1
|
Bakay B, Bakay H, Kırpınar İ. Do pregnancy and motherhood have an impact on cognitive functions in women. Women Health 2024; 64:486-500. [PMID: 38955489 DOI: 10.1080/03630242.2024.2371812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Pregnancy and motherhood are some of the most physically and mentally challenging periods in a woman's life. The aim of current study was to examine aspects of cognitive functions in pregnancy and motherhood that are controversial in the literature. The study included 30 healthy pregnant women aged between 18-40 years in their second and third trimesters, 30 healthy controls (nulliparous and non-pregnant women) and 30 healthy mothers matched with the pregnant women for age, handedness and education level. Edinburgh Postpartum Depression Scale, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, Trail Making, Stroop, Digit Span, Verbal Fluency and Rey Auditory and Verbal Learning Tests (RAVLT) were applied to all participants. The pregnant group showed significantly lower performance in trail making, digit span, verbal fluency as well as RAVLT compared to other two groups suggesting deficiencies in cognitive areas such as attention, set-shifting, planning, learning, language functions, semantic memory, working memory, encoding memory and retrieval. A trend toward increased function in response inhibition was observed in the mothers. Regression analyses revealed that pregnancy significantly decreased performance in verbal fluency, trail making, and RAVLT. Our findings from rigorously selected participants may help comprehend alterations in cognitive functioning during pregnancy and motherhood, as well as shed light on the contradictory literature.
Collapse
Affiliation(s)
- Betül Bakay
- Department of Psychiatry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Hasan Bakay
- Department of Psychiatry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - İsmet Kırpınar
- Department of Psychiatry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
2
|
Faraji M, Viera-Resto OA, Berrios BJ, Bizon JL, Setlow B. Effects of systemic oxytocin receptor activation and blockade on risky decision making in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593981. [PMID: 38798601 PMCID: PMC11118492 DOI: 10.1101/2024.05.13.593981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The neuropeptide oxytocin is traditionally known for its roles in parturition, lactation, and social behavior. Other data, however, show that oxytocin can modulate behaviors outside of these contexts, including drug self-administration and some aspects of cost-benefit decision making. Here we used a pharmacological approach to investigate the contributions of oxytocin signaling to decision making under risk of explicit punishment. Female and male Long-Evans rats were trained on a risky decision-making task in which they chose between a small, "safe" food reward and a large, "risky" food reward that was accompanied by varying probabilities of mild footshock. Once stable choice behavior emerged, rats were tested in the task following acute intraperitoneal injections of oxytocin or the oxytocin receptor antagonist L-368,899. Neither drug affected task performance in males. In females, however, both oxytocin and L-368,899 caused a dose-dependent reduction in preference for large risky reward. Control experiments showed that these effects could not be accounted for by alterations in food motivation or shock sensitivity. Together, these results reveal a sex-dependent effect of oxytocin signaling on risky decision making in rats.
Collapse
Affiliation(s)
- Mojdeh Faraji
- Department of Psychiatry, University of Florida
- Center for Addiction Research and Education, University of Florida
| | | | | | - Jennifer L Bizon
- Center for Addiction Research and Education, University of Florida
- Department of Neuroscience, University of Florida
- McKnight Brain Institute, University of Florida
| | - Barry Setlow
- Department of Psychiatry, University of Florida
- Center for Addiction Research and Education, University of Florida
- McKnight Brain Institute, University of Florida
| |
Collapse
|
3
|
Faraji M, Viera-Resto OA, Setlow B, Bizon JL. Effects of reproductive experience on cost-benefit decision making in female rats. Front Behav Neurosci 2024; 18:1304408. [PMID: 38352625 PMCID: PMC10863065 DOI: 10.3389/fnbeh.2024.1304408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Many individuals undergo mating and/or other aspects of reproductive experience at some point in their lives, and pregnancy and childbirth in particular are associated with alterations in the prevalence of several psychiatric disorders. Research in rodents shows that maternal experience affects spatial learning and other aspects of hippocampal function. In contrast, there has been little work in animal models concerning how reproductive experience affects cost-benefit decision making, despite the relevance of this aspect of cognition for psychiatric disorders. To begin to address this issue, reproductively experienced (RE) and reproductively naïve (RN) female Long-Evans rats were tested across multiple tasks that assess different forms of cost-benefit decision making. In a risky decision-making task, in which rats chose between a small, safe food reward and a large food reward accompanied by variable probabilities of punishment, RE females chose the large risky reward significantly more frequently than RN females (greater risk taking). In an intertemporal choice task, in which rats chose between a small, immediate food reward and a large food reward delivered after a variable delay period, RE females chose the large reward less frequently than RN females. Together, these results show distinct effects of reproductive experience on different forms of cost-benefit decision making in female rats, and highlight reproductive status as a variable that could influence aspects of cognition relevant for psychiatric disorders.
