1
|
Berger G, Corris JD, Fields SE, Hao L, Scarpa LL, Bello NT. Systematic Review of Binge Eating Rodent Models for Developing Novel or Repurposing Existing Pharmacotherapies. Biomolecules 2023; 13:742. [PMID: 37238615 PMCID: PMC10216509 DOI: 10.3390/biom13050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in developing and screening candidate pharmacotherapies for psychiatric disorders have depended on rodent models. Eating disorders are a set of psychiatric disorders that have traditionally relied on behavioral therapies for effective long-term treatment. However, the clinical use of Lisdexamfatamine for binge eating disorder (BED) has furthered the notion of using pharmacotherapies for treating binge eating pathologies. While there are several binge eating rodent models, there is not a consensus on how to define pharmacological effectiveness within these models. Our purpose is to provide an overview of the potential pharmacotherapies or compounds tested in established rodent models of binge eating behavior. These findings will help provide guidance for determining pharmacological effectiveness for potential novel or repurposed pharmacotherapies.
Collapse
Affiliation(s)
- Gregory Berger
- Endocrinology and Animal Biosciences Graduate Program, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Joshua D. Corris
- Endocrinology and Animal Biosciences Graduate Program, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Spencer E. Fields
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Lihong Hao
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Lori L. Scarpa
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nicholas T. Bello
- Endocrinology and Animal Biosciences Graduate Program, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Rutgers Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Ratković D, Knežević V, Dickov A, Fedrigolli E, Čomić M. Comparison of binge-eating disorder and food addiction. J Int Med Res 2023; 51:3000605231171016. [PMID: 37115520 PMCID: PMC10155018 DOI: 10.1177/03000605231171016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
In the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, binge-eating disorder (BED) is classified as episodes of binge eating while not being hungry, eating too fast until feeling uncomfortably full, or eating in solitude with feelings of shame and disgust after eating, without compensatory mechanisms. The controversial disorder food addiction (FA) is characterized by overconsumption, cravings, failure to cut down on amounts of food, and withdrawal and tolerance to overeating. In this narrative review, we aimed to comprehensively characterize and compare BED and FA. We searched PubMed using the keywords "binge-eating disorder" and "food addiction." We finally included 51 publications according to topic specificity, credibility, the authors' reputation, and non-bias criteria. BED is characterized by concerns about dietary issues, body shape, and weight as well as depressive symptoms and brooding rumination. FA can be divided into substance addiction and behavioral addiction, which can be differentiated using a list of criteria including hunger, taste, pleasure, function of food, loss of social connections, weight concerns, and awareness about the disorder. Further research is needed to further characterize and distinguish BED and FA.
Collapse
Affiliation(s)
- Dragana Ratković
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Psychiatry and Psychological Medicine, Novi Sad, Republic of Serbia
- Psychiatry Clinic, University Clinical Center of Vojvodina, Novi Sad, Republic of Serbia
| | - Vladimir Knežević
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Psychiatry and Psychological Medicine, Novi Sad, Republic of Serbia
- Psychiatry Clinic, University Clinical Center of Vojvodina, Novi Sad, Republic of Serbia
| | - Aleksandra Dickov
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Psychiatry and Psychological Medicine, Novi Sad, Republic of Serbia
- Psychiatry Clinic, University Clinical Center of Vojvodina, Novi Sad, Republic of Serbia
| | - Elsa Fedrigolli
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Psychiatry and Psychological Medicine, Novi Sad, Republic of Serbia
| | - Maša Čomić
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Psychiatry and Psychological Medicine, Novi Sad, Republic of Serbia
- Psychiatry Clinic, University Clinical Center of Vojvodina, Novi Sad, Republic of Serbia
| |
Collapse
|
3
|
Sun R, Sugiyama M, Wang S, Kuno M, Sasaki T, Hirose T, Miyata T, Kobayashi T, Tsunekawa T, Onoue T, Yasuda Y, Takagi H, Hagiwara D, Iwama S, Suga H, Arima H. Inflammation in VTA Caused by HFD Induces Activation of Dopaminergic Neurons Accompanied by Binge-like Eating. Nutrients 2022; 14:nu14183835. [PMID: 36145208 PMCID: PMC9502544 DOI: 10.3390/nu14183835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
Binge eating is a characteristic symptom observed in obese individuals that is related to dysfunction of dopaminergic neurons (DNs). Intermittent administration of a high-fat diet (HFD) is reported to induce binge-like eating, but the underlying mechanisms remain unclear. We generated dopaminergic neuron specific IKKβ deficient mice (KO) to examine the effects of inflammation in DNs on binge-like eating under inflammatory conditions associated with HFD. After administration of HFD for 4 weeks, mice were fasted for 24 h, and then the consumption of HFD was measured for 2 h. We also evaluated that the mRNA expressions of inflammatory cytokines, glial markers, and dopamine signaling-related genes in the ventral tegmental area (VTA) and striatum. Moreover, insulin was administered intraventricularly to assess downstream signaling. The consumption of HFD was significantly reduced, and the phosphorylation of AKT in the VTA was significantly increased in female KO compared to wild-type (WT) mice. Analyses of mRNA expressions revealed that DNs activity and inflammation in the VTA were significantly decreased in female KO mice. Thus, our data suggest that HFD-induced inflammation with glial cell activation in the VTA affects DNs function and causes abnormal eating behaviors accompanied by insulin resistance in the VTA of female mice.
