1
|
Reyna NC, Clark BJ, Hamilton DA, Pentkowski NS. Anxiety and Alzheimer's disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models. Front Aging Neurosci 2023; 15:1251075. [PMID: 38076543 PMCID: PMC10699143 DOI: 10.3389/fnagi.2023.1251075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 02/12/2024] Open
Abstract
Dementia remains one of the leading causes of morbidity and mortality in older adults. Alzheimer's disease (AD) is the most common type of dementia, affecting over 55 million people worldwide. AD is characterized by distinct neurobiological changes, including amyloid-beta protein deposits and tau neurofibrillary tangles, which cause cognitive decline and subsequent behavioral changes, such as distress, insomnia, depression, and anxiety. Recent literature suggests a strong connection between stress systems and AD progression. This presents a promising direction for future AD research. In this review, two systems involved in regulating stress and AD pathogenesis will be highlighted: serotonin (5-HT) and corticotropin releasing factor (CRF). Throughout the review, we summarize critical findings in the field while discussing common limitations with two animal models (3xTg-AD and TgF344-AD), novel pharmacotherapies, and potential early-intervention treatment options. We conclude by highlighting promising future pharmacotherapies and translational animal models of AD and anxiety.
Collapse
Affiliation(s)
- Nicole C. Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | | | |
Collapse
|
2
|
Greene SM, Klein PR, Alcala GA, Bustamante I, Bordas B, Johnson A, Vu V, Uhm SY, Gould GG. Aging to 24 months increased C57BL/6J mouse social sniffing and hippocampal Neto1 levels, and impaired female spatial learning. Behav Processes 2023; 211:104929. [PMID: 37586617 PMCID: PMC11441572 DOI: 10.1016/j.beproc.2023.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Understanding how natural aging impacts rodent performance in translational behavior tests is critical to teasing apart impairments due to age-related decline from neurodegenerative disorder modeling. Reduced neuropilin and tolloid-like 1 (NETO1), an accessory protein of ionotropic glutamate receptors involved in synaptic plasticity, was associated with Alzheimer's disease, yet aging effects on Neto1 remain unclear. For these reasons, our goal was to characterize how Neto1 expression corresponded with social, repetitive, and spatial learning behaviors and stress response across the C57BL/6J mouse lifespan. We measured social preferences in three-chamber tests, and motor stereotypies by marble burying. Cognitive flexibility is typically assessed in the Morris water maze (MWM), wherein C57BL/6J mice exhibit deficits with age. However, fatigue or locomotor impairment may confound interpretation of MWM performance. Therefore, we used a less arduous water T-maze (WTM) to compare spatial learning flexibility in 2, 9-15, and 24-month-old male and female mice to test the hypothesis that deficits would emerge with age. In both sexes, 9-15-month-olds made more chamber entries during social preference tests, while 2-month-olds did less social sniffing than aged mice. No age or sex differences emerged in marble burying or serum corticosterone measurements. In 24-month-olds hippocampal Neto1was increased relative to 2-month-olds, and male cognitive flexibility was strong, while spatial learning and reversal learning of 24-month-old females was impaired in WTM irrespective of Neto1 expression. The WTM is a useful alternative assessment for cognitive flexibility deficits in aged mice, and the role of hippocampal Neto1 in promoting social sniffing is of interest.