Collapse
Affiliation(s)
- Mojdeh Faraji
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Omar A. Viera-Resto
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jennifer L. Bizon
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Zhang J, Zhang T, Chen YC, Chen H, Feng Y, Tang WW, Zheng JX. Decreased brain functional connectivity associated with cognitive dysfunction in women with second pregnancy. Front Aging Neurosci 2022; 14:963943. [PMID: 36072487 PMCID: PMC9444322 DOI: 10.3389/fnagi.2022.963943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Previous research has found that women with second pregnancy may have an increased risk of cognitive dysfunction. This study aims to investigate the intrinsic functional connectivity (FC) pattern of the DMN anchored on posterior cingulate cortex (PCC) in postpartum women, especially the parous women using resting-state functional magnetic resonance imaging (rs-fMRI). Methods Twenty parous women, 26 primiparous women, and 30 nulliparous women were included for rs-fMRI scan. They were age and education well matched. A seed based FC method was conducted to reveal FC patterns with other brain regions using a region of interest in the PCC. The relationships between FC patterns and cognitive performance were further detected. Results Relative to primiparous women, parous women had significantly decreased FC primarily between the PCC and the right middle frontal gyrus and right parahippocampal gyrus. The decreased FC to the right parahippocampal gyrus in parous women was positively associated with the reduced DST scores (rho = 0.524, p = 0.031). Moreover, parous women compared with nulliparous women showed significantly decreased FC between the PCC and the left superior frontal gyrus and left middle frontal gyrus. The reduced FC to the left superior frontal gyrus in parous women was also positively associated with the lower DST scores (rho = 0.550, p = 0.022). Conclusion Our result highlights that women with second pregnancy revealed decreased FC between the DMN regions with the parahippocampal gyrus and prefrontal cortex, which was correlated with specific impaired cognitive function. This study may provide new insights into the neuropathological mechanisms of postpartum cognitive impairment and enhance our understanding of the neurobiological aspects during postpartum period.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Neurology, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, China
| | - Tao Zhang
- Department of Radiology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Feng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wei Tang
- Department of Radiology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Wen-Wei Tang,
| | - Jin-Xia Zheng
- Department of Radiology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- Jin-Xia Zheng,
| |
Collapse
|
5
|
Pichugina YA, Maksimova IV, Berezovskaya MA, Afanaseva NA, Pichugin AB, Dmitrenko DV, Timechko EE, Salmina AB, Lopatina OL. Salivary oxytocin in autistic patients and in patients with intellectual disability. Front Psychiatry 2022; 13:969674. [PMID: 36506430 PMCID: PMC9729552 DOI: 10.3389/fpsyt.2022.969674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Assessing the role of oxytocin (OT) in the regulation of social interaction is a promising area that opens up new opportunities for studying the mechanisms of developing autism spectrum disorders (ASD). AIM To assess the correlation between the salivary OT level and age-related and psychopathological symptoms of children with intellectual disability (ID) and ASD. METHODS We used the clinical and psychopathological method to assess the signs of ASD based on International Classification of Diseases (ICD-10), the severity of ASD was specified by the selected Russian type version "Childhood Autism Rating Scale" (CARS). Patients of both groups had an IQ score below 70 points. RESULTS The median and interquartile range of salivary OT levels in patients with ID and ASD were 23.897 [14.260-59.643] pg/mL, and in the group ID without ASD - Me = 50.896 [33.502-83.774] pg/mL (p = 0.001). The severity of ASD on the CARS scale Me = 51.5 [40.75-56.0] score in the group ID with ASD, and in the group ID without ASD-at the level of Me = 32 [27.0-38.0] points (p < 0.001). According to the results of correlation-regression analysis in the main group, a direct correlation was established between salivary OT level and a high degree of severity of ASD Rho = 0.435 (p = 0.005). There was no correlation between the salivary OT level and intellectual development in the group ID with ASD, Rho = 0.013 (p = 0.941) and we have found a relationship between oxytocin and intellectual development in the group ID without ASD, Rho = 0.297 (p = 0.005). There was no correlation between salivary OT and age, ASD and age. CONCLUSION The results of this study indicate that patients in the group ID with ASD demonstrated a lower level of salivary OT concentration and a direct relationship between the maximum values of this indicator and the severity of autistic disorders, in contrast to patients in the group ID without ASD.