Collapse
Affiliation(s)
- Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-52-744-2142
| | - Sixian Wang
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Mitsuhiro Kuno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoyuki Sasaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomonori Hirose
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Ichinomiya Municipal Hospital, Ichinomiya 491-8558, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8602, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
4
|
Novelle MG, Diéguez C. Food Addiction and Binge Eating: Lessons Learned from Animal Models. Nutrients 2018; 10:E71. [PMID: 29324652 PMCID: PMC5793299 DOI: 10.3390/nu10010071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
The feeding process is required for basic life, influenced by environment cues and tightly regulated according to demands of the internal milieu by regulatory brain circuits. Although eating behaviour cannot be considered "addictive" under normal circumstances, people can become "addicted" to this behaviour, similarly to how some people are addicted to drugs. The symptoms, cravings and causes of "eating addiction" are remarkably similar to those experienced by drug addicts, and both drug-seeking behaviour as eating addiction share the same neural pathways. However, while the drug addiction process has been highly characterised, eating addiction is a nascent field. In fact, there is still a great controversy over the concept of "food addiction". This review aims to summarize the most relevant animal models of "eating addictive behaviour", emphasising binge eating disorder, that could help us to understand the neurobiological mechanisms hidden under this behaviour, and to improve the psychotherapy and pharmacological treatment in patients suffering from these pathologies.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Suárez-Ortiz JO, Cortés-Salazar F, Malagón-Carrillo AL, López-Alonso VE, Mancilla-Díaz JM, Tejas-Juárez JG, Escartín-Pérez RE. Intra-accumbens Raclopride Administration Prevents Behavioral Changes Induced by Intermittent Access to Sucrose Solution. Front Neurosci 2018; 12:74. [PMID: 29515353 PMCID: PMC5826344 DOI: 10.3389/fnins.2018.00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/29/2018] [Indexed: 12/23/2022] Open
Abstract
Overeating is one of the most relevant clinical features in Binge Eating Disorder and in some obesity patients. According to several studies, alterations in the mesolimbic dopaminergic transmission produced by non-homeostatic feeding behavior may be associated with changes in the reward system similar to those produced by drugs of abuse. Although it is known that binge-eating is related with changes in dopaminergic transmission mediated by D2 receptors in the nucleus accumbens shell (NAcS), it has not been determined whether these receptors may be a potential target for the treatment of eating pathology with binge-eating. Accordingly, the aim of the present study was to evaluate whether sugar binging induced by intermittent access to a sucrose solution produced changes in the structure of feeding behavior and whether blocking D2 receptors prevented these changes. We used the intermittent access model to a 10% sucrose solution (2 h/day for 4 weeks) to induce sugar binging in Sprague Dawley female rats. Experimental subjects consumed in a 2-h period more than 50% of the caloric intake consumed by the subjects with ad-lib access to the sweetened solution without any increase in body weight or fat accumulation. Furthermore, we evaluated whether sugar binging was associated to the estrous cycle and we did not find differences in caloric intake (estrous vs. diestrus). Subsequently, we characterized the structure of feeding behavior (microstructural analysis) and the motivation for palatable food (breakpoints) of the subjects with sugar binging and found that feeding episodes had short latencies, high frequencies, as well as short durations and inter-episode intervals. The intermittent access model did not increase breakpoints, as occurred in subjects with ad-lib access to the sucrose. Finally, we evaluated the effects of D2 receptor blockade in the NAcS, and found that raclopride (18 nM) prevented the observed changes in the frequency and duration of episodes induced by intermittent access to the sucrose solution. Our results suggest that alterations in behavioral patterns associated with binge-eating behavior depend in part on the dopaminergic transmission in the NAcS and that the antagonism of D2 receptors may be a therapeutic tool for feeding pathology with binge-eating.
