1
|
Uphouse L, Hiegel C, Martinez G, Solano C, Gusick W. Repeated estradiol benzoate treatment protects against the lordosis-inhibitory effects of restraint and prevents effects of the antiprogestin, RU486. Pharmacol Biochem Behav 2015; 137:1-6. [PMID: 26190222 DOI: 10.1016/j.pbb.2015.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022]
Abstract
The following experiment was designed to test two specific questions: (1) Does the antiprogestin, RU486, reduce emergence of lordosis behavior and/or proceptivity in rats given repeated treatment with 10μg estradiol benzoate (EB) and/or a single high dose (40μg) of EB? (2) Does RU486 accentuate the effects of a 5min restraint experience on sexual behaviors in rats given repeated treatment with estradiol benzoate (EB) and/or a high dose of EB? RU486 was used to determine if a high dose and/or repeated treatment with EB enhanced proceptivity and reduced the response to mild stress through an intracellular progesterone receptor-mediated process. Ovariectomized Fischer rats were injected with a single dose of 10 or 40μg estradiol benzoate (EB) or received 4consecutiveweeks of treatment with 10μg EB. Forty-eight hours after the last treatment with EB, rats were injected with 5mg/kg of the antiprogestin, RU486, or the RU486 vehicle. That afternoon, rats were monitored for sexual behaviors. Sexually-receptive rats were then restrained for 5min and again tested for sexual behaviors. A separate set of rats received 4consecutiveweeks of 10μg EB treatment before treatment with a higher (5mg/rat) dose of RU486. Lordosis to mount ratios, lordosis quality, proceptivity, and resistance were monitored. RU486 had no effect on the emergence of sexual behaviors but did accentuate the lordosis-inhibitory effect of restraint in rats given a single treatment with EB. Rats treated for 4consecutiveweeks with EB showed no effect of restraint and were unaffected by RU486. These findings lead to the suggestion that repeated EB initiates select behavioral effects that are not mimicked by acute EB treatment and that the intracellular progesterone receptor may not be involved.
Collapse
Affiliation(s)
- Lynda Uphouse
- Department of Biology, Texas Woman's University, Denton, TX 76204, United States.
| | - Cindy Hiegel
- Department of Biology, Texas Woman's University, Denton, TX 76204, United States
| | - Giovanny Martinez
- Department of Biology, Texas Woman's University, Denton, TX 76204, United States
| | - Christian Solano
- Department of Biology, Texas Woman's University, Denton, TX 76204, United States
| | - William Gusick
- Department of Biology, Texas Woman's University, Denton, TX 76204, United States
| |
Collapse
|
2
|
Dose-dependent effects of the antiprogestin, RU486, on sexual behavior of naturally cycling Fischer rats. Behav Brain Res 2015; 282:95-102. [PMID: 25591479 DOI: 10.1016/j.bbr.2015.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 11/22/2022]
Abstract
Regularly cycling Fischer female rats were treated with either a low (5mg/kg) or high (5mg/RAT; approximately 30mg/kg) dose of the antiprogestin, RU486, before the morning of proestrus or on the morning of proestrus. The emergence of sexual behavior after treatment with RU486 was examined in a mating test with a sexually active male rat. Lordosis behavior was remarkably resistant to the effects of RU486. Only the high dose of RU486 given the evening before proestrus, approximately 22h before mating, reduced lordosis behavior. Independent of dose or time of treatment, proceptivity was reduced and resistance to the male's attempts to mount was increased by RU486 treatment. In addition, the effect of a 5min restraint stress on sexual behavior was examined. In contrast to the relative resistance of lordosis behavior of unrestrained rats to RU486 treatment, RU486 treated rats showed a significant decline in lordosis behavior after restraint. These findings allow the suggestion that the emergence of lordosis behavior is relatively resistant to the antiprogestin while the maintenance of lordosis behavior after restraint may require participation of intracellular progesterone receptors.