Collapse
Affiliation(s)
- Yulia A Pichugina
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Irina V Maksimova
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Marina A Berezovskaya
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Natalya A Afanaseva
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Aleksey B Pichugin
- Social Neuroscience Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Diana V Dmitrenko
- Department of Medical Genetics of Clinical Neurophysiology, Institute of Postgraduate Education, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.,Medical Genetic Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Elena E Timechko
- Medical Genetic Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Alla B Salmina
- Laboratory of Experimental Brain Cytology, Department of Brain Studies, Research Center of Neurology, Moscow, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Social Neuroscience Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
6
|
Pereira M, Smiley KO, Lonstein JS. Parental Behavior in Rodents. ADVANCES IN NEUROBIOLOGY 2022; 27:1-53. [PMID: 36169811 DOI: 10.1007/978-3-030-97762-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Members of the order Rodentia are among the best-studied mammals for understanding the patterns, outcomes, and biological determinants of maternal and paternal caregiving. This research has provided a wealth of information but has historically focused on just a few rodents, mostly members of the two Myomorpha families that easily breed and can be studied within a laboratory setting (including laboratory rats, mice, hamsters, voles, gerbils). It is unclear how well this small collection of animals represents the over 2000 species of extant rodents. This chapter provides an overview of the hormonal and neurobiological systems involved in parental care in rodents, with a purposeful eye on providing information known or could be gleaned about parenting in various less-traditional members of Rodentia. We conclude from this analysis that the few commonly studied rodents are not necessarily even representative of the highly diverse members of Myomorpha, let alone other rodent suborders, and that additional laboratory and field studies of members of this order more broadly would surely provide invaluable information toward revealing a more representative picture of the rich diversity in rodent parenting.
Collapse
Affiliation(s)
- Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kristina O Smiley
- Centre for Neuroendocrinology & Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Wan L, Huang RJ, Luo ZH, Gong JE, Pan A, Manavis J, Yan XX, Xiao B. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast 2021; 2021:3651735. [PMID: 34539776 PMCID: PMC8448607 DOI: 10.1155/2021/3651735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The levels of reproduction-associated hormones in females, such as estrogen, progesterone, prolactin, and oxytocin, change dramatically during pregnancy and postpartum. Reproduction-associated hormones can affect adult hippocampal neurogenesis (AHN), thereby regulating mothers' behavior after delivery. In this review, we first briefly introduce the overall functional significance of AHN and the methods commonly used to explore this front. Then, we attempt to reconcile the changes of reproduction-associated hormones during pregnancy. We further update the findings on how reproduction-related hormones influence adult hippocampal neurogenesis. This review is aimed at emphasizing a potential role of AHN in reproduction-related brain plasticity and its neurobiological relevance to motherhood behavior.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao-e Gong
- Department of Neurology, Hunan Children's Hospital, Changsha 410007, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia 5000
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
8
|
Rincón-Cortés M, Grace AA. Early Pup Removal Leads to Social Dysfunction and Dopamine Deficit in Late Postpartum Rats: Prevention by Social Support. Front Glob Womens Health 2021; 2. [PMID: 34414389 PMCID: PMC8373044 DOI: 10.3389/fgwh.2021.694808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Offspring interaction is among the most highly motivated behaviors in maternal mammals and is mediated by mesolimbic dopamine (DA) system activation. Disruption or loss of significant social relationships is among the strongest individual predictors of affective dysregulation and depression onset in humans. However, little is known regarding the effects of disrupted mother–infant attachment (pup removal) in rat dams. Here, we tested the effects of permanent pup removal in rat dams, which were assigned to one of three groups on postpartum day (PD) 1: pups; pups removed, single-housed; or pups removed, co-housed with another dam who also had pups removed; and underwent a behavioral test battery during PD 21–23. In vivo electrophysiological recordings of ventral tegmental area (VTA) DA neurons were performed on PD 22 and 23 in a subset of animals. Pup removal did not impact sucrose consumption or anxiety-like behavior, but increased passive forced swim test (FST) coping responses. Pup-removal effects on social behavior and VTA activity were sensitive to social buffering: only single-housed dams exhibited reduced social motivation and decreased numbers of active DA neurons. Dams that had pups removed and were co-housed did not exhibit changes in social behavior or VTA function. Moreover, no changes in social behavior, FST coping, or VTA activity were found in socially isolated adult virgin females, indicating that effects observed in dams are specific to pup loss. This study showed that deprivation of species-expected social relationships (pups) during the postpartum precipitates an enduring negative affect state (enhanced passive coping, blunted social motivation) and attenuated VTA DA function in the dam, and that a subset of these effects is partially ameliorated through social buffering.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Li T, Jia SW, Hou D, Wang X, Li D, Liu Y, Cui D, Liu X, Hou CM, Wang P, Brown CH, Wang YF. Oxytocin Modulation of Maternal Behavior and Its Association With Immunological Activity in Rats With Cesarean Delivery. ASN Neuro 2021; 13:17590914211014731. [PMID: 34210188 PMCID: PMC8255569 DOI: 10.1177/17590914211014731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oxytocin (OT), a neuropeptide produced in the supraoptic (SON) and paraventricular (PVN) nuclei, is not only essential for lactation and maternal behavior but also for normal immunological activity. However, mechanisms underlying OT regulation of maternal behavior and its association with immunity around parturition, particularly under mental and physical stress, remain unclear. Here, we observed effects of OT on maternal behavior in association with immunological activity in rats after cesarean delivery (CD), a model of reproductive stress. CD significantly reduced maternal interests to the pups throughout postpartum day 1-8. On postpartum day 5, CD decreased plasma OT levels and thymic index but increased vasopressin, interleukin (IL)-1β, IL-6 and IL-10 levels. CD had no significant effect on plasma adrenocorticotropic hormone and corticosterone levels. In the hypothalamus, CD decreased corticotropin-releasing hormone contents in the PVN but increased OT contents in the PVN and SON and OT release from hypothalamic implants. CD also increased c-Fos expression, particularly in the cytoplasm of OT neurons. Lastly, CD depolarized resting membrane potential and increased spike width while increasing the variability of the firing rate of OT neurons in brain slices. Thus, CD can increase hypothalamic OT contents and release but reduce pituitary release of OT into the blood, which is associated with depressive-like maternal behavior, increased inflammatory cytokine release and decreased relative weight of the thymus.
