1
|
Zeng W, Deng Z, Gao Y, Sun G, Li X, Yuan D. Downregulation of connexin 43-based gap junctions underlies propofol-induced excessive relaxation in hypertensive vascular smooth muscle cells. Cell Commun Signal 2023; 21:163. [PMID: 37381027 DOI: 10.1186/s12964-023-01176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Postinduction hypotension caused by propofol remains a non-negligible problem for anesthesiologists, and is especially severe in chronic hypertensive patients with long-term vasoconstriction and decreased vascular elasticity. The functional change in gap junctions composed of Cx43 (Cx43-GJs) is reported as the biological basis of synchronized contraction or relaxation of blood vessels. Thus, we investigated the role of Cx43-GJs in propofol-induced dramatic blood pressure fluctuations in chronic hypertensive patients, and their internal mechanisms. METHODS Human umbilical artery smooth muscle cells (HUASMCs) were pretreated with long-term angiotensin II (Ang II), with or without propofol, to simulate the contraction and relaxation of normal and hypertensive VSMCs during anesthesia induction. The levels of F-actin polymerization and MLC2 phosphorylation were used as indicators to observe the contraction and relaxation of HUASMCs. Different specific activators, inhibitors and siRNAs were used to explore the role of Cx43-GJs and Ca2+ as well as the RhoA/ LIMK2/cofilin and RhoA/MLCK signaling pathways in the contraction and relaxation of normal and hypertensive HUASMCs. RESULTS Both F-actin polymerization and MLC2 phosphorylation were significantly enhanced in Ang II-pretreated HUASMCs, along with higher expression of Cx43 protein and stronger function of Cx43-GJs than in normal HUASMCs. However, with propofol administration, similar to Gap26 and Cx43-siRNA, the function of Cx43-GJs in Ang II-pretreated HUASMCs was inhibited compared with that in normal HUASMCs, accompanied by a larger decrease in intracellular Ca2+ and the RhoA/LIMK2/cofilin and RhoA/MLCK signaling pathways. Eventually F-actin polymerization and MLC2 phosphorylation were more dramatically decreased. However, these effects could be reversed by RA with enhanced Cx43-GJ function. CONCLUSION Long-term exposure to Ang II significantly enhanced the expression of the Cx43 protein and function of Cx43-GJs in HUASMCs, resulting in the accumulation of intracellular Ca2+ and the activation of its downstream RhoA/LIMK2/cofilin and RhoA/MLCK signaling pathways, which maintained HUASMCs in a state of excessive-contraction. With inhibition of Cx43-GJs by propofol in Ang II-pretreated HUASMCs, intracellular Ca2+ and its downstream signaling pathways were dramatically inhibited, which ultimately excessively relaxed HUASMCs. This is the reason why the blood pressure fluctuation of patients with chronic hypertension was more severe after receiving propofol induction. Video Abstract.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Zhizhao Deng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Yingxin Gao
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Guoliang Sun
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Xianlong Li
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Dongdong Yuan
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
2
|
Gao RJ, Zhang AM, Jia QH, Dang ZT, Tian T, Zhang JR, Cao N, Tang XC, Ma KT, Li L, Si JQ. The promoting role of Cx43 on the proliferation and migration of arterial smooth muscle cells for angiotensin II-dependent hypertension. Pulm Pharmacol Ther 2021; 70:102072. [PMID: 34428599 DOI: 10.1016/j.pupt.2021.102072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies have shown that endothelin-1 and angiotensin II (AngII) can increase gap junctional intercellular communication (GJIC) by activating Mitogen-activated protein kinases (MAPKs) pathway. However, not only the precise interaction of AngII with Connexin43(Cx43) and the associated functions remain unclear, but also the regulatory role of Cx43 on the AngII-mediated promotion proliferation and migration of VSMCs is poorly understood. MATERIAL AND METHODS Our research applicated pressure myography measurements, immunofluorescence and Western blot analyses to investigate the changes in physiological indicators in spontaneously hypertensive rats (SHRs) and AngII-stimulated proliferation and migration of A7r5 SMCs(Rat vascular smooth muscle cells). The aim was to elucidate the role of CX43 in hypertension induced by AngII. RESULTS Chronic ramipril (angiotensin converting enzyme inhibitor) management for SHRs significantly attenuated blood pressure and blood vessel wall thickness, also reduced contraction rate in the cerebral artery. The cerebral artery contraction rates, mRNA and protein expression of Cx43, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) protein expression in the SHR + ramipril and SHR + ramipril + carbenoxolone (CBX, Cx43 specific blocker) groups were significantly lower than those in the SHR group. Cx43 protein expression and Ser368 phosphorylated Cx43 protein levels increased significantly in AngII-stimulated A7r5 cells. However, the levels of phosphorylated Cx43 decreased after pre-treatment with candesartan (AT1 receptor blocker), GF109203X (protein kinase C (PKC) blocker) and U0126 (mitogen-activated protein kinases/extracellular signal-regulated kinase1/2(MEK/ERK1/2)-specific blocker) in AngII-stimulated A7r5 cells. Cx43 was widely distributed in the cell membrane, nucleus, and cytoplasm of the SMCs. Furthermore, pre-treatment of the AngII- stimulated A7r5 cells with Gap26 (Cx43 blocker) significantly inhibited cell migration and decreased the expression levels of MEK1/2, ERK1/2, P-MEK1/2, and P-ERK1/2. CONCLUSION Our research confirms that Cx43 plays an important role in the regulation of proliferation and migration of VSMCs via MEK/ERK and PKC signal pathway in AngII-dependent hypertension.
Collapse
Affiliation(s)
- Rui-Juan Gao
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Radiology, First Affiliated Hospital of Shihezi University, Shihezi, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Ai-Mei Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Qi-Hua Jia
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Zi-Ting Dang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Commerce, Shanxi Institute of International Trade & Commerce, Xianyang, 712046, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Tian Tian
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jing-Rong Zhang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Nan Cao
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Xue-Chun Tang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, 314001, China.
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Physiology, Huazhong University of Science and Technology of Basic Medical Sciences, Wuhan, 430070, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
3
|
McNair AJ, Wilson KS, Martin PE, Welsh DJ, Dempsie Y. Connexin 43 plays a role in proliferation and migration of pulmonary arterial fibroblasts in response to hypoxia. Pulm Circ 2020; 10:2045894020937134. [PMID: 32670564 PMCID: PMC7338651 DOI: 10.1177/2045894020937134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease associated with vasoconstriction and remodelling of the pulmonary vasculature. Pulmonary artery fibroblasts (PAFs) play an important role in hypoxic-induced remodelling. Connexin 43 (Cx43) is involved in cellular communication and regulation of the pulmonary vasculature. Using both in vitro and in vivo models of PH, the aims of this study were to (i) investigate the role of Cx43 in hypoxic-induced proliferation and migration of rat PAFs (rPAFs) and rat pulmonary artery smooth muscle cells (rPASMCs) and (ii) determine whether Cx43 expression is dysregulated in the rat sugen5416/hypoxic model of PH. The role of Cx43 in hypoxic-induced proliferation and migration was investigated using Gap27 (a pharmacological inhibitor of Cx43) or genetic knockdown of Cx43 using siRNA. Cx43 protein expression was increased by hypoxia in rPAFs but not rPASMCs. Hypoxic exposure, in the presence of serum, resulted in an increase in proliferation of rPAFs but not rPASMCs. Hypoxic exposure caused migration of rPAFs but not rPASMCs. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) and ERK1/2 were increased by hypoxia in rPAFs. The effects of hypoxia on proliferation, migration and MAPK phosphorylation in rPAFs were attenuated in the presence of Gap27 or Cx43 siRNA. Cx43 protein expression was increased in sugen5416/hypoxic rat lung; this increased expression was not observed in sugen5416/hypoxic rats treated with the MAPK pathway inhibitor GS-444217. In conclusion, Cx43 is involved in the proliferation and migration of rPAFs in response to hypoxia via the MAPK signalling pathway.
