1
|
Mason T, Alesi S, Fernando M, Vanky E, Teede HJ, Mousa A. Metformin in gestational diabetes: physiological actions and clinical applications. Nat Rev Endocrinol 2024:10.1038/s41574-024-01049-w. [PMID: 39455749 DOI: 10.1038/s41574-024-01049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
Metformin is an effective oral hypoglycaemic agent used in the treatment of type 2 diabetes mellitus; however, its use in pregnancy for the treatment of gestational diabetes mellitus (GDM) remains controversial owing to concerns around safety and efficacy. This comprehensive review outlines the physiological metabolic functions of metformin and synthesizes existing literature and key knowledge gaps pertaining to the use of metformin in pregnancy across various end points in women with GDM. On the basis of current evidence, metformin reduces gestational weight gain, neonatal hypoglycaemia and macrosomia and increases insulin sensitivity. However, considerable heterogeneity between existing studies and the grouping of aggregate and often inharmonious data within meta-analyses has led to disparate findings regarding the efficacy of metformin in treating hyperglycaemia in GDM. Innovative analytical approaches with stratification by individual-level characteristics (for example, obesity, ethnicity, GDM severity and so on) and treatment regimens (diagnostic criteria, treatment timing and follow-up duration) are needed to establish efficacy across a range of end points and to identify which, if any, subgroups might benefit from metformin treatment during pregnancy.
Collapse
Affiliation(s)
- Taitum Mason
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Melbourne, Australia
| | - Simon Alesi
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Melbourne, Australia
| | - Melinda Fernando
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Melbourne, Australia
| | - Eszter Vanky
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Helena J Teede
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Melbourne, Australia
- Department of Endocrinology and Diabetes, Monash Health, Clayton, Victoria, Melbourne, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Melbourne, Australia.
| |
Collapse
|
2
|
Zhang W, Tian D, Yu Y, Tong D, Zhou W, Yu Y, Lu L, Li W, Liu G, Shi W. Micro/nanoplastics impair the feeding of goldfish by disrupting the complicated peripheral and central regulation of appetite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174112. [PMID: 38908581 DOI: 10.1016/j.scitotenv.2024.174112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The ubiquitous presence of plastic particles in water bodies poses a potential threat to aquatic species. Although numerous adverse effects of microplastics (MPs) and nanoplastics (NPs) have been documented, their effects on fish feeding, one of the most important behaviors of animals, are far from being fully understood. In this study, the effects of MPs and NPs (at environmentally realistic levels) on fish food consumption and feeding behavior were assessed using goldfish (Carassius auratus) and polystyrene (PS) particles as representatives. In addition, to reveal the potential mechanisms, the effects of MPs and NPs on peripheral and central regulation of appetite were evaluated by examining appetite-regulation related intestinal, serous, and hypothalamic parameters. The results obtained indicated that the 28-day MP- and NP-exposure significantly impaired goldfish feeding by disrupting peripheral and central appetite regulation. Based on differences observed in their effects on the abovementioned behavioral, histological, and physiological parameters, MPs and NPs may interfere with appetite regulation in a size-dependent manner. Blocking the gastrointestinal tract and causing histopathological and functional damage to inner organs may be the main routes through which MPs and NPs disrupt appetite regulation. Our findings suggested that plastic particles exposure may have far-reaching effects on fish species through impaired feeding, which warrants further attention.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Shi P, Meng R, Xu J, Zhang Q, Ye G, Yan X, Liao K. Fatty acid translocase (FAT/CD36) in silver pomfret (Pampus argenteus): Molecular cloning and functional characterization. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110926. [PMID: 38036286 DOI: 10.1016/j.cbpb.2023.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Understanding the mechanisms of lipid transport and metabolism in fish is crucial to enhance dietary lipid utilization. Here, fatty acid translocase (CD36) gene was characterized in silver pomfret (Pampus argenteus). The open reading frame of silver pomfret cd36 gene was 1395 bp, encoding 464 amino acids. The silver pomfret CD36 protein contained typical transmembrane regions and N-glycosylation modification sites, and was localized to the cytomembrane. The cd36 gene was ubiquitously expressed in all tested tissues, with the highest expression observed in brain tissue. In vivo, both fasting and short-term high-fat feeding could increase cd36 expression in intestinal tissue. In vitro, cd36 expression was induced by palmitic acid, oleic acid, linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid treatment in intestinal tissue. Furthermore, dual-luciferase reporter assay results indicated that peroxisome proliferator-activated receptor gamma (PPARγ) could enhance cd36 promoter activity, and the co-expression of cd36 and pparγ was observed in EPA-incubated intestine, suggesting that EPA may regulate the expression of cd36 via PPARγ to maintain the homeostasis of intestinal lipid metabolism in silver pomfret. These results highlighted the crucial role of CD36 in silver pomfret, and suggested that the cd36 expression may be regulated by PPARγ. This study could contribute to a greater understanding of lipid metabolism and the development of effective strategies for nutrient requirements in fish.
