1
|
Yagi S, Mohammad A, Wen Y, Batallán Burrowes AA, Blankers SA, Galea LAM. Estrogens dynamically regulate neurogenesis in the dentate gyrus of adult female rats. Hippocampus 2024; 34:583-597. [PMID: 39166359 DOI: 10.1002/hipo.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Estrone and estradiol differentially modulate neuroplasticity and cognition. How they influence the maturation of new neurons in the adult hippocampus, however, is not known. The present study assessed the effects of estrone and estradiol on the maturation timeline of neurogenesis in the dentate gyrus (DG) of ovariectomized (a model of surgical menopause) young adult Sprague-Dawley rats using daily subcutaneous injections of 17β-estradiol, estrone or vehicle. Rats were injected with a DNA synthesis marker, 5-bromo-2-deoxyuridine (BrdU), and were perfused 1, 2, or 3 weeks after BrdU injection and daily hormone treatment. Brains were sectioned and processed for various markers including: sex-determining region Y-box 2 (Sox2), glial fibrillary acidic protein (GFAP), antigen kiel 67 (Ki67), doublecortin (DCX), and neuronal nuclei (NeuN). Immunofluorescent labeling or co-labelling of BrdU with Sox2 (progenitor cells), Sox2/GFAP (neural progenitor cells), Ki67 (cell proliferation), DCX (immature neurons), NeuN (mature neurons) was used to examine the trajectory and maturation of adult-born neurons over time. Estrogens had early (1 week of exposure) effects on different stages of neurogenesis (neural progenitor cells, cell proliferation and early maturation of new cells into neurons) but these effects were less pronounced after prolonged treatment. Estradiol enhanced, whereas estrone reduced cell proliferation after 1 week but not after longer exposure to either estrogen. Both estrogens increased the density of immature neurons (BrdU/DCX-ir) after 1 week of exposure compared to vehicle treatment but this increased density was not sustained over longer durations of treatments to estrogens, suggesting that the enhancing effects of estrogens on neurogenesis were short-lived. Longer duration post-ovariectomy, without treatments with either of the estrogens, was associated with reduced neural progenitor cells in the DG. These results demonstrate that estrogens modulate several aspects of adult hippocampal neurogenesis differently in the short term, but may lose their ability to influence neurogenesis after long-term exposure. These findings have potential implications for treatments involving estrogens after surgical menopause.
Collapse
Affiliation(s)
- Shunya Yagi
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ahmad Mohammad
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yanhua Wen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ariel A Batallán Burrowes
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ramli NZ, Yahaya MF, Fahami NAM, Hamezah HS, Bakar ZHA, Arrozi AP, Yanagisawa D, Tooyama I, Singh M, Damanhuri HA. Spatial learning and memory impairment at the post-follicular depletion state is associated with reduced hippocampal glucose uptake. Exp Gerontol 2024; 197:112607. [PMID: 39389279 DOI: 10.1016/j.exger.2024.112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The menopausal transition is a complex neuroendocrine aging process affecting brain structure and metabolic function. Such changes are consistent with neurological sequelae noted following the menopausal transition, including cognitive deficits. Although studies in rodent models of the menopause revealed changes in learning and memory, little is known about the structural and metabolic changes in the brain regions serving the cognitive function in these models. The administration 4-vinylcyclohexene diepoxide (VCD) in laboratory animals results in follicular depletion, and thus, is a powerful translational tool that models the human menopause. In the studies presented here, we evaluated behavior, brain structure, and metabolism in young female rats administered with either VCD or vehicle for 15 days across the early, mid, and post-follicular depletion states at 1-, 2-, and 3-months post-final injection, respectively. Additionally, we evaluated the serum hormonal profile and ovarian follicles based on the estrous cycle pattern. Positron emission tomography (PET) was utilized to determine regional brain glucose metabolism in the hippocampus, medial prefrontal cortex, and striatum. Subsequently, the rats were euthanized for ex-vivo magnetic resonance imaging (MRI) to assess regional brain volumes. VCD-induced rats at the post-follicular depleted time points had diminished spatial learning and memory as well as reduced hippocampal glucose uptake. Additionally, VCD-induced rats at post-follicular depletion time points had marked reductions in estradiol, progesterone, and anti-mullerian hormone with an increase in follicle-stimulating hormone. These rats also exhibited fewer ovarian follicles, indicating that substantial ovarian function loss during post-follicular time points impairs the female rats' spatial learning/memory abilities and triggers the metabolic changes in the hippocampus.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia.
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| | - Nur Azlina Mohd Fahami
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| | - Zulzikry Hafiz Abu Bakar
- Medical Innovation Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan.
| | - Aslina Pahrudin Arrozi
- Medical Innovation Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan.
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan.
| | - Ikuo Tooyama
- Medical Innovation Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan.
| | - Meharvan Singh
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago Maywood, IL 60153, USA.
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| |
Collapse
|
3
|
Conrad CD, Peay DN, Acuña AM, Whittaker K, Donnay ME. Corticosterone disrupts spatial working memory during retention testing when highly taxed, which positively correlates with depressive-like behavior in middle-aged, ovariectomized female rats. Horm Behav 2024; 164:105600. [PMID: 39003890 PMCID: PMC11330725 DOI: 10.1016/j.yhbeh.2024.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Major Depressive Disorder affects 8.4 % of the U.S. population, particularly women during perimenopause. This study implemented a chronic corticosterone manipulation (CORT, a major rodent stress hormone) using middle-aged, ovariectomized female rats to investigate depressive-like behavior, anxiety-like symptoms, and cognitive ability. CORT (400 μg/ml, in drinking water) was administered for four weeks before behavioral testing began and continued throughout all behavioral assessments. Compared to vehicle-treated rats, CORT significantly intensified depressive-like behaviors: CORT decreased sucrose preference, enhanced immobility on the forced swim test, and decreased sociability on a choice task between a novel conspecific female rat and an inanimate object. Moreover, CORT enhanced anxiety-like behavior on a marble bury task by reducing time investigating tabasco-topped marbles. No effects were observed on novelty suppressed feeding or the elevated plus maze. For spatial working memory using an 8-arm radial arm maze, CORT did not alter acquisition but disrupted performance during retention. CORT enhanced the errors committed during the highest working memory load following a delay and during the last trial requiring the most items to remember; this cognitive metric positively correlated with a composite depressive-like score to reveal that as depressive-like symptoms increased, cognitive performance worsened. This protocol allowed for the inclusion of multiple behavioral assessments without stopping the CORT treatment needed to produce a MDD phenotype and to assess a battery of behaviors. Moreover, that when middle-age was targeted, chronic CORT produced a depressive-like phenotype in ovariectomized females, who also comorbidly expressed aspects of anxiety and cognitive dysfunction.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States.
| | - Dylan N Peay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Amanda M Acuña
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Kennedy Whittaker
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Megan E Donnay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| |
Collapse
|
4
|
Koebele SV, Bernaud VE, Northup-Smith SN, Willeman MN, Strouse IM, Bulen HL, Schrier AR, Newbern JM, DeNardo DF, Mayer LP, Dyer CA, Bimonte-Nelson HA. Gynecological surgery in adulthood imparts cognitive and brain changes in rats: A focus on hysterectomy at short-, moderate-, and long-term intervals after surgery. Horm Behav 2023; 155:105411. [PMID: 37659358 PMCID: PMC11060888 DOI: 10.1016/j.yhbeh.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
Premenopausal hysterectomy is associated with a greater relative risk of dementia. We previously demonstrated cognitive impairments in adult rats six weeks after hysterectomy with ovarian conservation compared with intact sham-controls and other gynecological surgery variations. Here, we investigated whether hysterectomy-induced cognitive impairments are transient or persistent. Adult rats received sham-control, ovariectomy (Ovx), hysterectomy, or Ovx-hysterectomy surgery. Spatial working memory, reference memory, and anxiety-like behavior were tested either six-weeks post-surgery, in adulthood; seven-months post-surgery, in early middle-age; or twelve-months post-surgery, in late middle-age. Hysterectomy in adulthood yielded spatial working memory deficits at short-, moderate-, and long-term post-surgery intervals. Serum hormone levels did not differ between ovary-intact, but differed from Ovx, groups. Hysterectomy had no significant impact on healthy ovarian follicle or corpora lutea counts for any post-surgery timepoint compared with intact sham-controls. Frontal cortex, dorsal hippocampus, and entorhinal cortex were assessed for activity-dependent markers. In entorhinal cortex, there were alterations in FOSB and ΔFOSB expression during the early middle-age timepoint, and phosphorylated ERK1/2 levels at the adult timepoint. Collectively, results suggest a primary role for the uterus in regulating cognition, and that memory-related neural pathways may be modified following gynecological surgery. This is the first preclinical report of long-term effects of hysterectomy with and without ovarian conservation on cognition, endocrine, ovarian, and brain assessments, initiating a comprehensive framework of gynecological surgery effects. Translationally, findings underscore critical needs to decipher how gynecological surgeries, especially those involving the uterus, impact the brain and its functions, the ovaries, and overall aging from a systems perspective.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Victoria E Bernaud
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Steven N Northup-Smith
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Mari N Willeman
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Isabel M Strouse
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Haidyn L Bulen
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Ally R Schrier
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA.