Collapse
Affiliation(s)
- Andrew J McNair
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Kathryn S Wilson
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Patricia E Martin
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - David J Welsh
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Yvonne Dempsie
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
4
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
McArthur L, Riddell A, Chilton L, Smith GL, Nicklin SA. Regulation of connexin 43 by interleukin 1β in adult rat cardiac fibroblasts and effects in an adult rat cardiac myocyte: fibroblast co-culture model. Heliyon 2019; 6:e03031. [PMID: 31909243 PMCID: PMC6940628 DOI: 10.1016/j.heliyon.2019.e03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Connexin 43 expression (Cx43) is increased in cardiac fibroblasts (CFs) following myocardial infarction. Here, potential mediators responsible for increasing Cx43 expression and effects of differential CF phenotype on cardiac myocyte (CM) function were investigated. Stimulating adult rat CFs with proinflammatory mediators revealed that interleukin 1β (IL-1β) significantly enhanced Cx43 levels through the IL-1β pathway. Additionally, IL-1β reduced mRNA levels of the myofibroblast (MF) markers: (i) connective tissue growth factor (CTGF) and (ii) α smooth muscle actin (αSMA), compared to control CFs. A co-culture adult rat CM:CF model was utilised to examine cell-to-cell interactions. Transfer of calcein from CMs to underlying CFs suggested functional gap junction formation. Functional analysis revealed contraction duration (CD) of CMs was shortened in co-culture with CFs, while treatment of CFs with IL-1β reduced this mechanical effect of co-culture. No effect on action potential rise time or duration of CMs cultured with control or IL-1β-treated CFs was observed. These data demonstrate that stimulating CFs with IL-1β increases Cx43 and reduces MF marker expression, suggesting altered cell phenotype. These changes may underlie the reduced mechanical effects of IL-1β treated CFs on CD of co-cultured CMs and therefore have an implication for our understanding of heterocellular interactions in cardiac disease.
Collapse
Affiliation(s)
- Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Alexandra Riddell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Lisa Chilton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
6
|
One-Stage versus Two-Stage Arteriovenous Loop Reconstructions: An Experience on 103 Cases from a Single Center. Plast Reconstr Surg 2019; 143:912-924. [PMID: 30624338 DOI: 10.1097/prs.0000000000005386] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The optimal time for flap anastomosis to an arteriovenous loop remains controversial. Whether perforator flaps and axially vascularized muscle or fasciocutaneous flaps lead to comparable outcomes in conjunction with arteriovenous loops has not been investigated. METHODS Medical records from 103 patients undergoing arteriovenous loop reconstruction (76 one-stage and 27 two-stage) between 2007 and 2017 were reviewed. Postoperative outcomes were compared between one- and two-stage arteriovenous loop reconstructions and different types of free flaps. RESULTS Rates of flap thrombosis, major wound complications, and flap failure did not differ significantly between one- and two-stage arteriovenous loop reconstructions (14.47 percent versus 11.11 percent, p = 1.00; 30.26 percent versus 25.93 percent, p = 0.67; and 10.53 percent versus 7.41 percent, p = 1.00). For two-stage arteriovenous loop reconstructions, the time interval between arteriovenous loop placement and flap anastomosis was a predictor for thrombotic events (OR, 1.31; p < 0.05). Anterolateral thigh flaps in conjunction with arteriovenous loops showed higher failure rates (33.33 percent) compared with all other flaps (6.59 percent) (p < 0.05) and combined latissimus dorsi and parascapular flaps (0 percent) (p < 0.05). Thrombosis rates were higher in anterolateral thigh flaps (33.33 percent) compared with all other flaps (10.99 percent; p = 0.056), and combined latissimus dorsi and parascapular flaps (0 percent; p < 0.05). CONCLUSIONS Two-stage arteriovenous loop reconstructions do not lead to increased postoperative complications compared to one-stage arteriovenous loop reconstructions and may be favorable in complicated cases because of shorter operative times. To avoid an increased thrombosis risk, flap anastomosis should not be delayed beyond 10 days in two-stage arteriovenous loop reconstructions. Anterolateral thigh flaps are less suitable for arteriovenous loop reconstructions because of higher complication rates. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, III.
Collapse
|
7
|
Wang M, Wu Y, Yu Y, Fu Y, Yan H, Wang X, Li T, Peng W, Luo D. Rutaecarpine prevented ox-LDL-induced VSMCs dysfunction through inhibiting overexpression of connexin 43. Eur J Pharmacol 2019; 853:84-92. [DOI: 10.1016/j.ejphar.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/29/2023]
|
8
|
Cao L, Zhao C, Cong H, Hou K, Wan L, Wang J, Zhao L, Yan H. The effect of Telmisartan on the expression of connexin43 and neointimal hyperplasia in a rabbit iliac artery restenosis model. Heart Vessels 2019; 34:1230-1239. [PMID: 30671641 DOI: 10.1007/s00380-018-01338-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
We established a rabbit iliac artery restenosis model to explore the impact of Telmisartan on the expression of Connexin43 (Cx43) and neointimal hyperplasia. Thirty New Zealand white rabbits were randomly divided into three groups: control group (n = 10), restenosis group (n = 10), and Telmisartan group (n = 10). The restenosis model was established by high-cholesterol diet combined with double-balloon injury of iliac arteries. In addition, Telmisartan at 5 mg/(kg day) was administered to the rabbits of Telmisartan group on the second day after the second balloon injury. All rabbits were killed at the end of the experiment followed by institution policy. Before sacrifice, blood samples were obtained to test serum angiotensinII (AngII). Iliac arteries were isolated for morphological analysis and determining the expression of Cx43 by HE staining, immunohistochemical analysis, reverse transcription-polymerase chain reaction (RT-PCR), and Western Blotting analysis. Then, the local AngII levels of arteries were measured by radioimmunoassay. As compared with controls, the expression of Cx43 mRNA (0.98 ± 0.08) vs. (1.27 ± 0.17), P < 0.01), and Cx43 protein [(0.75 ± 0.08) vs. (0.90 ± 0.08), P < 0.05] of restenosis group were increased, which were significantly higher than those of Telmisartan group [Cx43 mRNA: (1.27 ± 0.17) vs. (1.00 ± 0.20), P < 0.01; Cx43 protein: (0.90 ± 0.08) vs. (0.82 ± 0.05), P < 0.05]. Furthermore, The intima thickness [(266.12 ± 70.27) vs. (2.85 ± 0.19) μm, P < 0.01] and the local AngII [(115.6 ± 15.7) vs. (90.1 ± 7.7), P < 0.05] of restenosis group were raised when compared with controls. Telmisartan group exhibited thinner intima compared with restenosis group [(68.22 ± 24.37) vs. (266.12 ± 70.27), P < 0.01]. However, the local AngII levels between these two groups were approximate. In addition, the plasma concentration of AngII was not significantly different among three groups. In conclusion, Telmisartan can inhibit the expression of connexin43 and neointimal hyperplasia in iliac artery restenosis model.