Collapse
Affiliation(s)
- Peng Shi
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ran Meng
- Ningbo Academy of Oceanology and Fishery, Ningbo 315012, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qian Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guochao Ye
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Li S, Liu M, Cao S, Liu B, Li D, Wang Z, Sun H, Cui Y, Shi Y. The Mechanism of the Gut-Brain Axis in Regulating Food Intake. Nutrients 2023; 15:3728. [PMID: 37686760 PMCID: PMC10490484 DOI: 10.3390/nu15173728] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
With the increasing prevalence of energy metabolism disorders such as diabetes, cardiovascular disease, obesity, and anorexia, the regulation of feeding has become the focus of global attention. The gastrointestinal tract is not only the site of food digestion and absorption but also contains a variety of appetite-regulating signals such as gut-brain peptides, short-chain fatty acids (SCFAs), bile acids (BAs), bacterial proteins, and cellular components produced by gut microbes. While the central nervous system (CNS), as the core of appetite regulation, can receive and integrate these appetite signals and send instructions to downstream effector organs to promote or inhibit the body's feeding behaviour. This review will focus on the gut-brain axis mechanism of feeding behaviour, discussing how the peripheral appetite signal is sensed by the CNS via the gut-brain axis and the role of the central "first order neural nuclei" in the process of appetite regulation. Here, elucidation of the gut-brain axis mechanism of feeding regulation may provide new strategies for future production practises and the treatment of diseases such as anorexia and obesity.
Collapse
Affiliation(s)
- Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
5
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
6
|
Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology 2022; 149:1842-1861. [PMID: 36076315 PMCID: PMC11010486 DOI: 10.1017/s0031182022001160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Most individual fish in wild and farmed populations can be infected with parasites. Fish intestines can harbour protozoans, myxozoans and helminths, which include several species of digeneans, cestodes, nematodes and acanthocephalans. Enteric parasites often induce inflammation of the intestine; the pathogen provokes changes in the host physiology, which will be genetically selected for if they benefit the parasite. The host response to intestinal parasites involves neural, endocrine and immune systems and interaction among these systems is coordinated by hormones, chemokines, cytokines and neurotransmitters including peptides. Intestinal fish parasites have effects on the components of the enteric nervous and endocrine systems; mechanical/chemical changes impair the activity of these systems, including gut motility and digestion. Investigations on the role of the neuroendocrine system in response to fish intestinal parasites are very few. This paper provides immunohistochemical and ultrastructural data on effects of parasites on the enteric nervous system and the enteric endocrine system in several fish–parasite systems. Emphasis is on the occurrence of 21 molecules including cholecystokinin-8, neuropeptide Y, enkephalins, galanin, vasoactive intestinal peptide and serotonin in infected tissues.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. dell'Università 6, 26900 Lodi, Italy
| | - Barbara J. Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523, USA
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Chen D, Li Y, Wu H, Wu Y, Tang N, Chen S, Liu Y, Wang J, Zhang X, Li Z. Ghrelin-Ghrelin receptor (GSHR) pathway via endocannabinoid signal affects the expression of NPY to promote the food intake of Siberian sturgeon (Acipenser baerii). Horm Behav 2022; 143:105199. [PMID: 35597053 DOI: 10.1016/j.yhbeh.2022.