's HospitalZhengzhouChina
| | - Hua‐Yi Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sen Xu
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Si‐Yuan Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ping Jin
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tian Fang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐Ming Xiong
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Pu Huang
- Department of Obstetrics and GynecologyThe Second Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Ning Jin
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jia‐Hong Tan
- Department of Obstetrics and GynecologyThe First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Qing Zhong
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu‐Xin Chen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qi Zhang
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yong Fang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fei Ye
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing‐Lei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
29
|
Lainé A, Gonzalez-Lopez AM, Hasan U, Ohkuma R, Ray-Coquard I. Immune Environment and Immunotherapy in Endometrial Carcinoma and Cervical Tumors. Cancers (Basel) 2023; 15:2042. [PMID: 37046702 PMCID: PMC10093320 DOI: 10.3390/cancers15072042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023] Open
Abstract
Endometrial cancer (EC) is the seventh most common tumor in women, and prognosis of recurrent and metastatic disease is poor. Cervical cancer (CC) represents the fifth most common gynecological cancer. While ECs are more common in developed countries, the incidence of CC has decreased due to the recent implementation of large screening and vaccination programs. Until very recently, patients with advanced or unresectable EC or CC had very limited treatment options and were receiving in first line setting platinum/taxane-based chemotherapy (CT). Significant progress in the treatment of gynecological cancers has occurred in the last few years, with the use of innovative targeted therapies and immunotherapy. However, targeting the immune system in patients with gynecological tumors remains challenging and is not always successful. In ovarian cancer, several immunotherapy treatment regimens have been investigated (as monotherapy and combination therapy in first and subsequent lines of treatment) and showed poor responses. Therefore, we specifically focused our review on EC and CC for their specific immune-related features and therapeutic results demonstrated with immunotherapy. We report recent and current immunotherapy-based clinical trials and provide a review of emerging data that are likely to impact immunotherapy development based on increased biomarkers' identification to monitor response and overcome resistance.
Collapse
Affiliation(s)
| | | | - Uzma Hasan
- CIRI, Team Enveloped Viruses, Vectors and ImmunotheRapy INSERM U1111/UCBL 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, ENS de Lyon, Université Lyon, 69364 Lyon, France
- The Lyon Immunotherapy for Cancer Laboratory (LICL), Centre de Recherche en Cancérologie de Lyon (CRCL)/UMR Inserm 1052/CNRS 5286, CLB, 69373 Lyon CEDEX 08, France
| | - Ryotaro Ohkuma
- Team CISTAR, CRCL, INSERM-1052/CNRS-5286, CLB, Lyon, 69373 CEDEX 08, France
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Isabelle Ray-Coquard
- Centre Léon Bérard, University Claude Bernard Lyon I, 69373 Lyon CEDEX 08, France
| |
Collapse
|
30
|
Tinker AV, Dhani NC, Ghatage P, McLeod D, Samouëlian V, Welch SA, Altman AD. A rapidly evolving landscape: immune checkpoint inhibitors in pretreated metastatic endometrial cancer. Ther Adv Med Oncol 2023; 15:17588359231157633. [PMID: 36950270 PMCID: PMC10026109 DOI: 10.1177/17588359231157633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 03/20/2023] Open
Abstract
Background and objectives Endometrial cancer is a common malignancy and recurrences can be fatal. Although platinum-pretreated endometrial tumors are commonly treated with anthracyclines and taxanes, there is no current standard of care. Both immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) have been extensively assessed in this setting, including tumors selected for DNA mismatch repair (MMR)/microsatellite instability (MSI) and programmed death-ligand 1 expression status. This review will provide evidence-based guidance on use of ICIs alone or in combination with TKIs in patients with pretreated advanced, persistent, or recurrent metastatic endometrial cancer. Data sources and methods Randomized phase II-III trials in unselected populations pretreated, recurrent, or metastatic endometrial cancer and phase I-II trials in biomarker selected populations were identified from PubMed as well as conference proceedings using the key search terms 'immune checkpoint inhibitors', 'endometrial cancer', and 'advanced'. Results A total of nine eligible studies were identified assessing ICI monotherapy for biomarker-selected or ICI plus TKI combinations and a dual ICI regimen for biomarker-unselected patients with pretreated recurrent or metastatic endometrial cancer. In MMR/MSI-selected tumors, five phase I/II studies evaluated ICI monotherapy indicating benefit in these patients. Only the phase III KEYNOTE-775 trial reported a statistically significant overall survival improvement for the combination of pembrolizumab plus lenvatinib compared with docetaxel or paclitaxel regardless of MMR/MSI status. Conclusions Pembrolizumab plus lenvatinib is indicated for patients with unselected pretreated metastatic endometrial cancer and pembrolizumab monotherapy is a preferred option for patients with MMRd/MSI-H tumors.