Collapse
Affiliation(s)
- Lu Cao
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China.
| | - Cui Zhao
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Hongliang Cong
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Kai Hou
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lianghui Wan
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Jixiang Wang
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Lili Zhao
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Haiyang Yan
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Affiliated Hospital of Logistics University of the Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China
| |
Collapse
|
9
|
Jiang L, Zhou X, Yang H, Guan R, Xin Y, Wang J, Shen L, Zhu D, Ma S, Wang J. Upregulation of AT 1 Receptor Mediates a Pressor Effect Through ROS-SAPK/JNK Signaling in Glutamatergic Neurons of Rostral Ventrolateral Medulla in Rats With Stress-Induced Hypertension. Front Physiol 2019; 9:1860. [PMID: 30670978 PMCID: PMC6331519 DOI: 10.3389/fphys.2018.01860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
Abstract
The present study examined whether angiotensin II (Ang II) mediates the pressor effect through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS)-mitogen-activated protein kinase (MAPK) signaling in the glutamatergic neurons of the rostral ventrolateral medulla (RVLM) in stress-induced hypertensive rats (SIHR). The SIHR model was established using electric foot-shocks combined with noises for 15 days. We observed that Ang II type 1 receptor (AT1R) and the glutamatergic neurons co-localized in the RVLM of SIHR. Furthermore, glutamate levels in the intermediolateral column of the spinal cord were higher in SIHR than in controls. Microinjection of Ang II into the RVLM of SIHR activated stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK), extracellular signal-regulated protein kinase (ERK) 1/2, and p38MAPK. Compared with controls, the activation of SAPK/JNK, ERK1/2, p38MAPK, and ROS in the RVLM were higher in SIHR, an effect that was blocked by an NADPH oxidase inhibitor (apocynin) and an AT1R antagonist (candesartan). RVLM microinjection of apocynin or a SAPK/JNK inhibitor (SP600125), but not an ERK1/2 inhibitor (U0126) or a p38MAPK inhibitor (SB203580), decreased AT1R mRNA and mean arterial blood pressure (MABP) in SIHR. The increase of AT1R protein expression and MABP was inhibited by intracerebroventricular infusion (ICV), for 14 days, of SP600125, but not U0126 or SB203580 in SIHR. We conclude that Ang II modulates the pressor effect through AT1R-dependent ROS-SAPK/JNK signaling in glutamatergic neurons in the RVLM of SIHR.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanlei Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shulan Ma
- Training Center of Medical Experiments, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Protein Arginine Methyltransferase 2 Inhibits Angiotensin II-Induced Proliferation and Inflammation in Vascular Smooth Muscle Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1547452. [PMID: 30186848 PMCID: PMC6110007 DOI: 10.1155/2018/1547452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022]
Abstract
Objectives Protein arginine methyltransferase 2 (PRMT2) protects against vascular injury-induced intimal hyperplasia; however, little is known about the role of PRMT2 in angiotensin II (Ang II)-induced VSMCs proliferation and inflammation. This research aims to determine whether PRMT2 inhibits Ang II-induced proliferation and inflammation of vascular smooth muscle cells (VSMCs). Materials and Methods PRMT2 overexpression was used to elucidate the role of PRMT2 in Ang II-induced VSMCs proliferation and inflammation. Western blotting and reverse transcriptional PCR were adopted to detect protein and mRNA expression severally. Cell viability was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay and cell cycle distribution by flow cytometry. Results Ang II significantly reduced mRNA and protein levels of PRMT2 in VSMCs in time-dependent and dose-dependent manner. Results of PRMT2 overexpression indicated that PRMT2 inhibited proliferation of VSMCs stimulated with 100 nmol/L Ang II for 24 hours. Furthermore, overexpression of PRMT2 reduced Ang II-induced production of proinflammatory cytokines such as interleukin 6 (IL-6) and interleukin 1β (IL-1β) in VSMCs. Conclusions These findings suggest that PRMT2 alleviates Ang II-induced VSMCs proliferation and inflammation, providing a new mechanism about how Ang II mediated VSMCs proliferation and inflammation.
Collapse
|
11
|
Wang J, Li ZX, Liu JH, Wang SP, Zhang M, Wang CH, Wang P, Zheng Z. Different expression of connexin 43 between culprit arteries and non-culprit arteries and role of angiotensin II on expression of connexin 43 in non-culprit arteries. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:382-390. [PMID: 31938122 PMCID: PMC6957930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/21/2017] [Indexed: 06/10/2023]
Abstract
Introduction and objectives: The purpose of the study was to observe different expression of connexin 43 between culprit arteries and nonculprit arteries in ischemia-reperfusion model and investigate on the mechanism of nonculprit arteries lesions progression. Methods: Rabbit hyperlipidemia ischemia-reperfusion model was established, vascular smooth muscles of culprit arteries and nonculprit arteries were divided into 4 groups: ① culprit arteries control group, ② nonculprit arteries control group, ③ culprit arteries ischemia-reperfusion group, ④ nonculprit arteries ischemia-reperfusion group. Immunohistochemistry analysis of connexin 43 was performed in each group. Smooth muscle cells of nonculprit arteries were divided into 4 groups: ① normal control group. ② hyperlipidemia control group. ③ angiotensin II intervention group. ④ mitogen-activated protein kinase pathway inhibitor pretreatment plus angiotensin II intervention group. Expression of connexin 43 was analysed in each group. Results: Fluorescence immunohistochemistry analysis of connexin 43 showed there was significant difference between culprit arteries ischemia-reperfusion group and nonculprit arteries ischemia-reperfusion group (1723.52±138.64 vs 2136.15±237.82, P<0.001). Expression of connexin 43 in angiotensin II intervention group was higher than that in hyperlipidemia control group (1.79±0.31 vs 1.25±0.21, P<0.05), expression of connexin 43 in mitogen-activated protein kinase pathway inhibitor pretreatment plus angiotensin II intervention group was lower than that in angiotensin II intervention group [(0.85±0.19 vs 1.79±0.31, P<0.05), (0.99±0.13 vs 1.79±0.31, P<0.05), (0.81±0.15 vs 1.79±0.31, P<0.05) respectively]. Conclusions: Expression of connexin 43 in nonculprit arteries was higher than that in culprit arteries, it may be involved in angiotensin II--mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Jian Wang
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical UniversityBeijing, China
| | | | - Jing-Hua Liu
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical UniversityBeijing, China
| | - Shao-Ping Wang
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical UniversityBeijing, China
| | - Ming Zhang
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical UniversityBeijing, China
| | - Chang-Hua Wang
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical UniversityBeijing, China
| | - Ping Wang
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical UniversityBeijing, China
| | - Ze Zheng
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
12
|
Wang G, Bi Y, Liu X, Wei M, Zhang Q. Upregulation of connexin43 by glucose deprivation in H9c2 cells via the extracellular signal‑regulated kinase/mitogen‑activated protein kinase signaling pathway. Mol Med Rep 2017; 17:729-734. [PMID: 29115504 PMCID: PMC5780149 DOI: 10.3892/mmr.2017.7967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