Collapse
Affiliation(s)
- Josué O. Suárez-Ortiz
- Laboratory of Neurobiology of Eating, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Felipe Cortés-Salazar
- Laboratory of Neurobiology of Eating, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Ariadna L. Malagón-Carrillo
- Laboratory of Neurobiology of Eating, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Verónica E. López-Alonso
- Laboratory of Neurobiology of Eating, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Juan M. Mancilla-Díaz
- Laboratory of Neurobiology of Eating, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Juan G. Tejas-Juárez
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Tabasco, Mexico
| | - Rodrigo E. Escartín-Pérez
- Laboratory of Neurobiology of Eating, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- *Correspondence: Rodrigo E. Escartín-Pérez
| |
Collapse
|
6
|
Goldberg LR, Kirkpatrick SL, Yazdani N, Luttik KP, Lacki OA, Babbs RK, Jenkins DF, Johnson WE, Bryant CD. Casein kinase 1-epsilon deletion increases mu opioid receptor-dependent behaviors and binge eating1. GENES, BRAIN, AND BEHAVIOR 2017; 16:725-738. [PMID: 28594147 PMCID: PMC6180211 DOI: 10.1111/gbb.12397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Genetic and pharmacological studies indicate that casein kinase 1 epsilon (Csnk1e) contributes to psychostimulant, opioid, and ethanol motivated behaviors. We previously used pharmacological inhibition to demonstrate that Csnk1e negatively regulates the locomotor stimulant properties of opioids and psychostimulants. Here, we tested the hypothesis that Csnk1e negatively regulates opioid and psychostimulant reward using genetic inhibition and the conditioned place preference assay in Csnk1e knockout mice. Similar to pharmacological inhibition, Csnk1e knockout mice showed enhanced opioid-induced locomotor activity with the mu opioid receptor agonist fentanyl (0.2 mg/kg i.p.) as well as enhanced sensitivity to low-dose fentanyl reward (0.05 mg/kg). Interestingly, female knockout mice also showed a markedly greater escalation in consumption of sweetened palatable food - a behavioral pattern consistent with binge eating that also depends on mu opioid receptor activation. No difference was observed in fentanyl analgesia in the 52.5°C hot plate assay (0-0.4 mg/kg), naloxone conditioned place aversion (4 mg/kg), or methamphetamine conditioned place preference (0-4 mg/kg). To identify molecular adaptations associated with increased drug and food behaviors in knockout mice, we completed transcriptome analysis via mRNA sequencing of the striatum. Enrichment analysis identified terms associated with myelination and axon guidance and pathway analysis identified a differentially expressed gene set predicted to be regulated by the Wnt signaling transcription factor, Tcf7l2. To summarize, Csnk1e deletion increased mu opioid receptor-dependent behaviors, supporting previous studies indicating an endogenous negative regulatory role of Csnk1e in opioid behavior.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Boston University, Boston, MA USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Boston University, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - Olga A. Lacki
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - R. Keith Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - David F. Jenkins
- Graduate Program in Bioinformatics, Boston University, Boston, MA USA
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - W. Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| |
Collapse
|
7
|
The Trace Amine-Associated Receptor 1 Agonist RO5256390 Blocks Compulsive, Binge-like Eating in Rats. Neuropsychopharmacology 2017; 42:1458-1470. [PMID: 27711047 PMCID: PMC5436108 DOI: 10.1038/npp.2016.233] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/20/2023]
Abstract