Collapse
Affiliation(s)
- Anna V. Tinker
- BC Cancer–Vancouver, University of British
Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Neesha C. Dhani
- Princess Margaret Cancer Centre, University of
Toronto, Toronto, ON, Canada
| | - Prafull Ghatage
- Tom Baker Cancer Centre, University of Calgary,
Calgary, AB, Canada
| | | | - Vanessa Samouëlian
- Centre Hospitalier de l’Université de Montréal
(CHUM), Centre de Recherche du CHUM (CRCHUM), Université de Montréal,
Montréal, QC, Canada
| | - Stephen A. Welch
- London Regional Cancer Program, Western
University, London, ON, Canada
| | - Alon D. Altman
- CancerCare Manitoba, University of Manitoba,
Winnipeg, MB, Canada
| |
Collapse
|
31
|
Zeng S, Liu D, Yu Y, Zou L, Jin X, Liu B, Liu L. Efficacy and safety of PD-1/PD-L1 inhibitors in the treatment of recurrent and refractory ovarian cancer: A systematic review and a meta-analysis. Front Pharmacol 2023; 14:1111061. [PMID: 36992842 PMCID: PMC10042289 DOI: 10.3389/fphar.2023.1111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
Objective: To explore the efficacy and safety of PD-1/PD-L1 inhibitors in treating recurrent/refractory ovarian cancer (OC).Methods: The online databases, including PubMed, Embase and Cochrane Library, were searched for relevant literatures on exploring the efficacy and safety of PD-1/PD-L1 inhibitors in the treatment of recurrent/refractory OC. The keywords are as follows: Ovarian neoplasms, programmed death receptor, PD-1, PD-L1, immunotherapy, and immune checkpoint inhibitor. Furthermore, qualified studies were screened for further meta-analysis.Results: In this study, 11 studies (990 patients) were analyzed to evaluate the efficacy of PD-1/PD-L1 inhibitors in the treatment of recurrent/refractory OC. The combined results proved that the objective response rate (ORR) was 6.7%, 95% CI (4.6%,9.2%), disease control rate (DCR) was 37.9%, 95% CI (33.0%, 42.8%), median overall survival (OS) was 10.70 months, 95% CI (9.23, 12.17), and median progression free survival (PFS) was 2.24 months, 95% CI (2.05, 2.43). In addition, in terms of the safety of patients suffering from recurrent/refractory OC and receiving PD-1/PD-L1 inhibitors, the combined treatment related adverse events (TRAEs) were 70.9% (61.7%–80.2%), and the combined immune related adverse events (iAEs) were 29%, 95% CI (14.7%, 43.3%).Conclusion: In patients with recurrent/refractory OC, PD-1/PD-L1 inhibitors were used alone and there was no obvious evidence of improved efficacy and survival. As for safety, the incidences of TRAEs and iAEs are high, so PD1/PD-L1 inhibitors should be applied according to individual conditions.Clinical Trial Registration:https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=367525, identifier CRD42022367525.
Collapse
Affiliation(s)
- Siyuan Zeng
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
- Dalian municipal Central Hospital, China Medical University, Shenyang, China
| | - Daju Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Yongai Yu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Lei Zou
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Xianyu Jin
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Bing Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
- *Correspondence: Lifeng Liu, ; Bing Liu,
| | - Lifeng Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
- Dalian municipal Central Hospital, China Medical University, Shenyang, China
- *Correspondence: Lifeng Liu, ; Bing Liu,
| |
Collapse
|
32
|
Hamade DF, Epperly MW, Fisher R, Hou W, Shields D, van Pijkeren JP, Mukherjee A, Yu J, Leibowitz BJ, Vlad AM, Coffman L, Wang H, Huq MS, Huang Z, Rogers CJ, Greenberger JS. Release of Interferon-β (IFN-β) from Probiotic Limosilactobacillus reuteri-IFN-β (LR-IFN-β) Mitigates Gastrointestinal Acute Radiation Syndrome (GI-ARS) following Whole Abdominal Irradiation. Cancers (Basel) 2023; 15:1670. [PMID: 36980556 PMCID: PMC10046795 DOI: 10.3390/cancers15061670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Irradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Thus, strategies to mitigate toxicity are important and can revitalize the current standard of care. We previously established that LR-IL-22 protects the intestine from WAI. We now hypothesize that LR-IFN-β is an effective radiation protector and mitigator and is rapidly cleared from the digestive tract, making it an option for intestinal radioprotection. We report that the gavage of LR-IFN-β during WAI provides improved intestinal barrier integrity and significantly preserves the numbers of Lgr5+GFP+ intestinal stem cells, improving survival. The rapid clearance of the genetically engineered probiotic from the digestive tract renders it a safe and feasible radiation mitigator. Therefore, the above genetically engineered probiotic is both a feasible and effective radiation mitigator that could potentially revolutionize the management of OC patients. Furthermore, the subsequent addition of platinum/taxane-based chemotherapy to the combination of WAI and LR-IFN-β should reduce tumor volume while protecting the intestine and should improve the overall survival in OC patients.
Collapse
Affiliation(s)
- Diala F. Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Brian J. Leibowitz
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anda M. Vlad
- Department of OB/Gyn and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lan Coffman
- Department of Medicine, University of Pittsburgh, PA 15260, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ziyu Huang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
33
|
Mei C, Gong W, Wang X, Lv Y, Zhang Y, Wu S, Zhu C. Anti-angiogenic therapy in ovarian cancer: Current understandings and prospects of precision medicine. Front Pharmacol 2023; 14:1147717. [PMID: 36959862 PMCID: PMC10027942 DOI: 10.3389/fphar.2023.1147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Ovarian cancer (OC) remains the most fatal disease of gynecologic malignant tumors. Angiogenesis refers to the development of new vessels from pre-existing ones, which is responsible for supplying nutrients and removing metabolic waste. Although not yet completely understood, tumor vascularization is orchestrated by multiple secreted factors and signaling pathways. The most central proangiogenic signal, vascular endothelial growth factor (VEGF)/VEGFR signaling, is also the primary target of initial clinical anti-angiogenic effort. However, the efficiency of therapy has so far been modest due to the low response rate and rapidly emerging acquiring resistance. This review focused on the current understanding of the in-depth mechanisms of tumor angiogenesis, together with the newest reports of clinical trial outcomes and resistance mechanism of anti-angiogenic agents in OC. We also emphatically summarized and analyzed previously reported biomarkers and predictive models to describe the prospect of precision therapy of anti-angiogenic drugs in OC.
Collapse
Affiliation(s)
- Chao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijing Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Chunqi Zhu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Truxova I, Cibula D, Spisek R, Fucikova J. Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. J Immunother Cancer 2023; 11:jitc-2022-005968. [PMID: 36822672 PMCID: PMC9950980 DOI: 10.1136/jitc-2022-005968] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is among the top five causes of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant cells to the peritoneum. Despite improvements in medical therapies, particularly with the implementation of novel drugs targeting homologous recombination deficiency, the survival rates of patients with EOC remain low. Unlike other neoplasms, EOC remains relatively insensitive to immune checkpoint inhibitors, which is correlated with a tumor microenvironment (TME) characterized by poor infiltration by immune cells and active immunosuppression dominated by immune components with tumor-promoting properties, especially tumor-associated macrophages (TAMs). In recent years, TAMs have attracted interest as potential therapeutic targets by seeking to reverse the immunosuppression in the TME and enhance the clinical efficacy of immunotherapy. Here, we review the key biological features of TAMs that affect tumor progression and their relevance as potential targets for treating EOC. We especially focus on the therapies that might modulate the recruitment, polarization, survival, and functional properties of TAMs in the TME of EOC that can be harnessed to develop superior combinatorial regimens with immunotherapy for the clinical care of patients with EOC.