Cardiac connexin43 (Cx43) serves an essential role in maintaining the functional integrity of the heart. The present study investigated the effect of glucose deprivation (GD) on Cx43 protein expression levels in H9c2 cells, and demonstrated that following 2 h GD, Cx43 protein expression levels in H9c2 cells increased by ~68%. In addition, GD activated the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathway, which regulated the expression levels of cardiac Cx43. A MAPK inhibitor and U0126, an ERK inhibitor, abolished the effects of GD on Cx43 expression levels. Under GD, the protein expression levels of Beclin-1, p62 and LC3 were augmented, and were decreased in the presence of ERK inhibitor or siRNA-ERK. In addition, H9c2 cells exposed to GD exhibited marked increase in LDH release and decreased MTT reduction activity, all of which were not significantly reversed by U0126 treatment. Therefore, the ERK/MAPK signaling pathway may be involved in elevating cardiac Cx43 expression levels under GD in H9c2 cells.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiangdong Liu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qingyong Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
13
|
The pivotal role of extracellular signal-regulated kinase in gap junction-mediated regulation of TXNIP. Cell Signal 2017; 38:116-126. [PMID: 28694028 DOI: 10.1016/j.cellsig.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022]
Abstract
Gap junctions (GJs) play a major role in the control of cell structure, function, and metabolism. However, the molecular mechanisms involved are still poorly understood. Given that thioredoxin-interacting protein (TXNIP) regulates a broad range of cellular processes, we tested the possible involvement of TXNIP. Disruption of GJs with several chemical GJ inhibitors or connexin43 (Cx43) siRNA potently suppressed TXNIP, which was preceded by an activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK or its upstream kinase with chemical inhibitors prevented the reduction of TXNIP. On the contrary, activation of ERK with mitogens or phosphatase inhibitors reproduced the suppressive effects of GJs. Further analysis revealed that dysfunction of GJs promoted TXNIP phosphorylation, ubiquitination, and degradation, whereas inhibition of ERK exerted the opposite effects. Moreover, inhibition of GJs elevated Glut1 and enhanced cell resistance to ER stress in a similar way to TXNIP downregulation. Collectively, our study thus characterizes ERK-mediated suppression of TXNIP as a presently unreported mechanism by which GJs regulate cell behaviors.
Collapse
|
14
|
Kavvadas P, Abed A, Poulain C, Authier F, Labéjof LP, Calmont A, Afieri C, Prakoura N, Dussaule JC, Chatziantoniou C, Chadjichristos CE. Decreased Expression of Connexin 43 Blunts the Progression of Experimental GN. J Am Soc Nephrol 2017; 28:2915-2930. [PMID: 28667079 DOI: 10.1681/asn.2016111211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/05/2017] [Indexed: 11/03/2022] Open
Abstract
GN refers to a variety of renal pathologies that often progress to ESRD, but the molecular mechanisms underlying this progression remain incompletely characterized. Here, we determined whether dysregulated expression of the gap junction protein connexin 43, which has been observed in the progression of renal disease, contributes to GN progression. Immunostaining revealed de novo expression of connexin 43 in damaged glomeruli in patients with glomerular diseases as well as in mice after induction of experimental GN. Notably, 2 weeks after the induction of GN with nephrotoxic serum, mice with a heterozygous deletion of the connexin 43 gene (connexin 43+/-) had proteinuria, BUN, and serum creatinine levels significantly lower than those of wild-type animals. Additionally, the connexin 43+/- mice showed less crescent formation, tubular dilation, monocyte infiltration, and interstitial renal fibrosis. Treatment of cultured podocytes with connexin 43-specific blocking peptides attenuated TGF-β-induced cytoskeletal and morphologic changes and apoptosis as did treatment with the purinergic blocker suramin. Finally, therapeutic treatment of GN mice with connexin 43-specific antisense oligodeoxynucleotide improved functional and structural renal parameters. These findings suggest that crosstalk between connexin 43 and purinergic signaling contributes to podocyte damage in GN. Given that this protein is highly induced in individuals with glomerular diseases, connexin 43 may be a novel target for therapeutic treatment of GN.
Collapse
Affiliation(s)
- Panagiotis Kavvadas
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Ahmed Abed
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France
| | - Coralie Poulain
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,University René Descartes, Paris, France.,University Denis Diderot, Paris, France
| | - Florence Authier
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Lise-Paule Labéjof
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Amelie Calmont
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Carlo Afieri
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy; and
| | - Niki Prakoura
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Jean-Claude Dussaule
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France.,Department of Physiology, Saint Antoine Hospital, Paris, France
| | - Christos Chatziantoniou
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France
| | - Christos E Chadjichristos
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France; .,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France
| |
Collapse
|
15
|
Allagnat F, Dubuis C, Lambelet M, Le Gal L, Alonso F, Corpataux JM, Déglise S, Haefliger JA. Connexin37 reduces smooth muscle cell proliferation and intimal hyperplasia in a mouse model of carotid artery ligation. Cardiovasc Res 2017; 113:805-816. [PMID: 28449099 DOI: 10.1093/cvr/cvx079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
AIMS Intimal hyperplasia (IH) is an abnormal response to vessel injury characterized by the dedifferentiation, migration, and proliferation of quiescent vascular smooth muscle cells (VSMC) to form a neointima layer. Vascular connexins (Cx) are involved in the pathophysiology of various vascular diseases, and Cx43, the main Cx expressed in VSMC, has been shown to promote VSMC proliferation and IH. The aim of this study was to investigate the participation of another Cx, namely Cx37, in the formation of the neointima layer. METHODS AND RESULTS Wild-type (WT) and Cx37-deficient (Cx37-/-) C57BL/6J mice were subjected to carotid artery ligation (CAL), a model of vessel injury and IH. The neointima developed linearly in WT until 28 days post surgery. In contrast, the neointima layer was almost absent 14 days after surgery in Cx37-/- mice, and twice as more developed after 28 days compared to WT mice. This large neointima formation correlated with a two-fold increase in cell proliferation in the media and neointima regions between 14 and 28 days in Cx37-/- mice compared to WT mice. The CAL triggered Cx43 overexpression in the media and neointima layers of ligated carotids in WT mice, and selectively up-regulated Cx37 expression in the media layer, but not in the neointima layer. The de novo expression of Cx37 in human primary VSMC reduced cell proliferation and P-Akt levels, in association with lower Cx43 levels, whereas Cx43 overexpression increased P-Akt levels. CONCLUSION The presence of Cx37 in the media layer of injured arteries restrains VSMC proliferation and limits the development of IH, presumably by interfering with the pro-proliferative effect of Cx43 and the Akt pathway.