Collapse
Affiliation(s)
- Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shu-Wei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chun-Mei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Colin H Brown
- Department of Physiology and Center for Neuroendocrinology, University of Otego, Dunedin, New Zealand
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Grieb ZA, Lonstein JS. Oxytocin receptor expression in the midbrain dorsal raphe is dynamic across female reproduction in rats. J Neuroendocrinol 2021; 33:e12926. [PMID: 33427399 DOI: 10.1111/jne.12926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Central oxytocin receptor (OTR) expression is extremely sensitive to circulating steroid hormones and OTRs influence many of the neurobehavioural adaptations associated with female reproduction (e.g., postpartum caregiving, aggression, cognition, affective responses). Changes in central OTR expression across female reproduction have often been studied, but almost all of such research has focused on the forebrain, ignoring hormone-sensitive midbrain sites such as the serotonergic dorsal raphe (DR) that are also critical for postpartum behaviours. To investigate the effects of female reproductive state on OTRs in the DR, we first used autoradiography to examine OTR binding across four female reproductive states in laboratory rats: dioestrous virgin, pregnancy day 10, the day of parturition and postpartum day 7. OTR binding in the rostral DR (but not other DR subregions) was approximately 250% higher in parturient rats compared to dioestrous virgins and dropped back down to virgin levels by postpartum day 7. Given the chemical heterogeneity of the DR, we then examined OTR expression in the three most abundant neuronal phenotypes of the DR (i.e., serotonin, GABA and dopamine) in dioestrous virgins and recently parturient females. Using dual-label immunohistochemistry and in situ hybridisation, we found that twice as many dopaminergic cells in the parturient rostral DR contained OTR immunoreactivity compared to that found in virgins. On the other hand, mothers had fewer rostral DR GABAergic cells expressing OTRs than did virgins. OTR expression in serotonin cells did not differ between the two groups. Overall, these results suggest that the rostral subregion of the midbrain DR is uniquely sensitive to oxytocin around the time of parturition, with subpopulations of cells that become more sensitive (i.e., dopamine), less sensitive (i.e., GABA) and show no change (i.e., serotonin) to this neuropeptide. This dynamic OTR signalling in the female DR may help drive the numerous behavioural changes across female reproduction that are necessary for successful motherhood.
Collapse
Affiliation(s)
- Zachary A Grieb
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Joseph S Lonstein
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Lu Q, Hu S. Sex differences of oxytocin and vasopressin in social behaviors. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:65-88. [PMID: 34225950 DOI: 10.1016/b978-0-12-820107-7.00005-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neuropeptides oxytocin (OT) and vasopressin (VP) are known to mediate social cognition and behaviors in a sex-dependent manner. This chapter reviews the sex-dependent influence of OT and VP on social behaviors, focusing on (1) partner preference and sexual orientation, (2) memory modulation, (3) emotion regulation, and (4) trust-related behaviors. Most studies suggest that OT promotes familiar (opposite-sex) partner preference, strengthens memory, relieves anxiety, and increases trust. However, VP-regulated social cognition has been studied less than OT. VP facilitates familiar (opposite-sex) partner preference, enhances memory, induces anxiety, and influences happiness/anger perception. Detailed sex differences of these effects are reviewed. There is a male preponderance in the use of animal models and many study results are too complex to draw firm conclusions. Clarifying the complex interplay between the OT/VP system and sex hormones in the regulation of social behaviors is needed.