Collapse
Affiliation(s)
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic .,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
35
|
Discordance of PD-L1 expression in primary and metastatic ovarian high-grade serous carcinoma and its correlation with CD8 + tumor-infiltrating lymphocytes and patient prognosis. Virchows Arch 2023; 482:755-766. [PMID: 36806916 DOI: 10.1007/s00428-023-03512-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
Differential expression of programmed death-1 ligand (PD-L1) and its clinical significance in primary and metastatic ovarian high-grade serous carcinoma (HGSC) have not been defined. Thus, we investigated the PD-L1 expression of paired ovarian primary and omental metastatic HGSC and its correlation with CD8 + tumor-infiltrating lymphocyte (TILs) and patient survival. A total of 212 cases of ovarian HGSCs with matched primary ovarian and metastatic omental tumors accessioned between 2003 and 2018 were selected for further analysis. Using immunohistochemistry, we evaluated the density of CD8 + TILs and expression of PD-L1 on whole tissue sections. Applying tumor proportion score (TPS, cutoff 1%) and combined positive score (CPS, cutoff 1), the prevalence of PD-L1 expression was similar but with significant discordance in ovarian and omental tumor. Using TPS, patients with PD-L1-positive tumors demonstrated significantly worse recurrence free survival (RFS) and overall survival (OS) than patients with PD-L1-negative tumors. Using CPS, patients with PD-L1-positive ovarian tumors demonstrated significantly worse OS while no significant difference in RFS was found. Patients with PD-L1-positive omental tumors demonstrated significantly worse RFS and OS. Patients with omental PD-L1-positive tumors (TPS) were associated with poorer RFS and OS, while patients with ovarian PD-L1-positive tumors (TPS) were associated with OS not RFS, in COX multivariant analysis. Nonetheless, ovarian and omental high CD8 TILs density was not associated with worse OS in univariant and COX multivariant analysis. PD-L1 expression in ovarian and omental tumor associated with an increased CD8 + TILs density. PD-L1 expression by TPS was better correlated with survival than by CPS, and PD-L1 expression in omental tumors was a stronger prognostic indicator than that in ovarian tumors.
Collapse
|
36
|
Immunotherapeutic Approaches in Ovarian Cancer. Curr Issues Mol Biol 2023; 45:1233-1249. [PMID: 36826026 PMCID: PMC9955550 DOI: 10.3390/cimb45020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is gynecological cancer, and diagnosis and treatment are continuously advancing. Next-generation sequencing (NGS)-based diagnoses have emerged as novel methods for identifying molecules and pathways in cancer research. The NGS-based applications have expanded in OC research for early detection and identification of aberrant genes and dysregulation pathways, demonstrating comprehensive views of the entire transcriptome, such as fusion genes, genetic mutations, and gene expression profiling. Coinciding with advances in NGS-based diagnosis, treatment strategies for OC, such as molecular targeted therapy and immunotherapy, have also advanced. Immunotherapy is effective against many other cancers, and its efficacy against OC has also been demonstrated at the clinical phase. In this review, we describe several NGS-based applications for therapeutic targets of OC, and introduce current immunotherapeutic strategies, including vaccines, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cell transplantation, for effective diagnosis and treatment of OC.
Collapse
|
37
|
Koppikar S, Oaknin A, Babu KG, Lorusso D, Gupta S, Wu LY, Rajabto W, Harano K, Hong SH, Malik RA, Strebel H, Aggarwal IM, Lai CH, Dejthevaporn T, Tangjitgamol S, Cheng WF, Chay WY, Benavides D, Hashim NM, Moon YW, Yunokawa M, Anggraeni TD, Wei W, Curigliano G, Maheshwari A, Mahantshetty U, Sheshadri S, Peters S, Yoshino T, Pentheroudakis G. Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with endometrial cancer. ESMO Open 2023; 8:100774. [PMID: 36696825 PMCID: PMC10024150 DOI: 10.1016/j.esmoop.2022.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023] Open
Abstract
The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with endometrial cancer was published in 2022. It was therefore decided, by both the ESMO and the Indian Society of Medical and Paediatric Oncology (ISMPO), to convene a virtual meeting in July 2022 to adapt the ESMO 2022 guidelines to take into account the variations in the management of endometrial cancer in Asia. These guidelines represent the consensus opinion of a panel of Asian experts representing the oncological societies of China (CSCO), India (ISMPO), Indonesia (ISHMO), Japan (JSMO), Korea (KSMO), Malaysia (MOS), the Philippines (PSMO), Singapore (SSO), Taiwan (TOS) and Thailand (TSCO). Voting was based on scientific evidence and was conducted independently of the current treatment practices and treatment access constraints in the different Asian countries, which were discussed when appropriate. The aim of this guideline manuscript is to provide guidance for the optimisation and harmonisation of the management of patients with endometrial cancer across the different regions of Asia, drawing on the evidence provided by Western and Asian trials whilst respecting the variations in clinical presentation, diagnostic practices including molecular profiling and disparities in access to therapeutic options, including drug approvals and reimbursement strategies.
Collapse
Affiliation(s)
- S Koppikar
- Department of Medical Oncology, Lilavati Hospital and Research Centre, Mumbai, India; Department of Medical Oncology, Bombay Hospital Institute of Medical Sciences, Mumbai, India.
