1
|
Gerges SH, El-Kadi AOS. Changes in cardiovascular arachidonic acid metabolism in experimental models of menopause and implications on postmenopausal cardiac hypertrophy. Prostaglandins Other Lipid Mediat 2024; 173:106851. [PMID: 38740361 DOI: 10.1016/j.prostaglandins.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Menopause is a normal stage in the human female aging process characterized by the cessation of menstruation and the ovarian production of estrogen and progesterone hormones. Menopause is associated with an increased risk of several different diseases. Cardiovascular diseases are generally less common in females than in age-matched males. However, this female advantage is lost after menopause. Cardiac hypertrophy is a disease characterized by increased cardiac size that develops as a response to chronic overload or stress. Similar to other cardiovascular diseases, the risk of cardiac hypertrophy significantly increases after menopause. However, the exact underlying mechanisms are not yet fully elucidated. Several studies have shown that surgical or chemical induction of menopause in experimental animals is associated with cardiac hypertrophy, or aggravates cardiac hypertrophy induced by other stressors. Arachidonic acid (AA) released from the myocardial phospholipids is metabolized by cardiac cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes to produce several eicosanoids. AA-metabolizing enzymes and their respective metabolites play an important role in the pathogenesis of cardiac hypertrophy. Menopause is associated with changes in the cardiovascular levels of CYP, COX, and LOX enzymes and the levels of their metabolites. It is possible that these changes might play a role in the increased risk of cardiac hypertrophy after menopause.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Abstract
Heart failure (HF) is a significant public health problem worldwide. It has long been noted that premenopausal women, compared to postmenopausal women and men, have lower rates for developing this disease, as well as subsequent morbidity and mortality. This difference has been attributed to estrogen playing a cardioprotective role in these women, though exactly how it does so remains unclear. In this review, we examine the presence of estrogen receptors within the cardiovascular system, as well as the role they play behind the cardioprotective effect attributed to estrogen. Furthermore, we highlight the underlying mechanisms behind their alleviation of HF, as well as possible treatment approaches, such as hormone replacement therapy and exercise regimens, to manipulate these mechanisms in treating and preventing HF.
Collapse
Affiliation(s)
- Chenyue Qian
- The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Jingjin Liu
- The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of GeriatricsThe Second Clinical Medical CollegeThe First Affiliated Hospital, Shenzhen People's HospitalJinan UniversitySouthern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Huadong Liu
- The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Department of GeriatricsThe Second Clinical Medical CollegeThe First Affiliated Hospital, Shenzhen People's HospitalJinan UniversitySouthern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Delgado Spicuzza JM, Proctor DN, Thijssen DHJ, Somani YB. Menopausal stage differences in endothelial resistance to ischemia-reperfusion injury. Physiol Rep 2023; 11:e15768. [PMID: 37734868 PMCID: PMC10513907 DOI: 10.14814/phy2.15768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND In postmenopausal women, reduced ovarian function precedes endothelial dysfunction and attenuated endothelial resistance to ischemia-reperfusion (IR) injury. We hypothesized that IR injury would lower endothelial function, with premenopausal women demonstrating the greatest protection from injury, followed by early, then late postmenopausal women. METHODS Flow-mediated dilation (FMD) was assessed at baseline and following IR injury in premenopausal (n = 11), early (n = 11; 4 ± 1.6 years since menopause), and late (n = 11; 15 ± 5.5 years since menopause) postmenopausal women. RESULTS There were significant group differences in baseline FMD (p = 0.007); post hoc analysis revealed a similar resting FMD between premenopausal (7.8% ± 2.1%) and early postmenopausal (7.1% ± 2.7%), but significantly lower FMD in late postmenopausal women (4.5% ± 2.3%). Results showed an overall decline in FMD after IR injury (p < 0.001), and a significant condition*time interaction (p = 0.048), with early postmenopausal women demonstrating the most significant decline in FMD following IR. CONCLUSION Our findings indicate that endothelial resistance to IR injury is attenuated in healthy early postmenopausal women.
Collapse
Affiliation(s)
- Jocelyn M. Delgado Spicuzza
- Integrative and Biomedical Physiology, Huck Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - David N. Proctor
- Integrative and Biomedical Physiology, Huck Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Kinesiology DepartmentThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Dick H. J. Thijssen
- Research Institute of Sport and Exercise ScienceLiverpool John Moores UniversityLiverpoolUK
- Radboud Institute of Health Sciences, Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Yasina B. Somani
- Research Institute of Sport and Exercise ScienceLiverpool John Moores UniversityLiverpoolUK
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
4
|
Schmitt A, Schupp T, Rusnak J, Ruka M, Egner-Walter S, Mashayekhi K, Tajti P, Ayoub M, Behnes M, Akin I, Weidner K. Does sex affect the risk of 30-day all-cause mortality in cardiogenic shock? Int J Cardiol 2023; 381:105-111. [PMID: 37004944 DOI: 10.1016/j.ijcard.2023.03.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Mortality rates following CS have stagnated on an unacceptably high level. Limited data regarding the prognostic value of sex in patients suffering from CS is available. Therefore, this study aims to investigate the prognostic value of sex in patients with cardiogenic shock (CS). METHODS Consecutive patients with CS of any cause were included from 2019 to 2021. Prognosis of females was compared to males regarding 30-day all-cause mortality. Further risk stratification was performed according to the presence or absence of CS related to acute myocardial infarction (AMI). Kaplan-Meier and multivariable Cox proportional regression analyses were used for statistics. RESULTS From a total of 273 CS patients (AMI-CS: 49%; non-AMI-CS: 51%), 60% were males and 40% females. The risk of 30-day all-cause mortality did not differ among males and females (56% vs. 56%; log rank p = 0.775; HR = 1.046; 95% CI 0.756-1.447; p = 0.785). Even after multivariable adjustment, sex was not associated with prognosis in CS patients (HR = 1.057; 95% CI 0.713-1.564; p = 0.784). Comparable risks of short-term mortality in both sexes were observed irrespective of the presence of AMI-related CS (64.0% vs. 64.6%; log rank p = 0.642; HR = 1.103; 95% CI 0.710-1.713; p = 0.664) and non-AMI-related CS (46.2% vs. 49.2%; log rank p = 0.696; HR = 1.099; 95% CI 0.677-1.783; p = 0.704). CONCLUSION Sex was not associated with the risk of 30-day all-cause mortality in CS patients irrespective of CS etiology. (clinicaltrials.gov identifier: NCT05575856).
Collapse
Affiliation(s)
- Alexander Schmitt
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Tobias Schupp
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Jonas Rusnak
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Marinela Ruka
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Sascha Egner-Walter
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Kambis Mashayekhi
- Department of Internal Medicine and Cardiology, Mediclin Heart Centre Lahr, Lahr, Germany
| | - Péter Tajti
- Gottsegen György National Cardiovascular Center, Hungary
| | - Mohammed Ayoub
- Division of Cardiology and Angiology, Heart Center University of Bochum, Bad Oeynhausen, Germany
| | - Michael Behnes
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany.
| | - Kathrin Weidner
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
5
|
Zhang Y, Sun C, Li Y, Qin J, Amancherla K, Jing Y, Hu Q, Liang K, Zhang Z, Ye Y, Huang LA, Nguyen TK, Egranov SD, Zhao Z, Wu A, Xi Y, Yao J, Hung MC, Calin GA, Cheng J, Lim B, Lehmann LH, Salem JE, Johnson DB, Curran MA, Yu D, Han L, Darabi R, Yang L, Moslehi JJ, Lin C. Hormonal therapies up-regulate MANF and overcome female susceptibility to immune checkpoint inhibitor myocarditis. Sci Transl Med 2022; 14:eabo1981. [PMID: 36322628 PMCID: PMC9809130 DOI: 10.1126/scitranslmed.abo1981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have been increasingly used in combination for cancer treatment but are associated with myocarditis. Here, we report that tumor-bearing mice exhibited response to treatment with combinatorial anti-programmed cell death 1 and anti-cytotoxic T lymphocyte antigen-4 antibodies but also presented with cardiovascular toxicities observed clinically with ICI therapy, including myocarditis and arrhythmia. Female mice were preferentially affected with myocarditis compared to male mice, consistent with a previously described genetic model of ICI myocarditis and emerging clinical data. Mechanistically, myocardial tissue from ICI-treated mice, the genetic mouse model, and human heart tissue from affected patients with ICI myocarditis all exhibited down-regulation of MANF (mesencephalic astrocyte-derived neurotrophic factor) and HSPA5 (heat shock 70-kDa protein 5) in the heart; this down-regulation was particularly notable in female mice. ICI myocarditis was amplified by heart-specific genetic deletion of mouse Manf and was attenuated by administration of recombinant MANF protein, suggesting a causal role. Ironically, both MANF and HSPA5 were transcriptionally induced by liganded estrogen receptor β and inhibited by androgen receptor. However, ICI treatment reduced serum estradiol concentration to a greater extent in female compared to male mice. Treatment with an estrogen receptor β-specific agonist and androgen depletion therapy attenuated ICI-associated cardiac effects. Together, our data suggest that ICI treatment inhibits estradiol-dependent expression of MANF/HSPA5 in the heart, curtailing the cardiomyocyte response to immune injury. This endocrine-cardiac-immune pathway offers new insights into the mechanisms of sex differences in cardiac disease and may offer treatment strategies for ICI myocarditis.