Collapse
Affiliation(s)
- Susan M Greene
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209, USA
| | - Preston R Klein
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gloria-Andrea Alcala
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209, USA
| | - Isabela Bustamante
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Trinity University, One Trinity Place, San Antonio, TX 78212, USA
| | - Blanka Bordas
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA
| | - Alexia Johnson
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Howard University, Washington D.C. 20059, USA
| | - Vy Vu
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - So Yeon Uhm
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Georgianna G Gould
- Department of Cellular & Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
3
|
Fraile-Ramos J, Garrit A, Reig-Vilallonga J, Giménez-Llort L. Hepatic Oxi-Inflammation and Neophobia as Potential Liver-Brain Axis Targets for Alzheimer's Disease and Aging, with Strong Sensitivity to Sex, Isolation, and Obesity. Cells 2023; 12:1517. [PMID: 37296638 PMCID: PMC10252497 DOI: 10.3390/cells12111517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Research on Alzheimer's disease (AD) has classically focused on alterations that occur in the brain and their intra- and extracellular neuropathological hallmarks. However, the oxi-inflammation hypothesis of aging may also play a role in neuroimmunoendocrine dysregulation and the disease's pathophysiology, where the liver emerges as a target organ due to its implication in regulating metabolism and supporting the immune system. In the present work, we demonstrate organ (hepatomegaly), tissue (histopathological amyloidosis), and cellular oxidative stress (decreased glutathione peroxidase and increased glutathione reductase enzymatic activities) and inflammation (increased IL-6 and TNF𝛼) as hallmarks of hepatic dysfunction in 16-month-old male and female 3xTg-AD mice at advanced stages of the disease, and as compared to age- and sex-matched non-transgenic (NTg) counterparts. Moreover, liver-brain axis alterations were found through behavioral (increased neophobia) and HPA axis correlations that were enhanced under forced isolation. In all cases, sex (male) and isolation (naturalistic and forced) were determinants of worse hepatomegaly, oxidative stress, and inflammation progression. In addition, obesity in old male NTg mice was translated into a worse steatosis grade. Further research is underway determine whether these alterations could correlate with a worse disease prognosis and to establish potential integrative system targets for AD research.
Collapse
Affiliation(s)
- Juan Fraile-Ramos
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Anna Garrit
- Department of Anatomy, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Reig-Vilallonga
- Department of Anatomy, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Aten S, Du Y, Taylor O, Dye C, Collins K, Thomas M, Kiyoshi C, Zhou M. Chronic Stress Impairs the Structure and Function of Astrocyte Networks in an Animal Model of Depression. Neurochem Res 2023; 48:1191-1210. [PMID: 35796915 PMCID: PMC9823156 DOI: 10.1007/s11064-022-03663-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/18/2022] [Indexed: 01/11/2023]
Abstract
Now astrocytes appear to be the key contributors to the pathophysiology of major depression. Evidence in rodents shows that chronic stress is associated with a decreased expression of astrocytic GFAP-immunoreactivity within the cortex in addition to changes in the complexity and length of astrocyte processes. Furthermore, postmortem brains of individuals with depression have revealed a decrease in astrocyte density. Notably, astrocytes are extensively coupled to one another through gap junctions to form a network, or syncytium, and we have previously demonstrated that syncytial isopotentiality is a mechanism by which astrocytes function as an efficient system with respect to brain homeostasis. Interestingly, the question of how astrocyte network function changes following chronic stress is yet to be elucidated. Here, we sought to examine the effects of chronic stress on network-level astrocyte (dys)function. Using a transgenic aldh1l1-eGFP astrocyte reporter mouse, a six-week unpredictable chronic mild stress (UCMS) paradigm as a rodent model of major depression, and immunohistochemical approaches, we show that the morphology of individual astrocytes is altered by chronic stress exposure. Additionally, in astrocyte syncytial isopotentiality measurement, we found that UCMS impairs the syncytial coupling strength of astrocytes within the hippocampus and prefrontal cortex-two brain regions that have been implicated in the regulation of mood. Together, these findings reveal that chronic stress leads to astrocyte atrophy and impaired gap junction coupling, raising the prospect that both individual and network-level astrocyte functionality are important in the etiology of major depression and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Olivia Taylor
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Courtney Dye
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Kelsey Collins
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Matthew Thomas
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Conrad Kiyoshi
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
- Northern Marianas College, Saipan, MP, USA
| | - Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Temporal Appearance of Enhanced Innate Anxiety in Alzheimer Model Mice. Biomedicines 2023; 11:biomedicines11020262. [PMID: 36830799 PMCID: PMC9953677 DOI: 10.3390/biomedicines11020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The prevalence of Alzheimer's disorder (AD) is increasing worldwide, and the co-morbid anxiety is an important, albeit often neglected problem, which might appear early during disease development. Animal models can be used to study this question. Mice, as prey animals, show an innate defensive response against a predator odor, providing a valuable tool for anxiety research. Our aim was to test whether the triple-transgenic mice model of AD shows signs of innate anxiety, with specific focus on the temporal appearance of the symptoms. We compared 3xTg-AD mice bearing human mutations of amyloid precursor protein, presenilin 1, and tau with age-matched controls. First, separate age-groups (between 2 and 18 months) were tested for the avoidance of 2-methyl-2-thiazoline, a fox odor component. To test whether hypolocomotion is a general sign of innate anxiety, open-field behavior was subsequently followed monthly in both sexes. The 3xTg-AD mice showed more immobility, approached the fox odor container less often, and spent more time in the avoidance zone. This effect was detectable already in two-month-old animals irrespective of sex, not visible around six months of age, and was more pronounced in aged females than males. The 3xTg-AD animals moved generally less. They also spent less time in the center of the open-field, which was detectable mainly in females older than five months. In contrast to controls, the aged 3xTg-AD was not able to habituate to the arena during a 30-min observation period irrespective of their sex. Amyloid beta and phospho-Tau accumulated gradually in the hippocampus, amygdala, olfactory bulb, and piriform cortex. In conclusion, the early appearance of predator odor- and open space-induced innate anxiety detected already in two-month-old 3xTg-AD mice make this genetically predisposed strain a good model for testing anxiety both before the onset of AD-related symptoms as well as during the later phase. Synaptic dysfunction by protein deposits might contribute to these disturbances.