| | - A Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - K Govind Babu
- Department of Medical Oncology, HCG Hospital and St. Johns Medical College, Bengaluru, India
| | - D Lorusso
- Department of Life Science and Public Health, Catholic University of Sacred Heart, Largo Agostino Gemelli, Rome; Department of Women and Child Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - S Gupta
- Department of Medical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - L-Y Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - W Rajabto
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Dr. Cipto Mangunkusumo General Hospital/Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - K Harano
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - S-H Hong
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - R A Malik
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - H Strebel
- Division of Medical Oncology, Department of Internal Medicine, University of the Philippines, Philippine General Hospital, Manila, The Philippines
| | - I M Aggarwal
- Department of Gynaecologic Oncology, KK Women's and Children's Hospital, Singapore, Singapore
| | - C-H Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - T Dejthevaporn
- Medical Oncology Unit, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - S Tangjitgamol
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand; Obstetrics and Gynecology Center, Medpark Hospital, Bangkok, Thailand
| | - W F Cheng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - W Y Chay
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - D Benavides
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, U.P. College of Medicine and Philippine General Hospital, Manila, The Philippines
| | - N M Hashim
- Oncology and Radiotherapy Department, KPJ Johor Specialist Hospital, Johor Bahru, Malaysia
| | - Y W Moon
- Department of Hematology and Oncology, CHA Bundang Medical Center (CBMC), CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - M Yunokawa
- Department of Gynecology and Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - T D Anggraeni
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Dr. Cipto Mangunkusumo General Hospital/Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - W Wei
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - G Curigliano
- European Institute of Oncology, IRCCS, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - A Maheshwari
- Department of Gynecologic Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - U Mahantshetty
- Department of Radiation Oncology, Homi Bhabha Cancer Hospital and Research Hospital, Vishakhapatnam, India
| | - S Sheshadri
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | - S Peters
- Oncology Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - T Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | | |
Collapse
|
38
|
Pignata S, Scambia G, Schettino C, Arenare L, Pisano C, Lombardi D, De Giorgi U, Andreetta C, Cinieri S, De Angelis C, Priolo D, Casanova C, Rosati M, Greco F, Zafarana E, Schiavetto I, Mammoliti S, Cecere SC, Salutari V, Scalone S, Farolfi A, Di Napoli M, Lorusso D, Gargiulo P, Califano D, Russo D, Spina A, De Cecio R, Chiodini P, Perrone F, Accinno V, Altavilla C, Andreetta C, Antonelli G, Arenare L, Artioli G, Avola F, Barbara B, Barbato V, Bartoletti M, Bevilacqua S, Bordonaro R, Borghese O, Buonfanti G, Califano D, Camarda F, Canzanella G, Carbone V, Carbone MR, Carlo Stella G, Casanova C, Cassani C, Castagna F, Cattaneo M, Cecere SC, Chiodini P, Cinefra M, Cinieri S, Colombo N, Corsetti S, Dall'Agata M, D'Amico M, Daniele G, De Angelis C, De Cecio R, De Giorgi U, De Marino E, De Matteis G, De Placido S, Del Bene G, Del Giudice A, Del Monte F, Del Sesto M, Di Napoli M, Donini M, Drudi G, Falcone G, Farolfi A, Favaretto A, Ferrera G, Florio M, Forestieri V, Gallo MS, Gallo C, Gargiulo P, Garibaldi F, Gerevini F, Ghizzoni V, Giganti MO, Gimigliano A, Giudice E, Gnocchi N, Gravina A, Greco F, Greggi S, Iaia ML, Ilardi A, Iovine G, Ippoliti G, Irollo G, Isidori I, Lapresa M, Lavenia G, Lombardi D, Longhitano L, Lorusso D, Lucia B, Luzi G, Mammoliti S, Mariano S, Marino V, Marrapese G, Martino M, Matocci R, Mazzoni E, Mercuri D, Mirto M, Mollo G, Montinaro A, Moscatelli M, Mosconi AM, Musacchio L, Nanni N, Natalucci P, Nicoloso MS, Orditura M, Parma GM, Passalacqua R, Pelone M, Perri MT, Perrone F, Perrucci B, Piancastelli A, Piccirillo MC, Piccolo A, Pignata S, Pisano C, Priolo D, Rapisardi S, Ravaglia G, Ribecco T, Ricci C, Roccio M, Romano F, Rosati M, Russo D, Salutari V, Sambataro D, Savio A, Sbriglia A, Scaffa C, Scalone S, Scambia G, Schettino C, Schiavetto I, Sergi C, Sgandurra F, Sorio R, Spina A, Stabile S, Tabaro G, Tambaro M, Tamberi S, Tecchiato A, Trujillo AM, Zaccarelli E, Zafarana E. Carboplatin and paclitaxel plus avelumab compared with carboplatin and paclitaxel in advanced or recurrent endometrial cancer (MITO END-3): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol 2023; 24:286-296. [PMID: 37052965 DOI: 10.1016/s1470-2045(23)00016-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Adding immunotherapy to first-line chemotherapy might improve outcomes for patients with advanced or recurrent endometrial cancer. We aimed to compare carboplatin and paclitaxel versus avelumab plus carboplatin and paclitaxel as first-line treatment with avelumab given concurrent to chemotherapy and as maintenance after the end of chemotherapy. METHODS MITO END-3 is an open-label, randomised, controlled, phase 2 trial conducted at 31 cancer institutes, hospitals, and universities in Italy. Eligible patients were aged 18 years or older with histologically confirmed advanced (FIGO stage III-IV) or recurrent endometrial cancer, an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1, and no previous systemic anticancer therapy as primary treatment for advanced or metastatic disease. Participants were randomly assigned (1:1) using a computerised minimisation procedure stratified by centre, histology, and stage at study entry, to either receive carboplatin (area under the curve [AUC] 5 mg/mL × min) and paclitaxel (175 mg/m2; standard group) intravenously every 3 weeks for six to eight cycles or avelumab (10 mg/kg intravenously) added to carboplatin and paclitaxel (experimental group) every 3 weeks and then every 2 weeks as a single maintenance treatment after the end of chemotherapy until disease progression or unacceptable toxicity. Patients, treating clinicians, and those assessing radiological examinations were not masked to study treatment. The primary endpoint was investigator-assessed progression-free survival, measured in the intention-to-treat (ITT) population. Patients who received at least one dose of study drug were included in the safety analysis. Experimental group superiority was tested with 80% power and one-tailed α 0·20. This trial is registered with ClinicalTrials.gov (NCT03503786) and EudraCT (2016-004403-31). FINDINGS From April 9, 2018, to May 13, 2021, 166 women were assessed for eligibility and 39 were excluded. 125 eligible patients were randomly assigned to receive carboplatin and paclitaxel (n=62) or avelumab plus carboplatin and paclitaxel (n=63) and included in the ITT population. The median follow-up was 23·3 months (IQR 13·2-29·6) and was similar between the two groups. 91 progression-free survival events were reported, with 49 events in 62 patients in the standard group and 42 events in 63 patients in the experimental group. The median progression-free survival was 9·9 months (95% CI 6·7-12·1) in the standard group and 9·6 months (7·2-17·7) in the experimental group (HR of progression or death 0·78 [60% CI 0·65-0·93]; one-tailed p=0·085). Serious adverse events were reported more frequently in the experimental group (24 vs seven events in the standard group); neutrophil count decrease was the most frequent grade 3-4 adverse event (19 [31%] of 61 patients in the experimental group vs 26 [43%] of 61 patients in the standard group). Two deaths occurred in the experimental group during treatment (one respiratory failure following severe myositis [possibly related to treatment] and one cardiac arrest [not related to treatment]). INTERPRETATION Adding avelumab to first-line chemotherapy deserves further testing in patients with advanced or recurrent endometrial cancer, although consideration of mismatch repair status is warranted. FUNDING Pfizer.