Collapse
MESH Headings
- Aged
- Animals
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Arteries/surgery
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Stenosis/genetics
- Carotid Stenosis/metabolism
- Carotid Stenosis/pathology
- Cell Proliferation
- Cells, Cultured
- Connexin 43/metabolism
- Connexins/deficiency
- Connexins/genetics
- Connexins/metabolism
- Disease Models, Animal
- Female
- Humans
- Hyperplasia
- Ligation
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Time Factors
- Gap Junction alpha-4 Protein
Collapse
Affiliation(s)
- Florent Allagnat
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Céline Dubuis
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Martine Lambelet
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Loïc Le Gal
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Laboratory of Experimental Medicine, c/o Department of Physiology, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Florian Alonso
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Laboratory of Experimental Medicine, c/o Department of Physiology, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jacques-Antoine Haefliger
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Laboratory of Experimental Medicine, c/o Department of Physiology, Bugnon 7a, 1005 Lausanne, Switzerland
| |
Collapse
|
16
|
Zhu Z, Zheng X, Li D, Wang T, Xu R, Piao H, Liu K. Prx1 promotes the proliferation and migration of vascular smooth muscle cells in a TLR4-dependent manner. Mol Med Rep 2016; 15:345-351. [DOI: 10.3892/mmr.2016.5987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/02/2016] [Indexed: 11/06/2022] Open
|
17
|
Cao C, Zhang H, Zhao L, Zhou L, Zhang M, Xu H, Han X, Li G, Yang X, Jiang Y. miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine. Exp Cell Res 2016; 347:95-104. [PMID: 27426728 DOI: 10.1016/j.yexcr.2016.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by the Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.
Collapse
Affiliation(s)
- ChengJian Cao
- Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan, China
| | - HuiPing Zhang
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Li Zhao
- Department of Medical Laboratory, Ningxia Medical University, Yinchuan, China
| | - Longxia Zhou
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Minghao Zhang
- Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan, China; Department of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Hua Xu
- Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan, China; Department of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Xuebo Han
- Department of Medical Laboratory, Ningxia Medical University, Yinchuan, China
| | - Guizhong Li
- Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan, China; Department of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaoling Yang
- Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan, China; Department of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - YiDeng Jiang
- Key Laboratory of Basic Research in Cardio-Cerebral Vascular Diseases, Ningxia Medical University, Yinchuan, China; Department of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
18
|
MicroRNA-221 sponge therapy attenuates neointimal hyperplasia and improves blood flows in vein grafts. Int J Cardiol 2016; 208:79-86. [PMID: 26828387 DOI: 10.1016/j.ijcard.2016.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/19/2015] [Accepted: 01/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vein graft failure due to neointimal hyperplasia remains an important and unresolved problem of cardiovascular surgery. MicroRNA-221 (miR-221) has been shown to play a major role in regulating vascular smooth muscle cell (VSMC) proliferation and phenotype transformation. Thus, the purpose of this study is to determine whether adenovirus mediated miR-221 sponge gene therapy could inhibit vein graft neointimal hyperplasia. METHODS Adenovirus encoding miR-221 sponge (Ad-miR-221-SP) was used to inhibit VSMC proliferation in vitro and neointimal formation in vivo. Expression of miRNA-221 was evaluated in cultured VSMC and in rat vein graft models following transduction with Ad-miR-221-SP, Ad-Control-SP (without miR-221 antisense binding sites), or Ad-GFP (control). To accelerate the transfer of miR-221 sponge gene to the vein grafts, 20% poloxamer F-127 gel was used to extend virus contact time and 0.25% trypsin to increase virus penetration. RESULTS miR-221 sponges can significantly decrease the expression of miR-221 and proliferation in cultured VSMC. Cellular proliferation rates were significantly reduced in miR-221 sponge treated grafts as compared with controls at 6 weeks after bypass surgery (19.8% versus 43.6%, P=0.0028). miR-221 sponge gene transfer reduced the neointimal area (210.75 ± 24.13 versus 67.01 ± 12.02, P<0.0001), neointimal thickness (171.86 ± 27.87 versus 64.13 ± 16.23, P<0.0001) and neointima/media ratio (0.74 ± 0.21 versus 1.95 ± 0.25, P<0.0001) in vein grafts versus controls. miR-21 sponge treatment was also improved hemodynamics in vein grafts. We have further identified that p27 (Kip1) is a potential target gene of miR-221 in vein grafts. CONCLUSION miR-221 sponge therapy can significantly reduce miR-221 activity and inhibit neointimal hyperplasia in vein grafts. Locally adventitial delivery of adenoviruses mediated miRNA sponges may be promising gene therapies to prevent vein graft failure.
Collapse
|
19
|
Vitale ML, Barry A. Biphasic Effect of Basic Fibroblast Growth Factor on Anterior Pituitary Folliculostellate TtT/GF Cell Coupling, and Connexin 43 Expression and Phosphorylation. J Neuroendocrinol 2015; 27:787-801. [PMID: 26265106 DOI: 10.1111/jne.12308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/08/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
Abstract
Basic fibroblast growth factor (bFGF) is a mitogenic and differentiating cytokine. In the anterior pituitary, folliculostellate (FS) cells constitute the major source of bFGF. bFGF affects endocrine cell proliferation and secretion in the anterior pituitary. In addition, bFGF increases its own expression by acting directly on FS cells. FS cell Cx43-mediated gap junction intercellular communication allows the establishment of an intrapituitary network for the transmission of information. In the present study, we assessed how bFGF regulates FS cell coupling. Time course studies were carried out on the FS cell line TtT/GF. Short-term bFGF treatment induced a transient cell uncoupling and the phosphorylation in Ser368 of membrane-bound Cx43 without modifying Cx43 levels. We demonstrated the involvement of the protein kinase C (PKC) isoform α in the phosphorylation of Cx43 in S368. Moreover, we showed that bFGF induced PKCα activation by stimulating its expression, phosphorylation and association with the plasma membrane. The long-term incubation with bFGF increased TtT/GF cell coupling, total Cx43 levels and Cx43 accumulation at the cell membrane of cytoplasmic projections. The Cx43 level increase was a result of the stimulation of Cx43 gene transcription as mediated by the extracellular-regulated kinase 1/2 signalling pathway. Taken together, the data show that bFGF modulates TtT/GF cell coupling by activating different pathways that lead to opposite effects on Cx43 phosphorylation and expression depending on the duration of the exposure of the cells to bFGF. A short-term bFGF exposure reduces cell-to-cell communication as a mean of desynchronising FS cells. By contrast, long-term exposure to bFGF enhances cell-to-cell communication and facilitates coordination among FS cells.