Collapse
|
3
|
Frye C, Koonce C, Walf A. Role of pregnane xenobiotic receptor in the midbrain ventral tegmental area for estradiol- and 3α,5α-THP-facilitated lordosis of female rats. Psychopharmacology (Berl) 2014; 231:3365-74. [PMID: 24435323 PMCID: PMC4102666 DOI: 10.1007/s00213-013-3406-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 12/05/2013] [Indexed: 12/17/2022]
Abstract
RATIONALE Progesterone and its metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), have actions in the ventral tegmental area (VTA) that are required for lordosis, a characteristic mating posture of female rodents. 17β-estradiol (estradiol) co-varies with progestogens over natural cycles, enhances production of 3α,5α-THP, and is required for successful reproductive behavior. OBJECTIVES A question of interest is the role of pregnane xenobiotic receptor (PXR), a nuclear receptor that regulates enzymes needed for the production of 3α,5α-THP, for estradiol-mediated lordosis. The hypothesis tested was that if PXR is involved in estradiol-mediated biosynthesis of 3α,5α-THP and reproductive behavior, knocking down expression of PXR in the VTA of estradiol-primed, but not vehicle-primed, rats should decrease lordosis and midbrain 3α,5α-THP; effects may be attenuated by 3α,5α-THP administered to the VTA. METHODS Ovariectomized rats were administered subcutaneous injections of oil vehicle or estradiol. Rats were then administered PXR antisense oligonucleotides (PXR AS-ODNs; which are expected to locally knock down expression of PXR), or control (saline), infusions to the VTA. Rats were administered 3α,5α-THP or vehicle via infusions to the VTA. Reproductive behavior (paced mating task) of rats was determined in addition to exploratory (open field), affective (elevated plus maze), and pro-social (social interaction task) behavior. RESULTS Reproductive behavior (i.e., increased lordosis) was enhanced with estradiol-priming and infusions of 3α,5α-THP to the VTA. Infusions of PXR AS-ODNs to the VTA attenuated responses in estradiol-, but not vehicle-, primed rats, compared to control infusions. CONCLUSIONS PXR may be involved in a neuroregulatory response involving biosynthesis of 3α,5α-THP in the midbrain VTA of estradiol-primed rats.
Collapse
Affiliation(s)
- C.A. Frye
- Dept. of Psychology, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,Dept. of Biological Sciences, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,The Centers for Neuroscience, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,The Centers for Life Sciences Research, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,Department of Chemistry, Institute for Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, Alaska USA 99775,IDeA Network of Biomedical Excellence, The University of Alaska–Fairbanks, Fairbanks, Alaska USA 99775
| | - C.J. Koonce
- Dept. of Psychology, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,Department of Chemistry, Institute for Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, Alaska USA 99775
| | - A.A. Walf
- Dept. of Psychology, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,Department of Chemistry, Institute for Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, Alaska USA 99775,IDeA Network of Biomedical Excellence, The University of Alaska–Fairbanks, Fairbanks, Alaska USA 99775
| |
Collapse
|
4
|
Allopregnanolone's attenuation of the lordosis-inhibiting effects of restraint is blocked by the antiprogestin, CDB-4124. Pharmacol Biochem Behav 2014; 122:16-9. [PMID: 24650591 DOI: 10.1016/j.pbb.2014.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/23/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022]
Abstract
A brief restraint experience reduces lordosis behavior in ovariectomized females that have been hormonally primed with estradiol benzoate. The addition of progesterone to the priming prevents the lordosis inhibition. Based on prior studies with an inhibitor of progesterone metabolism, we have implicated the intracellular progesterone receptor, rather than progesterone metabolites, as responsible for this protection. However, the progesterone metabolite, allopregnanolone (3α-hydroxy-5α-pregnan-20-one), also prevents lordosis inhibition after restraint. In a prior study, we reported that the progestin receptor antagonist, RU486 (11β-(4-dimethylamino)phenyl-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one), attenuated the effect of allopregnanolone. Because RU486 can also block the glucocorticoid receptor, in the current studies, we evaluated the effect of the progestin receptor antagonist, CDB-4124 (17α-acetoxy-21-methoxy-11β-[4-N,N-dimethyaminopheny]-19-norpregna-4,9-dione-3,20-dione), which is relatively devoid of antiglucocorticoid activity. Ovariectomized, Fischer rats were injected with 10 μg estradiol benzoate. Two days later, rats received either 60 mg/kg CDB-4124 or 20% DMSO/propylene glycol vehicle 1 h before injection with 4 mg/kg allopregnanolone. After a pretest to confirm sexual receptivity, rats were restrained for 5min and immediately tested for sexual behavior. Lordosis behavior was reduced by the restraint and attenuated by allopregnanolone. Pretreatment with CDB-4124 reduced allopregnanolone's effect. These findings support prior suggestions that allopreganolone reduces the response to restraint by mechanisms that require activation of the intracellular progesterone receptor.