Collapse
Affiliation(s)
- Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 10069, China.,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| | - Chengcao Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Current address: Incyte Corporation, Wilmington, DE 19803, USA
| | - Juan Qin
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kaushik Amancherla
- Department of Medicine, Vanderbilt University of Medical Center, Nashville, TN 37232
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Current address: The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Lisa A. Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tina K. Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sergey D. Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yutao Xi
- Texas Heart Institute, St. Luke’s Hospital, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - George A. Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Cheng
- Texas Heart Institute, St. Luke’s Hospital, Houston, TX 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lorenz H. Lehmann
- Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany; Cardio-Oncology Unit, Heidelberg University Hospital, Heidelberg, Germany; German Cardiovascular Research Center (DZHK), partner site Heidelberg/Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joe-Elie Salem
- Deprtment of Pharmacology, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, INSERM, CIC-1901, UNICO-GRECO Cardiooncology Program, Paris, France
| | - Douglas B. Johnson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Michael A. Curran
- Department of Immunology and Scientific Director of the Oncology Research for Biologics and Immunotherapy Translation (ORBIT), The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| | - Javid J. Moslehi
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| |
Collapse
|
6
|
Ferreira LA, Ferreira-Junior MD, Amaral KDJV, Cavalcante KVN, Pontes CNR, Cristin L, Ribeiro DS, dos Santos BG, Xavier CH, Mathias PCDF, Andersen ML, Pedrino GR, de Castro CH, Mazaro-Costa R, Gomes RM. Maternal postnatal early overfeeding induces sex-related cardiac dysfunction and alters sexually hormones levels in young offspring. J Nutr Biochem 2022; 103:108969. [DOI: 10.1016/j.jnutbio.2022.108969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
|
7
|
Barta BA, Ruppert M, Fröhlich KE, Cosenza-Contreras M, Oláh A, Sayour AA, Kovács K, Karvaly GB, Biniossek M, Merkely B, Schilling O, Radovits T. Sex-related differences of early cardiac functional and proteomic alterations in a rat model of myocardial ischemia. J Transl Med 2021; 19:507. [PMID: 34895263 PMCID: PMC8666068 DOI: 10.1186/s12967-021-03164-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Reduced cardiovascular risk in premenopausal women has been the focus of research in recent decades. Previous hypothesis-driven experiments have highlighted the role of sex hormones on distinct inflammatory responses, mitochondrial proteins, extracellular remodeling and estrogen-mediated cardioprotective signaling pathways related to post-ischemic recovery, which were associated with better cardiac functional outcomes in females. We aimed to investigate the early, sex-specific functional and proteomic changes following myocardial ischemia in an unbiased approach. METHODS Ischemia was induced in male (M-Isch) and female (F-Isch) rats with sc. injection of isoproterenol (85 mg/kg) daily for 2 days, while controls (M-Co, F-Co) received sc. saline solution. At 48 h after the first injection pressure-volume analysis was carried out to assess left ventricular function. FFPE tissue slides were scanned and analyzed digitally, while myocardial proteins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using isobaric labeling. Concentrations of circulating steroid hormones were measured with LC-MS/MS. Feature selection (PLS and PLS-DA) was used to examine associations among functional, proteomic and hormonal datasets. RESULTS Induction of ischemia resulted in 38% vs 17% mortality in M-Isch and F-Isch respectively. The extent of ischemic damage to surviving rats was comparable between the sexes. Systolic dysfunction was more pronounced in males, while females developed a more severe impairment of diastolic function. 2224 proteins were quantified, with 520 showing sex-specific differential regulation. Our analysis identified transcriptional, cytoskeletal, contractile, and mitochondrial proteins, molecular chaperones and the extracellular matrix as sources of disparity between the sexes. Bioinformatics highlighted possible associations of estrogens and their metabolites with early functional and proteomic alterations. CONCLUSIONS Our study has highlighted sex-specific alterations in systolic and diastolic function shortly after ischemia, and provided a comprehensive look at the underlying proteomic changes and the influence of estrogens and their metabolites. According to our bioinformatic analysis, inflammatory, mitochondrial, chaperone, cytoskeletal, extracellular and matricellular proteins are major sources of intersex disparity, and may be promising targets for early sex-specific pharmacologic interventions.
Collapse
Affiliation(s)
- Bálint András Barta
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary. .,Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany. .,Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Mihály Ruppert
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Klemens Erwin Fröhlich
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Miguel Cosenza-Contreras
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,MeInBio Graduate School, University of Freiburg, Freiburg, Germany
| | - Attila Oláh
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Alex Ali Sayour
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Krisztián Kovács
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gellért Balázs Karvaly
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Martin Biniossek
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Béla Merkely
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Tamás Radovits
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| |
Collapse
|
8
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
9
|
Zhang X, Veliky CV, Birru RL, Barinas-Mitchell E, Magnani JW, Sekikawa A. Potential Protective Effects of Equol (Soy Isoflavone Metabolite) on Coronary Heart Diseases-From Molecular Mechanisms to Studies in Humans. Nutrients 2021; 13:3739. [PMID: 34835997 PMCID: PMC8622975 DOI: 10.3390/nu13113739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
Equol, a soy isoflavone-derived metabolite of the gut microbiome, may be the key cardioprotective component of soy isoflavones. Systematic reviews have reported that soy isoflavones have no to very small effects on traditional cardiovascular disease risk factors. However, the potential mechanistic mode of action of equol on non-traditional cardiovascular risk factors has not been systematically reviewed. We searched the PubMed through to July 2021 by using terms for equol and each of the following markers: inflammation, oxidation, endothelial function, vasodilation, atherosclerosis, arterial stiffness, and coronary heart disease. Of the 231 records identified, 69 articles met the inclusion criteria and were summarized. Our review suggests that equol is more lipophilic, bioavailable, and generally more potent compared to soy isoflavones. Cell culture, animal, and human studies show that equol possesses antioxidative, anti-inflammatory, and vasodilatory properties and improves arterial stiffness and atherosclerosis. Many of these actions are mediated through the estrogen receptor β. Overall, equol may have a greater cardioprotective benefit than soy isoflavones. Clinical studies of equol are warranted because equol is available as a dietary supplement.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.Z.); (C.V.V.); (R.L.B.); (E.B.-M.)
| | - Cole V. Veliky
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.Z.); (C.V.V.); (R.L.B.); (E.B.-M.)
| | - Rahel L. Birru
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.Z.); (C.V.V.); (R.L.B.); (E.B.-M.)
| | - Emma Barinas-Mitchell
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.Z.); (C.V.V.); (R.L.B.); (E.B.-M.)
| | - Jared W. Magnani
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Akira Sekikawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.Z.); (C.V.V.); (R.L.B.); (E.B.-M.)
| |
Collapse
|
10
|
Querio G, Antoniotti S, Geddo F, Tullio F, Penna C, Pagliaro P, Gallo MP. Ischemic heart disease and cardioprotection: Focus on estrogenic hormonal setting and microvascular health. Vascul Pharmacol 2021; 141:106921. [PMID: 34592428 DOI: 10.1016/j.vph.2021.106921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Ischemic Heart Disease (IHD) is a clinical condition characterized by insufficient blood flow to the cardiac tissue, and the consequent inappropriate oxygen and nutrients supply and metabolic waste removal in the heart. In the last decade a broad scientific literature has underlined the distinct mechanism of onset and the peculiar progress of IHD between female and male patients, highlighting the estrogenic hormonal setting as a key factor of these sex-dependent divergences. In particular, estrogen-activated cardioprotective pathways exert a pivotal role for the microvascular health, and their impairment, both physiologically and pathologically driven, predispose to vascular dysfunctions. Aim of this review is to summarize the current knowledge on the estrogen receptors localization and function in the cardiovascular system, particularly focusing on sex-dependent differences in microvascular vs macrovascular dysfunction and on the experimental models that allowed the researchers to reach the current findings and sketching the leading estrogen-mediated cardioprotective mechanisms.
Collapse
Affiliation(s)
- Giulia Querio
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
11
|
Sun Y, Sangam S, Guo Q, Wang J, Tang H, Black SM, Desai AA. Sex Differences, Estrogen Metabolism and Signaling in the Development of Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:719058. [PMID: 34568460 PMCID: PMC8460911 DOI: 10.3389/fcvm.2021.719058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex and devastating disease with a poor long-term prognosis. While women are at increased risk for developing PAH, they exhibit superior right heart function and higher survival rates than men. Susceptibility to disease risk in PAH has been attributed, in part, to estrogen signaling. In contrast to potential pathological influences of estrogen in patients, studies of animal models reveal estrogen demonstrates protective effects in PAH. Consistent with this latter observation, an ovariectomy in female rats appears to aggravate the condition. This discrepancy between observations from patients and animal models is often called the "estrogen paradox." Further, the tissue-specific interactions between estrogen, its metabolites and receptors in PAH and right heart function remain complex; nonetheless, these relationships are essential to characterize to better understand PAH pathophysiology and to potentially develop novel therapeutic and curative targets. In this review, we explore estrogen-mediated mechanisms that may further explain this paradox by summarizing published literature related to: (1) the synthesis and catabolism of estrogen; (2) activity and functions of the various estrogen receptors; (3) the multiple modalities of estrogen signaling in cells; and (4) the role of estrogen and its diverse metabolites on the susceptibility to, and progression of, PAH as well as their impact on right heart function.