Collapse
Affiliation(s)
- M L Vitale
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Québec, Canada
| | - A Barry
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
20
|
Longchamp A, Allagnat F, Alonso F, Kuppler C, Dubuis C, Ozaki CK, Mitchell JR, Berceli S, Corpataux JM, Déglise S, Haefliger JA. Connexin43 Inhibition Prevents Human Vein Grafts Intimal Hyperplasia. PLoS One 2015; 10:e0138847. [PMID: 26398895 PMCID: PMC4580578 DOI: 10.1371/journal.pone.0138847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Venous bypass grafts often fail following arterial implantation due to excessive smooth muscle cells (VSMC) proliferation and consequent intimal hyperplasia (IH). Intercellular communication mediated by Connexins (Cx) regulates differentiation, growth and proliferation in various cell types. Microarray analysis of vein grafts in a model of bilateral rabbit jugular vein graft revealed Cx43 as an early upregulated gene. Additional experiments conducted using an ex-vivo human saphenous veins perfusion system (EVPS) confirmed that Cx43 was rapidly increased in human veins subjected ex-vivo to arterial hemodynamics. Cx43 knock-down by RNA interference, or adenoviral-mediated overexpression, respectively inhibited or stimulated the proliferation of primary human VSMC in vitro. Furthermore, Cx blockade with carbenoxolone or the specific Cx43 inhibitory peptide 43gap26 prevented the burst in myointimal proliferation and IH formation in human saphenous veins. Our data demonstrated that Cx43 controls proliferation and the formation of IH after arterial engraftment.
Collapse
Affiliation(s)
- Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Florent Allagnat
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
| | - Florian Alonso
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
| | - Christopher Kuppler
- Malcom Randall Veterans Affairs Medical Center and the Division of Vascular and Endovascular Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Céline Dubuis
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
| | - Charles-Keith Ozaki
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Scott Berceli
- Malcom Randall Veterans Affairs Medical Center and the Division of Vascular and Endovascular Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Jean-Marc Corpataux
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
| | - Jacques-Antoine Haefliger
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
21
|
HAN XIAOJIAN, HE DAN, XU LIANGJING, CHEN MIN, WANG YIQI, FENG JIUGENG, WEI MINJUN, HONG TAO, JIANG LIPING. Knockdown of connexin 43 attenuates balloon injury-induced vascular restenosis through the inhibition of the proliferation and migration of vascular smooth muscle cells. Int J Mol Med 2015; 36:1361-8. [DOI: 10.3892/ijmm.2015.2346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/24/2015] [Indexed: 11/05/2022] Open
|
22
|
Hu W, Wang M, Yin H, Yao C, He Q, Yin L, Zhang C, Li W, Chang G, Wang S. MicroRNA-1298 is regulated by DNA methylation and affects vascular smooth muscle cell function by targeting connexin 43. Cardiovasc Res 2015; 107:534-45. [PMID: 26025955 DOI: 10.1093/cvr/cvv160] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 05/07/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS Growing evidence links microRNA to the process of peripheral vascular disease. Recently, we have found that microRNA-1298(miR-1298) is one of the most significantly down-regulated microRNAs in human arteries with arteriosclerosis obliterans (ASO) of the lower extremities. However, little is known regarding its role in the process of ASO. The present study aimed to investigate the expression, regulatory mechanisms, and functions of miR-1298 in the process of ASO. METHODS AND RESULTS Using quantitative reverse-transcription PCR and in situ hybridization assays, miR-1298 was observed predominantly expressed in the vascular smooth muscle cells (VSMCs) and was significantly down-regulated in ASO compared with normal arteries. Pyrosequencing analysis revealed that the miR-1298 DNA upstream of CpG sites were hypermethylated in ASO compared with normal arteries. Next, the luciferase reporter assay revealed that miR-1298 down-regulation is related with upstream DNA CpG site hypermethylation. Introducing a miR-1298 mimic into cultured VSMCs significantly attenuated cell proliferation and migration. Connexin 43 (Cx43) was validated to be a functional target of miR-1298 that was involved in the miR-1298-mediated cellular effects. Finally, lentivirus-mediated delivery of miR-1298 and its target Cx43 into a rat carotid balloon injury model indicated that re-overexpression of miR-1298 significantly decreased neointimal formation by targeting connexin 43. CONCLUSION Our data demonstrate a specific role of the upstream DNA methylation/miR-1298/Cx43 pathway in regulating VSMC function and suggest that modulation of miR-1298 levels may offer a novel therapeutic approach for ASO.
Collapse
Affiliation(s)
- Wei Hu
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| | - Mian Wang
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| | - Henghui Yin
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| | - Chen Yao
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| | - Qiong He
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Leping Yin
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Chunxiang Zhang
- Department of Pharmacology, Rush University Medical Center, Chicago, USA
| | - Wen Li
- Laboratory of General Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangqi Chang
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| | - Shenming Wang
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| |
Collapse
|
23
|
Sun H, Lü S, Jiang XX, Li X, Li H, Lin Q, Mou Y, Zhao Y, Han Y, Zhou J, Wang C. Carbon nanotubes enhance intercalated disc assembly in cardiac myocytes via the β1-integrin-mediated signaling pathway. Biomaterials 2015; 55:84-95. [PMID: 25934454 DOI: 10.1016/j.biomaterials.2015.03.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 03/14/2015] [Accepted: 03/20/2015] [Indexed: 01/08/2023]
Abstract
Carbon nanotubes (CNTs) offer a new paradigm for constructing functional cardiac patches and repairing myocardial infarction (MI). However, little is known about how CNTs enhance the mechanical integrity and electrophysiological function of cardiac myocytes. To address this issue, we investigated the regularity and precise mechanism of the influence of CNTs on the assembly of intercalated disc (IDs). Here, single walled CNTs incorporated into collagen substrates were utilized as growth supports for neonatal cardiomyocytes, which enhanced cardiomyocyte adhesion and maturation. Furthermore, through the use of immunohistochemical staining, western blotting, transmission electron microscopy, and intracellular calcium transient measurement, we discovered that the addition of CNTs remarkably increased ID-related protein expression and enhanced ID assembly and functionality. On that basis, we further explored the underlying mechanism for how CNTs enhanced ID assembly through the use of immunohistochemical staining and western blotting. We found that the β1-integrin-mediated signaling pathway mediated CNT-induced upregulation of electrical and mechanical junction proteins. Notably, CNTs remarkably accelerated gap junction formation via activation of the β1-integrin-mediated FAK/ERK/GATA4 pathway. These findings provide valuable insight into the mechanistic effects that CNTs have on neonatal cardiomyocyte performance and will have a significant impact on the future of nanomedical research.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China; Chengdu Military General Hospital, Chengdu, Sichuan Province 610083, PR China
| | - Shuanghong Lü
- Affiliated Hospital of Academy of Military Medical Sciences, Beijing, PR China
| | - Xiao-Xia Jiang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Xia Li
- Affiliated Hospital of Academy of Military Medical Sciences, Beijing, PR China