Collapse
|
5
|
Bali A, Jaggi AS. Multifunctional aspects of allopregnanolone in stress and related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:64-78. [PMID: 24044974 DOI: 10.1016/j.pnpbp.2013.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
Allopregnanolone (3α-hydroxy-5α-pregnan-20-one) is a major cholesterol-derived neurosteroid in the central nervous system and is synthesized from progesterone by steroidogenic enzymes, 5α-reductase (the rate-limiting enzyme) and 3α-hydroxysteroid dehydrogenase. The pathophysiological role of allopregnanolone in neuropsychiatric disorders has been highlighted in several investigations. The changes in neuroactive steroid levels are detected in stress and stress-related disorders including anxiety, panic and depression. The changes in allopregnanolone in response to acute stressor tend to restore the homeostasis by dampening the hyper-activated HPA axis. However, long standing stressors leading to development of neuropsychiatric disorders including depression and anxiety are associated with decrease in the allopregnanolone levels. GABAA receptor complex has been considered as the primary target of allopregnanolone and majority of its inhibitory actions are mediated through GABA potentiation or direct activation of GABA currents. The role of progesterone receptors in producing the late actions of allopregnanolone particularly in lordosis facilitation has also been described. Moreover, recent studies have also described the involvement of other multiple targets including brain-derived neurotrophic factor (BDNF), glutamate, dopamine, opioids, oxytocin, and calcium channels. The present review discusses the various aspects of allopregnanolone in stress and stress-related disorders including anxiety, depression and panic.
Collapse
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India
| | | |
Collapse
|
6
|
Uphouse L, Hiegel C, Adams S, Murillo V, Martinez M. Prior hormonal treatment, but not sexual experience, reduces the negative effects of restraint on female sexual behavior. Behav Brain Res 2013; 259:35-40. [PMID: 24172220 DOI: 10.1016/j.bbr.2013.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 11/16/2022]
Abstract
These experiments were designed to determine if prior sexual experience reduced the negative effect of mild stress on female sexual behavior. In the first experiment, ovariectomized rats were hormonally primed with estradiol benzoate and progesterone for 3 consecutive weeks during which they received six mating experiences in a male's home cage or received no sexual experience. The next week, females were primed with 10 μg estradiol benzoate two days before a 5 min restraint. Both groups were resistant to the negative effects of the stressor. In the second experiment, females received 0, 1, 2, or 3 weeks of 10 μg estradiol benzoate and were restrained on the fourth week after priming with 10 μg estradiol benzoate. Rats without prior hormonal priming showed a decline in lordosis behavior after restraint but prior priming with estradiol benzoate reduced this effect. In the third experiment, rats received 3 weeks of hormonal priming with estradiol benzoate and progesterone with or without sexual experience. An additional group received no sexual experience or hormonal priming. Females were then given a 3-week hormone vacation before testing in the restraint paradigm. All groups showed a decline in lordosis behavior after restraint. The fourth experiment was identical to the third except that sexual experience in the male's cage and in a pacing apparatus were compared. There was no effect of either type of sexual experience on the response to restraint. Possible mechanisms responsible for effects of prior hormonal priming are presented and the absence of an effect of sexual experience is discussed in comparison to findings in male rats.