Collapse
Affiliation(s)
- Qiaoqiao Lu
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Zheng JX, Ge L, Chen H, Yin X, Chen YC, Tang WW. Disruption within brain default mode network in postpartum women without depression. Medicine (Baltimore) 2020; 99:e20045. [PMID: 32358387 PMCID: PMC7440189 DOI: 10.1097/md.0000000000020045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Previous studies have demonstrated that cognitive dysfunction is associated with neurophysiological changes in postpartum period. This study aimed to investigate the intrinsic functional connectivity (FC) pattern within the default mode network (DMN) and its associations with cognitive dysfunction in postpartum women without depression revealed by resting-state functional magnetic resonance imaging (fMRI).Resting-state fMRI scans were acquired from 21 postpartum women and 21 age- and education-matched nulliparous women. The posterior cingulate cortex (PCC) was selected as the seed region to detect the FC patterns and then determine whether these changes were related to specific cognitive performance.Compared with the nulliparous women, postpartum women had a significantly decreased FC between the PCC and the left medial prefrontal cortex (mPFC). After correcting for age and education, the reduced FC between the PCC and the left mPFC was positively correlated with the poorer Clock-Drawing Test (CDT) scores in postpartum women (r = 0.742, P < .001).The present study mainly demonstrated decreased resting-state FC pattern within the DMN regions that was linked with impaired cognitive function in postpartum women. These findings illustrated the potential role of the DMN in postpartum women that will provide novel insight into the underlying neuropathological mechanisms in postpartum period.
Collapse
Affiliation(s)
| | - Lili Ge
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
14
|
Grattan DR, Ladyman SR. Neurophysiological and cognitive changes in pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:25-55. [PMID: 32736755 DOI: 10.1016/b978-0-444-64239-4.00002-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hormonal fluctuations in pregnancy drive a wide range of adaptive changes in the maternal brain. These range from specific neurophysiological changes in the patterns of activity of individual neuronal populations, through to complete modification of circuit characteristics leading to fundamental changes in behavior. From a neurologic perspective, the key hormone changes are those of the sex steroids, estradiol and progesterone, secreted first from the ovary and then from the placenta, the adrenal glucocorticoid cortisol, as well as the anterior pituitary peptide hormone prolactin and its pregnancy-specific homolog placental lactogen. All of these hormones are markedly elevated during pregnancy and cross the blood-brain barrier to exert actions on neuronal populations through receptors expressed in specific regions. Many of the hormone-induced changes are in autonomic or homeostatic systems. For example, patterns of oxytocin and prolactin secretion are dramatically altered to support novel physiological functions. Appetite is increased and feedback responses to metabolic hormones such as leptin and insulin are suppressed to promote a positive energy balance. Fundamental physiological systems such as glucose homeostasis and thermoregulation are modified to optimize conditions for fetal development. In addition to these largely autonomic changes, there are also changes in mood, behavior, and higher processes such as cognition. This chapter summarizes the hormonal changes associated with pregnancy and reviews how these changes impact on brain function, drawing on examples from animal research, as well as available information about human pregnancy.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Opala EA, Verlezza S, Long H, Rusu D, Woodside B, Walker CD. Experience of Adversity during a First Lactation Modifies Prefrontal Cortex Morphology in Primiparous Female Rats: Lack of Long Term Effects on a Subsequent Lactation. Neuroscience 2019; 417:95-106. [PMID: 31437474 DOI: 10.1016/j.neuroscience.2019.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
Abstract
Reproductive experience is associated with morphological and functional plasticity in brain areas important for cognitive and emotional responses, including the infralimbic (IL) medial prefrontal cortex (mPFC). Here we examined whether suboptimal conditions during a first lactation could modify lactation-induced morphological IL mPFC changes, leading to alterations in stress responses and attention and whether any observed effects would persist into a second lactation. Reduced availability of bedding and nesting material (LB) was used to induce unfavorable conditions in primiparous (P) mothers. In normal bedding (NB) conditions, P mothers exhibited high spine number and density on postpartum day (PPD)10, which greatly decreased 2 weeks after weaning of their pups. In contrast, P-LB mothers had a lower spine number and density on PPD10, which markedly increased after weaning. LB exposure did not modify stress responsiveness to a ferret odor on PPD5 in primiparous or in multiparous (M) females. Number of errors and trials to criterion in the attention set shifting task were not modified by a history of adversity in multiparous females, although this group tended to exhibit higher attentional abilities than M-NB females. These results suggest that adversity acutely reduces morphological plasticity in the maternal mPFC during lactation, an effect that is not associated with significant changes in stress responses and/or glucocorticoid production. Medial PFC morphological changes induced by LB subside during a subsequent lactation as does the effect of maternity itself.
Collapse
Affiliation(s)
- Emily A Opala
- Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, Quebec, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Silvanna Verlezza
- Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, Quebec, QC H4H 1R3, Canada
| | - Hong Long
- Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, Quebec, QC H4H 1R3, Canada
| | - Denisa Rusu
- Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, Quebec, QC H4H 1R3, Canada
| | - Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Concordia University, 1455 de Maisonneuve Blvd W, Montreal, QC H3G 1M8, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, Quebec, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Canada.
| |
Collapse
|
16
|
Tronson NC, Keiser AA. A Dynamic Memory Systems Framework for Sex Differences in Fear Memory. Trends Neurosci 2019; 42:680-692. [PMID: 31473031 DOI: 10.1016/j.tins.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
Abstract
Emerging research demonstrates that a pattern of overlapping but distinct molecular and circuit mechanisms are engaged by males and females during memory tasks. Importantly, sex differences in neural mechanisms and behavioral strategies are evident even when performance on a memory task is similar between females and males. We propose that sex differences in memory may be best understood within a dynamic memory systems framework. Specifically, sex differences in hormonal influences and neural circuit development result in biases in the circuits engaged and the information preferentially stored or retrieved in males and females. By using animal models to understand the neural networks and molecular mechanisms required for memory in both sexes, we can gain crucial insights into sex and gender biases in disorders including post-traumatic stress disorder (PTSD) in humans.