Collapse
Affiliation(s)
- Yanan Sun
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shreya Sangam
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| | - Qiang Guo
- Department of Critical Care Medicine, Suzhou Dushu Lake Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stephen M. Black
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL, United States
- Center for Translational Science and Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL, United States
| | - Ankit A. Desai
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
12
|
Török M, Merkely P, Monori-Kiss A, Horváth EM, Sziva RE, Péterffy B, Jósvai A, Sayour AA, Oláh A, Radovits T, Merkely B, Ács N, Nádasy GL, Várbíró S. Network analysis of the left anterior descending coronary arteries in swim-trained rats by an in situ video microscopic technique. Biol Sex Differ 2021; 12:37. [PMID: 34039432 PMCID: PMC8152314 DOI: 10.1186/s13293-021-00379-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We aimed to identify sex differences in the network properties and to recognize the geometric alteration effects of long-term swim training in a rat model of exercise-induced left ventricular (LV) hypertrophy. METHODS Thirty-eight Wistar rats were divided into four groups: male sedentary, female sedentary, male exercised and female exercised. After training sessions, LV morphology and function were checked by echocardiography. The geometry of the left coronary artery system was analysed on pressure-perfused, microsurgically prepared resistance artery networks using in situ video microscopy. All segments over > 80 μm in diameter were studied using divided 50-μm-long cylindrical ring units of the networks. Oxidative-nitrative (O-N) stress markers, adenosine A2A and estrogen receptor (ER) were investigated by immunohistochemistry. RESULTS The LV mass index, ejection fraction and fractional shortening significantly increased in exercised animals. We found substantial sex differences in the coronary network in the control groups and in the swim-trained animals. Ring frequency spectra were significantly different between male and female animals in both the sedentary and trained groups. The thickness of the wall was higher in males as a result of training. There were elevations in the populations of 200- and 400-μm vessel units in males; the thinner ones developed farther and the thicker ones closer to the orifice. In females, a new population of 200- to 250-μm vessels appeared unusually close to the orifice. CONCLUSIONS Physical activity and LV hypertrophy were accompanied by a remodelling of coronary resistance artery network geometry that was different in both sexes.
Collapse
Affiliation(s)
- Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - Petra Merkely
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - Anna Monori-Kiss
- Institute of Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Eszter Mária Horváth
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Réka Eszter Sziva
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Borbála Péterffy
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Attila Jósvai
- Department of Neurosurgery, Military Hospital, Róbert Károly körút 44, Budapest, 1134 Hungary
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| | - György László Nádasy
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Budapest, 1094 Hungary
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői u. 78/a, Budapest, 1082 Hungary
| |
Collapse
|
13
|
Gurrala R, Kilanowski-Doroh IM, Hutson DD, Ogola BO, Zimmerman MA, Katakam PVG, Satou R, Mostany R, Lindsey SH. Alterations in the estrogen receptor profile of cardiovascular tissues during aging. GeroScience 2021; 43:433-442. [PMID: 33558965 PMCID: PMC8050209 DOI: 10.1007/s11357-021-00331-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen exerts protective effects on the cardiovascular system via three known estrogen receptors: alpha (ERα), beta (ERß), and the G protein-coupled estrogen receptor (GPER). Our laboratory has previously showed the importance of GPER in the beneficial cardiovascular effects of estrogen. Since clinical studies indicate that the protective effects of exogenous estrogen on cardiovascular function are attenuated or reversed 10 years post-menopause, the hypothesis was that GPER expression may be reduced during aging. Vascular reactivity and GPER protein expression were assessed in female mice of varying ages. Physiological parameters, blood pressure, and estrogen receptor transcripts via droplet digital PCR (ddPCR) were assessed in the heart, kidney, and aorta of adult, middle-aged, and aged male and female C57BL/6 mice. Vasodilation to estrogen (E2) and the GPER agonist G-1 were reduced in aging female mice and were accompanied by downregulation of GPER protein. However, ERα and GPER were the predominant receptors in all tissues, whereas ERß was detectable only in the kidney. Female sex was associated with higher mRNA for both ERα and GPER in both the aorta and the heart. Aging impacted receptor transcript in a tissue-dependent manner. ERα transcript decreased in the heart with aging, while GPER expression increased in the heart. These data indicate that aging impacts estrogen receptor expression in the cardiovascular system in a tissue- and sex-specific manner. Understanding the impact of aging on estrogen receptor expression is critical for developing selective hormone therapies that protect from cardiovascular damage.
Collapse
Affiliation(s)
- Rakesh Gurrala
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | | | - Dillion D Hutson
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Margaret A Zimmerman
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Ryousuke Satou
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, 7011, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, 7011, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
14
|
da Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen Receptors: Therapeutic Perspectives for the Treatment of Cardiac Dysfunction after Myocardial Infarction. Int J Mol Sci 2021; 22:E525. [PMID: 33430254 PMCID: PMC7825655 DOI: 10.3390/ijms22020525] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptors (ER) mediate functions beyond their endocrine roles, as modulation of cardiovascular, renal, and immune systems through anti-inflammatory and anti-apoptotic effects, preventing necrosis of cardiomyocytes and endothelial cells, and attenuating cardiac hypertrophy. Estradiol (E2) prevents cardiac dysfunction, increases nitric oxide synthesis, and reduces the proliferation of vascular cells, yielding protective effects, regardless of gender. Such actions are mediated by ER (ER-alpha (ERα), ER-beta (ERβ), or G protein-coupled ER (GPER)) through genomic or non-genomic pathways, which regulate cardiovascular function and prevent tissue remodeling. Despite the extensive knowledge on the cardioprotective effects of estrogen, clinical studies conducted on myocardial infarction (MI) and cardiovascular diseases still include favorable and unfavorable profiles. The purpose of this review is to provide up-to-date information regarding molecular, preclinical, and clinical aspects of cardiovascular E2 effects and ER modulation as a potential therapeutic target for the treatment of MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Matheus L. C. A. Tacco
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Sophia C. P. Marinho
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
- Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
15
|
Abstract
Purpose Oestrogen receptor β is believed to exert a cardioprotective effect against ischaemic injury. Nonetheless, the mechanism underlying its protective action remains to be fully elucidated. Recently, increased attention has been focused on Notch1 signalling for ameliorating cardiac ischaemic injury. Here, we hypothesised that oestrogen receptor β activation attenuates myocardial infarction (MI)-induced cardiac damage by modulating the Notch1 signalling pathway. Methods Male C57BL/6 mice were used to establish an MI model through the ligation of the anterior descending branch of the left coronary artery. Two chemical drugs, 2,3-Bis(4-hydroxyphenyl)-propionitrile (DPN) and N-[N-(3,5-difluorophenacetyl)-l-alanyl]-s-phenylglycine t-butyl ester (DAPT), a specific inhibitor of Notch1 signalling) were administered via intraperitoneal injection to change oestrogen receptor β and Notch1 activities. Immunohistochemistry, western blot analysis, enzyme-linked immunosorbent assay (Elisa) assessment and echocardiography were used in this study to analyse cardiac oxidative stress, apoptosis, infraction volume, fibrosis and cardiac function. Results DPN-mediated oestrogen receptor β activation effectively protected cardiomyocytes from MI-induced oxidative damage and apoptosis. Furthermore, oestrogen receptor β activation reduced the infarct size and lowered the levels of myocardial enzymes in the serum, thereby leading to greater overall cardiac function improvement. Ischaemic injury–induced myocardial fibrosis was attenuated by oestrogen receptor β activation. Nevertheless, all of these cardioprotective effects of oestrogen receptor β activation were almost abrogated by DAPT administration, i.e. DAPT attenuated the anti-oxidative and anti-apoptotic effects and the decrease in infarct and fibrotic areas and reversed cardiac functional recovery. The levels of phospho-phosphatidylinositol-3-kinase (PI3K) and phospho-protein kinase B (Akt) were increased after DPN administration, and this change was reversed after DAPT was administered. Conclusions All of these new findings indicate that oestrogen receptor β activation is effective in ameliorating MI-induced cardiac dysfunction by enhancing Notch1 signalling and that PI3K/Akt signalling is the downstream mediator. Electronic supplementary material The online version of this article (10.1007/s10557-020-06949-3) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Aryan L, Younessi D, Zargari M, Banerjee S, Agopian J, Rahman S, Borna R, Ruffenach G, Umar S, Eghbali M. The Role of Estrogen Receptors in Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21124314. [PMID: 32560398 PMCID: PMC7352426 DOI: 10.3390/ijms21124314] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular Diseases (CVDs) are the leading cause of death globally. More than 17 million people die worldwide from CVD per year. There is considerable evidence suggesting that estrogen modulates cardiovascular physiology and function in both health and disease, and that it could potentially serve as a cardioprotective agent. The effects of estrogen on cardiovascular function are mediated by nuclear and membrane estrogen receptors (ERs), including estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled ER (GPR30 or GPER). Receptor binding in turn confers pleiotropic effects through both genomic and non-genomic signaling to maintain cardiovascular homeostasis. Each ER has been implicated in multiple pre-clinical cardiovascular disease models. This review will discuss current reports on the underlying molecular mechanisms of the ERs in regulating vascular pathology, with a special emphasis on hypertension, pulmonary hypertension, and atherosclerosis, as well as in regulating cardiac pathology, with a particular emphasis on ischemia/reperfusion injury, heart failure with reduced ejection fraction, and heart failure with preserved ejection fraction.