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Previous data suggested that activation of endocannabinoid receptor 1 (CB1) was necessary for the orexigenic effect of Ghrelin in rodents, but the information is limited in teleosts. To investigate the feeding regulation pathway of Ghrelin and CB1 in Siberian sturgeon (Acipenser baerii), this study first identified the Ghrelin (345 bp, complete coding sequence) and Ghrelin receptor (GHSR, 500 bp, partial coding sequence) sequences, and then detected their tissue distribution patterns, which showed that Ghrelin is mainly distribution in peripheral tissues, while GSHR is mainly in different brain divisions. Besides, the qPCR before and after feeding showed that the mRNA expressions of Ghrelin and GHSR were inhibited after feeding in telencephalon, diencephalon and mesencephalon. Subsequently, the food intake and appetite factor expressions were measured by i.c.v. co-injection of Ghrelin and GSHR antagonist. The results showed that Ghrelin promoted the food intake of Siberian sturgeon, which was reversed by its receptor antagonist. Besides, i.c.v. injection of Ghrelin decreased telencephalon CART expression while increased NPY expression in the three brain regions. In addition, to further explore the relationship of Ghrelin and CB1 signal regulating feeding, the co-injection of Ghrelin and CB1 antagonists was performed. The results showed that AM6545 (CB1 peripheral restricted antagonist) failed to affect the orexigenic effect of Ghrelin and the expression pattern of NPY mRNA in the telencephalon. While in the diencephalon, the increase of food intake and NPY mRNA expression induced by Ghrelin was completely reversed by Rimonabant (CB1 global antagonist). These results indicate Ghrelin-GSHR pathway promotes the food intake of Siberian sturgeon by inducing the expression of NPY in the diencephalon, and the stimulating effect will be reversed by cannabinoid receptor antagonism. This study provides a foundation for understanding the pathways Ghrelin and CB1 signals in appetite regulation of the teleost.
Collapse
Affiliation(s)
- Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Hongwei Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China; Chengdu Agricultural College, 392#, Detong Bridge Road, Chengdu, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, 1124#, Dongtong Road, Neijiang, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China.
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211#, Huimin Road, Chengdu, China.
| |
Collapse
|
8
|
Prins K, Huisman M, McLuskey A, Mies R, Karels B, Delhanty PJD, Visser JA. Ghrelin deficiency sex-dependently affects food intake, locomotor activity, and adipose and hepatic gene expression in a binge-eating mouse model. Am J Physiol Endocrinol Metab 2022; 322:E494-E507. [PMID: 35403437 DOI: 10.1152/ajpendo.00432.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Binge-eating disorder is the most prevalent eating disorder diagnosed, affecting three times more women than men. Ghrelin stimulates appetite and reward signaling, and loss of its receptor reduces binge-eating behavior in male mice. Here, we examined the influence of ghrelin itself on binge-eating behavior in both male and female mice. Five-wk-old wild-type (WT) and ghrelin-deficient (Ghrl-/-) mice were housed individually in indirect calorimetry cages for 9 wks. Binge-like eating was induced by giving mice ad libitum chow, but time-restricted access to a Western-style diet (WD; 2 h access, 3 days/wk) in the light phase (BE); control groups received ad libitum chow (CO), or ad libitum access to both diets (CW). All groups of BE mice showed binge-eating behavior, eating up to 60% of their 24-h intake during the WD access period. Subsequent dark phase chow intake was decreased in Ghrl-/- mice and remained decreased in Ghrl-/- females on nonbinge days. Also, nonbinge day locomotor activity was lower in Ghrl-/- than in WT BE females. Upon euthanasia, Ghrl-/- BE mice weighed less and had a lower lean body mass percentage than WT BE mice. In BE and CW groups, ghrelin and sex altered the expression of genes involved in lipid processing, thermogenesis, and aging in white adipose tissue and livers. We conclude that, although ghrelin deficiency does not hamper the development of binge-like eating, it sex-dependently alters food intake timing, locomotor activity, and metabolism. These results add to the growing body of evidence that ghrelin signaling is sexually dimorphic.NEW & NOTEWORTHY Ghrelin, a peptide hormone secreted from the gut, is involved in hunger and reward signaling, which are altered in binge-eating disorder. Although sex differences have been described in both binge-eating and ghrelin signaling, this interaction has not been fully elucidated. Here, we show that ghrelin deficiency affects the behavior and metabolism of mice in a binge-like eating paradigm, and that the sex of the mice impacts the magnitude and direction of these effects.