Collapse
Affiliation(s)
- Lynda Uphouse
- Department of Biology Texas Woman's University, Denton, TX 76204, USA.
| | - Cindy Hiegel
- Department of Biology Texas Woman's University, Denton, TX 76204, USA
| | - Sarah Adams
- Department of Biology Texas Woman's University, Denton, TX 76204, USA.
| | - Vanessa Murillo
- Department of Biology Texas Woman's University, Denton, TX 76204, USA
| | - Monique Martinez
- Department of Biology Texas Woman's University, Denton, TX 76204, USA
| |
Collapse
|
7
|
|
8
|
Uphouse L, Hiegel C. An antiprogestin, CDB4124, blocks progesterone's attenuation of the negative effects of a mild stress on sexual behavior. Behav Brain Res 2012; 240:21-5. [PMID: 23153933 DOI: 10.1016/j.bbr.2012.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 12/13/2022]
Abstract
These experiments were designed to test the hypothesis that a progesterone receptor antagonist would block progesterone's ability to reduce the negative effects of a 5 min restraint on female rat sexual behavior. Ovariectomized Fischer rats were injected with 10 μg estradiol benzoate. Two days later, rats were injected subcutaneously (sc) with the progesterone receptor antagonist, CDB4124 (17α-acetoxy-21-methoxy-11β-[4-N,N-dimethyaminopheny]-19-norpregna-4,9-dione-3,20-dione) (60 mg/kg), or vehicle (20% DMSO+propylene glycol). One hour later, rats were injected sc with 500 μg progesterone or vehicle (sesame seed oil). Rats were assigned to one of three different treatment conditions: (1) (ECV) estradiol benzoate, CDB4124, sesame seed oil vehicle, (2) (ECP) estradiol benzoate, CDB4124, progesterone, and (3) (EVP) estradiol benzoate, DMSO/propylene glycol vehicle, progesterone. That afternoon sexual behavior was examined before and after a 5 min restraint experience. Before restraint, lordosis behavior was comparable across treatment conditions but only progesterone-treated rats exhibited proceptive behavior. CDB4124 did not block progesterone's induction of proceptivity. However, after restraint, CDB4124 attenuated the positive effects of progesterone on all sexual behaviors examined. The restraint experience inhibited sexual behavior in rats treated with estradiol benzoate and CDB4124 and in rats treated with estradiol benzoate, CDB4124, and progesterone but not in rats given estradiol benzoate and progesterone without CDB4124. These findings are consistent with the hypothesis that progesterone receptors mediate progesterone's ability to reduce the negative sexual behavioral effects of a mild stressor.
Collapse
Affiliation(s)
- Lynda Uphouse
- Department of Biology, Texas Woman's University, United States.
| | | |
Collapse
|
9
|
Uphouse L, Adams S, Miryala CSJ, Hassell J, Hiegel C. RU486 blocks effects of allopregnanolone on the response to restraint stress. Pharmacol Biochem Behav 2012; 103:568-72. [PMID: 23046854 DOI: 10.1016/j.pbb.2012.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/11/2012] [Accepted: 09/30/2012] [Indexed: 11/28/2022]
Abstract
These experiments were designed to provide information about the potential involvement of progesterone receptors in the ability of allopregnanolone (3α-hydroxy-5α-pregnan-20-one) to reduce the lordosis-inhibiting effects of restraint stress. Ovariectomized Fischer rats were hormonally primed with 10 μg estradiol benzoate and 4 mg/kg allopregnanolone or vehicle. One hour before allopregnanolone, rats were injected with the progesterone receptor antagonist, RU486 (11β-(4-dimethylamino)phenyl-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one), or vehicle. Four hours after allopregnanolone or vehicle, sexual behavior was examined before and after a 5-min restraint stress. Lordosis behavior of rats primed only with estradiol benzoate declined after the 5 min of restraint while allopregnanolone prevented this decline. RU486 attenuated the ability of allopregnanolone to prevent the restraint-induced decline in lordosis behavior. These findings are consistent with earlier suggestions that progesterone receptors are involved in allopregnanolone's ability to reduce the effects of restraint stress.
Collapse
Affiliation(s)
- Lynda Uphouse
- Department of Biology, Texas Woman's University, United States.
| | | | | | | | | |
Collapse
|