Collapse
|
17
|
Affiliation(s)
- Mehwish Saba Aslam
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Liudi Yuan
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Fortini F, Vieceli Dalla Sega F, Caliceti C, Lambertini E, Pannuti A, Peiffer DS, Balla C, Rizzo P. Estrogen-mediated protection against coronary heart disease: The role of the Notch pathway. J Steroid Biochem Mol Biol 2019; 189:87-100. [PMID: 30817989 DOI: 10.1016/j.jsbmb.2019.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Estrogen regulates a plethora of biological processes, under physiological and pathological conditions, by affecting key pathways involved in the regulation of cell proliferation, fate, survival and metabolism. The Notch receptors are mediators of communication between adjacent cells and are key determinants of cell fate during development and in postnatal life. Crosstalk between estrogen and the Notch pathway intervenes in many processes underlying the development and maintenance of the cardiovascular system. The identification of molecular mechanisms underlying the interaction between these types of endocrine and juxtacrine signaling are leading to a deeper understanding of physiological conditions regulated by these steroid hormones and, potentially, to novel therapeutic approaches to prevent pathologies linked to reduced levels of estrogen, such as coronary heart disease, and cardiotoxicity caused by hormone therapy for estrogen-receptor-positive breast cancer.
Collapse
Affiliation(s)
| | | | - Cristiana Caliceti
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio Pannuti
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Daniel S Peiffer
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA; Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA
| | - Cristina Balla
- Cardiovascular Center, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
19
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
20
|
Iorga A, Umar S, Ruffenach G, Aryan L, Li J, Sharma S, Motayagheni N, Nadadur RD, Bopassa JC, Eghbali M. Estrogen rescues heart failure through estrogen receptor Beta activation. Biol Sex Differ 2018; 9:48. [PMID: 30376877 PMCID: PMC6208048 DOI: 10.1186/s13293-018-0206-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/11/2018] [Indexed: 01/11/2023] Open
Abstract
Background Recently, we showed that exogenous treatment with estrogen (E2) rescues pre-existing advanced heart failure (HF) in mice. Since most of the biological actions of E2 are mediated through the classical estrogen receptors alpha (ERα) and/or beta (ERβ), and both these receptors are present in the heart, we examined the role of ERα and ERβ in the rescue action of E2 against HF. Methods Severe HF was induced in male mice by transverse aortic constriction-induced pressure overload. Once the ejection fraction (EF) reached ~ 35%, mice were treated with selective agonists for ERα (PPT, 850 μg/kg/day), ERβ (DPN, 850 μg/kg/day), or E2 (30 μg/kg/day) together with an ERβ-antagonist (PHTPP, 850 μg/kg/day) for 10 days. Results EF of HF mice was significantly improved to 45.3 ± 2.1% with diarylpropionitrile (DPN) treatment, but not with PPT (31.1 ± 2.3%). E2 failed to rescue HF in the presence of PHTPP, as there was no significant improvement in the EF at the end of the 10-day treatment (32.5 ± 5.2%). The improvement of heart function in HF mice treated with ERβ agonist DPN was also associated with reduced cardiac fibrosis and increased cardiac angiogenesis, while the ERα agonist PPT had no significant effect on either cardiac fibrosis or angiogenesis. Furthermore, DPN improved hemodynamic parameters in HF mice, whereas PPT had no significant effect. Conclusions E2 treatment rescues pre-existing severe HF mainly through ERβ. Rescue of HF by ERβ activation is also associated with stimulation of cardiac angiogenesis, suppression of fibrosis, and restoration of hemodynamic parameters.
Collapse
Affiliation(s)
- Andrea Iorga
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.,Present address: Department of Medicine, Division of Gastroenterology/Liver, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gregoire Ruffenach
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Laila Aryan
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jingyuan Li
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Salil Sharma
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Negar Motayagheni
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.,Present Address: Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Rangarajan D Nadadur
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jean C Bopassa
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.,Present address: Department of Physiology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Haybar H, Shahrabi S, Deris Zayeri Z, Pezeshki S. Strategies to increase cardioprotection through cardioprotective chemokines in chemotherapy-induced cardiotoxicity. Int J Cardiol 2018; 269:276-282. [DOI: 10.1016/j.ijcard.2018.07.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/19/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
|
22
|
Said SA, Isedowo R, Guerin C, Nar NN, Lillie L, Bukovac S, Simone JJ, Green MR, McCormick CM, Stuart JA. Effects of long-term dietary administration of estrogen receptor-beta agonist diarylpropionitrile on ovariectomized female ICR (CD-1) mice. GeroScience 2018; 40:393-403. [PMID: 30099673 DOI: 10.1007/s11357-018-0038-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022] Open
Abstract
Diarylpropionitrile (DPN) is an estrogen receptor-β-specific agonist that has been linked to neuroprotection, preserving cognitive function with age, the suppression of anxiety-like behaviors, inhibition of cancer growth, and other positive properties. We hypothesized that DPN may have pro-longevity properties. DPN was administered via feed at a dose corresponding to approximately 3 mg/kg/day to ovariectomized female mice beginning at 7 months of age. Mice were followed for the duration of their lifespans while monitoring body mass, aspects of behavior, learning, memory, and frailty. DPN-treated mice gained more body mass over the first 2 years of age (17 months of the study). A test of voluntary running behavior at 24 months of age behavior revealed no deficits in DPN-treated mice, which were as likely as control mice to engage in extended bouts of wheel running, and did so at higher average speeds. DPN administration had anxiolytic-like effects when measured using an elevated plus maze at 9 months of age. A mouse frailty index was used to assess age-related changes. The correlation between age and frailty differed between control and DPN-treated mice. Overall, dietary DPN administration had some beneficial effects on the aging phenotype of ovariectomized female mice with few significant detrimental effects.
Collapse
Affiliation(s)
- Sherry A Said
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Rachel Isedowo
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Christilynn Guerin
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Navreek N Nar
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Leesa Lillie
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Shawn Bukovac
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.,Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jonathan J Simone
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Matthew R Green
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.,Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
23
|
Jansen J. Elizabeth Murphy: Perseverance Pays Off. Circ Res 2017; 121:1124-1126. [PMID: 29074530 DOI: 10.1161/circresaha.117.312142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ 2017; 8:33. [PMID: 29065927 PMCID: PMC5655818 DOI: 10.1186/s13293-017-0152-8] [Citation(s) in RCA: 464] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022] Open
Abstract
Epidemiologic studies have previously suggested that premenopausal females have reduced incidence of cardiovascular disease (CVD) when compared to age-matched males, and the incidence and severity of CVD increases postmenopause. The lower incidence of cardiovascular disease in women during reproductive age is attributed at least in part to estrogen (E2). E2 binds to the traditional E2 receptors (ERs), estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ), as well as the more recently identified G-protein-coupled ER (GPR30), and can exert both genomic and non-genomic actions. This review summarizes the protective role of E2 and its receptors in the cardiovascular system and discusses its underlying mechanisms with an emphasis on oxidative stress, fibrosis, angiogenesis, and vascular function. This review also presents the sexual dimorphic role of ERs in modulating E2 action in cardiovascular disease. The controversies surrounding the clinical use of exogenous E2 as a therapeutic agent for cardiovascular disease in women due to the possible risks of thrombotic events, cancers, and arrhythmia are also discussed. Endogenous local E2 biosynthesis from the conversion of testosterone to E2 via aromatase enzyme offers a novel therapeutic paradigm. Targeting specific ERs in the cardiovascular system may result in novel and possibly safer therapeutic options for cardiovascular protection.
Collapse
Affiliation(s)
- Andrea Iorga
- Present address: Department of Medicine, Division of Gastroenterology/Liver, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Christine M Cunningham
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-160CHS, Los Angeles, CA, 90095-7115, USA
| | - Shayan Moazeni
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-160CHS, Los Angeles, CA, 90095-7115, USA
| | - Gregoire Ruffenach
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-160CHS, Los Angeles, CA, 90095-7115, USA
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-160CHS, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-160CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
25
|
Tsuji M, Kawasaki T, Matsuda T, Arai T, Gojo S, Takeuchi JK. Sexual dimorphisms of mRNA and miRNA in human/murine heart disease. PLoS One 2017; 12:e0177988. [PMID: 28704447 PMCID: PMC5509429 DOI: 10.1371/journal.pone.0177988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/05/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sexual dimorphisms are well recognized in various cardiac diseases such as ischemic cardiomyopathy (ICM), hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Thorough understanding of the underlying genetic programs is crucial to optimize treatment strategies specified for each gender. By performing meta-analysis and microarray analysis, we sought to comprehensively characterize the sexual dimorphisms in the healthy and diseased heart at the level of both mRNA and miRNA transcriptome. RESULTS Existing mRNA microarray data of both mouse and human heart were integrated, identifying dozens/ hundreds of sexually dimorphic genes in healthy heart, ICM, HCM, and DCM. These sexually dimorphic genes overrepresented gene ontologies (GOs) important for cardiac homeostasis. Further, microarray of miRNA, isolated from mouse sham left ventricle (LV) (n = 6 & n = 5 for male & female) and chronic MI LV (n = 19 & n = 19) and from human normal LV (n = 6 & n = 6) and ICM LV (n = 4 & n = 5), was conducted. This revealed that 13 mouse miRNAs are sexually dimorphic in MI and 6 in normal heart. In human, 3 miRNAs were sexually dimorphic in ICM and 15 in normal heart. These data revealed miRNA-mRNA networks that operate in a sexually-biased fashion. CONCLUSIONS mRNA and miRNA transcriptome of normal and disease heart show significant sex differences, which might impact the cardiac homeostasis. Together this study provides the first comprehensive picture of the genome-wide program underlying the heart sexual dimorphisms, laying the foundation for gender specific treatment strategies.
