1
|
Thompson Z, Fonseca IAT, Acosta W, Idarraga L, Garland T. Effects of food restriction on voluntary wheel-running behavior and body mass in selectively bred High Runner lines of mice. Physiol Behav 2024; 282:114582. [PMID: 38750805 DOI: 10.1016/j.physbeh.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Food restriction can have profound effects on various aspects of behavior, physiology, and morphology. Such effects might be amplified in animals that are highly active, given that physical activity can represent a substantial fraction of the total daily energy budget. More specifically, some effects of food restriction could be associated with intrinsic, genetically based differences in the propensity or ability to perform physical activity. To address this possibility, we studied the effects of food restriction in four replicate lines of High Runner (HR) mice that have been selectively bred for high levels of voluntary wheel running. We hypothesized that HR mice would respond differently than mice from four non-selected Control (C) lines. Healthy adult females from generation 65 were housed individually with wheels and provided access to food and water ad libitum for experimental days 1-19 (Phase 1), which allowed mice to attain a plateau in daily running distances. Ad libitum food intake of each mouse was measured on days 20-22 (Phase 2). After this, each mouse experienced a 20 % food restriction for 7 days (days 24-30; Phase 3), and then a 40 % food restriction for 7 additional days (days 31-37; Phase 4). Mice were weighed on experimental days 1, 8, 9, 15, 20, and 23-37 and wheel-running activity was recorded continuously, in 1-minute bins, during the entire experiment. Repeated-measures ANOVA of daily wheel-running distance during Phases 2-4 indicated that HR mice always ran much more than C, with values being 3.29-fold higher during the ad libitum feeding trial, 3.58-fold higher with -20 % food, and 3.06-fold higher with -40 % food. Seven days of food restriction at -20 % did not significantly reduce wheel-running distance of either HR (-5.8 %, P = 0.0773) or C mice (-13.3 %, P = 0.2122). With 40 % restriction, HR mice showed a further decrease in daily wheel-running distance (P = 0.0797 vs. values at 20 % restriction), whereas C mice did not (P = 0.4068 vs. values at 20 % restriction) and recovered to levels similar to those on ad libitum food (P = 0.3634). For HR mice, daily running distances averaged 11.4 % lower at -40 % food versus baseline values (P = 0.0086), whereas for C mice no statistical difference existed (-4.8 %, P = 0.7004). Repeated-measures ANOVA of body mass during Phases 2-4 indicated a highly significant effect of food restriction (P = 0.0001), but no significant effect of linetype (P = 0.1764) and no interaction (P = 0.8524). Both HR and C mice had a significant reduction in body mass only when food rations were reduced by 40 % relative to ad libitum feeding, and even then the reductions averaged only -0.60 g for HR mice (-2.6 %) and -0.49 g (-2.0 %) for C mice. Overall, our results indicate a surprising insensitivity of body mass to food restriction in both high-activity (HR) and ordinary (C) mice, and also insensitivity of wheel running in the C lines of mice, thus calling for studies of compensatory mechanisms that allow this insensitivity.
Collapse
Affiliation(s)
- Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA; Present Address: Department of Biology, Utah Valley University, Orem, UT, USA
| | - Ivana A T Fonseca
- Department of Physical Education, University of State of Rio Grande do Norte, Mossoró, Brazil
| | - Wendy Acosta
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Laidy Idarraga
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
2
|
Expression of Dopamine-Related Genes in Four Human Brain Regions. Brain Sci 2020; 10:brainsci10080567. [PMID: 32824878 PMCID: PMC7465182 DOI: 10.3390/brainsci10080567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
A better understanding of dopaminergic gene expression will inform future treatment options for many different neurologic and psychiatric conditions. Here, we utilized the National Institutes of Health’s Genotype-Tissue Expression project (GTEx) dataset to investigate genotype by expression associations in seven dopamine pathway genes (ANKK1, DBH, DRD1, DRD2, DRD3, DRD5, and SLC6A3) in and across four human brain tissues (prefrontal cortex, nucleus accumbens, substantia nigra, and hippocampus). We found that age alters expression of DRD1 in the nucleus accumbens and prefrontal cortex, DRD3 in the nucleus accumbens, and DRD5 in the hippocampus and prefrontal cortex. Sex was associated with expression of DRD5 in substantia nigra and hippocampus, and SLC6A3 in substantia nigra. We found that three linkage disequilibrium blocks of SNPs, all located in DRD2, were associated with alterations in expression across all four tissues. These demographic characteristic associations and these variants should be further investigated for use in screening, diagnosis, and future treatment of neurological and psychiatric conditions.