Collapse
|
6
|
Role of Zerumbone, a Phytochemical Sesquiterpenoid from Zingiber zerumbet Smith, in Maintaining Macrophage Polarization and Redox Homeostasis. Nutrients 2022; 14:nu14245402. [PMID: 36558562 PMCID: PMC9783216 DOI: 10.3390/nu14245402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophages and microglia are highly versatile cells that can be polarized into M1 and M2 phenotypes in response to diverse environmental stimuli, thus exhibiting different biological functions. In the central nervous system, activated resident macrophages and microglial cells trigger the production of proinflammatory mediators that contribute to neurodegenerative diseases and psychiatric disorders. Therefore, modulating the activation of macrophages and microglia by optimizing the inflammatory environment is beneficial for disease management. Several naturally occurring compounds have been reported to have anti-inflammatory and neuroprotective properties. Zerumbone is a phytochemical sesquiterpenoid and also a cyclic ketone isolated from Zingiber zerumbet Smith. In this study, we found that zerumbone effectively reduced the expression of lipocalin-2 in macrophages and microglial cell lines. Lipocalin-2, also known as neutrophil gelatinase-associated lipocalin (NGAL), has been characterized as an adipokine/cytokine implicated in inflammation. Moreover, supplement with zerumbone inhibited reactive oxygen species production. Phagocytic activity was decreased following the zerumbone supplement. In addition, the zerumbone supplement remarkably reduced the production of M1-polarization-associated chemokines CXC10 and CCL-2, as well as M1-polarization-associated cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α. Furthermore, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 and the production of NO were attenuated in macrophages and microglial cells supplemented with zerumbone. Notably, we discovered that zerumbone effectively promoted the production of the endogenous antioxidants heme oxygenase-1, glutamate-cysteine ligase modifier subunit, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinone oxidoreductase-1 and remarkably enhanced IL-10, a marker of M2 macrophage polarization. Endogenous antioxidant production and M2 macrophage polarization were increased through activation of the AMPK/Akt and Akt/GSK3 signaling pathways. In summary, this study demonstrated the protective role of zerumbone in maintaining M1 and M2 polarization homeostasis by decreasing inflammatory responses and enhancing the production of endogenous antioxidants in both macrophages and microglia cells. This study suggests that zerumbone can be used as a potential therapeutic drug for the supplement of neuroinflammatory diseases.