Collapse
Affiliation(s)
- Masato Tsuji
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical Dental University, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail: (MT); (JKT)
| | - Takanori Kawasaki
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeru Matsuda
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Satoshi Gojo
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun K. Takeuchi
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical Dental University, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail: (MT); (JKT)
| |
Collapse
|
26
|
Menazza S, Sun J, Appachi S, Chambliss KL, Kim SH, Aponte A, Khan S, Katzenellenbogen JA, Katzenellenbogen BS, Shaul PW, Murphy E. Non-nuclear estrogen receptor alpha activation in endothelium reduces cardiac ischemia-reperfusion injury in mice. J Mol Cell Cardiol 2017; 107:41-51. [PMID: 28457941 DOI: 10.1016/j.yjmcc.2017.04.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
Abstract
Steroid hormone receptors including estrogen receptors (ER) classically function as ligand-regulated transcription factors. However, estrogens also elicit cellular effects through binding to extra-nuclear ER (ERα, ERβ, and G protein-coupled ER or GPER) that are coupled to kinases. How extra-nuclear ER actions impact cardiac ischemia-reperfusion (I/R) injury is unknown. We treated ovariectomized wild-type female mice with estradiol or an estrogen-dendrimer conjugate (EDC), which selectively activates extra-nuclear ER, or vehicle interventions for two weeks. I/R injury was then evaluated in isolated Langendorff perfused hearts. Two weeks of treatment with estradiol significantly decreased infarct size and improved post-ischemic contractile function. Similarly, EDC treatment significantly decreased infarct size and increased post-ischemic functional recovery compared to vehicle-treated hearts. EDC also caused an increase in myocardial protein S-nitrosylation, consistent with previous studies showing a role for this post-translational modification in cardioprotection. In further support of a role for S-nitrosylation, inhibition of nitric oxide synthase, but not soluble guanylyl cyclase blocked the EDC mediated protection. The administration of ICI182,780, which is an agonist of G-protein coupled estrogen receptor (GPER) and an antagonist of ERα and ERβ, did not result in protection; however, ICI182,780 significantly blocked EDC-mediated cardioprotection, indicating participation of ERα and/or ERβ. In studies determining the specific ER subtype and cellular target involved, EDC decreased infarct size and improved functional recovery in mice lacking ERα in cardiomyocytes. In contrast, protection was lost in mice deficient in endothelial cell ERα. Thus, extra-nuclear ERα activation in endothelium reduces cardiac I/R injury in mice, and this likely entails increased protein S-nitrosylation. Since EDC does not stimulate uterine growth, in the clinical setting EDC-like compounds may provide myocardial protection without undesired uterotrophic and cancer-promoting effects.
Collapse
Affiliation(s)
- Sara Menazza
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Swathi Appachi
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Ken L Chambliss
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Sung Hoon Kim
- Department of Molecular and Integrative Physiology, United States
| | - Angel Aponte
- Proteomics Core, NHLBI, NIH, Bethesda, MD, United States
| | - Sohaib Khan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | | - Philip W Shaul
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD, United States.
| |
Collapse
|
27
|
Murphy E, Amanakis G, Fillmore N, Parks RJ, Sun J. Sex Differences in Metabolic Cardiomyopathy. Cardiovasc Res 2017; 113:370-377. [PMID: 28158412 PMCID: PMC5852638 DOI: 10.1093/cvr/cvx008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
In contrast to ischemic cardiomyopathies which are more common in men, women are over-represented in diabetic cardiomyopathies. Diabetes is a risk factor for cardiovascular disease; however, there is a sexual dimorphism in this risk factor: heart disease is five times more common in diabetic women but only two-times more common in diabetic men. Heart failure with preserved ejection fraction, which is associated with metabolic syndrome, is also more prevalent in women. This review will examine potential mechanisms for the sex differences in metabolic cardiomyopathies. Sex differences in metabolism, calcium handling, nitric oxide, and structural proteins will be evaluated. Nitric oxide synthase and PPARα exhibit sex differences and have also been proposed to mediate the development of hypertrophy and heart failure. We focused on a role for these signalling pathways in regulating sex differences in metabolic cardiomyopathies.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, MSC 1770, 10 Center Dr, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
28
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 422] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
29
|
Dworatzek E, Mahmoodzadeh S. Targeted basic research to highlight the role of estrogen and estrogen receptors in the cardiovascular system. Pharmacol Res 2017; 119:27-35. [PMID: 28119050 DOI: 10.1016/j.phrs.2017.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/18/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
Epidemiological, clinical and animal studies revealed that sex differences exist in the manifestation and outcome of cardiovascular disease (CVD). The underlying molecular mechanisms implicated in these sex differences are not fully understood. The reasons for sex differences in CVD are definitely multifactorial, but major evidence points to the contribution of sex steroid hormone, 17β-estradiol (E2), and its receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). In this review, we summarize past and present studies that implicate E2 and ER as important determinants of sexual dimorphism in the physiology and pathophysiology of the heart. In particular, we give an overview of studies aimed to reveal the role of E2 and ER in the physiology of the observed sex differences in CVD using ER knock-out mice. Finally, we discuss recent findings from novel transgenic mouse models, which have provided new information on the sexual dimorphic roles of ER specifically in cardiomyocytes under pathological conditions.
Collapse
Affiliation(s)
- Elke Dworatzek
- Institut of Gender in Medicine and Center for Cardiovascular Research, Charitè-Universitaetsmedizin Berlin, Berlin, Germany; DZHK (German Center for Cardiovascular Research, partner site Berlin), Berlin, Germany
| | - Shokoufeh Mahmoodzadeh
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research, partner site Berlin), Berlin, Germany.
| |
Collapse
|
30
|
Schubert C, Raparelli V, Westphal C, Dworatzek E, Petrov G, Kararigas G, Regitz-Zagrosek V. Reduction of apoptosis and preservation of mitochondrial integrity under ischemia/reperfusion injury is mediated by estrogen receptor β. Biol Sex Differ 2016; 7:53. [PMID: 27688871 PMCID: PMC5035458 DOI: 10.1186/s13293-016-0104-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 12/30/2022] Open
Abstract
Background Estrogen improves cardiac recovery after ischemia/reperfusion (I/R) by yet incompletely understood mechanisms. Mitochondria play a crucial role in I/R injury through cytochrome c-dependent apoptosis activation. We tested the hypothesis that 17β-estradiol (E2) as well as a specific ERβ agonist improve cardiac recovery through estrogen receptor (ER)β-mediated mechanisms by reducing mitochondria-induced apoptosis and preserving mitochondrial integrity. Methods We randomized ovariectomized C57BL/6N mice 24h before I/R to pre-treatment with E2 or a specific ERβ agonist (ERβA). Isolated hearts were perfused for 20min prior to 30min global ischemia followed by 40min reperfusion. Results Compared with controls, ERβA and E2 treated groups showed a significant improvement in cardiac recovery, i.e. an increase in left ventricular developed pressure, dP/dtmax and dP/dtmin. ERβA and E2 pre-treatment led to a significant reduction in apoptosis with decreased cytochrome c release from the mitochondria and increased mitochondrial levels of anti-apoptotic Bcl2 and ACAA2. Protein levels of mitochondrial translocase inner membrane (TIM23) and mitochondrial complex I of respiratory chain were increased by ERβA and E2 pre-treatment. Furthermore, we found a significant increase of myosin light chain 2 (MLC2) phosphorylation together with ERK1/2 activation in E2, but not in ERβA treated groups. Conclusions Activation of ERβ is essential for the improvement of cardiac recovery after I/R through the inhibition of apoptosis and preservation of mitochondrial integrity and can be a achieved by a specific ERβ agonist. Furthermore, E2 modulates MLC2 activation after I/R independent of ERβ. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0104-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carola Schubert
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charité-Universitaetsmedizin, Hessische Str. 3-4, 10115 Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Valeria Raparelli
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charité-Universitaetsmedizin, Hessische Str. 3-4, 10115 Berlin, Germany.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Elke Dworatzek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charité-Universitaetsmedizin, Hessische Str. 3-4, 10115 Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - George Petrov
- Klinik für Kardiovaskuläre Chirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charité-Universitaetsmedizin, Hessische Str. 3-4, 10115 Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charité-Universitaetsmedizin, Hessische Str. 3-4, 10115 Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
31
|
Barton M. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER. Steroids 2016; 111:37-45. [PMID: 26921679 DOI: 10.1016/j.steroids.2016.02.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 01/21/2023]
Abstract
It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Switzerland.