Compulsive, binge eating of highly palatable food constitutes a core feature of some forms of obesity and eating disorders, as well as of the recently proposed disorder of food addiction. Trace amine-associated receptor 1 (TAAR1) is a highly conserved G-protein-coupled receptor bound by endogenous trace amines. TAAR1 agonists have been shown to reduce multiple behavioral effects of drugs of abuse through their actions on the mesocorticolimbic system. In this study, we hypothesized that TAAR1 may have a role in compulsive, binge-like eating; we tested this hypothesis by assessing the effects of a TAAR1 agonist, RO5256390, in multiple excessive feeding-related behaviors induced by limiting access to a highly palatable diet in rats. Our results show that RO5256390 blocked binge-like eating in rats responding 1 h per day for a highly palatable sugary diet. Consistent with a palatability-selective effect, drug treatment selectively reduced the rate and regularity of palatable food responding, but it did not affect either baseline intake or food restriction-induced overeating of the standard chow diet. Furthermore, RO5256390 fully blocked compulsive-like eating when the palatable diet was offered in an aversive compartment of a light/dark conflict box, and blocked the conditioned rewarding properties of palatable food, as well as palatable food-seeking behavior in a second-order schedule of reinforcement. Drug treatment had no effect on either anxiety-like or depressive-like behavior, and it did not affect control performance in any of the tests. Importantly, rats exposed to palatable food showed decreased TAAR1 levels in the medial prefrontal cortex (mPFC), and RO5256390 microinfused into the infralimbic, but not prelimbic, subregion of the mPFC-reduced binge-like eating. Altogether, these results provide evidence for TAAR1 agonism as a novel pharmacological treatment for compulsive, binge eating.
Collapse
|
8
|
Kirkpatrick SL, Goldberg LR, Yazdani N, Babbs RK, Wu J, Reed ER, Jenkins DF, Bolgioni A, Landaverde KI, Luttik KP, Mitchell KS, Kumar V, Johnson WE, Mulligan MK, Cottone P, Bryant CD. Cytoplasmic FMR1-Interacting Protein 2 Is a Major Genetic Factor Underlying Binge Eating. Biol Psychiatry 2017; 81:757-769. [PMID: 27914629 PMCID: PMC5386810 DOI: 10.1016/j.biopsych.2016.10.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Eating disorders are lethal and heritable; however, the underlying genetic factors are unknown. Binge eating is a highly heritable trait associated with eating disorders that is comorbid with mood and substance use disorders. Therefore, understanding its genetic basis will inform therapeutic development that could improve several comorbid neuropsychiatric conditions. METHODS We assessed binge eating in closely related C57BL/6 mouse substrains and in an F2 cross to identify quantitative trait loci associated with binge eating. We used gene targeting to validate candidate genetic factors. Finally, we used transcriptome analysis of the striatum via messenger RNA sequencing to identify the premorbid transcriptome and the binge-induced transcriptome to inform molecular mechanisms mediating binge eating susceptibility and establishment. RESULTS C57BL/6NJ but not C57BL/6J mice showed rapid and robust escalation in palatable food consumption. We mapped a single genome-wide significant quantitative trait locus on chromosome 11 (logarithm of the odds = 7.4) to a missense mutation in cytoplasmic FMR1-interacting protein 2 (Cyfip2). We validated Cyfip2 as a major genetic factor underlying binge eating in heterozygous knockout mice on a C57BL/6N background that showed reduced binge eating toward a wild-type C57BL/6J-like level. Transcriptome analysis of premorbid genetic risk identified the enrichment terms morphine addiction and retrograde endocannabinoid signaling, whereas binge eating resulted in the downregulation of a gene set enriched for decreased myelination, oligodendrocyte differentiation, and expression. CONCLUSIONS We identified Cyfip2 as a major significant genetic factor underlying binge eating and provide a behavioral paradigm for future genome-wide association studies in populations with increased genetic complexity.