Collapse
Affiliation(s)
- Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ashley A Keiser
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
17
|
Zhang K, Wang M, Zhang J, Xie J, Su X, Du X, Chen Z. Dynamic Alterations in Spontaneous Brain Activity in Mothers: A Resting-State Functional Magnetic Resonance Imaging Study. Neurosci Bull 2019; 35:766-770. [PMID: 31093887 DOI: 10.1007/s12264-019-00392-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kaihua Zhang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen, 361005, China
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Mengxing Wang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Jilei Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Junyao Xie
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Xueyun Su
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062, China
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
18
|
Pregnancy Promotes Maternal Hippocampal Neurogenesis in Guinea Pigs. Neural Plast 2019; 2019:5765284. [PMID: 31097956 PMCID: PMC6487096 DOI: 10.1155/2019/5765284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022] Open
Abstract
Adult neurogenesis in the hippocampal dentate gyrus (DG) modulates cognition and behavior in mammals, while motherhood is associated with cognitive and behavioral changes essential for the care of the young. In mice and rats, hippocampal neurogenesis is reported to be reduced or unchanged during pregnancy, with few data available from other species. In guinea pigs, pregnancy lasts ~9 weeks; we set to explore if hippocampal neurogenesis is altered in these animals, relative to gestational stages. Time-pregnant primigravidas (3-5 months old) and age-matched nonpregnant females were examined, with neurogenic potential evaluated via immunolabeling of Ki67, Sp8, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN) combined with bromodeoxyuridine (BrdU) birth-dating. Relative to control, subgranular Ki67, Sp8, and DCX-immunoreactive (+) cells tended to increase from early gestation to postpartum and peaked at the late gestational stage. In BrdU pulse-chasing experiments in nonpregnant females surviving for different time points (2-120 days), BrdU+ cells in the DG colocalized with DCX partially from 2 to 42 days (most frequently at 14-30 days) and with NeuN increasingly from 14 to 120 days. In pregnant females that received BrdU at early, middle, and late gestational stages and survived for 42 days, the density of BrdU+ cells in the DG was mostly high in the late gestational group. The rates of BrdU/DCX and BrdU/NeuN colocalization were similar among these groups and comparable to those among the corresponding control group. Together, the findings suggest that pregnancy promotes maternal hippocampal neurogenesis in guinea pigs, at least among primigravidas.
Collapse
|
19
|
Duarte-Guterman P, Leuner B, Galea LAM. The long and short term effects of motherhood on the brain. Front Neuroendocrinol 2019; 53:100740. [PMID: 30826374 DOI: 10.1016/j.yfrne.2019.02.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
Becoming a mother is associated with dramatic changes in physiology, endocrinology, immune function, and behaviour that begins during pregnancy and persists into the postpartum. Evidence also suggests that motherhood is accompanied by long-term changes in brain function. In this review, we summarize the short (pregnancy and postpartum) and long-term (beyond the postpartum and into middle age) effects of pregnancy and motherhood on cognition, neuroplasticity, and neuroimmune signalling. We also discuss the effects of previous history of pregnancy and motherhood (parity) on brain health and disease (neurodegenerative diseases and stroke outcomes) and on efficacy of hormone and antidepressant treatments. Finally, we argue that pregnancy and motherhood are unique female experiences that need to be taken into account to better understand female brain function and aging.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Benedetta Leuner
- Department of Psychology and Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, The University of British Columbia, Vancouver, BC, Canada. http://galealab.psych.ubc.ca
| |
Collapse
|
20
|
Proteomic Analysis of the Maternal Preoptic Area in Rats. Neurochem Res 2019; 44:2314-2324. [PMID: 30847857 PMCID: PMC6776485 DOI: 10.1007/s11064-019-02755-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 10/29/2022]
Abstract
The behavior of female rats changes profoundly as they become mothers. The brain region that plays a central role in this regulation is the preoptic area, and lesions in this area eliminates maternal behaviors in rodents. The molecular background of the behavioral changes has not been established yet; therefore, in the present study, we applied proteomics to compare protein level changes associated with maternal care in the rat preoptic area. Using 2-dimensional fluorescence gel electrophoresis followed by identification of altered spots with mass spectrometry, 12 proteins were found to be significantly increased, and 6 proteins showed a significantly reduced level in mothers. These results show some similarities with a previous proteomics study of the maternal medial prefrontal cortex and genomics approaches applied to the preoptic area. Gene ontological analysis suggested that most altered proteins are involved in glucose metabolism and neuroplasticity. These proteins may support the maintenance of increased neuronal activity in the preoptic area, and morphological changes in preoptic neuronal circuits are known to take place in mothers. An increase in the level of alpha-crystallin B chain (Cryab) was confirmed by Western blotting. This small heat shock protein may also contribute to maintaining the increased activity of preoptic neurons by stabilizing protein structures. Common regulator and target analysis of the altered proteins suggested a role of prolactin in the molecular changes in the preoptic area. These results first identified the protein level changes in the maternal preoptic area. The altered proteins contribute to the maintenance of maternal behaviors and may also be relevant to postpartum depression, which can occur as a molecular level maladaptation to motherhood.