Collapse
|
7
|
Investigation of Anxiety- and Depressive-like Symptoms in 4- and 8-Month-Old Male Triple Transgenic Mouse Models of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms231810816. [PMID: 36142737 PMCID: PMC9501136 DOI: 10.3390/ijms231810816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Approximately 50% of AD patients show anxiety and depressive symptoms, which may contribute to cognitive decline. We aimed to investigate whether the triple-transgenic mouse (3xTg-AD) is a good preclinical model of this co-morbidity. The characteristic histological hallmarks are known to appear around 6-month; thus, 4- and 8-month-old male mice were compared with age-matched controls. A behavioral test battery was used to examine anxiety- (open field (OF), elevated plus maze, light-dark box, novelty suppressed feeding, and social interaction (SI) tests), and depression-like symptoms (forced swim test, tail suspension test, sucrose preference test, splash test, and learned helplessness) as well as the cognitive decline (Morris water maze (MWM) and social discrimination (SD) tests). Acetylcholinesterase histochemistry visualized cholinergic fibers in the cortex. Dexamethasone-test evaluated the glucocorticoid non-suppression. In the MWM, the 3xTg-AD mice found the platform later than controls in the 8-month-old cohort. The SD abilities of the 3xTg-AD mice were missing at both ages. In OF, both age groups of 3xTg-AD mice moved significantly less than the controls. During SI, 8-month-old 3xTg-AD animals spent less time with friendly social behavior than the controls. In the splash test, 3xTg-AD mice groomed themselves significantly less than controls of both ages. Cortical fiber density was lower in 8-month-old 3xTg-AD mice compared to the control. Dexamethasone non-suppression was detectable in the 4-month-old group. All in all, some anxiety- and depressive-like symptoms were present in 3xTg-AD mice. Although this strain was not generally more anxious or depressed, some aspects of comorbidity might be studied in selected tests, which may help to develop new possible treatments.
Collapse
|
8
|
Gannon OJ, Robison LS, Salinero AE, Abi-Ghanem C, Mansour FM, Kelly RD, Tyagi A, Brawley RR, Ogg JD, Zuloaga KL. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer's disease and mixed dementia in a sex-dependent manner. J Neuroinflammation 2022; 19:110. [PMID: 35568928 PMCID: PMC9107741 DOI: 10.1186/s12974-022-02466-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Approximately 70% of Alzheimer's disease (AD) patients have co-morbid vascular contributions to cognitive impairment and dementia (VCID); this highly prevalent overlap of dementia subtypes is known as mixed dementia (MxD). AD is more prevalent in women, while VCID is slightly more prevalent in men. Sex differences in risk factors may contribute to sex differences in dementia subtypes. Unlike metabolically healthy women, diabetic women are more likely to develop VCID than diabetic men. Prediabetes is 3× more prevalent than diabetes and is linked to earlier onset of dementia in women, but not men. How prediabetes influences underlying pathology and cognitive outcomes across different dementia subtypes is unknown. To fill this gap in knowledge, we investigated the impact of diet-induced prediabetes and biological sex on cognitive function and neuropathology in mouse models of AD and MxD. METHODS Male and female 3xTg-AD mice received a sham (AD model) or unilateral common carotid artery occlusion surgery to induce chronic cerebral hypoperfusion (MxD model). Mice were fed a control or high fat (HF; 60% fat) diet from 3 to 7 months of age. In both sexes, HF diet elicited a prediabetic phenotype (impaired glucose tolerance) and weight gain. RESULTS In females, but not males, metabolic consequences of a HF diet were more severe in AD or MxD mice compared to WT. In both sexes, HF-fed AD or MxD mice displayed deficits in spatial memory in the Morris water maze (MWM). In females, but not males, HF-fed AD and MxD mice also displayed impaired spatial learning in the MWM. In females, but not males, AD or MxD caused deficits in activities of daily living, regardless of diet. Astrogliosis was more severe in AD and MxD females compared to males. Further, AD/MxD females had more amyloid beta plaques and hippocampal levels of insoluble amyloid beta 40 and 42 than AD/MxD males. In females, but not males, more severe glucose intolerance (prediabetes) was correlated with increased hippocampal microgliosis. CONCLUSIONS High-fat diet had a wider array of metabolic, cognitive, and neuropathological consequences in AD and MxD females compared to males. These findings shed light on potential underlying mechanisms by which prediabetes may lead to earlier dementia onset in women.