| |
Collapse
|
5
|
Yu S, Zhang L, Wang Y, Yan J, Wang Q, Bian H, Huang L. Mood, hormone levels, metabolic and sleep across the menopausal transition in VCD-induced ICR mice. Physiol Behav 2023; 265:114178. [PMID: 37001841 DOI: 10.1016/j.physbeh.2023.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
AIMS Menopausal transition is the transitional period before menopause in women, often accompanied by abnormal fluctuations in hormone levels that increase the risk of aging-related diseases. 4-vinylcyclohexene dioxide (VCD) is a chemical agent that induces gradual depletion of ovarian follicles, which can mimic the natural human process of transition from menopausal transition to post-menopause. Previous studies have shown that the onset of menopausal transition or menopause in VCD-injected mice is associated with a specific strain, even in inbred animals. Institute of Cancer Research (ICR) mice constitute general purpose outbred population, which has not been well-characterized in the VCD-induced model. Thus, the current study aimed to explore the characteristic features, including sleep, mood, and metabolism, of the model by examining the effect of timing of VCD injection in ICR mice to extend the applications of this model. MATERIALS AND METHODS ICR mice were randomly divided into six groups: 20d VCD and 20d Control, 35d VCD and 35d Control, 52d VCD and 52d Control. VCD mice were intraperitoneally injected with VCD (160 mg/kg), while Control mice were injected intraperitoneally with sesame oil for 4 consecutive weeks, five times a week daily. A vaginal smear was used to observe the estrous cycle of the mice. On the 20th, 35th, and 52nd day after VCD or sesame oil injection, the ovarian morphology, the number of atretic cells, hormone levels, anxiety, depression-like behaviors, sleep phase, and energy metabolism were observed. KEY FINDINGS The menopausal transition model was successfully replicated by injecting VCD into ICR mice. On the specific days after VCD treatment, the number of atretic follicles increased, the level of E2 decreased and FSH increased, the depressive- and anxiety-like behavior increased, the time of REM and NREM sleep time decreased, and energy metabolism was reduced. SIGNIFICANCE These results suggested that the ICR mice model has human-like characteristics during the menopause transition. Moreover, the ICR model has a long menopausal transition duration.
Collapse
Affiliation(s)
- Shuang Yu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Lixin Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Yanyan Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Jinming Yan
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Hongsheng Bian
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Lili Huang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China.
| |
Collapse
|
6
|
Bimonte-Nelson HA, Bernaud VE. How preclinical models of menopause can inform clinical care: A focus on midlife and reciprocal communication between clinical and preclinical science. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2023; 28:100434. [PMID: 39484630 PMCID: PMC11526845 DOI: 10.1016/j.coemr.2023.100434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Midlife in women typically includes the menopausal transition, a time of hormonal transformation, adaptation, and reorganization. Coincident with this dynamic period of physiological change, there are putatively modifiable factors that influence disease, short-term and long-term health outcomes, symptom emergence, and longevity. The menopause transition could be considered a window of vulnerability; however, it is also a window of opportunity for intervention. Thus, the menopause transition is a critical sensitive window whereby there is opportunity for turning points for healthy aging trajectories. Preclinical research can aid in this pursuit of scientific discovery for modifiable factors and treatments, and their particular parameters. Rodent menopause models include surgical and transitional variations, allowing detection of precise determinants impacting menopause-related outcomes. These models permit systematic manipulation of endogenous and exogenous hormone exposures across the lifespan, with infinite outcome measurements ranging from molecular to behavioral. This research is uniquely poised to address complex, interactive hypotheses with extensive control in a relatively short timeframe, including dissociation of age and menopause effects. To understand the many dynamic changes with menopause, iterative and reciprocal communication between clinical and preclinical domains of science is key.
Collapse
Affiliation(s)
- Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Victoria E Bernaud
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| |
Collapse
|
7
|
Lacasse JM, Gomez-Perales E, Brake WG. Modeling hormonal contraception in female rats: A framework for studies in behavioral neurobiology. Front Neuroendocrinol 2022; 67:101020. [PMID: 35952797 DOI: 10.1016/j.yfrne.2022.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Research on hormonal contraceptives (HC) in animal models is lacking, and as a result, so is our understanding of the impact of HC on the brain and behavior. Here, we provide a review of the pharmacology of HC, as well as the methodology and best practices for designing a model of HC in female rats. We outline specific methodological considerations regarding dosing, route of administration, exposure time/timing, and selecting a control group. We also provide a framework outlining important levels of analysis for thinking about the impact of HC on behavioral and neurobiological outcomes. The purpose of this review is to equip researchers with foundational knowledge, and some basic elements of experimental design for future studies investigating the impact of HC on the brain and behavior of female rats.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Eamonn Gomez-Perales
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
8
|
Vrontou S, Bédécarrats A, Wei X, Ayodeji M, Brassai A, Molnár L, Mody I. Altered brain rhythms and behaviour in the accelerated ovarian failure mouse model of human menopause. Brain Commun 2022; 4:fcac166. [PMID: 35794872 PMCID: PMC9253886 DOI: 10.1093/braincomms/fcac166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
To date, potential mechanisms of menopause-related memory and cognitive deficits have not been elucidated. Therefore, we studied brain oscillations, their phase–amplitude coupling, sleep and vigilance state patterns, running wheel use and other behavioural measures in a translationally valid mouse model of menopause, the 4-vinylcyclohexene-diepoxide-induced accelerated ovarian failure. After accelerated ovarian failure, female mice show significant alterations in brain rhythms, including changes in the frequencies of θ (5–12 Hz) and γ (30–120 Hz) oscillations, a reversed phase–amplitude coupling, altered coupling of hippocampal sharp-wave ripples to medial prefrontal cortical sleep spindles and reduced δ oscillation (0.5–4 Hz) synchrony between the two regions during non-rapid eye movement sleep. In addition, we report on significant circadian variations in the frequencies of θ and γ oscillations, and massive synchronous δ oscillations during wheel running. Our results reveal novel and specific network alterations and feasible signs for diminished brain connectivity in the accelerated ovarian failure mouse model of menopause. Taken together, our results may have identified changes possibly responsible for some of the memory and cognitive deficits previously described in this model. Corresponding future studies in menopausal women could shed light on fundamental mechanisms underlying the neurological and psychiatric comorbidities present during this important transitional phase in women’s lives.
Collapse
Affiliation(s)
- Sophia Vrontou
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | - Alexis Bédécarrats
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | - Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | | | - Attila Brassai
- Department of Pharmacology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology , Târgu Mureş 540139 , Romania
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania , Târgu Mureş 540485 , Romania
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
- Department of Physiology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| |
Collapse
|
9
|
Gilfarb RA, Leuner B. GABA System Modifications During Periods of Hormonal Flux Across the Female Lifespan. Front Behav Neurosci 2022; 16:802530. [PMID: 35783228 PMCID: PMC9245048 DOI: 10.3389/fnbeh.2022.802530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The female lifespan is marked by periods of dramatic hormonal fluctuation. Changes in the ovarian hormones estradiol and progesterone, in addition to the progesterone metabolite allopregnanolone, are among the most significant and have been shown to have widespread effects on the brain. This review summarizes current understanding of alterations that occur within the GABA system during the major hormonal transition periods of puberty, the ovarian cycle, pregnancy and the postpartum period, as well as reproductive aging. The functional impacts of altered inhibitory activity during these times are also discussed. Lastly, avenues for future research are identified, which, if pursued, can broaden understanding of the GABA system in the female brain and potentially lead to better treatments for women experiencing changes in brain function at each of these hormonal transition periods.