| | - Hong Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Qiuxia Lin
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Yongchao Mou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Yuwei Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Yao Han
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| |
Collapse
|
24
|
Han XJ, Chen M, Hong T, Zhu LY, He D, Feng JG, Jiang LP. Lentivirus-mediated RNAi knockdown of the gap junction protein, Cx43, attenuates the development of vascular restenosis following balloon injury. Int J Mol Med 2015; 35:885-92. [PMID: 25625334 PMCID: PMC4356439 DOI: 10.3892/ijmm.2015.2078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/22/2015] [Indexed: 11/16/2022] Open
Abstract
Percutaneous coronary intervention [PCI or percutaneous transluminal coronary angioplasty (PTCA)] has been developed into a mature interventional treatment for atherosclerotic cardiovascular disease. However, the long-term therapeutic effect is compromised by the high incidence of vascular restenosis following angioplasty, and the underlying mechanisms of vascular restenosis have not yet been fully elucidated. In the present study, we investigated the role of the gap junction (GJ) protein, connexin 43 (Cx43), in the development of vascular restenosis. To establish vascular restenosis, rat carotid arteries were subjected to balloon angioplasty injury. At 0, 7, 14 and 2 days following balloon injury, the arteries were removed, and the intimal/medial area of the vessels was measured to evaluate the degree of restenosis. We found that the intimal area gradually increased following balloon injury. Intimal hyperplasia and restenosis were particularly evident at 14 and 28 days after injury. In addition, the mRNA and protein expression of Cx43 was temporarily decreased at 7 days, and subsequently increased at 14 and 28 days following balloon injury, as shown by RT-PCR and western blot analysis. To determine the involvement of Cx43 in vascular restenosis, the lentivirus vector expressing shRNA targeting Cx43, Cx43-RNAi-LV, was used to silence Cx43 in the rat carotid arteries. The knockdown of Cx43 effectively attenuated the development of intimal hyperplasia and vascular restenosis following balloon injury. Thus, our data indicate the vital role of the GJ protein, Cx43, in the development of vascular restenosis, and provide new insight into the pathogenesis of vascular reste-nosis. Cx43 may prove to be a novel potential pharmacological target for the prevention of vascular restenosis following PCI.
Collapse
Affiliation(s)
- Xiao-Jian Han
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Min Chen
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling-Yu Zhu
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dan He
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiu-Geng Feng
- Department of Neurosurgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Ping Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
25
|
Zhang ML, Tao Y, Zhou WQ, Ma PC, Cao YP, He CD, Wei J, Li LJ. All-trans retinoic acid induces cell-cycle arrest in human cutaneous squamous carcinoma cells by inhibiting the mitogen-activated protein kinase-activated protein 1 pathway. Clin Exp Dermatol 2015; 39:354-60. [PMID: 24635079 DOI: 10.1111/ced.12227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND All-trans retinoic acid (ATRA) has been tried for the treatment and prevention of a number of epithelial cancers. However, the precise mechanism by which ATRA inhibits the growth of cutaneous squamous cell carcinoma (cSCC) remains elusive. AIMS To determine the suppressive effects of ATRA on the human cSCC cell line SCL-1, and explore the possible mechanisms involved. METHODS SCL-1 cells were treated with ATRA, then cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while apoptosis and cell cycle progression were analysed by flow cytometry. Protein levels of cell-cycle regulatory proteins and the activation of extracellular signal-regulated kinase (ERK) and Jun kinase (JNK) were detected by western blotting analysis. Transcriptional activity of activator protein (AP)-1 was examined by luciferase reporter assay. RESULTS ATRA inhibited the proliferation of SCL-1 cells and had modest proapoptotic effects. ATRA also induced G1 cell-cycle arrest, inhibited the expression of cyclin D1/cyclin-dependent kinase (CDK)4 and cyclinE/CDK2, and increased the expression of the cyclin-dependent kinase inhibitors p21 and p27. In addition, ATRA significantly decreased the phosphorylation of ERK1/2 and JNK1/2, and inhibited AP-1 transcriptional activity. CONCLUSIONS ATRA induces cell-cycle arrest in human cSCC cells by inhibiting the mitogen-activated protein kinase (MAPK)-AP1 pathway, and could be effective in the prevention and chemotherapy of human cSCC.
Collapse
Affiliation(s)
- M-L Zhang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pradhan-Nabzdyk L, Huang C, LoGerfo FW, Nabzdyk CS. Current siRNA targets in the prevention and treatment of intimal hyperplasia. DISCOVERY MEDICINE 2014; 18:125-132. [PMID: 25227753 PMCID: PMC4265021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Intimal hyperplasia (IH) is the leading cause of late vein and prosthetic bypass graft failure. Injury at the time of graft implantation leading to the activation of endothelial cells and dedifferentiation of vascular smooth muscle cells to a synthetic phenotype are known causes of IH. Prior attempts to develop therapy to mitigate these cellular changes to prevent IH and graft failure have failed. Small interfering RNA (siRNA) mediated targeted gene silencing is a promising tool to prevent IH. Several studies have been performed in this direction to target genes that are involved in IH. In this review we discuss siRNA targets that are being investigated for prevention and treatment of IH.
Collapse
Affiliation(s)
- Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
27
|
HAN XUEBO, ZHANG HUIPING, CAO CHENGJIAN, WANG YANHUA, TIAN JUE, YANG XIAOLING, YANG ANNING, WANG JIE, JIANG YIDENG, XU HUA. Aberrant DNA methylation of the PDGF gene in homocysteine-mediated VSMC proliferation and its underlying mechanism. Mol Med Rep 2014; 10:947-54. [DOI: 10.3892/mmr.2014.2249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 04/08/2014] [Indexed: 11/05/2022] Open
|
28
|
Wang DG, Zhang FX, Chen ML, Zhu HJ, Yang B, Cao KJ. Cx43 in mesenchymal stem cells promotes angiogenesis of the infarcted heart independent of gap junctions. Mol Med Rep 2014; 9:1095-102. [PMID: 24481773 DOI: 10.3892/mmr.2014.1923] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/17/2014] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cells (MSCs) with elevated levels of connexin 43 (Cx43) have been shown to exhibit improved protection for ischemic hearts. However, it remains unclear whether Cx43 is involved in the paracrine actions of angiogenesis, the major mechanism of cell therapy. In the present study, an in vitro model with deprivation of oxygen and a murine myocardial infarction model with permanent ligation of the left anterior‑descending (LAD) coronary artery were used to determine whether gap junctions in MSCs promote angiogenesis. It was observed that MSCs that overexpressed Cx43 (MSCs‑Cx43), improve the cardiac function of infarcted myocardium as compared with control MSCs (MSCs‑vector) and MSCs with Cx43 knocked down by small interfering RNA (MSCs‑siCx43), accompanied with a reduction of infarct size and an increase in the vascular density and maturity. Increased levels of representative angiogenic factors [vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)] were produced by MSCs‑Cx43 compared with MSCs‑siCx43 in vivo and in vitro. However, neither Cx43 formed gap junction specific inhibitor (Cx43 mimetic peptide) or gap junction opener (antiarrhythmic peptide) affected the production of VEGF and bFGF in MSCs under hypoxic stress. These data support the hypothesis that Cx43 in MSCs promotes angiogenesis in the infarcted heart, independent of gap junction formation.