Collapse
|
21
|
Dobolyi A, Lékó AH. The insulin-like growth factor-1 system in the adult mammalian brain and its implications in central maternal adaptation. Front Neuroendocrinol 2019; 52:181-194. [PMID: 30552909 DOI: 10.1016/j.yfrne.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/04/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Our knowledge on the bioavailability and actions of insulin-like growth factor-1 (IGF-1) has markedly expanded in recent years as novel mechanisms were discovered on IGF binding proteins (IGFBPs) and their ability to release IGF-1. The new discoveries allowed a better understanding of the endogenous physiological actions of IGF-1 and also its applicability in therapeutics. The focus of the present review is to summarize novel findings on the neuronal, neuroendocrine and neuroplastic actions of IGF-1 in the adult brain. As most of the new regulatory mechanisms were described in the periphery, their implications on brain IGF system will also be covered. In addition, novel findings on the effects of IGF-1 on lactation and maternal behavior are described. Based on the enormous neuroplastic changes related to the peripartum period, IGF-1 has great but largely unexplored potential in maternal adaptation of the brain, which is highlighted in the present review.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - András H Lékó
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
WANG B, LI L, HE Z, WANG L, ZHANG S, QIAO H, JIA R, TAI F. Effects of reproductive experience on paternal behavior, levels of testosterone, prolactin in serum and dendritic spines in medial prefrontal cortex of mandarin voles. Integr Zool 2018; 13:711-722. [DOI: 10.1111/1749-4877.12354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Bo WANG
- Institute of Brain and Behavioral Sciences, College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
- Genetic Engineering Laboratory, College of Biological and Environmental engineering; Xi'an University; Xi'an Shaanxi China
| | - Laifu LI
- Institute of Brain and Behavioral Sciences, College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Zhixiong HE
- Institute of Brain and Behavioral Sciences, College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Limin WANG
- Institute of Brain and Behavioral Sciences, College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Siyi ZHANG
- Institute of Brain and Behavioral Sciences, College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Hui QIAO
- Institute of Brain and Behavioral Sciences, College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Rui JIA
- Institute of Brain and Behavioral Sciences, College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Fadao TAI
- Institute of Brain and Behavioral Sciences, College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| |
Collapse
|
23
|
Galea LA, Roes MM, Dimech CJ, Chow C, Mahmoud R, Lieblich SE, Duarte-Guterman P. Premarin has opposing effects on spatial learning, neural activation, and serum cytokine levels in middle-aged female rats depending on reproductive history. Neurobiol Aging 2018; 70:291-307. [DOI: 10.1016/j.neurobiolaging.2018.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/23/2018] [Accepted: 06/24/2018] [Indexed: 01/28/2023]
|
24
|
Lopatina OL, Komleva YK, Gorina YV, Higashida H, Salmina AB. Neurobiological Aspects of Face Recognition: The Role of Oxytocin. Front Behav Neurosci 2018; 12:195. [PMID: 30210321 PMCID: PMC6121008 DOI: 10.3389/fnbeh.2018.00195] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022] Open
Abstract
Face recognition is an important index in the formation of social cognition and neurodevelopment in humans. Changes in face perception and memory are connected with altered sociability, which is a symptom of numerous brain conditions including autism spectrum disorder (ASD). Various brain regions and neuropeptides are implicated in face processing. The neuropeptide oxytocin (OT) plays an important role in various social behaviors, including face and emotion recognition. Nasal OT administration is a promising new therapy that can address social cognition deficits in individuals with ASD. New instrumental neurotechnologies enable the assessment of brain region activation during specific social tasks and therapies, and can characterize the involvement of genes and peptides in impaired neurodevelopment. The present review sought to discuss some of the mechanisms of the face distinguishing process, the ability of OT to modulate social cognition, as well as new perspectives and technologies for research and rehabilitation of face recognition.