Collapse
Affiliation(s)
- Rachel A. Gilfarb
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- *Correspondence: Benedetta Leuner,
| |
Collapse
|
10
|
Koebele SV, Poisson ML, Palmer JM, Berns-Leone C, Northup-Smith SN, Peña VL, Strouse IM, Bulen HL, Patel S, Croft C, Bimonte-Nelson HA. Evaluating the Cognitive Impacts of Drospirenone, a Spironolactone-Derived Progestin, Independently and in Combination With Ethinyl Estradiol in Ovariectomized Adult Rats. Front Neurosci 2022; 16:885321. [PMID: 35692432 PMCID: PMC9177129 DOI: 10.3389/fnins.2022.885321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Oral contraceptives and hormone therapies require a progestogen component to prevent ovulation, curtail uterine hyperplasia, and reduce gynecological cancer risk. Diverse classes of synthetic progestogens, called progestins, are used as natural progesterone alternatives due to progesterone’s low oral bioavailability. Progesterone and several synthetic analogs can negatively impact cognition and reverse some neuroprotective estrogen effects. Here, we investigate drospirenone, a spironolactone-derived progestin, which has unique pharmacological properties compared to other clinically-available progestins and natural progesterone, for its impact on spatial memory, anxiety-like behavior, and brain regions crucial to these cognitive tasks. Experiment 1 assessed three drospirenone doses in young adult, ovariectomized rats, and found that a moderate drospirenone dose benefited spatial memory. Experiment 2 investigated this moderate drospirenone dose with and without concomitant ethinyl estradiol (EE) treatment, the most common synthetic estrogen in oral contraceptives. Results demonstrate that the addition of EE to drospirenone administration reversed the beneficial working memory effects of drospirenone. The hippocampus, entorhinal cortex, and perirhinal cortex were then probed for proteins known to elicit estrogen- and progestin- mediated effects on learning and memory, including glutamate decarboxylase (GAD)65, GAD67, and insulin-like growth factor receptor protein expression, using western blot. EE increased GAD expression in the perirhinal cortex. Taken together, results underscore the necessity to consider the distinct cognitive and neural impacts of clinically-available synthetic estrogen and progesterone analogs, and why they produce unique cognitive profiles when administered together compared to those observed when each hormone is administered separately.
Collapse
Affiliation(s)
- Stephanie V. Koebele
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Mallori L. Poisson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Justin M. Palmer
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Claire Berns-Leone
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Steven N. Northup-Smith
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Veronica L. Peña
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Isabel M. Strouse
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Haidyn L. Bulen
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Corissa Croft
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- *Correspondence: Heather A. Bimonte-Nelson,
| |
Collapse
|
11
|
Han G, Choi J, Cha SY, Kim BI, Kho HK, Jang MJ, Kim MA, Maeng S, Hong H. Effects of Radix Polygalae on Cognitive Decline and Depression in Estradiol Depletion Mouse Model of Menopause. Curr Issues Mol Biol 2021; 43:1669-1684. [PMID: 34698102 PMCID: PMC8929121 DOI: 10.3390/cimb43030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/22/2022] Open
Abstract
Postmenopausal syndrome refers to symptoms caused by the gradual decrease in female hormones after mid-40 years. As a target organ of estrogen, decrease in estrogen causes various changes in brain function such as a decrease in choline acetyltransferase and brain-derived neurotrophic factor; thus, postmenopausal women experience cognitive decline and more depressive symptoms than age-matched men. Radix Polygalae has been used for memory boosting and as a mood stabilizer and its components have shown neuroprotective, antidepressant, and stress relief properties. In a mouse model of estrogen depletion induced by 4-vinylcyclohexene diepoxide, Radix Polygalae was orally administered for 3 weeks. In these animals, cognitive and depression-related behaviors and molecular changes related to these behaviors were measured in the prefrontal cortex and hippocampus. Radix Polygalae improved working memory and contextual memory and despair-related behaviors in 4-vinylcyclohexene diepoxide-treated mice without increasing serum estradiol levels in this model. In relation to these behaviors, choline acetyltransferase and brain-derived neurotrophic factor in the prefrontal cortex and hippocampus and bcl-2-associated athanogene expression increased in the hippocampus. These results implicate the possible benefit of Radix Polygalae in use as a supplement of estrogen to prevent conditions such as postmenopausal depression and cognitive decline.
Collapse
Affiliation(s)
- Gaeul Han
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Junhyuk Choi
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Seung-Yun Cha
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Byung Il Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Hee Kyung Kho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Maeng-Jin Jang
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Mi Ae Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Sungho Maeng
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea
- Correspondence: (S.M.); (H.H.); Tel.: +82-31-201-2916 (S.M.); +82-2-2049-6274 (H.H.)
| | - Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
- Correspondence: (S.M.); (H.H.); Tel.: +82-31-201-2916 (S.M.); +82-2-2049-6274 (H.H.)
| |
Collapse
|
12
|
Zhang M, Flury S, Kim CK, Chung WCJ, Kirk JA, Pak TR. Absolute Quantification of Phosphorylated ERβ Amino Acids in the Hippocampus of Women and in A Rat Model of Menopause. Endocrinology 2021; 162:6306514. [PMID: 34147032 PMCID: PMC8294689 DOI: 10.1210/endocr/bqab122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/13/2022]
Abstract
The rapid decline of circulating 17β-estradiol (E2) at menopause leads to negative neurological consequences, although hormone therapy paradoxically has both harmful and positive effects depending on the age at which it is delivered. The inconsistent response to E2 suggests unappreciated regulatory mechanisms for estrogen receptors (ERs), and we predicted it could be due to age-related differences in ERβ phosphorylation. We assessed ERβ phosphorylation using a sensitive mass spectrometry approach that provides absolute quantification (AQUA-MS) of individually phosphorylated residues. Specifically, we quantified phosphorylated ERβ in the hippocampus of women (aged 21-83 years) and in a rat model of menopause at 4 residues with conserved sequence homology between the 2 species: S105, S176, S200, and Y488. Phosphorylation at these sites, which spanned all domains of ERβ, were remarkably consistent between the 2 species, showing high levels of S105 phosphorylation (80%-100%) and low levels of S200 (20%-40%). Further, S200 phosphorylation decreased with aging in humans and loss of E2 in rats. Surprisingly, Y488 phosphorylation, which has been linked to ERβ ligand-independent actions, exhibited approximately 70% phosphorylation, unaltered by species, age, or E2, suggesting ERβ's primary mode of action may not require E2 binding. We further show phosphorylation at 2 sites directly altered ERβ DNA-binding efficiency, and thus could affect its transcription factor activity. These findings provide the first absolute quantification of ERβ phosphorylation in the human and rat brain, novel insights into ERβ regulation, and a critical foundation for providing more targeted therapeutic options for menopause in the future.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Sarah Flury
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Chun K Kim
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Wilson C J Chung
- Department of Biology, Kent State University, Kent, Ohio 44242, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
- Correspondence: Toni R. Pak, PhD, Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Ave, CTRE 115-520, Maywood, IL 60153, USA.
| |
Collapse
|
13
|
Koebele SV, Hiroi R, Plumley ZMT, Melikian R, Prakapenka AV, Patel S, Carson C, Kirby D, Mennenga SE, Mayer LP, Dyer CA, Bimonte-Nelson HA. Clinically Used Hormone Formulations Differentially Impact Memory, Anxiety-Like, and Depressive-Like Behaviors in a Rat Model of Transitional Menopause. Front Behav Neurosci 2021; 15:696838. [PMID: 34366807 PMCID: PMC8335488 DOI: 10.3389/fnbeh.2021.696838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 01/29/2023] Open
Abstract
A variety of U.S. Food and Drug Administration-approved hormone therapy options are currently used to successfully alleviate unwanted symptoms associated with the changing endogenous hormonal milieu that occurs in midlife with menopause. Depending on the primary indication for treatment, different hormone therapy formulations are utilized, including estrogen-only, progestogen-only, or combined estrogen plus progestogen options. There is little known about how these formulations, or their unique pharmacodynamics, impact neurobiological processes. Seemingly disparate pre-clinical and clinical findings regarding the cognitive effects of hormone therapies, such as the negative effects associated with conjugated equine estrogens and medroxyprogesterone acetate vs. naturally circulating 17β-estradiol (E2) and progesterone, signal a critical need to further investigate the neuro-cognitive impact of hormone therapy formulations. Here, utilizing a rat model of transitional menopause, we administered either E2, progesterone, levonorgestrel, or combinations of E2 with progesterone or with levonorgestrel daily to follicle-depleted, middle-aged rats. A battery of assessments, including spatial memory, anxiety-like behaviors, and depressive-like behaviors, as well as endocrine status and ovarian follicle complement, were evaluated. Results indicate divergent outcomes for memory, anxiety, and depression, as well as unique physiological profiles, that were dependent upon the hormone regimen administered. Overall, the combination hormone treatments had the most consistently favorable profile for the domains evaluated in rats that had undergone experimentally induced transitional menopause and remained ovary-intact. The collective results underscore the importance of investigating variations in hormone therapy formulation as well as the menopause background upon which these formulations are delivered.