| |
Collapse
|
32
|
Aoyama S, Jia H, Nakazawa K, Yamamura J, Saito K, Kato H. Dietary Genistein Prevents Denervation-Induced Muscle Atrophy in Male Rodents via Effects on Estrogen Receptor-α. J Nutr 2016; 146:1147-54. [PMID: 27146914 DOI: 10.3945/jn.115.226316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/01/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Genistein has high estrogenic activity. Previous studies have shown beneficial effects of estrogen or hormone replacement therapy on muscle mass and muscle atrophy. OBJECTIVE We investigated the preventive effects and underlying mechanisms of genistein on muscle atrophy. METHODS In Expt. 1, male Wistar rats were fed a diet containing no genistein [control (CON)] or 0.05% genistein (GEN; wt:wt diet) for 24 d. On day 14, the sciatic nerve in the left hind leg was severed, and the right hind leg was sham-treated. In Expt. 2, male C57BL6J mice were subcutaneously administered a vehicle (Veh group) or the estrogen receptor (ER) antagonist ICI 182,780 (ICI group) via an osmotic pump for 27 d, and each group was subsequently fed CON or GEN diets from day 3 to day 27. Muscle atrophy was induced on day 17 as in Expt. 1. In Expt. 3, male C57BL6J mice were subcutaneously administered vehicle or a selective ER agonist-ER-α [4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT)] or ER-β [2,3-bis(4-hydroxyphenyl)-propionitrile (DPN)]-or genistein (GEN-sc-i) via an osmotic pump for 13 d, and muscle atrophy was induced on day 3 as in Expt. 1. The ratio of denervated soleus muscle weight to sham-operated soleus muscle weight (d/s ratio) was used as the index of muscle atrophy. RESULTS Expt. 1: The d/s ratio in the GEN group was 20% higher than that in the CON group (P < 0.05). Expt. 2: The d/s ratio in the Veh-GEN group was 14% higher than that in the Veh-CON group (P < 0.05), although there was no significant difference between ICI-CON and ICI-GEN groups (P = 0.69). Expt. 3: The d/s ratio in the PPT-treated group was 20% greater than that in the Veh group (P < 0.05), but DPN and GEN-sc-i had no effect on the d/s ratio (P ≥ 0.05 compared with vehicle). CONCLUSION Genistein intake mitigated denervation-induced soleus muscle atrophy. ER-α was related to the preventive effect of genistein on muscle atrophy.
Collapse
Affiliation(s)
- Shinya Aoyama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and
| | - Huijuan Jia
- "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Kyoko Nakazawa
- "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Junki Yamamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and
| | - Kenji Saito
- "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Hisanori Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Sivasinprasasn S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Estrogenic Impact on Cardiac Ischemic/Reperfusion Injury. J Cardiovasc Transl Res 2016; 9:23-39. [PMID: 26786980 DOI: 10.1007/s12265-016-9675-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/07/2016] [Indexed: 11/29/2022]
Abstract
The increase in cardiovascular disease and metabolic syndrome incidence following the onset of menopause has highlighted the role of estrogen as a cardiometabolic protective agent. Specifically regarding the heart, estrogen induced an improvement in cardiac function, preserved calcium homeostasis, and inhibited the mitochondrial apoptotic pathway. The beneficial effects of estrogen in relation to cardiac ischemia/reperfusion (I/R) injury, such as reduced infarction and ameliorated post-ischemic recovery, have also been shown. Nevertheless, controversial findings exist and estrogen therapy is reported to be related to a higher rate of thromboembolic events and atrial fibrillation in post-menopausal women. Therefore, greater clarification is needed to evaluate the exact potential of estrogen use in cases of cardiac I/R injury. This article reviews the effects of estrogen, in both acute and chronic treatment, and collates the studies with regard to their in vivo, in vitro, or clinical trial settings in cases of cardiac I/R injury and myocardial infarction.
Collapse
Affiliation(s)
- Sivaporn Sivasinprasasn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
34
|
Muka T, Vargas KG, Jaspers L, Wen KX, Dhana K, Vitezova A, Nano J, Brahimaj A, Colpani V, Bano A, Kraja B, Zaciragic A, Bramer WM, van Dijk GM, Kavousi M, Franco OH. Estrogen receptor β actions in the female cardiovascular system: A systematic review of animal and human studies. Maturitas 2016; 86:28-43. [PMID: 26921926 DOI: 10.1016/j.maturitas.2016.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 12/27/2022]
Abstract
Five medical databases were searched for studies that assessed the role of ERβ in the female cardiovascular system and the influence of age and menopause on ERβ functioning. Of 9472 references, 88 studies met our inclusion criteria (71 animal model experimental studies, 15 human model experimental studies and 2 population based studies). ERβ signaling was shown to possess vasodilator and antiangiogenic properties by regulating the activity of nitric oxide, altering membrane ionic permeability in vascular smooth muscle cells, inhibiting vascular smooth muscle cell migration and proliferation and by regulating adrenergic control of the arteries. Also, a possible protective effect of ERβ signaling against left ventricular hypertrophy and ischemia/reperfusion injury via genomic and non-genomic pathways was suggested in 27 studies. Moreover, 5 studies reported that the vascular effects of ERβ may be vessel specific and may differ by age and menopause status. ERβ seems to possess multiple functions in the female cardiovascular system. Further studies are needed to evaluate whether isoform-selective ERβ-ligands might contribute to cardiovascular disease prevention.
Collapse
Affiliation(s)
- Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Kris G Vargas
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Anna Vitezova
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Adela Brahimaj
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Veronica Colpani
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Arjola Bano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania; University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Gaby M van Dijk
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Menazza S, Murphy E. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System. Circ Res 2016; 118:994-1007. [PMID: 26838792 DOI: 10.1161/circresaha.115.305376] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.
Collapse
Affiliation(s)
- Sara Menazza
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Elizabeth Murphy
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
36
|
Weng YS, Wang HF, Pai PY, Jong GP, Lai CH, Chung LC, Hsieh DJY, HsuanDay C, Kuo WW, Huang CY. Tanshinone IIA Prevents Leu27IGF-II-Induced Cardiomyocyte Hypertrophy Mediated by Estrogen Receptor and Subsequent Akt Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:1567-91. [PMID: 26621443 DOI: 10.1142/s0192415x15500895] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
IGF-IIR plays important roles as a key regulator in myocardial pathological hypertrophy and apoptosis, which subsequently lead to heart failure. Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese medicinal herb used to treat cardiovascular diseases. Tanshinone IIA is an active compound in Danshen and is structurally similar to 17[Formula: see text]-estradiol (E[Formula: see text]. However, whether tanshinone IIA improves cardiomyocyte survival in pathological hypertrophy through estrogen receptor (ER) regulation remains unclear. This study investigates the role of ER signaling in mediating the protective effects of tanshinone IIA on IGF-IIR-induced myocardial hypertrophy. Leu27IGF-II (IGF-II analog) was shown in this study to specifically activate IGF-IIR expression and ICI 182,780 (ICI), an ER antagonist used to investigate tanshinone IIA estrogenic activity. We demonstrated that tanshinone IIA significantly enhanced Akt phosphorylation through ER activation to inhibit Leu27IGF-II-induced calcineurin expression and subsequent NFATc3 nuclear translocation to suppress myocardial hypertrophy. Tanshinone IIA reduced the cell size and suppressed ANP and BNP, inhibiting antihypertrophic effects induced by Leu27IGF-II. The cardioprotective properties of tanshinone IIA that inhibit Leu27IGF-II-induced cell hypertrophy and promote cell survival were reversed by ICI. Furthermore, ICI significantly reduced phospho-Akt, Ly294002 (PI3K inhibitor), and PI3K siRNA significantly reduced the tanshinone IIA-induced protective effect. The above results suggest that tanshinone IIA inhibited cardiomyocyte hypertrophy, which was mediated through ER, by activating the PI3K/Akt pathway and inhibiting Leu27IGF-II-induced calcineurin and NFATC3. Tanshinone IIA exerted strong estrogenic activity and therefore represented a novel selective ER modulator that inhibits IGF-IIR signaling to block cardiac hypertrophy.
Collapse
Affiliation(s)
- Yueh-Shan Weng
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsueh-Fang Wang
- Institute of Biomedical Nutrition, Hungkuang University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Gwo-Ping Jong
- Division of Cardiology, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Chao-Hung Lai
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiology, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan County, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Cecilia HsuanDay
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
37
|
Frump AL, Goss KN, Vayl A, Albrecht M, Fisher A, Tursunova R, Fierst J, Whitson J, Cucci AR, Brown MB, Lahm T. Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: effects of endogenous and exogenous sex hormones. Am J Physiol Lung Cell Mol Physiol 2015; 308:L873-90. [PMID: 25713318 DOI: 10.1152/ajplung.00006.2015] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/18/2015] [Indexed: 12/22/2022] Open
Abstract
Estrogens are disease modifiers in PAH. Even though female patients exhibit better right ventricular (RV) function than men, estrogen effects on RV function (a major determinant of survival in PAH) are incompletely characterized. We sought to determine whether sex differences exist in RV function in the SuHx model of PAH, whether hormone depletion in females worsens RV function, and whether E2 repletion improves RV adaptation. Furthermore, we studied the contribution of ERs in mediating E2's RV effects. SuHx-induced pulmonary hypertension (SuHx-PH) was induced in male and female Sprague-Dawley rats as well as OVX females with or without concomitant E2 repletion (75 μg·kg(-1)·day(-1)). Female SuHx rats exhibited superior CI than SuHx males. OVX worsened SuHx-induced decreases in CI and SuHx-induced increases in RVH and inflammation (MCP-1 and IL-6). E2 repletion in OVX rats attenuated SuHx-induced increases in RV systolic pressure (RVSP), RVH, and pulmonary artery remodeling and improved CI and exercise capacity (V̇o2max). Furthermore, E2 repletion ameliorated SuHx-induced alterations in RV glutathione activation, proapoptotic signaling, cytoplasmic glycolysis, and proinflammatory cytokine expression. Expression of ERα in RV was decreased in SuHx-OVX but was restored upon E2 repletion. RV ERα expression was inversely correlated with RVSP and RVH and positively correlated with CO and apelin RNA levels. RV-protective E2 effects observed in females were recapitulated in male SuHx rats treated with E2 or with pharmacological ERα or ERβ agonists. Our data suggest significant RV-protective ER-mediated effects of E2 in a model of severe PH.