Collapse
Affiliation(s)
- Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yana V Gorina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Haruhiro Higashida
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
Zheng JX, Chen YC, Chen H, Jiang L, Bo F, Feng Y, Tang WW, Yin X, Gu JP. Disrupted Spontaneous Neural Activity Related to Cognitive Impairment in Postpartum Women. Front Psychol 2018; 9:624. [PMID: 29774003 PMCID: PMC5944019 DOI: 10.3389/fpsyg.2018.00624] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/12/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose: Prior research has demonstrated that the postpartum period is associated with an increased risk of cognitive impairment. This study aims to investigate whether disrupted spontaneous neural activity exists in postpartum women without depression using resting-state functional magnetic resonance imaging (rs-fMRI) and to detect the relationship between these abnormalities and cognitive impairment. Materials and Methods: Postpartum women (n = 22) were compared with age- and education-matched nulliparous women (n = 23) using rs-fMRI. We calculated the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values to evaluate spontaneous neural activity and detect the relationship between rs-fMRI data and cognitive performance. Results: Relative to nulliparous women, postpartum women had significantly decreased ALFF and ReHo values primarily in the left posterior cingulate cortex (PCC) and prefrontal cortex and increased ALFF values in left cerebellar posterior lobe. We found a positive correlation between the ALFF and ReHo values in the PCC and the complex figure test (CFT)-delayed scores in postpartum women (r = 0.693, p = 0.001; r = 0.569, p = 0.011, respectively). Moreover, the clock-drawing test (CDT) scores showed positive correlations with the ALFF and ReHo values in the right superior frontal gyrus (SFG; r = 0.492, p = 0.033; r = 0.517, p = 0.023, respectively). Conclusion: Our combined ALFF and ReHo analyses revealed decreased spontaneous neural activity, mainly in the PCC and prefrontal cortex, which was correlated with specific impaired cognitive functioning in postpartum women. This study may elucidate the neurophysiological mechanisms underlying postpartum cognitive impairment and enhance our understanding of the neurobiological aspects of the postpartum period.
Collapse
Affiliation(s)
- Jin-Xia Zheng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Radiology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Bo
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Feng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wei Tang
- Department of Radiology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian-Ping Gu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Birth weight interacts with a functional variant of the oxytocin receptor gene (OXTR) to predict executive functioning in children. Dev Psychopathol 2017; 30:203-211. [PMID: 28511728 DOI: 10.1017/s0954579417000578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetic variation in the oxytocin receptor gene (OXTR) is associated with several psychiatric conditions characterized by deficits in executive functioning (EF). A specific OXTR variant, rs2254298, has previously been associated with brain functioning in regions implicated in EF. Moreover, birth weight variation across the entire range is associated with individual differences in cortical structure and function that underlie EF. This is the first study to examine the main and interactive effect between rs2254298 and birth weight on EF in children. The sample consisted of 310 children from an ongoing longitudinal study. EF was measured at age 4.5 using observational tasks indexing working memory, cognitive flexibility, and inhibitory control. A family-based design that controlled for population admixture, stratification, and nongenomic confounds was employed. A significant genetic association between rs2254298 and EF was observed, with more copies of the major allele (G) associated with higher EF. There was also a significant interaction between rs2254298 and birth weight, such that more copies of the major allele in combination with higher birth weight predicted better EF. Findings suggest that OXTR may be associated with discrete neurocognitive abilities in childhood, and these effects may be modulated by intrauterine conditions related to fetal growth and development.
Collapse
|
27
|
Ziegler TE, Crockford C. Neuroendocrine control in social relationships in non-human primates: Field based evidence. Horm Behav 2017; 91:107-121. [PMID: 28284710 PMCID: PMC6372243 DOI: 10.1016/j.yhbeh.2017.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 11/22/2022]
Abstract
Primates maintain a variety of social relationships and these can have fitness consequences. Research has established that different types of social relationships are unpinned by different or interacting hormonal systems, for example, the neuropeptide oxytocin influences social bonding, the steroid hormone testosterone influences dominance relationships, and paternal care is characterized by high oxytocin and low testosterone. Although the oxytocinergic system influences social bonding, it can support different types of social bonds in different species, whether pair bonds, parent-offspring bonds or friendships. It seems that selection processes shape social and mating systems and their interactions with neuroendocrine pathways. Within species, there are individual differences in the development of the neuroendocrine system: the social environment individuals are exposed to during ontogeny alters their neuroendocrine and socio-cognitive development, and later, their social interactions as adults. Within individuals, neuroendocrine systems can also have short-term effects, impacting on social interactions, such as those during hunting, intergroup encounters or food sharing, or the likelihood of cooperating, winning or losing. To understand these highly dynamic processes, extending research beyond animals in laboratory settings to wild animals living within their natural social and ecological setting may bring insights that are otherwise unreachable. Field endocrinology with neuropeptides is still emerging. We review the current status of this research, informed by laboratory studies, and identify questions particularly suited to future field studies. We focus on primate social relationships, specifically social bonds (mother-offspring, father-offspring, cooperative breeders, pair bonds and adult platonic friendships), dominance, cooperation and in-group/out-group relationships, and examine evidence with respect to the 'tend and defend' hypothesis.
Collapse
Affiliation(s)
- Toni E Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|