Collapse
|
39
|
Efficacy of immune checkpoint inhibitor monotherapy or combined with other small molecule-targeted agents in ovarian cancer. Expert Rev Mol Med 2023; 25:e6. [PMID: 36691778 DOI: 10.1017/erm.2023.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ovarian cancer is the most lethal female reproductive system tumour. Despite the great advances in surgery and systemic chemotherapy over the past two decades, almost all patients in stages III and IV relapse and develop resistance to chemotherapy after first-line treatment. Ovarian cancer has an extraordinarily complex immunosuppressive tumour microenvironment in which immune checkpoints negatively regulate T cells activation and weaken antitumour immune responses by delivering immunosuppressive signals. Therefore, inhibition of immune checkpoints can break down the state of immunosuppression. Indeed, Immune checkpoint inhibitors (ICIs) have revolutionised the therapeutic landscape of many solid tumours. However, ICIs have yielded modest benefits in ovarian cancer. Therefore, a more comprehensive understanding of the mechanistic basis of the immune checkpoints is needed to improve the efficacy of ICIs in ovarian cancer. In this review, we systematically introduce the mechanisms and expression of immune checkpoints in ovarian cancer. Moreover, this review summarises recent updates regarding ICI monotherapy or combined with other small-molecule-targeted agents in ovarian cancer.
Collapse
|
40
|
Kok PS, Antill YC, Scott CL, Lee CK. The impact of single agent PD-1 or PD-L1 inhibition on advanced endometrial cancers: meta-analysis. ESMO Open 2022; 7:100635. [PMID: 36410086 PMCID: PMC9808459 DOI: 10.1016/j.esmoop.2022.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapy is an emerging option for advanced endometrial cancer (EC). Mismatch repair (MMR) status is widely regarded as a biomarker predictive of response to ICIs. The predictive value of MMR based on small, single-arm trials, however, is conflicting. In this meta-analysis, we aimed to assess the activity of single-agent ICI in advanced EC, and compared the magnitude of treatment benefit in MMR deficient (dMMR) and MMR proficient (pMMR) EC. METHODS We carried out an electronic search to identify prospective trials of single-agent ICI in advanced EC. Data on objective response rate (ORR) and progression-free survival (PFS) were extracted and pooled. ORR was estimated using the inverse variance method and subgroup difference by MMR status was examined. PFS difference according to MMR status was summarized using the Kaplan-Meier approach. RESULTS From eight trials with 492 women, the pooled ORR was 19% [95% confidence interval (CI) 16% to 22%]. ORR was significantly greater in dMMR (n = 281) than pMMR EC (n = 211) (dMMR: 46%, pMMR: 8%; risk ratio 5.74, 95% CI 3.58-9.21; interaction P < 0.001). Complete response was 11% and 0.05% and median PFS was 8.3 and 2.1 months in dMMR and pMMR EC, respectively (hazard ratio PFS 0.58, 95% CI 0.38-0.89; P = 0.01). The 12-month PFS rates were 42.0% and 20.7%, respectively. CONCLUSION Single-agent ICI is associated with a 5.74 times greater objective response and 42% reduction in risk of disease progression or death in dMMR compared with pMMR EC. MMR status should be determined prospectively and be used as a stratification factor in future trials of advanced EC. Further translational analysis is urgently required to identify the cause of dMMR and allow subclassification of EC into different dMMR molecular subtypes.
Collapse
Affiliation(s)
- P-S Kok
- Australia New Zealand Gynaecological Oncology Group, Sydney, Australia; National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia; Prince of Wales Hospital, Randwick, Australia.
| | - Y C Antill
- Australia New Zealand Gynaecological Oncology Group, Sydney, Australia; Faculty of Medicine, Dentistry and Health Sciences, Monash University, Melbourne, Australia
| | - C L Scott
- Australia New Zealand Gynaecological Oncology Group, Sydney, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia; Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Australia
| | - C K Lee
- Australia New Zealand Gynaecological Oncology Group, Sydney, Australia; Cancer Care Centre, St George Hospital, Sydney, Australia
| |
Collapse
|
41
|
Marín-Jiménez JA, García-Mulero S, Matías-Guiu X, Piulats JM. Facts and Hopes in Immunotherapy of Endometrial Cancer. Clin Cancer Res 2022; 28:4849-4860. [PMID: 35789264 DOI: 10.1158/1078-0432.ccr-21-1564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 01/24/2023]
Abstract
Immunotherapy with checkpoint inhibitors has changed the paradigm of treatment for many tumors, and endometrial carcinoma is not an exception. Approved treatment options are pembrolizumab or dostarlimab for mismatch repair deficient tumors, pembrolizumab for tumors with high mutational load, and, more recently, pembrolizumab/lenvatinib for all patients with endometrial cancer. Endometrial cancer is a heterogeneous disease with distinct molecular subtypes and different prognoses. Differences between molecular subgroups regarding antigenicity and immunogenicity should be relevant to develop more tailored immunotherapeutic approaches. In this review, we aim to summarize and discuss the current evidence-Facts, and future opportunities-Hopes-of immunotherapy for endometrial cancer, focusing on relevant molecular and tumor microenvironment features of The Cancer Genome Atlas endometrial cancer subtypes.