Collapse
Affiliation(s)
- Stephanie V. Koebele
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Ryoko Hiroi
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Zachary M. T. Plumley
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Ryan Melikian
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Alesia V. Prakapenka
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Catherine Carson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Destiney Kirby
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Sarah E. Mennenga
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | | | | | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| |
Collapse
|
14
|
Pontifex MG, Martinsen A, Saleh RNM, Harden G, Tejera N, Müller M, Fox C, Vauzour D, Minihane AM. APOE4 genotype exacerbates the impact of menopause on cognition and synaptic plasticity in APOE-TR mice. FASEB J 2021; 35:e21583. [PMID: 33891334 DOI: 10.1096/fj.202002621rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023]
Abstract
The impact of sex and menopausal status in Alzheimer's disease remains understudied despite increasing evidence of greater female risk, particularly in APOE4 carriers. Utilizing female APOE-TR mice maintained on a high-fat diet background we induced ovarian failure through repeated VCD injections, to mimic human menopause. At 12 months of age, recognition memory and spatial memory were assessed using object recognition, Y-maze spontaneous alternation, and Barnes maze. A VCD*genotype interaction reduced the recognition memory (P < .05), with APOE4 VCD-treated animals unable to distinguish between novel and familiar objects. APOE4 mice displayed an additional 37% and 12% reduction in Barnes (P < .01) and Y-maze (P < .01) performance, indicative of genotype-specific spatial memory impairment. Molecular analysis indicated both VCD and genotype-related deficits in synaptic plasticity with BDNF, Akt, mTOR, and ERK signaling compromised. Subsequent reductions in the transcription factors Creb1 and Atf4 were also evident. Furthermore, the VCD*genotype interaction specifically diminished Ephb2 expression, while Fos, and Cnr1 expression reduced as a consequence of APOE4 genotype. Brain DHA levels were 13% lower in VCD-treated animals independent of genotype. Consistent with this, we detected alterations in the expression of the DHA transporters Acsl6 and Fatp4. Our results indicate that the combination of ovarian failure and APOE4 leads to an exacerbation of cognitive and neurological deficits.
Collapse
Affiliation(s)
| | | | | | - Glenn Harden
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Noemi Tejera
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
15
|
Koebele SV, Quihuis AM, Lavery CN, Plumley ZMT, Castaneda AJ, Bimonte-Nelson HA. Oestrogen treatment modulates the impact of cognitive experience and task complexity on memory in middle-aged surgically menopausal rats. J Neuroendocrinol 2021; 33:e13002. [PMID: 34378820 PMCID: PMC9124643 DOI: 10.1111/jne.13002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
Menopause has been linked to changes in memory. Oestrogen-containing hormone therapy is prescribed to treat menopause-related symptoms and can ameliorate memory changes, although the parameters impacting oestrogen-related memory efficacy are unclear. Cognitive experience and practice have been shown to be neuroprotective and to improve learning and memory during ageing, with the type of task playing a role in subsequent cognitive outcomes. Whether task complexity matters, and whether these outcomes interact with menopause and oestrogen status, remains unknown. To investigate this, we used a rat model of surgical menopause to systematically assess whether maze task complexity, as well as order of task presentation, impacts spatial learning and memory during middle age when rats received vehicle, low-17β-oestradiol (E2 ) or high-E2 treatment. The direction, and even presence, of the effects of prior maze experience differed depending on the E2 dose. Surgical menopause without E2 treatment yielded the least benefit, as prior maze experience did not have a substantial effect on subsequent task performance for vehicle treated rats regardless of task demand level during the first exposure to maze experience or final testing. High-dose E2 yielded a variable benefit, and low-dose E2 produced the greatest benefit. Specifically, low-dose E2 broadly enhanced learning and memory in surgically menopausal rats that had prior experience on another task, regardless of the complexity level of this prior experience. These results demonstrate that E2 dose influences the impact of prior cognitive experience on learning and memory during ageing, and highlights the importance of prior cognitive experience in subsequent learning and memory outcomes.
Collapse
Affiliation(s)
- Stephanie V. Koebele
- Department of Psychology, Arizona State University, Tempe, AZ, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
| | - Alicia M. Quihuis
- Department of Psychology, Arizona State University, Tempe, AZ, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
| | - Courtney N. Lavery
- Department of Psychology, Arizona State University, Tempe, AZ, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
| | - Zachary M. T. Plumley
- Department of Psychology, Arizona State University, Tempe, AZ, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
| | - Arthur J. Castaneda
- Department of Psychology, Arizona State University, Tempe, AZ, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
| |
Collapse
|
16
|
Bimonte-Nelson HA, Bernaud VE, Koebele SV. Menopause, hormone therapy and cognition: maximizing translation from preclinical research. Climacteric 2021; 24:373-381. [PMID: 33977823 DOI: 10.1080/13697137.2021.1917538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Menopause-associated and hormone-associated cognitive research has a rich history built from varied disciplines and species. This review discusses landmark rodent and human work addressing cognitive outcomes associated with varied experiences of menopause and hormone therapy. Critical variables in menopause and cognitive aging research are considered, including menopause etiology, background hormone milieu and parameters of exposure to estrogens and progestogens. Recent preclinical research has identified that menopause and ovarian hormone fluctuations across many neurobiological systems affect cognitive aging, mapping novel avenues for future research. Preclinical models provide insight into complex interdisciplinary relationships in a systematic and highly controlled fashion. We highlight that acknowledging the strengths and weaknesses for both preclinical and clinical research approaches is vital to accurate interpretation, optimal translation and the direction of future research. There is great value in collaboration and communication across preclinical and clinical realms, especially regarding reciprocal feedback of findings to advance preclinical models, improve experimental designs and enrich basic science translation to the clinic. In searching for biological mechanisms underlying the cognitive consequences of menopause and hormone therapies, it is noteworthy that clinical and preclinical scientists are grounded in the same fundamental goal of optimizing health outcomes for women across the lifespan.
Collapse
Affiliation(s)
- H A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - V E Bernaud
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - S V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| |
Collapse
|
17
|
Weber MT, Rubin LH, Schroeder R, Steffenella T, Maki PM. Cognitive profiles in perimenopause: hormonal and menopausal symptom correlates. Climacteric 2021; 24:401-407. [PMID: 33759672 DOI: 10.1080/13697137.2021.1892626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Perimenopause is associated with declines in attention, working memory and verbal memory; however, there are significant individual differences. Further, the contributions of hormones and menopausal symptoms to domain-specific cognitive functions remain unknown. This longitudinal study aimed to determine whether there were distinct cognitive profiles in perimenopause and to identify factors associated with each profile. DESIGN In a sample of 85 women evaluated over 400 bi-annual visits, we administered a comprehensive neuropsychological battery, assessed menopausal symptoms and measured 17β-estradiol and follicle stimulating hormone. Multilevel latent profile analysis was used to identify cognitive profiles. Regressions were conducted to determine differences in hormones and symptoms by profile after adjusting for Stages of Reproductive Aging Workshop + 10 (STRAW + 10) stage and demographic factors. RESULTS Perimenopausal cognitive profiles consisted of cognitively normal (Profile 1; n = 162), weaknesses in verbal learning and memory (Profile 2; n = 94), strengths in verbal learning and memory (Profile 3; n = 98) and strengths in attention and executive function (Profile 4; n = 61). Profile 2 was differentiated by less hormonal variability and more sleep disturbance than Profile 1 (p < 0.05). CONCLUSIONS There is significant heterogeneity in cognition during perimenopause. While most women do not develop impairments, a significant minority experience weaknesses in verbal learning and memory. Profile analysis may identify at-risk populations and inform interventions.
Collapse
Affiliation(s)
- M T Weber
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - L H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Schroeder
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| | - T Steffenella
- School of Nursing, University of Rochester Medical Center, Rochester, NY, USA
| | - P M Maki
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Li Y, Dreher JC. A review of the impact of hormone therapy on prefrontal structure and function at menopause. Climacteric 2021; 24:340-349. [PMID: 33703983 DOI: 10.1080/13697137.2021.1889500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The menopause transition arises mainly from a decline in ovarian function characterized by a decrease in levels of ovarian estrogens (estradiol) and progesterone in women. Menopausal hormone therapy (MHT) has been used to counteract menopause-associated symptoms in postmenopausal women. With the development of advanced brain imaging methods, understanding MHT-related effects on brain structures and functions could help advance our understanding of the biological consequence of MHT-related effects on behavior, thereby contributing to developing new strategies for optimizing brain health during the menopause transition. This review focuses on the human research related to the impact of MHT on structural and functional organization of the prefrontal cortex in postmenopausal women. Although such MHT-related effects on brain structures and functions have only begun to be understood, it may be useful to examine present findings to identify areas for future research.