Collapse
|
3
|
Zhao ZJ, Derous D, Gerrard A, Wen J, Liu X, Tan S, Hambly C, Speakman JR. Limits to sustained energy intake. XXX. Constraint or restraint? Manipulations of food supply show peak food intake in lactation is constrained. J Exp Biol 2020; 223:jeb208314. [PMID: 32139473 DOI: 10.1242/jeb.208314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/27/2020] [Indexed: 11/20/2022]
Abstract
Lactating mice increase food intake 4- to 5-fold, reaching an asymptote in late lactation. A key question is whether this asymptote reflects a physiological constraint, or a maternal investment strategy (a 'restraint'). We exposed lactating mice to periods of food restriction, hypothesizing that if the limit reflected restraint, they would compensate by breaching the asymptote when refeeding. In contrast, if it was a constraint, they would by definition be unable to increase their intake on refeeding days. Using isotope methods, we found that during food restriction, the females shut down milk production, impacting offspring growth. During refeeding, food intake and milk production rose again, but not significantly above unrestricted controls. These data provide strong evidence that asymptotic intake in lactation reflects a physiological/physical constraint, rather than restraint. Because hypothalamic neuropeptide Y (Npy) was upregulated under both states of restriction, this suggests the constraint is not imposed by limits in the capacity to upregulate hunger signalling (the saturated neural capacity hypothesis). Understanding the genetic basis of the constraint will be a key future goal and will provide us additional information on the nature of the constraining factors on reproductive output, and their potential links to life history strategies.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Abby Gerrard
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
| | - Jing Wen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
| | - Song Tan
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
- CAS Center of Excellence for Animal Evolution and Genetics, Kunming 650223, China
| |
Collapse
|
4
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
LeSauter J, Balsam PD, Simpson EH, Silver R. Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity. Eur J Neurosci 2018; 51:71-81. [PMID: 30362616 DOI: 10.1111/ejn.14219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Dopamine has been implicated in circadian timing underlying the food entrainable oscillator (FEO) circuitry and overexpression of the dopamine D2 receptor (D2R) in the striatum has been reported to reduce motivation to obtain food rewards in operant tasks. In the present study, we explored both of these mechanisms by examining food anticipatory activity (FAA) in dopamine D2 receptor-overexpressing (D2R-OE) mice under various durations of food availability. First, we noted that at baseline, there were no differences between D2R-OE mice and their littermates in activity level, food intake, and body weight or in circadian activity. Under conditions of very restricted food availability (4 or 6 hr), both genotypes displayed FAA. In contrast, under 8-hr food availability, control mice showed FAA, but D2R-OE mice did not. Normalization of D2R by administration of doxycycline, a tetracycline analogue, rescued FAA under 8-hr restricted food. We next tested for circadian regulation of FAA. When given ad libitum access to food, neither D2R-OE nor controls were active during the daytime. However, after an interval of food restriction, all mice showed elevated locomotor activity at the time of previous food availability in the day, indicating circadian timing of anticipatory activity. In summary, motivation is reduced in D2R-OE mice but circadian timing behavior is not affected. We conclude that an increase in striatal D2R reduces FAA by modulating motivation and not by acting on a clock mechanism.