Collapse
Affiliation(s)
- Andrea L Frump
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kara N Goss
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexandra Vayl
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marjorie Albrecht
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda Fisher
- Department of Anesthesiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Roziya Tursunova
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - John Fierst
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jordan Whitson
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anthony R Cucci
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - M Beth Brown
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences
| | - Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Center for Immunobiology, Indiana University School of Medicine, Indianapolis, Indiana; and Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
38
|
Association of serum bisphenol a with hypertension in thai population. Int J Hypertens 2015; 2015:594189. [PMID: 25785193 PMCID: PMC4345272 DOI: 10.1155/2015/594189] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 12/21/2022] Open
Abstract
Objective. The present study aimed to examine the association between serum BPA and hypertension and evaluated whether it was influenced by estradiol level. Methods. A subsample of 2588 sera randomly selected from the Thai National Health Examination Survey IV, 2009, was measured for serum BPA and estradiol. Logistic regression was used to examine the association controlling for age, sex, diabetes, body mass index, and estradiol level. Results. Compared with the lowest quartile, the adjusted odds ratio (AOR) of hypertension for the fourth quartile of serum BPA was 2.16 (95% CI 1.31, 3.56) in women and 1.44 (0.99, 2.09) in men. There was no interaction between serum BPA and estradiol level. For analysis using log(BPA) as a continuous variable, the AOR per unit change in log(BPA) was 1.09 (95% CI 1.02, 1.16). Among postmenopausal women, the AOR for the fourth quartile of BPA was 2.33 (95% CI 1.31, 4.15) and, for premenopausal women, it was 2.12 (95% CI 0.87, 5.19). Conclusion. Serum BPA was independently associated with hypertension in women and was not likely to be affected by estrogen; however, its mechanism related to blood pressure needs further investigation.
Collapse
|
39
|
Ostadal B, Ostadal P. Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol 2014; 171:541-54. [PMID: 23750471 DOI: 10.1111/bph.12270] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022] Open
Abstract
Ischaemic heart disease (IHD) is the most frequent cause of mortality among men and women. Many epidemiological studies have demonstrated that premenopausal women have a reduced risk for IHD compared with their male counterparts. The incidence of IHD in women increases after menopause, suggesting that IHD is related to declining oestrogen levels. Experimental observations have confirmed the results of epidemiological studies investigating sex-specific differences in cardiac tolerance to ischaemia. Female sex appears also to favourably influence cardiac remodelling after ischaemia/reperfusion injury. Furthermore, sex-related differences in ischaemic tolerance of the adult myocardium can be influenced by interventions during the early phases of ontogenetic development. Detailed mechanisms of these sex-related differences remain unknown; however, they involve the genomic and non-genomic effects of sex steroid hormones, particularly the oestrogens, which have been the most extensively studied. Although the protective effects of oestrogen have many potential therapeutic implications, clinical trials have shown that oestrogen replacement in postmenopausal women may actually increase the incidence of IHD. The results of these trials have illustrated the complexity underlying the mechanisms involved in sex-related differences in cardiac tolerance to ischaemia. Sex-related differences in cardiac sensitivity to ischaemia/reperfusion injury may also influence therapeutic strategies in women with acute coronary syndrome. Women undergo coronary intervention less frequently and a lower proportion of women receive evidence-based therapy compared with men. Although our understanding of this important topic has increased in recent years, there is an urgent need for intensive experimental and clinical research to develop female-specific therapeutic strategies. Only then we will be able to offer patients better evidence-based treatment, a better quality of life and lower mortality.
Collapse
Affiliation(s)
- B Ostadal
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
40
|
Zholobenko A, Modriansky M. Silymarin and its constituents in cardiac preconditioning. Fitoterapia 2014; 97:122-32. [DOI: 10.1016/j.fitote.2014.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 01/28/2023]
|
41
|
Wang F, Xiao J, Shen Y, Yao F, Chen Y. Estrogen protects cardiomyocytes against lipopolysaccharide by inhibiting autophagy. Mol Med Rep 2014; 10:1509-12. [PMID: 25017426 DOI: 10.3892/mmr.2014.2365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/27/2014] [Indexed: 11/05/2022] Open
Abstract
Autophagy has a significant role in myocardial injury induced by lipopolysaccharide (LPS). Estrogen (E2) has been demonstrated to protect cardiomyocytes against apoptosis; however, it remains to be determined whether it exhibits anti‑autophagic effects. The aim of the present study was to investigate whether estrogen-regulated autophagy attenuates cardiomyocyte injury induced by LPS. The cardiomyocytes of neonatal rats were randomized to the control (Con), LPS and estrogen + LPS groups. The LPS group was treated with 1 µg LPS for 24 h and the estrogen + LPS group was treated with 10‑8 M estrogen 30 min prior to treatment with LPS. Cardiomyocyte autophagy was quantitated by investigating the mRNA and protein level of autophagy‑related genes (Atgs). The mRNA expression of Atg5 and Beclin1 were measured by quantitative polymerase chain reaction and the microtubule‑associated protein light chain 3 (LC3) protein expression was measured by western blot analysis. To demonstrate the cardiomyocyte protection of estrogen, cell vitality and serum lactate dehydrogenase (LDH) levels were measured following LPS treatment. It was identified that LPS induced cardiomyocyte injury, together with the upregulation of Atg5, Beclin1 mRNA and LC3‑II protein. Furthermore, estrogen attenuated the effect of LPS. The present study provides evidence that estrogen has a myocardial protective role against injury induced by LPS by regulating autophagy.
Collapse
Affiliation(s)
- Fengmei Wang
- Department of Obstetrics and Gynaecology, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Yaofeng Shen
- Department of Anesthesiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Feng Yao
- Department of Anesthesiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Yu Chen
- Department of Obstetrics and Gynaecology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
42
|
Knowlton AA, Korzick DH. Estrogen and the female heart. Mol Cell Endocrinol 2014; 389:31-9. [PMID: 24462775 PMCID: PMC5709037 DOI: 10.1016/j.mce.2014.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/04/2014] [Accepted: 01/05/2014] [Indexed: 12/24/2022]
Abstract
Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system.
Collapse
Affiliation(s)
- A A Knowlton
- The Department of Veteran's Affairs, Northern California VA, Sacramento, CA, USA; Molecular & Cellular Cardiology, Departments of Medicine and Pharmacology, University of California, Davis, USA.
| | - D H Korzick
- Intercollege Program in Physiology and Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
43
|
Murphy E, Steenbergen C. Estrogen regulation of protein expression and signaling pathways in the heart. Biol Sex Differ 2014; 5:6. [PMID: 24612699 PMCID: PMC3975301 DOI: 10.1186/2042-6410-5-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/21/2014] [Indexed: 01/20/2023] Open
Abstract
Sex differences in cardiovascular disease and cardiac physiology have been reported in humans as well as in animal models. Premenopausal women have reduced cardiovascular disease compared to men, but the incidence of cardiovascular disease in women increases following menopause. Sex differences in cardiomyocytes likely contribute to the differences in male-female physiology and response to disease. Sex differences in the heart have been noted in electrophysiology, contractility, signaling, metabolism, and cardioprotection. These differences appear to be due, at least in part, to differences in gene and protein expression as well as in posttranslational protein modifications. This review will focus primarily on estrogen-mediated male-female differences in protein expression and signaling pathways in the heart and cardiac cells. It should be emphasized that these basic differences are not intrinsically beneficial or detrimental per se; the difference can be good or bad depending on the context and circumstances.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Laboratory of Cardiac Physiology, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20824-0105, USA
| | | |
Collapse
|
44
|
Cong B, Xu Y, Sheng H, Zhu X, Wang L, Zhao W, Tang Z, Lu J, Ni X. Cardioprotection of 17β-estradiol against hypoxia/reoxygenation in cardiomyocytes is partly through up-regulation of CRH receptor type 2. Mol Cell Endocrinol 2014; 382:17-25. [PMID: 24035863 DOI: 10.1016/j.mce.2013.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/16/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
Estrogens have been suggested to exert cardioprotection through maintaining endogenous cardioprotective mechanisms. In the present study, we investigated whether estrogens protect cardiomyocytes against hypoxia/reoxygenation (H/R) via modulating urocortins (UCNs) and their receptor corticotrophin-releasing hormone receptor type 2 (CRHR2). We found that 17β-estradiol (E2) enhanced UCN cardioprotection against H/R and increased CRHR2 expression in neonatal rat cardiomyocytes. E2 protected cardiomyocytes against H/R, which was impaired by CRHR2 antagonist or knockdown of CRHR2. Estrogen receptor α (ERα) antagonist treatment or ERα knockdown could abolish E2-induced CRHR2 up-regulation. Moreover, knockdown of Sp1 also attenuated E2-induced CRHR2 up-regulation. Ovariectomy resulted in down-regulation of CRHR2 and Sp-1 in myocardium of mice, which was restored by E2 or ERα agonist treatment. These results suggest that estrogens act on ERα to up-regulate CRHR2 expression in cardiomyocytes, thereby enhancing cardioprotection of UCNs against H/R.