Collapse
Affiliation(s)
- Y Li
- Reward, Competition and Social Neuroscience Laboratory, Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - J-C Dreher
- Reward, Competition and Social Neuroscience Laboratory, Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China.,Neuroeconomics Laboratory, Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France
| |
Collapse
|
19
|
Bernaud VE, Hiroi R, Poisson ML, Castaneda AJ, Kirshner ZZ, Gibbs RB, Bimonte-Nelson HA. Age Impacts the Burden That Reference Memory Imparts on an Increasing Working Memory Load and Modifies Relationships With Cholinergic Activity. Front Behav Neurosci 2021; 15:610078. [PMID: 33643006 PMCID: PMC7902531 DOI: 10.3389/fnbeh.2021.610078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
Rodent aging research often utilizes spatial mazes, such as the water radial-arm-maze (WRAM), to evaluate cognition. The WRAM can simultaneously measure spatial working and reference memory, wherein these two memory types are often represented as orthogonal. There is evidence, however, that these two memory forms yield interference at a high working memory load. The current study systematically evaluated whether the presence of a reference memory component impacts handling of an increasing working memory load. Young and aged female rats were tested to assess whether aging impacts this relationship. Cholinergic projections from the basal forebrain to the hippocampus and cortex can affect cognitive outcomes, and are negatively impacted by aging. To evaluate whether age-related changes in working and reference memory profiles are associated with cholinergic functioning, we assessed choline acetyltransferase activity in these behaviorally-tested rats. Results showed that young rats outperformed aged rats on a task testing solely working memory. The addition of a reference memory component deteriorated the ability to handle an increasing working memory load, such that young rats performed similar to their aged counterparts. Aged rats also had challenges when reference memory was present, but in a different context. Specifically, aged rats had difficulty remembering which reference memory arms they had entered within a session, compared to young rats. Further, aged rats that excelled in reference memory also excelled in working memory when working memory demand was high, a relationship not seen in young rats. Relationships between cholinergic activity and maze performance differed by age in direction and brain region, reflecting the complex role that the cholinergic system plays in memory and attentional processes across the female lifespan. Overall, the addition of a reference memory requirement detrimentally impacted the ability to handle working memory information across young and aged timepoints, especially when the working memory challenge was high; these age-related deficits manifested differently with the addition of a reference memory component. This interplay between working and reference memory provides insight into the multiple domains necessary to solve complex cognitive tasks, potentially improving the understanding of complexities of age- and disease- related memory failures and optimizing their respective treatments.
Collapse
Affiliation(s)
- Victoria E Bernaud
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Ryoko Hiroi
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Mallori L Poisson
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Arthur J Castaneda
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Ziv Z Kirshner
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| |
Collapse
|
20
|
Prakapenka AV, Quihuis AM, Carson CG, Patel S, Bimonte-Nelson HA, Sirianni RW. Poly(lactic-co-glycolic Acid) Nanoparticle Encapsulated 17β-Estradiol Improves Spatial Memory and Increases Uterine Stimulation in Middle-Aged Ovariectomized Rats. Front Behav Neurosci 2021; 14:597690. [PMID: 33424559 PMCID: PMC7793758 DOI: 10.3389/fnbeh.2020.597690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Abstract
Hormone therapy that contains 17β-estradiol (E2) is used commonly for treatment of symptoms associated with menopause. E2 treatment has been shown to improve cognitive function following the decrease in ovarian hormones that is characteristic of menopause. However, once in circulation, the majority of E2 is bound to serum hormone binding globulin or albumin, becoming biologically inactive. Thus, therapeutic efficacy of E2 stands to benefit from increased bioavailability via sustained release of the hormone. Here, we focus on the encapsulation of E2 within polymeric nanoparticles composed of poly(lactic-co-glycolic) acid (PLGA). PLGA agent encapsulation offers several delivery advantages, including improved bioavailability and sustained biological activity of encapsulated agents. We hypothesized that delivery of E2 from PLGA nanoparticles would enhance the beneficial cognitive effects of E2 relative to free E2 or non-hormone loaded nanoparticle controls in a rat model of menopause. To test this hypothesis, spatial learning and memory were assessed in middle-aged ovariectomized rats receiving weekly subcutaneous treatment of either oil-control, free (oil-solubilized) E2, blank (non-hormone loaded) PLGA, or E2-loaded PLGA. Unexpectedly, learning and memory differed significantly between the two vehicle control groups. E2-loaded PLGA nanoparticles improved learning and memory relative to its control, while learning and memory were not different between free E2 and its vehicle control. These results suggest that delivery of E2 from PLGA nanoparticles offered cognitive benefit. However, when evaluating peripheral burden, E2-loaded PLGA was found to increase uterine stimulation compared to free E2, which is an undesired outcome, as estrogen exposure increases uterine cancer risk. In sum, a weekly E2 treatment regimen of E2 from PLGA nanoparticles increased cognitive efficacy and was accompanied with an adverse impact on the periphery, effects that may be due to the improved agent bioavailability and sustained biological activity offered by PLGA nanoparticle encapsulation. These findings underscore the risk of non-specific enhancement of E2 delivery and provide a basic framework for the study and development of E2's efficacy as a cognitive therapeutic with the aid of customizable polymeric nano-carriers.
Collapse
Affiliation(s)
- Alesia V Prakapenka
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Alicia M Quihuis
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Catherine G Carson
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Rachael W Sirianni
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
21
|
Koebele SV, Mennenga SE, Poisson ML, Hewitt LT, Patel S, Mayer LP, Dyer CA, Bimonte-Nelson HA. Characterizing the effects of tonic 17β-estradiol administration on spatial learning and memory in the follicle-deplete middle-aged female rat. Horm Behav 2020; 126:104854. [PMID: 32949557 PMCID: PMC8032560 DOI: 10.1016/j.yhbeh.2020.104854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023]
Abstract
17β-estradiol (E2)-containing hormone therapy is a safe, effective way to alleviate unwanted menopause symptoms. Preclinical research has focused upon the role of E2 in learning and memory using a surgically menopausal rodent model whereby the ovaries are removed. Given that most women retain their reproductive tract and undergo a natural menopause transition, it is necessary to understand how exogenous E2 impacts a structurally intact, but follicle-deplete, system. In the current study, 8 month old female rats were administered the ovatoxin 4-vinylcyclohexene diepoxide (VCD), which accelerates ovarian follicular depletion, to model the human menopause transition. After follicular depletion, at 11 months old, rats were administered Vehicle or tonic E2 treatment for 12 days prior to behavioral evaluation on spatial working and reference memory tasks. Results demonstrated that E2 had both enhancing and impairing effects on taxed working memory depending upon the learning or retention phases of the water radial-arm maze, with no impact on reference memory. Relationships between memory scores and circulating estrogen levels were specific to follicle-depleted rats without E2 treatment. Collectively, findings demonstrate the complexity of E2 administration in a follicle-depleted background, with cognitive effects specific to working memory; furthermore, E2 administration altered circulating hormonal milieu and relationships between hormone profiles and memory. In sum, menopausal etiology impacts the parameters of E2 effects on cognition, complementing prior work with other estrogen compounds. Deciphering estrogenic actions in a system wherein the reproductive tract remains intact with follicle-depleted ovaries, thus modeling the majority or menopausal women, is critical for translational perspectives.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America
| | - Sarah E Mennenga
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America
| | - Mallori L Poisson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America
| | - Lauren T Hewitt
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America
| | | | - Cheryl A Dyer
- FYXX Foundation, Flagstaff, AZ, United States of America
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States of America.
| |
Collapse
|
22
|
Oriá RB, de Almeida JZ, Moreira CN, Guerrant RL, Figueiredo JR. Apolipoprotein E Effects on Mammalian Ovarian Steroidogenesis and Human Fertility. Trends Endocrinol Metab 2020; 31:872-883. [PMID: 32684408 DOI: 10.1016/j.tem.2020.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/27/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Apolipoprotein E (ApoE) is a glycoprotein consisting of 299 amino acids, highly produced in the mammalian ovaries. The main function of the ApoE is to transport cholesterol from the peripheral tissues to be metabolized in the liver. In humans, the ApoE gene is polymorphic, with three alleles in a single chromosome-19 locus: APOE2, APOE3, and APOE4. ApoE has also been implicated in cholesterol transport within ovarian follicles to regulate steroidogenesis. Ovarian thecal and granulosa cell cholesterol uptake requires ApoE either by participating in the lipoprotein-receptor complex or lipid endocytosis. In this review, we summarize ApoE role on mammalian ovarian steroidogenesis and on human fertility and discuss recent findings of ApoE4 as an antagonistic pleiotropy gene under adverse environments.