Collapse
Affiliation(s)
- Joseph LeSauter
- Department of Psychology, Barnard College, New York City, New York
| | - Peter D Balsam
- Department of Psychology, Barnard College, New York City, New York.,Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Rae Silver
- Department of Psychology, Barnard College, New York City, New York.,Departments of Psychology and of Pathology and Cell Biology, Columbia University, New York City, New York
| |
Collapse
|
6
|
Reichenbach A, Mequinion M, Bayliss JA, Lockie SH, Lemus MB, Mynatt RL, Stark R, Andrews ZB. Carnitine Acetyltransferase in AgRP Neurons Is Required for the Homeostatic Adaptation to Restricted Feeding in Male Mice. Endocrinology 2018; 159:2473-2483. [PMID: 29697769 PMCID: PMC6692886 DOI: 10.1210/en.2018-00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Behavioral adaptation to periods of varying food availability is crucial for survival, and agouti-related protein (AgRP) neurons have been associated with entrainment to temporal restricted feeding. We have shown that carnitine acetyltransferase (Crat) in AgRP neurons enables metabolic flexibility and appropriate nutrient partitioning. In this study, by restricting food availability to 3 h/d during the light phase, we examined whether Crat is a component of a food-entrainable oscillator (FEO) that helps link behavior to food availability. AgRP Crat knockout (KO) mice consumed less food and regained less body weight but maintained blood glucose levels during the 25-day restricted feeding protocol. Importantly, we observed no difference in meal latency, food anticipatory activity (FAA), or brown adipose tissue temperature during the first 13 days of restricted feeding. However, as the restricted feeding paradigm progressed, we noticed an increased FAA in AgRP Crat KO mice. The delayed increase in FAA, which developed during the last 12 days of restricted feeding, corresponded with elevated plasma levels of corticosterone and nonesterified fatty acids, indicating it resulted from greater energy debt incurred by KO mice over the course of the experiment. These experiments highlight the importance of Crat in AgRP neurons in regulating feeding behavior and body weight gain during restricted feeding but not in synchronizing behavior to food availability. Thus, Crat within AgRP neurons forms a component of the homeostatic response to restricted feeding but is not likely to be a molecular component of FEO.
Collapse
Affiliation(s)
- Alex Reichenbach
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Jacqueline A Bayliss
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Moyra B Lemus
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Randall L Mynatt
- Gene Nutrient Interactions Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
- Transgenic Core Facility, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Romana Stark
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Brzęk P, Gębczyński AK, Książek A, Konarzewski M. Effect of calorie restriction on spontaneous physical activity and body mass in mice divergently selected for basal metabolic rate (BMR). Physiol Behav 2016; 161:116-122. [PMID: 27090226 DOI: 10.1016/j.physbeh.2016.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022]
Abstract
Spontaneous physical activity (SPA) represents an important component of daily energy expenditures in animals and humans. Intra-specific variation in SPA may be related to the susceptibility to metabolic disease or obesity. In particular, reduced SPA under conditions of limited food availability may conserve energy and prevent loss of body and fat mass ('thrifty genotype hypothesis'). However, both SPA and its changes during food restriction show wide inter-individual variations. We studied the effect of 30% caloric restriction (CR) on SPA in laboratory mice divergently selected for high (H-BMR) and low (L-BMR) basal metabolic rate. Selection increased SPA in the H-BMR line but did not change it in the L-BMR mice. This effect reflected changes in SPA intensity but not SPA duration. CR increased SPA intensity more strongly in the L-BMR line than in the H-BMR line and significantly modified the temporal variation of SPA. However, the initial between-line differences in SPA were not affected by CR. Loss of body mass during CR did not differ between both lines. Our results show that the H-BMR mice can maintain their genetically determined high SPA under conditions of reduced food intake without sacrificing their body mass. We hypothesize that this pattern may reflect the higher flexibility in the energy budget in the H-BMR line, as we showed previously that mice from this line reduced their BMR during CR. These energy savings may allow for the maintenance of elevated SPA in spite of reduced food intake. We conclude that the effect of CR on SPA is in large part determined by the initial level of BMR, whose variation may account for the lack of universal pattern of behavioural responses to CR.
Collapse
Affiliation(s)
- Paweł Brzęk
- Department of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Andrzej K Gębczyński
- Department of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Aneta Książek
- Department of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Marek Konarzewski
- Department of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| |
Collapse
|
8
|
Derous D, Mitchell SE, Green CL, Chen L, Han JJ, Wang Y, Promislow DE, Lusseau D, Speakman JR, Douglas A. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways. Aging (Albany NY) 2016; 8:642-63. [PMID: 26945906 PMCID: PMC4925820 DOI: 10.18632/aging.100895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 01/03/2023]
Abstract
Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.
Collapse
Affiliation(s)
- Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| | - Sharon E. Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Cara L. Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing‐Dong J. Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences‐Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Daniel E.L. Promislow
- Department of Pathology and Department of Biology, University of Washington at Seattle, Seattle, WA 98195, USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| |
Collapse
|