Collapse
Affiliation(s)
- Olivia J. Gannon
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Lisa S. Robison
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA ,grid.261241.20000 0001 2168 8324Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314 USA ,grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Abigail E. Salinero
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Charly Abi-Ghanem
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Febronia M. Mansour
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Richard D. Kelly
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Alvira Tyagi
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Rebekah R. Brawley
- grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Jordan D. Ogg
- grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Kristen L. Zuloaga
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| |
Collapse
|
9
|
Olfactory Evaluation in Alzheimer’s Disease Model Mice. Brain Sci 2022; 12:brainsci12050607. [PMID: 35624994 PMCID: PMC9139301 DOI: 10.3390/brainsci12050607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Olfactory dysfunction is considered a pre-cognitive biomarker of Alzheimer’s disease (AD). Because the olfactory system is highly conserved across species, mouse models corresponding to various AD etiologies have been bred and used in numerous studies on olfactory disorders. The olfactory behavior test is a method required for early olfactory dysfunction detection in AD model mice. Here, we review the olfactory evaluation of AD model mice, focusing on traditional olfactory detection methods, olfactory behavior involving the olfactory cortex, and the results of olfactory behavior in AD model mice, aiming to provide some inspiration for further development of olfactory detection methods in AD model mice.
Collapse
|
10
|
Castillo-Mariqueo L, Giménez-Llort L. Impact of Behavioral Assessment and Re-Test as Functional Trainings That Modify Survival, Anxiety and Functional Profile (Physical Endurance and Motor Learning) of Old Male and Female 3xTg-AD Mice and NTg Mice with Normal Aging. Biomedicines 2022; 10:973. [PMID: 35625710 PMCID: PMC9138863 DOI: 10.3390/biomedicines10050973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Longitudinal approaches for disease-monitoring in old animals face survival and frailty limitations, but also assessment and re-test bias on genotype and sex effects. The present work investigated these effects on 56 variables for behavior, functional profile, and biological status of male and female 3xTg-AD mice and NTg counterparts using two designs: (1) a longitudinal design: naïve 12-month-old mice re-tested four months later; and (2) a cross-sectional design: naïve 16-month-old mice compared to those re-tested. The results confirmed the impact as (1) improvement of survival (NTg rested females), variability of gait (3xTg-AD 16-month-old re-tested and naïve females), physical endurance (3xTg-AD re-tested females), motor learning (3xTg-AD and NTg 16-month-old re-tested females), and geotaxis (3xTg-AD naïve 16-month-old males); but (2) worse anxiety (3xTg-AD 16-month-old re-tested males), HPA axis (3xTg-AD 16-month-old re-tested and naïve females) and sarcopenia (3xTg-AD 16-month-old naïve females). Males showed more functional correlations than females. The functional profile, biological status, and their correlation are discussed as relevant elements for AD-pathology. Therefore, repetition of behavioral batteries could be considered training by itself, with some variables sensitive to genotype, sex, and re-test. In the AD-genotype, females achieved the best performance in physical endurance and motor learning, while males showed a deterioration in most studied variables.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Dennison JL, Ricciardi NR, Lohse I, Volmar CH, Wahlestedt C. Sexual Dimorphism in the 3xTg-AD Mouse Model and Its Impact on Pre-Clinical Research. J Alzheimers Dis 2021; 80:41-52. [PMID: 33459720 PMCID: PMC8075398 DOI: 10.3233/jad-201014] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Female sex is a leading risk factor for developing Alzheimer’s disease (AD). Sexual dimorphism in AD is gaining attention as clinical data show that women are not only more likely to develop AD but also to experience worse pathology and faster cognitive decline. Pre-clinical AD research in animal models often neglects to address sexual dimorphism in evaluation of behavioral or molecular characteristics and outcomes. This can compromise its translation to a clinical setting. The triple-transgenic AD mouse model (3xTg-AD) is a commonly used but unique AD model because it exhibits both amyloid and tau pathology, essential features of the human AD phenotype. Mounting evidence has revealed important sexually dimorphic characteristics of this animal model that have yet to be reviewed and thus, are often overlooked in studies using the 3xTg-AD model. In this review we conduct a thorough analysis of reports of sexual dimorphism in the 3xTg-AD model including findings of molecular, behavioral, and longevity-related sex differences in original research articles through August 2020. Importantly, we find results to be inconsistent, and that strain source and differing methodologies are major contributors to lack of consensus regarding traits of each sex. We first touch on the nature of sexual dimorphism in clinical AD, followed by a brief summary of sexual dimorphism in other major AD murine models before discussing the 3xTg-AD model in depth. We conclude by offering four suggestions to help unify pre-clinical mouse model AD research inspired by the NIH expectations for considering sex as a biological variable.
Collapse
Affiliation(s)
- Jessica L Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie R Ricciardi
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ines Lohse
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|