Collapse
Affiliation(s)
- Karina Prins
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martin Huisman
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Anke McLuskey
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rosinda Mies
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bas Karels
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Patric J D Delhanty
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Neuropeptide Y in Spotted Scat (Scatophagus Argus), Characterization and Functional Analysis towards Feed Intake Regulation. FISHES 2022. [DOI: 10.3390/fishes7030111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuropeptide Y (Npy) is an intricate neuropeptide regulating numerous physiological processes. It is a highly conserved peptide known to improve feed intake in many vertebrates, including fishes. To enlighten the mechanism of Npy in spotted scat feed intake control, we cloned and identified the Npy cDNA sequence. We further examined its expression in some tissues and explored its expression effects at different time frames (hours and days). Here, we discovered that spotted scat Npy comprised a 300 bp open reading frame (ORF) and a 99 amino acid sequence. Npy was identified to be expressed in all tissues examined. Using in situ hybridization examination, we proved that npy has a wide expression in the brain of the spotted scat. Furthermore, the expression of npy in the hypothalamus significantly increased one hour after feeding (p < 0.05). Further, it was revealed that npy expression significantly increased in fish that were fasted for up to 5 days and significantly increased after refeeding from the 8th to the 10th day. This suggests that Npy is an orexigenic peptide, and hence, it increases food intake and growth in the spotted scat. Additionally, results from in vitro and in vivo experiments revealed that Npy locally interacts with other appetite-regulating peptides in the spotted scat hypothalamus. This research aimed to set a fundamental study in developing the feed intake regulation, improving growth and reproduction, which is significant to the aquaculture industry of the spotted scat.
Collapse
|
10
|
Li X, Zhang Y, Wang S, Shi C, Wang S, Wang X, Lü X. A review on the potential use of natural products in overweight and obesity. Phytother Res 2022; 36:1990-2015. [DOI: 10.1002/ptr.7426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Li
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Yu Zhang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuxuan Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Caihong Shi
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuang Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Lü
- College of Food Science and Engineering Northwest A&F University Yangling China
| |
Collapse
|
11
|
Yamada C. Relationship between Orexigenic Peptide Ghrelin Signal, Gender Difference and Disease. Int J Mol Sci 2021; 22:ijms22073763. [PMID: 33916403 PMCID: PMC8038632 DOI: 10.3390/ijms22073763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Growth hormone secretagogue receptor 1a (GHS-R1a), which is one of the G protein-coupled receptors (GPCRs), is involved in various physiological actions such as energy consumption, growth hormone secretion promoting action, and cardiovascular protective action. The ligand was searched for as an orphan receptor for a while, but the ligand was found to be acylated ghrelin (ghrelin) discovered by Kangawa and Kojima et al. in 1999. Recently, it has also been reported that dysregulation of GHS-R1a mediates reduced feeding in various diseases. On the other hand, since the physiological effects of ghrelin have been studied exclusively in male mice, few studies have been conducted on gender differences in ghrelin reactivity. In this review, we describe (1) the characteristics of GHS-R1a, (2) the role of ghrelin in hypophagia due to stress or anticancer drugs, and (3) the gender differences in the physiological effects of GHS-R1a and the influence of stress on it.