Collapse
Affiliation(s)
- Reinaldo Barreto Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, 1315 Rua Cel. Nunes de Melo, Fortaleza, CE 60430270, Brazil.
| | - Juliana Zani de Almeida
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, 1315 Rua Cel. Nunes de Melo, Fortaleza, CE 60430270, Brazil
| | - Carolyne Neves Moreira
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, 1315 Rua Cel. Nunes de Melo, Fortaleza, CE 60430270, Brazil
| | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, 345 Crispell Drive, University of Virginia, Charlottesville, VA 434-924-9672, USA
| | - José Ricardo Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, 1700 Av. Dr. Silas Munguba, Fortaleza, CE 60740-903, Brazil
| |
Collapse
|
23
|
Cao LB, Leung CK, Law PWN, Lv Y, Ng CH, Liu HB, Lu G, Ma JL, Chan WY. Systemic changes in a mouse model of VCD-induced premature ovarian failure. Life Sci 2020; 262:118543. [PMID: 33038381 DOI: 10.1016/j.lfs.2020.118543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
AIMS Premature ovarian failure (POF) is a phenomenon in which the ovaries fail before the age of 40 years. Prior research has used a wide range of mouse models designed to reflect different causes of POF, including genetic factors, iatrogenic factors, and immune factors. The current study employed a mouse model of POF induced by 4-vinylcyclohexene diepoxide (VCD). VCD can specifically kill primordial and primary ovarian follicles, which destroys the follicular reserve and causes POF. The current study sought to specify and extend the applications of this model by examining the effect of timing and VCD dose and by exploring the effect of the model on systems outside of the ovaries. MATERIALS AND METHODS A VCD-induced mouse model of POF was constructed using established methods (VCD injected continuously at a concentration of 160 mg/kg for 15 days). Evidence for a graded effect of VCD was observed using a range of concentrations, and the best windows for examining VCD's effects on follicles and associated tissues were identified. KEY FINDINGS The mouse model used here successfully simulated two common complications of POF - emotional changes and decreased bone density. The model's application was then extended to examine the links between disease and intestinal microorganisms, and evidence was found linking POF to the reproductively relevant composition of the gut microbiota. SIGNIFICANCE These findings provide novel methodological guidance for future research, and they significantly extend the applications and scope of VCD-induced POF mouse models.
Collapse
Affiliation(s)
- Lian Bao Cao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China
| | - Chi Kwan Leung
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China; SDIVF R&D Centre, Hong Kong Science and Technology Parks, Shatin, Hong Kong, China
| | - Patrick Wai-Nok Law
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China
| | - Yue Lv
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China
| | - Cheuk-Hei Ng
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China; SDIVF R&D Centre, Hong Kong Science and Technology Parks, Shatin, Hong Kong, China
| | - Hong Bin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China; SDIVF R&D Centre, Hong Kong Science and Technology Parks, Shatin, Hong Kong, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China.
| | - Jin Long Ma
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250001, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China; SDIVF R&D Centre, Hong Kong Science and Technology Parks, Shatin, Hong Kong, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, Shandong 250001, China.
| |
Collapse
|
24
|
Slow electroencephalographic oscillations and behavioral measures as predictors of high executive processing in early postmenopausal females: A discriminant analysis approach. Brain Cogn 2020; 145:105613. [PMID: 32911233 DOI: 10.1016/j.bandc.2020.105613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Decline in cognitive function is frequent in early postmenopause. There are postmenopausal females who show high performance while others display low performance in executive function, modulated by the prefrontal cortex. These differences have led to confusing and inconclusive results, which have not been explained entirely by the decline in estrogens, which affect the prefrontal cortex functions. An analysis of brain function and the application of a discriminant analysis can help to clarify the deficits in executive function shown by some postmenopausal females. The objective was to examine electroencephalographic recording during the performance of an executive function test in early postmenopausal females, ten with a high level of performance and ten with a low level of performance. Absolute power of delta, theta, alpha1, alpha2, beta1 and beta2 and the numbers of completed categories, trials, perseverative errors and overall errors were submitted to stepwise discriminant analysis to identify predictor variables. Four predictors emerged as significant of group membership based on cognitive performance, with the high-performance group characterized by more completed categories, more delta power, less theta power and more alpha1 power. These findings suggest that postmenopausal females classified in the high-performance group displayed appropriate temporary activation in slow oscillations during executive processing.
Collapse
|
25
|
Kirshner ZZ, Yao JK, Li J, Long T, Nelson D, Gibbs RB. Impact of estrogen receptor agonists and model of menopause on enzymes involved in brain metabolism, acetyl-CoA production and cholinergic function. Life Sci 2020; 256:117975. [PMID: 32565251 PMCID: PMC7448522 DOI: 10.1016/j.lfs.2020.117975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022]
Abstract
Our goal is to understand how loss of circulating estrogens and estrogen replacement affect brain physiology and function, particularly in brain regions involved in cognitive processes. We recently conducted a large metabolomics study characterizing the effects of rodent models of menopause and treatment with estrogen receptor (ER) agonists on neurochemical targets in hippocampus, frontal cortex, and striatum. Here we characterize effects on levels of several key enzymes involved in glucose utilization and energy production, specifically phosphofructokinase, glyceraldehyde 3-phosphate dehydrogenase, and pyruvate dehydrogenase. We also evaluated effects on levels of β-actin and α-tubulin, choline acetyltransferase (ChAT) activity, and levels of ATP citrate lyase. All experiments were conducted in young adult rats. Experiment 1 compared the effects of ovariectomy (OVX), a model of surgical menopause, and 4-vinylcyclohexene diepoxide (VCD)-treatments, a model of transitional menopause, with tissues collected at proestrus and at diestrus. Experiment 2 used a separate cohort of rats to evaluate the same targets in OVX and VCD-treated rats treated with estradiol or with selective ER agonists. Differences in the expression of metabolic enzymes between cycling animals and models of surgical and transitional menopause were detected. These differences were model-, region- and time- dependent, and were modulated by selective ER agonists. Collectively, the findings demonstrate that loss of ovarian function and ER agonist treatments have differing effects in OVX vs. VCD-treated rats. Differences may help to explain differences in the effects of estrogen treatments on brain function and cognition in women who have experienced surgical vs. transitional menopause.
Collapse
Affiliation(s)
- Z Z Kirshner
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Jeffrey K Yao
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Junyi Li
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Tao Long
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Doug Nelson
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - R B Gibbs
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
26
|
Moseley RL, Druce T, Turner-Cobb JM. 'When my autism broke': A qualitative study spotlighting autistic voices on menopause. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 24:1423-1437. [PMID: 32003226 PMCID: PMC7376624 DOI: 10.1177/1362361319901184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
LAY ABSTRACT Autistic girls are known to struggle with the onset of menstruation, reporting that during their period, sensory sensitivities are heightened, it becomes more difficult to think clearly and control their emotions and they struggle more with everyday life and self-care. Yet surprisingly, nothing is known about how autistic women handle the menopausal transition in midlife. In non-autistic women, the menopause brings many physical changes and challenging symptoms from hot flushes to feeling more anxious and depressed. Because autistic women are already vulnerable to suicide, poor physical and mental health, and because they may already struggle with planning, controlling their emotions and coping with change, the menopause may be an especially challenging time. Yet, not one single study exists on the menopause in autism, so we conducted an online discussion (focus group) with seven autistic women. They confirmed that very little is known about menopause in autistic people, very little support is available and that menopause might be especially difficult for autistic people. Autism-related difficulties (including sensory sensitivity, socializing with others and communicating needs) were reported to worsen during the menopause, often so dramatically that some participants suggested they found it impossible to continue to mask their struggles. Participants also reported having extreme meltdowns, experiencing anxiety and depression, and feeling suicidal. This study highlights how important it is that professionals pay attention to menopause in autism, and discusses future research directions.
Collapse
|
27
|
Koebele SV, Nishimura KJ, Bimonte-Nelson HA, Kemmou S, Ortiz JB, Judd JM, Conrad CD. A long-term cyclic plus tonic regimen of 17β-estradiol improves the ability to handle a high spatial working memory load in ovariectomized middle-aged female rats. Horm Behav 2020; 118:104656. [PMID: 31862208 PMCID: PMC7286486 DOI: 10.1016/j.yhbeh.2019.104656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/30/2023]
Abstract
The influence of estrogens on modifying cognition has been extensively studied, revealing that a wide array of factors can significantly impact cognition, including, but not limited to, subject age, estrogen exposure duration, administration mode, estrogen formulation, stress history, and progestogen presence. Less known is whether long-term, extended exposure to estrogens would benefit or otherwise impact cognition. The present study examined the effects of 17β-estradiol (E2) exposure for seven months, beginning in late adulthood and continuing into middle age, using a regimen of cyclic exposure (bi-monthly subcutaneous injection of 10 μg E2), or Cyclic+Tonic exposure (bi-monthly subcutaneous injection of 10 μg E2 + Silastic capsules of E2) in ovariectomized female Fischer-344-CDF rats. Subjects were tested on a battery of learning and memory tasks. All groups learned the water radial-arm maze (WRAM) and Morris water maze tasks in a similar fashion, regardless of hormone treatment regimen. In the asymptotic phase of the WRAM, rats administered a Cyclic+Tonic E2 regimen showed enhanced performance when working memory was taxed compared to Vehicle and Cyclic E2 groups. Assessment of spatial memory on object placement and object recognition was not possible due to insufficient exploration of objects; however, the Cyclic+Tonic group showed increased total time spent exploring all objects compared to Vehicle-treated animals. Overall, these data demonstrate that long-term Cyclic+Tonic E2 exposure can result in some long-term cognitive benefits, at least in the spatial working memory domain, in a surgically menopausal rat model.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ, United States of America
| | - Kenji J Nishimura
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America; Arizona Alzheimer's Consortium, Phoenix, AZ, United States of America
| | - Salma Kemmou
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America
| | - J Bryce Ortiz
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America
| | - Jessica M Judd
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States of America.