Collapse
Affiliation(s)
- Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Graduate Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Graduate Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA USA,Transformative Training Program in Addiction Science, Boston University
| | - R. Keith Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Jiayi Wu
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Transformative Training Program in Addiction Science, Boston University,Ph.D. Program in Biomedical Sciences, Graduate Program in Genetics and Genomics, Boston University School of Medicine
| | - Eric R. Reed
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Ph.D. Program in Bioinformatics, Boston University, Boston, MA USA
| | - David F. Jenkins
- Ph.D. Program in Bioinformatics, Boston University, Boston, MA USA,Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
| | - Amanda Bolgioni
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Graduate Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA USA
| | - Kelsey I. Landaverde
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Karen S. Mitchell
- Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | | | - W. Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
| | - Megan K. Mulligan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,*Corresponding Author Camron D. Bryant, Ph.D., Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, 72 E. Concord St., L-606C, Boston, MA 02118 USA, P: (617) 638-4489 F: (617) 638-4329
| |
Collapse
|
9
|
Removal of high-fat diet after chronic exposure drives binge behavior and dopaminergic dysregulation in female mice. Neuroscience 2016; 326:170-179. [PMID: 27063418 DOI: 10.1016/j.neuroscience.2016.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/08/2016] [Accepted: 04/01/2016] [Indexed: 12/28/2022]
Abstract
A significant contributor to the obesity epidemic is the overconsumption of highly palatable, energy dense foods. Chronic intake of palatable foods is associated with neuroadaptations within the mesocorticolimbic dopamine system adaptations which may lead to behavioral changes, such as overconsumption or bingeing. We examined behavioral and molecular outcomes in mice that were given chronic exposure to a high-fat diet (HFD; 12weeks), with the onset of the diet either in adolescence or adulthood. To examine whether observed effects could be reversed upon removal of the HFD, animals were also studied 4weeks after a return to chow feeding. Most notably, female mice, particularly those exposed to HFD starting in adolescence, demonstrated the emergence of binge-like behavior when given restricted access to a palatable food. Further, changes in dopamine-related gene expression and dopamine content in the prefrontal cortex were observed. Some of these HFD-driven phenotypes reversed upon removal of the diet, whereas others were initiated by removal of the diet. These findings have implications for obesity management and interventions, as both pharmacological and behavioral therapies are often combined with dietary interventions (e.g., reduction in calorie dense foods).
Collapse
|
10
|
van Gestel MA, Kostrzewa E, Adan RAH, Janhunen SK. Pharmacological manipulations in animal models of anorexia and binge eating in relation to humans. Br J Pharmacol 2014; 171:4767-84. [PMID: 24866852 PMCID: PMC4209941 DOI: 10.1111/bph.12789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/07/2014] [Accepted: 05/16/2014] [Indexed: 12/22/2022] Open
Abstract
Eating disorders, such as anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorders (BED), are described as abnormal eating habits that usually involve insufficient or excessive food intake. Animal models have been developed that provide insight into certain aspects of eating disorders. Several drugs have been found efficacious in these animal models and some of them have eventually proven useful in the treatment of eating disorders. This review will cover the role of monoaminergic neurotransmitters in eating disorders and their pharmacological manipulations in animal models and humans. Dopamine, 5-HT (serotonin) and noradrenaline in hypothalamic and striatal regions regulate food intake by affecting hunger and satiety and by affecting rewarding and motivational aspects of feeding. Reduced neurotransmission by dopamine, 5-HT and noradrenaline and compensatory changes, at least in dopamine D2 and 5-HT(2C/2A) receptors, have been related to the pathophysiology of AN in humans and animal models. Also, in disorders and animal models of BN and BED, monoaminergic neurotransmission is down-regulated but receptor level changes are different from those seen in AN. A hypofunctional dopamine system or overactive α2-adrenoceptors may contribute to an attenuated response to (palatable) food and result in hedonic binge eating. Evidence for the efficacy of monoaminergic treatments for AN is limited, while more support exists for the treatment of BN or BED with monoaminergic drugs.
Collapse
Affiliation(s)
- M A van Gestel
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center UtrechtUtrecht, The Netherlands
| | - E Kostrzewa
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center UtrechtUtrecht, The Netherlands
| | - R A H Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center UtrechtUtrecht, The Netherlands
| | - S K Janhunen
- Orion Corporation Orion Pharma, Research and Development, CNS ResearchTurku, Finland
| |
Collapse
|