Collapse
Affiliation(s)
- Chihiro Yamada
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki 300-1192, Japan
| |
Collapse
|
12
|
Blanco AM, Calo J, Soengas JL. The gut–brain axis in vertebrates: implications for food intake regulation. J Exp Biol 2021; 224:224/1/jeb231571. [DOI: 10.1242/jeb.231571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
The gut and brain are constantly communicating and influencing each other through neural, endocrine and immune signals in an interaction referred to as the gut–brain axis. Within this communication system, the gastrointestinal tract, including the gut microbiota, sends information on energy status to the brain, which, after integrating these and other inputs, transmits feedback to the gastrointestinal tract. This allows the regulation of food intake and other physiological processes occurring in the gastrointestinal tract, including motility, secretion, digestion and absorption. Although extensive literature is available on the mechanisms governing the communication between the gut and the brain in mammals, studies on this axis in other vertebrates are scarce and often limited to a single species, which may not be representative for obtaining conclusions for an entire group. This Review aims to compile the available information on the gut–brain axis in birds, reptiles, amphibians and fish, with a special focus on its involvement in food intake regulation and, to a lesser extent, in digestive processes. Additionally, we will identify gaps of knowledge that need to be filled in order to better understand the functioning and physiological significance of such an axis in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Jessica Calo
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Pontevedra, Spain
| | - José Luis Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Pontevedra, Spain
| |
Collapse
|
13
|
van Loenen MR, Geenen B, Arnoldussen IAC, Kiliaan AJ. Ghrelin as a prominent endocrine factor in stress-induced obesity. Nutr Neurosci 2020; 25:1413-1424. [PMID: 33373270 DOI: 10.1080/1028415x.2020.1863740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objectives: Ghrelin acts on a variety of central- and peripheral organs causing an orexigenic effect, conclusively followed by increased caloric intake. Recent studies have indicated that ghrelin's function as an orexigenic agent does not entirely reflect the full functional properties of the peptide. Specifically, ghrelin regulates stress-hormone synthesis and secretion therewith affecting the stress-axis. The role of stress in the development of obesity has been extensively studied. However, the orexigenic and underlying stress-regulatory effect of ghrelin has not yet been further considered in the development of stress-induced obesity.Methods: Therefore, this review aims to accentuate the potential of ghrelin as a factor in the pathological development of stress-induced obesity.Results: In this review we discuss (1) the ghrelin-mediated intracellular cascades and elucidate the overall bioactivation of the peptide, and (2) the mechanisms of ghrelin signalling and regulation within the central nervous system and the gastro-intestinal system.Discussion: These biological processes will be ultimately discussed in relation to the pathogenesis of stress-induced obesity.
Collapse
Affiliation(s)
- Mark R van Loenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, Netherlands
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, Netherlands
| | - Ilse A C Arnoldussen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, Netherlands
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, Netherlands
| |
Collapse
|
14
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
15
|
Kwasek K, Wojno M, Iannini F, McCracken VJ, Molinari GS, Terova G. Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio. PLoS One 2020; 15:e0225917. [PMID: 32142555 PMCID: PMC7059923 DOI: 10.1371/journal.pone.0225917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Nutritional Programming (NP) has been shown to counteract the negative effects of dietary plant protein (PP) by introducing PP at an early age towards enhancement of PP utilization during later life stages. This study explored the effect of NP and its induction time on growth, expression of appetite-stimulating hormones, and any morphological changes in the gut possibly responsible for improved dietary PP utilization. At 3 days post-hatch (dph) zebrafish were distributed into 12 (3 L) tanks, 100 larvae per tank. This study included four groups: 1) The control (NP-FM) group received fishmeal (FM)-based diet from 13–36 dph and was challenged with PP-based diet during 36–66 dph; 2) The NP-PP group received NP with dietary PP in larval stage via live food enrichment during 3–13 dph followed by FM diet during 13–36 dph and PP diet during 36–66 dph; 3) The T-NP group received NP between 13–23 dph through PP diet followed by FM diet during 23–36 dph and PP diet during 36–66 dph; and 4) The PP group received PP diet from 13–66 dph. During the PP challenge the T-NP group achieved the highest weight gain compared to control and PP. Ghrelin expression in the brain was higher in T-NP compared to NP-FM and NP-PP, while in the gut it was reduced in both NP-PP and T-NP groups. Cholecystokinin expression showed an opposite trend to ghrelin. The brain neuropeptide Y expression was lower in NP-PP compared to PP but not different with NP-FM and T-NP groups. The highest villus length to width ratio in the middle intestine was found in T-NP compared to all other groups. The study suggests that NP induced during juvenile stages improves zebrafish growth and affects digestive hormone regulation and morphology of the intestinal lining–possible mechanisms behind the improved PP utilization in pre-adult zebrafish stages.