Collapse
Affiliation(s)
- Juan A Marín-Jiménez
- Cancer Immunotherapy (CIT) Group - iPROCURE, Bellvitge Biomedical Research Institute (IDIBELL) - OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), IDIBELL-OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Xavier Matías-Guiu
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL-OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova - IRBLLEIDA, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer - CIBERONC, Madrid, Spain
| | - Josep M Piulats
- Cancer Immunotherapy (CIT) Group - iPROCURE, Bellvitge Biomedical Research Institute (IDIBELL) - OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer - CIBERONC, Madrid, Spain
| |
Collapse
|
42
|
Oaknin A, Bosse TJ, Creutzberg CL, Giornelli G, Harter P, Joly F, Lorusso D, Marth C, Makker V, Mirza MR, Ledermann JA, Colombo N. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33:860-877. [PMID: 35690222 DOI: 10.1016/j.annonc.2022.05.009] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- A Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - T J Bosse
- Departments of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - C L Creutzberg
- Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - G Giornelli
- Department of Oncology, Instituto Alexander Fleming, Buenos Aires, Argentina
| | - P Harter
- Department of Gynecology & Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - F Joly
- ANTICIPE, Cancer and Cognition Platform, Normandie University, Caen, France; Medical Oncology Department, Centre François Baclesse, Caen, France
| | - D Lorusso
- Department of Life Science and Public Health, Catholic University of Sacred Heart, Largo Agostino Gemelli, Rome, Italy; Department of Women and Child Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - C Marth
- Department of Obstetrics and Gynecology, Medical University Innsbruck, Innsbruck, Austria
| | - V Makker
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - M R Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - J A Ledermann
- Cancer Institute, University College London (UCL), London, UK; Department of Oncology, UCL Hospitals, London, UK
| | - N Colombo
- Department of Gynecologic Oncology, Istituto Europeo di Oncologia IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
43
|
Garg V, Jayaraj AS, Kumar L. Novel approaches for treatment of endometrial carcinoma. Curr Probl Cancer 2022; 46:100895. [PMID: 35986972 DOI: 10.1016/j.currproblcancer.2022.100895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
Endometrial cancer (EC) is common malignancy in women and its incidence is slowly on the rise. Accurate surgical staging, with aggressive cytoreduction when indicated, remains the most critical step in the treatment. Careful pathological evaluation and/or molecular risk stratification guides for proper systemic adjuvant radiotherapy ± chemotherapy. Recurrent and metastatic EC has dismal prognosis and palliative therapies (chemotherapy, hormonal therapy or radiation) forms the backbone of treatment. There is an unmet need of newer therapies to improve survival in such cases. A number of tyrosine kinase inhibitors are currently under evaluation. Recent data on therapeutic targeting of HER2 positive serous EC is exciting. Data on check point inhibitors particularly based on biomarker select population has raised hope for potentially effective treatment for women with high risk endometrial cancer .
Collapse
Affiliation(s)
- Vikas Garg
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Aarthi S Jayaraj
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
44
|
Revythis A, Limbu A, Mikropoulos C, Ghose A, Sanchez E, Sheriff M, Boussios S. Recent Insights into PARP and Immuno-Checkpoint Inhibitors in Epithelial Ovarian Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8577. [PMID: 35886427 PMCID: PMC9317199 DOI: 10.3390/ijerph19148577] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is one of the most common gynecologic cancers and has the highest mortality rate of any other cancer of the female reproductive system. Epithelial ovarian cancer (EOC) accounts for approximately 90% of all ovarian malignancies. The standard therapeutic strategy includes cytoreductive surgery accompanied by pre- or postoperative platinum-based chemotherapy. Nevertheless, up to 80% of the patients relapse within the following 12-18 months from the completion of the treatment and then receive first-line chemotherapy depending on platinum sensitivity. Mutations in BRCA1/2 genes are the most significant molecular aberrations in EOC and serve as prognostic and predictive biomarkers. Poly ADP-ribose polymerase (PARP) inhibitors exploit defects in the DNA repair pathway through synthetic lethality. They have also been shown to trap PARP1 and PARP2 on DNA, leading to PARP-DNA complexes. Olaparib, rucaparib, and niraparib have all obtained Food and Drug Administration (FDA) and/or the European Medicine Agency (EMA) approval for the treatment of EOC in different settings. Immune checkpoint inhibitors (ICI) have improved the survival of several cancers and are under evaluation in EOC. However, despite the success of immunotherapy in other malignancies, the use of antibodies inhibiting the immune checkpoint programmed cell death (PD-1) or its ligand (PD-L1) obtained modest results in EOC so far, with median response rates of up to 10%. As such, ICI have not yet been approved for the treatment of EOC. We herein provided a comprehensive insight into the most recent progress in synthetic lethality PARP inhibitors, along with the mechanisms of resistance. We also summarised data regarding the role of immune checkpoint inhibitors, the use of vaccination therapy, and adoptive immunotherapy in treating epithelial ovarian cancer.
Collapse
Affiliation(s)
- Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
| | - Anu Limbu
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
| | - Christos Mikropoulos
- St. Lukes Cancer Centre, Royal Surrey County Hospital, Egerton Rd., Guildford GU2 7XX, Surrey, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London KT1 2EE, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London KT1 2EE, UK
- Centre for Education, Faculty of Life Sciences and Medicine, King’s College London, London SE5 9NU, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki—Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
45
|
Hamade DF, Espinal A, Yu J, Leibowitz BJ, Fisher R, Hou W, Shields D, van Pijkeren JP, Mukherjee A, Epperly MW, Vlad A, Coffman L, Wang H, Huq MS, Patel R, Huang J, Greenberger JS. Lactobacillus reuteri Releasing IL-22 (LR-IL-22) Facilitates Intestinal Radioprotection for Whole-Abdomen Irradiation (WAI) of Ovarian Cancer. Radiat Res 2022; 198:89-105. [PMID: 35446961 PMCID: PMC9278541 DOI: 10.1667/rade-21-00224.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
Oral administration (gavage) of a second-generation probiotic, Lactobacillus reuteri (L. reuteri), that releases interleukin-22 (LR-IL-22) at 24 h after total-body irradiation (TBI) mitigates damage to the intestine. We determined that LR-IL-22 also mitigates partial-body irradiation (PBI) and whole-abdomen irradiation (WAI). Irradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Strategies to mitigate toxicity are important and can revitalize this modality to treat ovarian cancer. In the present studies, we evaluated whether LR-IL-22 facilitates fractionated WAI in female C57BL/6 mice with disseminated ovarian cancer given a single fraction of either 15.75 Gy or 19.75 Gy or 4 daily fractions of 6 Gy or 6.5 Gy. Mice receiving single or multiple administrations of LR-IL-22 during WAI showed improved intestinal barrier integrity (P = 0.0167), reduced levels of radiation-induced intestinal cytokines including KC/CXCL1 (P = 0.002) and IFN-γ (P = 0.0024), and reduced levels of plasma, Eotaxin/CCL11 (P = 0.0088). LR-IL-22 significantly preserved the numbers of Lgr5+GFP+ intestinal stem cells (P = 0.0010) and improved survival (P < 0.0343). Female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer that received LR-IL-22 during 6.5 Gy WAI in 4 fractions had reduced tumor burden, less intestinal toxicity, and improved 30-day survival. Furthermore, LR-IL-22 facilitated WAI when added to Paclitaxel and Carboplatin chemotherapy and further increased survival. Oral administration (gavage) of LR-IL-22 is a potentially valuable intestinal radioprotector, which can facilitate therapeutic WAI for widespread intra-abdominal ovarian cancer.