Collapse
Affiliation(s)
- Binhai Cong
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Yongjun Xu
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Hui Sheng
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Xiaoyan Zhu
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Long Wang
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Wei Zhao
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Zhiping Tang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jianqiang Lu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Xin Ni
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
45
|
Mahmoodzadeh S, Leber J, Zhang X, Jaisser F, Messaoudi S, Morano I, Furth PA, Dworatzek E, Regitz-Zagrosek V. Cardiomyocyte-specific Estrogen Receptor Alpha Increases Angiogenesis, Lymphangiogenesis and Reduces Fibrosis in the Female Mouse Heart Post-Myocardial Infarction. ACTA ACUST UNITED AC 2014; 5:153. [PMID: 24977106 DOI: 10.4172/2157-7013.1000153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Experimental studies showed that 17β-estradiol (E2) and activated Estrogen Receptors (ER) protect the heart from ischemic injury. However, the underlying molecular mechanisms are not well understood. To investigate the role of ER-alpha (ERα) in cardiomyocytes in the setting of myocardial ischemia, we generated transgenic mice with cardiomyocyte-specific overexpression of ERα (ERα-OE) and subjected them to Myocardial Infarction (MI). At the basal level, female and male ERα-OE mice showed increased Left Ventricular (LV) mass, LV volume and cardiomyocyte length. Two weeks after MI, LV volume was significantly increased and LV wall thickness decreased in female and male WT-mice and male ERα-OE, but not in female ERα-OE mice. ERα-OE enhanced expression of angiogenesis and lymphangiogenesis markers (Vegf, Lyve-1), and neovascularization in the peri-infarct area in both sexes. However, attenuated level of fibrosis and higher phosphorylation of JNK signaling pathway could be detected only in female ERα-OE after MI. In conclusion, our study indicates that ERα protects female mouse cardiomyocytes from the sequelae of ischemia through induction of neovascularization in a paracrine fashion and impaired fibrosis, which together may contribute to the attenuation of cardiac remodelling.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité Universitaetsmedizin, Berlin, Germany
| | - Joachim Leber
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité Universitaetsmedizin, Berlin, Germany
| | - Xiang Zhang
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité Universitaetsmedizin, Berlin, Germany.,Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | - Ingo Morano
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Priscilla A Furth
- Departments of Oncology and Medicine and the Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Elke Dworatzek
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité Universitaetsmedizin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
46
|
Bell JR, Bernasochi GB, Varma U, Raaijmakers AJA, Delbridge LMD. Sex and sex hormones in cardiac stress--mechanistic insights. J Steroid Biochem Mol Biol 2013; 137:124-35. [PMID: 23770428 DOI: 10.1016/j.jsbmb.2013.05.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/14/2023]
Abstract
Important sex differences in the onset and characteristics of cardiovascular disease are evident, yet the mechanistic details remain unresolved. Men are more susceptible to cardiovascular disease earlier in life, though younger women who have a cardiovascular event are more likely to experience adverse outcomes. Emerging evidence is prompting a re-examination of the conventional view that estrogen is protective and testosterone a liability. The heart expresses both androgen and estrogen receptors and is functionally responsive to circulating sex steroids. New evidence of cardiac aromatase expression indicates local estrogen production may also exert autocrine/paracrine actions in the heart. Cardiomyocyte contractility studies suggest testosterone and estrogen have contrasting inotropic actions, and modulate Ca(2+) handling and transient characteristics. Experimentally, sex differences are also evident in cardiac stress responses. Female hearts are generally less susceptible to acute ischemic damage and associated arrhythmias, and generally are more resistant to stress-induced hypertrophy and heart failure, attributed to the cardioprotective actions of estrogen. However, more recent data show that testosterone can also improve acute post-ischemic outcomes and facilitate myocardial function and survival in chronic post-infarction. The myocardial actions of sex steroids are complex and context dependent. A greater mechanistic understanding of the specific actions of systemic/local sex steroids in different cardiovascular disease states has potential to lead to the development of cardiac therapies targeted specifically for men and women.
Collapse
Affiliation(s)
- James R Bell
- Department of Physiology, University of Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
47
|
Sex differences in postischemic cardiac dysfunction and norepinephrine overflow in rat heart: the role of estrogen against myocardial ischemia-reperfusion damage via an NO-mediated mechanism. J Cardiovasc Pharmacol 2013; 60:269-75. [PMID: 22635075 DOI: 10.1097/fjc.0b013e31825e2e57] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this study is to elucidate the relationship between sex difference and norepinephrine (NE) release in the pathogenesis of myocardial ischemia/reperfusion (I/R) injury. Isolated male and female rat hearts were subjected to 40-minute global ischemia followed by 30-minute reperfusion. Compared with male hearts, I/R-induced cardiac dysfunction, such as decreased left ventricular developed pressure and dP/dtmax and increased left ventricular end diastolic pressure, was significantly attenuated in female hearts. An excessive NE overflow in the coronary effluent from the postischemic heart in females was much less than that in males. These sex differences were abolished by ovariectomy, but in vivo treatment with 17β-estradiol recovered it. This ameliorating effect of 17β-estradiol was not observed in the presence of nitric oxide (NO) synthase inhibitor N-nitro-L-arginine. When NOx (NO2/NO3) levels in the coronary effluent after onset of reperfusion were measured, reversed correlated relationships between NOx production and I/R-induced cardiac dysfunction, and NE overflow, were observed. These findings suggest that sex differences in the postischemic cardiac dysfunction are closely related to the NE overflow from the postischemic heart and that estrogen plays a key role in the cardioprotective effect against I/R injury in female rats, by suppressing NE release via the enhancement of NO production.
Collapse
|
48
|
Barcena de Arellano ML, Oldeweme J, Arnold J, Schneider A, Mechsner S. Remodeling of estrogen-dependent sympathetic nerve fibers seems to be disturbed in adenomyosis. Fertil Steril 2013; 100:801-9. [PMID: 23755957 DOI: 10.1016/j.fertnstert.2013.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate neuronal remodeling processes in the uterine innervation, particularly a remodeling of sympathetic nerve fibers, as well as the role of estrogen in this modulation in adenomyosis. DESIGN Retrospective case-control study. SETTING University hospital endometriosis center. PATIENT(S) Forty-two patients with histologically proven adenomyosis and 19 patients without adenomyosis. INTERVENTION(S) Endometrial and myometrial tissue were immunohistochemically analyzed to further characterize the uterine innervation. MAIN OUTCOME MEASURE(S) Immunohistochemical analysis was used to identify PGP 9.5-, substance P-, and tyrosine hydroxylase-positive nerve fibers. The expression of the aromatase cytochrome P450 was evaluated in uterine tissue, and the expression of the estrogen receptor (ER) -α and ERβ in uterine nerve fibers was analyzed. RESULT(S) Adenomyotic lesions are not innervated. The density of sympathetic nerve fibers in the myometrium of women with adenomyosis is reduced when compared with the nonadenomyosis group. The aromatase expression in the myometrium of women with adenomyosis was increased when compared with the control group. The ERα/ERβ ratio is in trend shifted to the ERα side in the myometrial tyrosine hydroxylase-positive nerve fibers in adenomyosis compared to the controls. CONCLUSION(S) The disruption of the modulation of the uterine sympathetic innervation seems to be an important aspect in the pathogenesis of adenomyosis. Estrogen and its receptors seem to play a crucial role in the depletion of myometrial sympathetic nerve fibers.
Collapse
Affiliation(s)
- Maria L Barcena de Arellano
- Endometriosis Research Centre Charité, Department of Gynaecology, Charité, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
49
|
Korzick DH, Lancaster TS. Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency. Pflugers Arch 2013; 465:669-85. [PMID: 23525672 DOI: 10.1007/s00424-013-1255-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 01/17/2023]
Abstract
Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal female. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca(2+) sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women.
Collapse
Affiliation(s)
- Donna H Korzick
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
50
|
Mahmoodzadeh S, Fliegner D, Dworatzek E. Sex differences in animal models for cardiovascular diseases and the role of estrogen. Handb Exp Pharmacol 2013:23-48. [PMID: 23027444 DOI: 10.1007/978-3-642-30726-3_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical findings show sex differences in the manifestation of a number of cardiovascular diseases (CVD). However, the underlying molecular mechanisms are incompletely understood. Multiple animal models suggest sex differences in the manifestation of CVD, and provide strong experimental evidence that different major pathways are regulated in a sex-specific manner. In most animal studies females display a lower mortality, less severe hypertrophy, and better preserved cardiac function compared with male counterparts. The data support the hypothesis that female sex and/or the sex hormone estrogen (17β-estradiol; E2) may contribute to the sexual dimorphism in the heart and to a better outcome of cardiac diseases in females. To improve our understanding of the sex-based molecular and cellular mechanisms of CVD and to develop new therapeutic strategies, the use of appropriate animal models is essential. This review highlights recent findings from animal models relevant for studying the mechanisms of sexual dimorphisms in the healthy and diseased heart, focusing on physiological hypertrophy (exercise), pathological hypertrophy (volume and pressure overload induced hypertrophy), and heart failure (myocardial infarction). Furthermore, the potential effects of E2 in these models will be discussed.
Collapse
|