Collapse
Affiliation(s)
- Karolina Kwasek
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
- * E-mail:
| | - Michal Wojno
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Federica Iannini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Vance J. McCracken
- Department of Biological Sciences, Southern Illinois University-Edwardsville, Edwardsville, Illinois, United States of America
| | - Giovanni S. Molinari
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
16
|
Nadermann N, Volkoff H. Effects of short-term exercise on food intake and the expression of appetite-regulating factors in goldfish. Peptides 2020; 123:170182. [PMID: 31678371 DOI: 10.1016/j.peptides.2019.170182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
In mammals, growing evidence indicates that exercise affects food intake, metabolism and the expression and blood levels of appetite regulators. In this study, we examined the effects of short-term (30 min, at low and high water flow) exercise on food intake, glucose levels and the expressions of appetite regulators in goldfish hypothalamus (irisin, orexin, CART, leptin), intestine (CCK, PYY, proglucagon/GLP-1), muscle (irisin) and liver (leptin), of brain-derived neurotrophic factor (BDNF) in brain, interleukin-6 (IL6) in muscle and hypothalamus, and major metabolic enzymes, the glycolytic enzyme glucokinase (GCK) and its regulatory protein (GCKR) in liver, the lipolytic enzyme lipoprotein lipase in intestine and muscle, and trypsin in intestine. Fish submitted to high flow exercise had a lower post-exercise food intake compared to control fish but no differences were seen in glucose levels between groups. Exercise induced an increase in hypothalamic expression levels of CART, IL6 and BDNF, but not orexin, irisin, CRF, leptin and NPY. High flow exercise induced an increase in intestine CCK, PYY and GLP-1, and muscle irisin and IL-6 expression levels. Exercise had no effects on expression levels of hepatic leptin or any of the metabolic enzymes examined. Our results suggest that, in goldfish, short-term exercise might decrease feeding in part by affecting the expressions of myokines and peripheral, but not central appetite regulators or metabolic enzyme/hormones.
Collapse
Affiliation(s)
- Noelle Nadermann
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Hochschule Mannheim University, Mannheim, 68163, Germany
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
17
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
18
|
Tang N, Zhang X, Wang S, Qi J, Tian Z, Wang B, Chen H, Wu Y, Wang M, Xu S, Chen D, Li Z. UCN3 suppresses food intake in coordination with CCK and the CCK2R in Siberian sturgeon (Acipenser baerii). Comp Biochem Physiol A Mol Integr Physiol 2019; 234:106-113. [PMID: 31051262 DOI: 10.1016/j.cbpa.2019.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Urocortin-3 (UCN3) as a brain-gut peptide inhibits food intake of animal, but the underlying mechanism is not clear. To explore the appetite mechanism about the action of UCN3 in fish, intraperitoneal injection of UCN3 with CCK8, Lorglumide (CCK1R antagonist) or LY225910 (CCK2R antagonist) were conducted. Siberian sturgeon administrated with UCN3 and CCK8 showed a drastic reduction in food intake. The anorectic effect of UCN3 was significantly blocked by LY225910, but not affected by Lorglumide. Furthermore, LY225910 could effectively reverse appetite factor mRNA expressions, including cck, pyy, cart, npy, ucn3, apelin and nucb2 in the whole brain, stomach and intestinum valvula, but Lorglumide could only partially reverse these effects, suggesting the anorectic effect of UCN3 may be primarily mediated CCK2R in Siberian sturgeon. This study indicates for the first time in fish that UCN3 may inhibit food intake in coordination with CCK and CCK2R.