| |
Collapse
|
28
|
Marongiu R. Accelerated Ovarian Failure as a Unique Model to Study Peri-Menopause Influence on Alzheimer's Disease. Front Aging Neurosci 2019; 11:242. [PMID: 31551757 PMCID: PMC6743419 DOI: 10.3389/fnagi.2019.00242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Despite decades of extensive research efforts, efficacious therapies for Alzheimer's disease (AD) are lacking. The multi-factorial nature of AD neuropathology and symptomatology has taught us that a single therapeutic approach will most likely not fit all. Women constitute ~70% of the affected AD population, and pathology and rate of symptoms progression are 2-3 times higher in women than men. Epidemiological data suggest that menopausal estrogen loss may be causative of the more severe symptoms observed in AD women, however, results from clinical trials employing estrogen replacement therapy are inconsistent. AD pathological hallmarks-amyloid β (Aβ), neurofibrillary tangles (NFTs), and chronic gliosis-are laid down during a 20-year prodromal period before clinical symptoms appear, which coincides with the menopause transition (peri-menopause) in women (~45-54-years-old). Peri-menopause is marked by widely fluctuating estrogen levels resulting in periods of irregular hormone-receptor interactions. Recent studies showed that peri-menopausal women have increased indicators of AD phenotype (brain Aβ deposition and hypometabolism), and peri-menopausal women who used hormone replacement therapy (HRT) had a reduced AD risk. This suggests that neuroendocrine changes during peri-menopause may be a trigger that increases risk of AD in women. Studies on sex differences have been performed in several AD rodent models over the years. However, it has been challenging to study the menopause influence on AD due to lack of optimal models that mimic the human process. Recently, the rodent model of accelerated ovarian failure (AOF) was developed, which uniquely recapitulates human menopause, including a transitional peri-AOF period with irregular estrogen fluctuations and a post-AOF stage with low estrogen levels. This model has proven useful in hypertension and cognition studies with wild type animals. This review article will highlight the molecular mechanisms by which peri-menopause may influence the female brain vulnerability to AD and AD risk factors, such as hypertension and apolipoprotein E (APOE) genotype. Studies on these biological mechanisms together with the use of the AOF model have the potential to shed light on key molecular pathways underlying AD pathogenesis for the development of precision medicine approaches that take sex and hormonal status into account.
Collapse
Affiliation(s)
- Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Weill Cornell Medicine, Department of Neurosurgery, Cornell University, New York, NY, United States
| |
Collapse
|
29
|
Xie L, Wu S, Cao D, Li M, Liu J, Nie G, Li Y, Yang H. Huyang yangkun formula protects against 4-Vinylcyclohexene diepoxide-induced premature ovarian insufficiency in rats via the Hippo–JAK2/STAT3 signaling pathway. Biomed Pharmacother 2019; 116:109008. [DOI: 10.1016/j.biopha.2019.109008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
|
30
|
Koebele SV, Palmer JM, Hadder B, Melikian R, Fox C, Strouse IM, DeNardo DF, George C, Daunis E, Nimer A, Mayer LP, Dyer CA, Bimonte-Nelson HA. Hysterectomy Uniquely Impacts Spatial Memory in a Rat Model: A Role for the Nonpregnant Uterus in Cognitive Processes. Endocrinology 2019; 160:1-19. [PMID: 30535329 PMCID: PMC6293088 DOI: 10.1210/en.2018-00709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
Approximately one-third of women experience hysterectomy, or the surgical removal of the uterus, by 60 years of age, with most surgeries occurring prior to the onset of natural menopause. The ovaries are retained in about half of these surgeries, whereas for the other half hysterectomy occurs concurrently with oophorectomy. The dogma is that the nonpregnant uterus is dormant. There have been no preclinical assessments of surgical variations in menopause, including hysterectomy, with and without ovarian conservation, on potential endocrine and cognitive changes. We present a novel rat model of hysterectomy alongside sham, ovariectomy (Ovx), and Ovx-hysterectomy groups to assess effects of surgical menopause variations. Rats without ovaries learned the working memory domain of a complex cognitive task faster than did those with ovaries. Moreover, uterus removal alone had a unique detrimental impact on the ability to handle a high-demand working memory load. The addition of Ovx, that is, Ovx-hysterectomy, prevented this hysterectomy-induced memory deficit. Performance did not differ amongst groups in reference memory-only tasks, suggesting that the working memory domain is particularly sensitive to variations in surgical menopause. Following uterus removal, ovarian histology and estrous cycle monitoring demonstrated that ovaries continued to function, and serum assays indicated altered ovarian hormone and gonadotropin profiles by 2 months after surgery. These results underscore the critical need to further study the contribution of the uterus to the female phenotype, including effects of hysterectomy with and without ovarian conservation, on the trajectory of brain and endocrine aging to decipher the impact of common variations in gynecological surgery in women. Moreover, findings demonstrate that the nonpregnant uterus is not dormant, and indicate that there is an ovarian-uterus-brain system that becomes interrupted when the reproductive tract has been disrupted, leading to alterations in brain functioning.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Justin M Palmer
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Bryanna Hadder
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Ryan Melikian
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Carly Fox
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Isabel M Strouse
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | | | | | | | | | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
- Correspondence: Heather A. Bimonte-Nelson, PhD, Arizona State University, Department of Psychology, Behavioral Neuroscience Division, Arizona Alzheimer’s Consortium, P.O. Box 871104, Tempe, Arizona 85287. E-mail:
| |
Collapse
|
31
|
Kirshner ZZ, Gibbs RB. Use of the REVERT ® total protein stain as a loading control demonstrates significant benefits over the use of housekeeping proteins when analyzing brain homogenates by Western blot: An analysis of samples representing different gonadal hormone states. Mol Cell Endocrinol 2018; 473:156-165. [PMID: 29396126 PMCID: PMC6045444 DOI: 10.1016/j.mce.2018.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 01/01/2023]
Abstract
Western blot is routinely used to quantify differences in the levels of target proteins in tissues. Standard methods typically use measurements of housekeeping proteins to control for variations in loading and protein transfer. This is problematic, however, when housekeeping proteins also are affected by experimental conditions such as injury, disease, and/or gonadal hormone manipulations. Our goal was to evaluate an alternative and perhaps superior method for conducting Western blot analysis of brain tissue homogenates from rats with distinct physiologically relevant gonadal hormone states. Tissues were collected from the hippocampus, frontal cortex, and striatum of young adult female rats that either were ovariectomized to model surgical menopause, or were treated with the ovatotoxin 4-vinylcyclohexene diepoxide (VCD) to model transitional menopause. Tissues also were collected from rats with a normal estrous cycle killed at proestrus when estradiol levels are high, and at diestrus when estradiol levels are low. Western blot detection of α-tubulin, β-actin, and GAPDH was performed and were compared for sensitivity and reliability with a fluorescent total protein stain (REVERT®). Results show that the total protein stain was much less variable across samples and had a greater linear range than α-tubulin, β-actin, or GAPDH. The stain was stable and easy to use, and did not interfere with the immunodetection or multiplexed detection of the housekeeping proteins. In addition, we show that normalization of our data to total protein, but not to GAPDH, revealed significant differences in α-tubulin expression in the hippocampus as a function of treatment, and that gel-to-gel consistency in measuring differences between paired samples run on multiple gels was significantly better when data were normalized to total protein than when normalized to GAPDH. These results demonstrate that the REVERT® total protein stain can be used in Western blot analysis of brain tissue homogenates to control for variations in loading and protein transfer, and provides significant advantages over the use of housekeeping proteins for quantifying changes in the levels of multiple target proteins.