Collapse
Affiliation(s)
- Diala F. Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Alexis Espinal
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | | | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Anda Vlad
- Department of OB/Gyn and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Lan Coffman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Ravi Patel
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Jason Huang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| |
Collapse
|
46
|
Zhang Y, Cui Q, Xu M, Liu D, Yao S, Chen M. Current Advances in PD-1/PD-L1 Blockade in Recurrent Epithelial Ovarian Cancer. Front Immunol 2022; 13:901772. [PMID: 35833132 PMCID: PMC9271774 DOI: 10.3389/fimmu.2022.901772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapies have revolutionized the treatment of a variety of cancers. Epithelial ovarian cancer is the most lethal gynecologic malignancy, and the rate of advanced tumor progression or recurrence is as high as 80%. Current salvage strategies for patients with recurrent ovarian cancer are rarely curative. Recurrent ovarian cancer is a “cold tumor”, predominantly due to a lack of tumor antigens and an immunosuppressive tumor microenvironment. In trials testing programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) blockade as a monotherapy, the response rate was only 8.0-22.2%. In this review, we illustrate the status of cold tumors in ovarian cancer and summarize the existing clinical trials investigating PD-1/PD-L1 blockade in recurrent ovarian cancer. Increasing numbers of immunotherapy combination trials have been set up to improve the response rate of EOC. The current preclinical and clinical development of immunotherapy combination therapy to convert an immune cold tumor into a hot tumor and their underlying mechanisms are also reviewed. The combination of anti-PD-1/PD-L1 with other immunomodulatory drugs or therapies, such as chemotherapy, antiangiogenic therapies, poly (ADP-ribose) polymerase inhibitors, adoptive cell therapy, and oncolytic therapy, could be beneficial. Further efforts are merited to transfer these results to a broader clinical application.
Collapse
Affiliation(s)
- Yuedi Zhang
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiulin Cui
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Manman Xu
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Duo Liu
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuzhong Yao
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ming Chen, ; Shuzhong Yao,
| | - Ming Chen
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ming Chen, ; Shuzhong Yao,
| |
Collapse
|
47
|
Peng H, He X, Wang Q. Immune checkpoint blockades in gynecological cancers: A review of clinical trials. Acta Obstet Gynecol Scand 2022; 101:941-951. [PMID: 35751489 DOI: 10.1111/aogs.14412] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022]
Abstract
Advanced and recurrent gynecological cancers are associated with a poor prognosis and there is still a lack of effective treatments. Immune checkpoint blockade (ICB) therapy is an important element of cancer-targeted therapy and immunotherapy. The programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) pathways are the two main targets of ICB. In this study, we provide a comprehensive review of clinical evidence concerning ICB therapy in gynecological cancers and discuss future implications. All clinical trials of ICB therapy in gynecological cancers were reviewed. We searched ClinicalTrials.gov to collect data from completed and ongoing clinical trials. The clinical evidence regarding the efficacy of ICB agents in gynecological cancers were discussed. Six phase III clinical trials have reported their results of primary outcomes, and a total of 25 phase II clinical trials have been completed. As revealed in phase III trials, pembrolizumab (a PD-1 antibody) improved the overall survival and progression-free survival in endometrial cancer patients with mismatch repair deficiency and cervical cancer patients with expressions of PD-L1. Based on these findings, pembrolizumab was approved by the Food and Drug Administration and European Medicines Agency as a cancer medication used to treat certain patients with endometrial cancer or cervical cancer. Other PD-1 antibodies, including dostarlimab and cemiplimab, also showed antitumor efficacy in clinical trials. Dostarlimab treatment showed an encouraging response rate in endometrial cancer patients with mismatch repair deficiency. Cemiplimab treatment led to a longer overall survival and a lower risk of death than chemotherapy among patients with recurrent cervical cancer. Three completed phase III trials investigated anti-PD-L1 agents (atezolizumab and avelumab) in the treatment of ovarian cancer. The results were not encouraging. Other strategies of ICB therapy which had showed potential clinical benefit in the treatment of gynecological cancers in early-phase trials need to be further evaluated in late-stage trials. The antitumor efficacy of ICB therapy is promising, and the key to making further progress in the treatment of gynecological cancers is to identify more biomarkers and explore innovative combination treatments with other targeted therapies.