Collapse
Affiliation(s)
- Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Opazo R, Plaza-Parrochia F, Cardoso dos Santos GR, Carneiro GRA, Sardela VF, Romero J, Valladares L. Fasting Upregulates npy, agrp, and ghsr Without Increasing Ghrelin Levels in Zebrafish ( Danio rerio) Larvae. Front Physiol 2019; 9:1901. [PMID: 30733682 PMCID: PMC6353792 DOI: 10.3389/fphys.2018.01901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022] Open
Abstract
Food intake in fish and mammals is orchestrated by hypothalamic crosstalk between orexigenic (food intake stimulation) and anorexigenic (food intake inhibition) signals. Some of these signals are released by peripheral tissues that are associated with energy homeostasis or nutrient availability. During the fish larva stage, orexigenic stimulation plays a critical role in individual viability. The goal of this study was to assess the mRNA levels of the main neuropeptides involved in food intake regulation (npy, agrp, carppt, and pomc), in concert with the mRNA levels and peptide levels of ghrelin, under a fasting intervention at the larval stage in zebrafish (Danio rerio). Prior to the fasting intervention, the zebrafish larva cohort was reared for 20 days post fertilization (dpf) and then randomly divided into two groups of 20 individuals. One group was subjected to a fasting intervention for 5 days (fasted group), and the other group was fed normally (fed group); this experimental protocol was performed twice independently. At the end of the fasting period, individuals from each experimental group were divided into different analysis groups, for evaluations such as relative gene expression, immunohistochemistry, and liquid chromatography coupled to nano high-resolution mass spectrometry (nLC-HRMS) analyses. The relative expression levels of the following genes were assessed: neuropeptide Y (npy), agouti-related peptide (agrp), proopiomelanocortin (pomc), cocaine and amphetamine-regulated transcript (cartpt), ghrelin (ghrl), ghrelin O-acyltransferase (mboat4), growth hormone secretagogue receptor (ghsr), and glucokinase (gck). In the fasted group, significant upregulation of orexigenic peptides (npy - agrp) and ghsr was observed, which was associated with significant downregulation of gck. The anorexigenic peptides (pomc and cartpt) did not show any significant modulation between the groups, similar to mboat4. Contrary to what was expected, the relative mRNA upregulation of the orexigenic peptides observed in the fasted experimental group could not be associated with significant ghrelin modulation as assessed by three different approaches: qPCR (relative gene expression of ghrelin), nLC-HRMS (des-acyl-ghrelin levels), and immunohistochemistry (integrated optical density of prepropeptides in intestinal and hepatopancreas tissues). Our results demonstrate that zebrafish larvae at 25 dpf exhibit suitable modulation of the relative mRNA levels of orexigenic peptides (npy and agrp) in response to fasting intervention; nevertheless, ghrelin was not coregulated by fasting. Therefore, it can be suggested that ghrelin is not an essential peptide for an increase in appetite in the zebrafish larva stage. These results give rise to new questions about food intake regulation factors in the early stages of fish.
Collapse
Affiliation(s)
- Rafael Opazo
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
| | - Francisca Plaza-Parrochia
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico, Universidad de Chile, Santiago, Chile
| | - Gustavo R. Cardoso dos Santos
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R. A. Carneiro
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius F. Sardela
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime Romero
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
| | - Luis Valladares
- Laboratorio de Hormonas y Receptores INTA, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Abtahi S, Howell E, Salvucci JT, Bastacky JMR, Dunn DP, Currie PJ. Exendin-4 antagonizes the metabolic action of acylated ghrelinergic signaling in the hypothalamic paraventricular nucleus. Gen Comp Endocrinol 2019; 270:75-81. [PMID: 30336120 PMCID: PMC6886705 DOI: 10.1016/j.ygcen.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
In the current study we investigated the interaction of hypothalamic paraventricular nucleus (PVN) glucagon-like peptide-1 (GLP-1) and ghrelin signaling in the control of metabolic function. We first demonstrated that acylated ghrelin injected directly into the PVN reliably altered the respiratory exchange ratio (RER) of adult male Sprague Dawley rats. All testing was carried out during the initial 2 h of the nocturnal cycle using an indirect open circuit calorimeter. Results indicated that acylated ghrelin induced a robust increase in RER representing a shift toward enhanced carbohydrate oxidation and reduced lipid utilization. In contrast, treatment with comparable dosing of des-acyl ghrelin failed to significantly impact metabolic activity. In separate groups of rats we subsequently investigated the ability of exendin-4 (Ex-4), a GLP-1 analogue, to alter acylated ghrelin's metabolic effects. Rodents were treated with either systemic or direct PVN Ex-4 followed by acyl ghrelin microinjection. While our results showed that both systemic and PVN administration of Ex-4 significantly reduced RER, importantly, Ex-4 pretreatment itself reliably inhibited the impact of ghrelin on RER. Overall, these findings provide increasingly compelling evidence that GLP-1 and ghrelin signaling interact in the neural control of metabolic function within the PVN.
Collapse
Affiliation(s)
- Shayan Abtahi
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Erin Howell
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Jack T Salvucci
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Joshua M R Bastacky
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - David P Dunn
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Paul J Currie
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States.
| |
Collapse
|
21
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|