Collapse
Affiliation(s)
- Z Z Kirshner
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - R B Gibbs
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
32
|
Xiao Q, Luo Y, Lv F, He Q, Wu H, Chao F, Qiu X, Zhang L, Gao Y, Huang C, Wang S, Zhou C, Zhang Y, Jiang L, Tang Y. Protective Effects of 17β-Estradiol on Hippocampal Myelinated Fibers in Ovariectomized Middle-aged Rats. Neuroscience 2018; 385:143-153. [PMID: 29908214 DOI: 10.1016/j.neuroscience.2018.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Estrogen replacement therapy (ERT) improves hippocampus-dependent cognition. This study investigated the impact of estrogen on hippocampal volume, CA1 subfield volume and myelinated fibers in the CA1 subfield of middle-aged ovariectomized rats. Ten-month-old bilaterally ovariectomized (OVX) female rats were randomly divided into OVX + E2 and OVX + Veh groups. After four weeks of subcutaneous injection with 17β-estradiol or a placebo, the OVX + E2 rats exhibited significantly short mean escape latency in a spatial learning task than that in the OVX + Veh rats. Using stereological methods, we did not observe significant differences in the volumes of the hippocampus and CA1 subfields between the two groups. However, using stereological methods and electron microscopy techniques, the total length of myelinated fibers and the total volumes of myelinated fibers, myelin sheaths and myelinated axons in the CA1 subfields of OVX + E2 rats were significantly 38.1%, 34.2%, 36.1% and 32.5%, respectively, higher than those in the OVX + Veh rats. After the parameters were calculated according to different diameter ranges, the estrogen replacement-induced remodeling of myelinated fibers in CA1 was mainly manifested in the myelinated fibers with a diameter of <1.0 μm. Therefore, four weeks of continuous E2 replacement improved the spatial learning capabilities of middle-aged ovariectomized rats. The E2 replacement-induced protection of spatial learning abilities might be associated with the beneficial effects of estrogen on myelinated fibers, particularly those with the diameters less than 1.0 μm, in the hippocampal CA1 region of middle-aged ovariectomized rats.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yanmin Luo
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fulin Lv
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qi He
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hong Wu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fenglei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuan Qiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Geriatrics, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chunxia Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Physiology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Sanrong Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chunni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yi Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
33
|
Prakapenka AV, Hiroi R, Quihuis AM, Carson C, Patel S, Berns-Leone C, Fox C, Sirianni RW, Bimonte-Nelson HA. Contrasting effects of individual versus combined estrogen and progestogen regimens as working memory load increases in middle-aged ovariectomized rats: one plus one does not equal two. Neurobiol Aging 2018; 64:1-14. [PMID: 29316527 PMCID: PMC5820186 DOI: 10.1016/j.neurobiolaging.2017.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/03/2023]
Abstract
Most estrogen-based hormone therapies are administered in combination with a progestogen, such as Levonorgestrel (Levo). Individually, the estrogen 17β-estradiol (E2) and Levo can improve cognition in preclinical models. However, although these hormones are often given together clinically, the impact of the E2 + Levo combination on cognitive function has yet to be methodically examined. Thus, we investigated E2 + Levo treatment on a cognitive battery in middle-aged, ovariectomized rats. When administered alone, E2 and Levo treatments each enhanced spatial working memory relative to vehicle treatment, whereas the E2 + Levo combination impaired high working memory load performance relative to E2 only and Levo only treatments. There were no effects on spatial reference memory. Mitogen-activated protein kinases/extracellular signal-regulated kinases pathway activation, which is involved in memory formation and estrogen-induced memory effects, was evaluated in 5 brain regions implicated in learning and memory. A distinct relationship was seen in the E2-only treatment group between mitogen-activated protein kinases/extracellular signal-regulated kinases pathway activation in the frontal cortex and working memory performance. Collectively, the results indicate that the differential neurocognitive effects of combination versus sole treatments are vital considerations as we move forward as a field to develop novel, and to understand currently used, exogenous hormone regimens across the lifespan.
Collapse
Affiliation(s)
- Alesia V Prakapenka
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA; Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ryoko Hiroi
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Alicia M Quihuis
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Catie Carson
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Claire Berns-Leone
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Carly Fox
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
34
|
Baker FC, Sattari N, de Zambotti M, Goldstone A, Alaynick WA, Mednick SC. Impact of sex steroids and reproductive stage on sleep-dependent memory consolidation in women. Neurobiol Learn Mem 2018; 160:118-131. [PMID: 29574082 DOI: 10.1016/j.nlm.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
Abstract
Age and sex are two of the three major risk factors for Alzheimer's disease (ApoE-e4 allele is the third), with women having a twofold greater risk for Alzheimer's disease after the age of 75 years. Sex differences have been shown across a wide range of cognitive skills in young and older adults, and evidence supports a role for sex steroids, especially estradiol, in protecting against the development of cognitive decline in women. Sleep may also be a protective factor against age-related cognitive decline, since specific electrophysiological sleep events (e.g. sleep spindle/slow oscillation coupling) are critical for offline memory consolidation. Furthermore, studies in young women have shown fluctuations in sleep events and sleep-dependent memory consolidation during different phases of the menstrual cycle that are associated with the levels of sex steroids. An under-appreciated possibility is that there may be an important interaction between these two protective factors (sex steroids and sleep) that may play a role in daily fluctuations in cognitive processing, in particular memory, across a woman's lifespan. Here, we summarize the current knowledge of sex steroid-dependent influences on sleep and cognition across the lifespan in women, with special emphasis on sleep-dependent memory processing. We further indicate gaps in knowledge that require further experimental examination in order to fully appreciate the complex and changing landscape of sex steroids and cognition. Lastly, we propose a series of testable predictions for how sex steroids impact sleep events and sleep-dependent cognition across the three major reproductive stages in women (reproductive years, menopause transition, and post-menopause).
Collapse
Affiliation(s)
- Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA; Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Negin Sattari
- UC Irvine, Department of Cognitive Sciences, Irvine, CA 92697, USA
| | | | - Aimee Goldstone
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | | | - Sara C Mednick
- UC Irvine, Department of Cognitive Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Merlo S, Spampinato SF, Sortino MA. Estrogen and Alzheimer's disease: Still an attractive topic despite disappointment from early clinical results. Eur J Pharmacol 2017; 817:51-58. [DOI: 10.1016/j.ejphar.2017.05.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/13/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
|
36
|
Webster AD, Finstad DA, Kurzer MS, Torkelson CJ. Quality of life among postmenopausal women enrolled in the Minnesota Green Tea Trial. Maturitas 2017; 108:1-6. [PMID: 29290208 DOI: 10.1016/j.maturitas.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Postmenopausal symptomatology has not been elucidated in large, long-term human clinical trials. Our objective was to measure quality of life in postmenopausal women aged 50-70 years. METHODS A Menopause-Specific Quality of Life-Intervention (MENQOL) questionnaire was completed by women enrolled in the Minnesota Green Tea Trial (n=932) to assess vasomotor, physical, sexual, and psychosocial symptoms in the years following menopause. Responses were coded; mean overall and domain scores ranged from 1 to 8. A higher score indicated more severe symptoms. RESULTS Mean overall MENQOL scores were highest in women aged 50-54.9 years. A pattern of reduced symptom severity with increasing age was observed overall and within each domain. Women aged 50-54.9 years had more severe night sweats and sweating than other age groups (P≤0.001) and more severe hot flashes than women aged≥60years (P≪0.001). No differences between age groups were seen on mean score in the Sexual domain. Compared with women aged 50.0-54.9 years (the reference group), study participants aged 60-64.9 and≥65years had lower MENQOL scores in the Psychosocial domain (P=0.029 and P≪0.001). Women aged 50-54.9 years had more severe symptoms related to negative mood than women ≥65 years (P≤0.009). Compared with women aged 50-54.9 years, those in the age groups 60-64.9 and≥65 years had lower scores for "poor memory" (2.98±1.75 and 2.66±1.68 vs. 3.43±1.87, P≪0.001). Women≥65 years reported lower scores for "feeling tired or worn out", "difficulty sleeping", and "lack of energy" than all other age groups (P≤0.003). CONCLUSION The findings of this descriptive analysis of postmenopausal women may help clinicians counsel women about expectations and treatment options to address menopause-associated symptoms and the relationship between postmenopausal symptoms and overall health.
Collapse
|
37
|
Koebele SV, Bimonte-Nelson HA. The endocrine-brain-aging triad where many paths meet: female reproductive hormone changes at midlife and their influence on circuits important for learning and memory. Exp Gerontol 2016; 94:14-23. [PMID: 27979770 DOI: 10.1016/j.exger.2016.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023]
Abstract
Female mammals undergo natural fluctuations in sex steroid hormone levels throughout life. These fluctuations span from early development, to cyclic changes associated with the menstrual or estrous cycle and pregnancy, to marked hormone flux during perimenopause, and a final decline at reproductive senescence. While the transition to reproductive senescence is not yet fully understood, the vast majority of mammals experience this spontaneous, natural phenomenon with age, which has broad implications for long-lived species. Indeed, this post-reproductive life stage, and its transition, involves significant and enduring physiological changes, including considerably altered sex steroid hormone and gonadotropin profiles that impact multiple body systems, including the brain. The endocrine-brain-aging triad is especially noteworthy, as many paths meet and interact. Many of the brain regions affected by aging are also sensitive to changes in ovarian hormone levels, and aging and reproductive senescence are both associated with changes in memory performance. This review explores how menopause is related to cognitive aging, and discusses some of the key neural systems and molecular factors altered with age and reproductive hormone level changes, with an emphasis on brain regions important for learning and memory.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States.
| |
Collapse
|