Collapse
Affiliation(s)
- Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang He
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Yung MMH, Siu MKY, Ngan HYS, Chan DW, Chan KKL. Orchestrated Action of AMPK Activation and Combined VEGF/PD-1 Blockade with Lipid Metabolic Tunning as Multi-Target Therapeutics against Ovarian Cancers. Int J Mol Sci 2022; 23:ijms23126857. [PMID: 35743298 PMCID: PMC9224484 DOI: 10.3390/ijms23126857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is one of the most lethal gynecological malignancies worldwide, and chemoresistance is a critical obstacle in the clinical management of the disease. Recent studies have suggested that exploiting cancer cell metabolism by applying AMP-activated protein kinase (AMPK)-activating agents and distinctive adjuvant targeted therapies can be a plausible alternative approach in cancer treatment. Therefore, the perspectives about the combination of AMPK activators together with VEGF/PD-1 blockade as a dual-targeted therapy against ovarian cancer were discussed herein. Additionally, ferroptosis, a non-apoptotic regulated cell death triggered by the availability of redox-active iron, have been proposed to be governed by multiple layers of metabolic signalings and can be synergized with immunotherapies. To this end, ferroptosis initiating therapies (FITs) and metabolic rewiring and immunotherapeutic approaches may have substantial clinical potential in combating ovarian cancer development and progression. It is hoped that the viewpoints deliberated in this review would accelerate the translation of remedial concepts into clinical trials and improve the effectiveness of ovarian cancer treatment.
Collapse
Affiliation(s)
- Mingo M. H. Yung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.M.H.Y.); (M.K.Y.S.); (H.Y.S.N.)
| | - Michelle K. Y. Siu
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.M.H.Y.); (M.K.Y.S.); (H.Y.S.N.)
| | - Hextan Y. S. Ngan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.M.H.Y.); (M.K.Y.S.); (H.Y.S.N.)
| | - David W. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.M.H.Y.); (M.K.Y.S.); (H.Y.S.N.)
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Correspondence: or (D.W.C.); (K.K.L.C.); Tel.: +852-3917-9367 or +852-3943-6053 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2816-1947 or +852-2603-5123 (D.W.C.); +852-2255-0947 (K.K.L.C.)
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.M.H.Y.); (M.K.Y.S.); (H.Y.S.N.)
- Correspondence: or (D.W.C.); (K.K.L.C.); Tel.: +852-3917-9367 or +852-3943-6053 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2816-1947 or +852-2603-5123 (D.W.C.); +852-2255-0947 (K.K.L.C.)
| |
Collapse
|
49
|
Li R, Liu X, Song C, Zhang W, Liu J, Jiao X, Yu Y, Zeng S, Chi J, Zhao Y, Ma G, Huo Y, Li M, Peng Z, Li G, Jiang J, Gao QL. Sintilimab combined with bevacizumab in relapsed/persistent ovarian clear cell carcinoma (INOVA): an investigator-initiated, multicentre clinical trial-a study protocol of clinical trial. BMJ Open 2022; 12:e058132. [PMID: 35613822 PMCID: PMC9131073 DOI: 10.1136/bmjopen-2021-058132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Ovarian clear cell carcinoma (OCCC) has an abysmal prognosis with a median overall survival (OS) of 25.3 months because of a low response to chemotherapy. The 5-year disease-specific survival rate after recurrence is 13.2%, with more than two-thirds of the patients dying within a year. Therefore, it is urgent to explore new therapeutic options for OCCC. Based on the characteristic immune-suppressive tumour microenvironment derived from the gene expression profile of OCCC, the combination of immunoantiangiogenesis therapy might have certain efficacy in recurrent/persistent OCCC. This trial aims to evaluate the efficacy and safety of sintilimab and bevacizumab in patients who have failed platinum-containing chemotherapy with recurrent or persistent OCCC. METHOD AND ANALYSIS In this multicentre, single-arm, open-label, investigator-initiated clinical trial, 38 patients will be assigned to receive sintilimab 200 mg plus bevacizumab 15 mg/kg every 3 weeks. The eligibility criteria include histologically diagnosed patients with recurrent or persistent OCCC who have been previously treated with at least one-line platinum-containing chemotherapy; patients with Eastern Cooperative Oncology Group (ECOG) performance status 0-2 with an expected survival greater than 12 weeks. The exclusion criteria include patients previously treated with immune checkpoint inhibitor and patients with contraindications of bevacizumab and sintilimab. The primary endpoint is the objective response rate. The secondary endpoints are progression-free survival, time to response, duration of response, disease control rate, OS, safety and quality of life. Statistical significance was defined as p<0.05. ETHICS AND DISSEMINATION This trial was approved by the Research Ethics Commission of Tongji Medical College of Huazhong University of Science and Technology (2020-S337). The protocol of this study is registered at www. CLINICALTRIALS gov. The trial results will be published in peer-reviewed journals and at conferences. TRIAL REGISTRATION NUMBER NCT04735861; Clinicaltrials. gov.
Collapse
Affiliation(s)
- Ruyuan Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingyu Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunyan Song
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiahao Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofei Jiao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Yu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaoqing Zeng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianhua Chi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingjun Zhao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guanchen Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yabing Huo
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zikun Peng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guiling Li
- Department of Gynecological Oncology, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Qing-Lei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
50
|
Bejar FG, Oaknin A, Williamson C, Mayadev J, Peters PN, Secord AA, Wield AM, Coffman LG. Novel Therapies in Gynecologic Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-17. [PMID: 35594502 DOI: 10.1200/edbk_351294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the past decade, considerable strides have been made in the understanding and treatment of gynecologic cancers. The advent of PARP inhibitors, antiangiogenic therapies, immunotherapy combinations, and targeted agents have altered the standard of care in ovarian, endometrial, and cervical cancers. However, continued advancement in the treatment of gynecologic cancers is critical. Fortunately, exciting work defining new therapeutic targets and novel treatment strategies is on the horizon. Here, we discuss emerging treatments for gynecologic cancers, including endometrial, cervical, ovarian, and rare gynecologic cancers. We highlight research that has deepened our understanding of the unique biology and molecular underpinnings of these cancers and is being translated into powerful new treatment approaches. We particularly highlight the advent of immunotherapy in endometrial cancer; radiosensitizers in cervical, vaginal, and vulvar cancers; targeted therapies in ovarian cancer; and molecularly driven approaches to treat rare gynecologic cancers. Continued basic, translational, and clinical research holds the promise to change the landscape of gynecologic cancer and improve the lives of all women impacted by these diseases.
Collapse
Affiliation(s)
- Francisco Grau Bejar
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Casey Williamson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA
| | - Jyoti Mayadev
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA
| | - Pamela N Peters
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Angeles Alvarez Secord
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Alyssa M Wield
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Hospital, Pittsburgh, PA
| | - Lan G Coffman
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Hospital, Pittsburgh, PA.,Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA
| |
Collapse
|