Collapse
Affiliation(s)
- De-Guo Wang
- Department of Gerontology, The Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Feng-Xiang Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ming-Long Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong-Jun Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bing Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ke-Jiang Cao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
29
|
Schmidt VJ, Hilgert JG, Covi JM, Weis C, Wietbrock JO, de Wit C, Horch RE, Kneser U. High flow conditions increase connexin43 expression in a rat arteriovenous and angioinductive loop model. PLoS One 2013; 8:e78782. [PMID: 24236049 PMCID: PMC3827249 DOI: 10.1371/journal.pone.0078782] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/23/2013] [Indexed: 11/25/2022] Open
Abstract
Gap junctions are involved in vascular growth and their expression pattern is modulated in response to hemodynamic conditions. They are clusters of intercellular channels formed by connexins (Cx) of which four subtypes are expressed in the cardiovascular system, namely Cx37, Cx40, Cx43 and Cx45. We hypothesize that high flow conditions affect vascular expression of Cx in vivo. To test this hypothesis, flow hemodynamics and subsequent changes in vascular expression of Cx were studied in an angioinductive rat arteriovenous (AV) loop model. Fifteen days after interposition of a femoral vein graft between femoral artery and vein encased in a fibrin-filled chamber strong neovascularization was evident that emerged predominantly from the graft. Blood flow through the grafted vessel was enhanced ∼4.5-fold accompanied by increased pulsatility exceeding arterial levels. Whereas Cx43 protein expression in the femoral vein is negligible at physiologic flow conditions as judged by immunostaining its expression was enhanced in the endothelium of the venous graft exposed to these hemodynamic changes for 5 days. This was most likely due to enhanced transcription since Cx43 mRNA increased likewise, whereas Cx37 mRNA expression remained unaffected and Cx40 mRNA was reduced. Although enhanced Cx43 expression in regions of high flow in vivo has already been demonstrated, the arteriovenous graft used in the present study provides a reliable model to verify an association between Cx43 expression and high flow conditions in vivo that was selective for this Cx. We conclude that enhancement of blood flow and its oscillation possibly associated with the transition from laminar to more turbulent flow induces Cx43 expression in a vein serving as an AV loop. It is tempting to speculate that this upregulation is involved in the vessel formation occuring in this model as Cx43 was suggested to be involved in angiogenesis.
Collapse
Affiliation(s)
- Volker J. Schmidt
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Johannes G. Hilgert
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jennifer M. Covi
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Weis
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna O. Wietbrock
- Department of Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Cor de Wit
- Department of Physiology, Universität zu Lübeck, Lübeck, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kneser
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Shi Y, Hou X, Zhang X, Wang Y, Chen Y, Zou J. Inhibition of oxidized-phospholipid-induced vascular smooth muscle cell proliferation by resveratrol is associated with reducing Cx43 phosphorylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10534-10541. [PMID: 24079413 DOI: 10.1021/jf4036723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is an important factor during the progression of atherosclerosis. In this study, we investigated the effects of resveratrol on atherosclerosis-associated proliferation of VSMCs. We utilized an oxidized phospholipid, 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) to induce abnormal proliferation of VSMCs. Our results showed the treatments with resveratrol dose-dependently abolished POVPC-induced VSMC proliferation, as evidenced by the decreased [(3)H]thymidine incorporated into VSMCs and reduced percentage of 5-ethynyl-2'-deoxyuridine (EdU)-positive VSMCs. Cell cycle analysis demonstrated that resveratrol inhibited POVPC-induced increase in the S phase cell population and DNA synthesis. Our study further indicated that POVPC-induced VSMC proliferation was associated with a significant increase in the phosphorylation of Cx43, which was a consequence of activation of MAPK signaling. Interestingly, treatment with resveratrol abolished POVPC-induced phosphorylation of Cx43 as a result of inhibiting activation of Src, MEK, and ERK1/2. Our results provided a novel mechanism by which resveratrol may contribute to cardiovascular protection.
Collapse
Affiliation(s)
- Yue Shi
- Department of Cardiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University , Qingdao, Shandong, China
| | | | | | | | | | | |
Collapse
|
31
|
Wu X, Huang W, Luo G, Alain LA. Hypoxia induces connexin 43 dysregulation by modulating matrix metalloproteinases via MAPK signaling. Mol Cell Biochem 2013; 384:155-62. [PMID: 24002703 PMCID: PMC3825321 DOI: 10.1007/s11010-013-1793-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/23/2013] [Indexed: 11/30/2022]
Abstract
Connexin 43 (Cx43) is a major structural protein found in the gap junctions of the ventricular myocardium and a major determinant of its electrical properties. The effects of matrix metalloproteinases (MMPs), the mitogen-activated protein kinase (MAPK) signaling pathway, transcription factor NF-kB, and activator protein-1 (AP-1)/c-Jun on the regulation of Cx43 gene expression in H9c2 cardiomyocytes were assessed. The MAPK signaling pathway (MEK/ERK1/2 and PI3K) and transcription factors NF-kB and AP-1/c-Jun were inhibited, then Cx43 expression was assessed using Western blot analysis, and MMP-9 activity was assessed using gelatin zymography. Hypoxia decreased the Cx43 protein level by approximately 30-50 %. Doxycycline (10 μg/mL), an inhibitor of MMP, markedly attenuated the hypoxia-induced downregulation of Cx43 protein expression at 6 h. The hypoxia-induced decrease in Cx43 protein expression was significantly reversed by U0126 (10 μM), a MEK/ERK1/2 inhibitor, at 6 and 12 h; LY294002 (30 μM), a PI3K inhibitor, downregulated Cx43 expression. Hypoxia-induced MMP-9 activation was inhibited by treatment with LY294002, U0126, and, most especially, U0126. JSH-23 (30 μM), an NF-kB inhibitor, and SP600125 (10 μM), an AP-1/c-Jun inhibitor, attenuated the loss of Cx43. These results suggest that MAPK signaling and the activities NF-kB and MMPs play an important roles in the regulation of Cx43 expression.
Collapse
Affiliation(s)
- Xianghong Wu
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, People's Republic of China
| | | | | | | |
Collapse
|
32
|
CX43 change in LPS preconditioning against apoptosis of mesenchymal stem cells induced by hypoxia and serum deprivation is associated with ERK signaling pathway. Mol Cell Biochem 2013; 380:267-75. [PMID: 23712704 DOI: 10.1007/s11010-013-1683-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/02/2013] [Indexed: 02/04/2023]
Abstract
This study was designed to investigate the effect and mechanism of lipopolysaccharide (LPS) preconditioning on survival and connexin 43 (CX43) expression in rat bone marrow mesenchymal stem cells (bMSCs) under hypoxia and serum deprivation (Hypoxia/SD) conditions. Whole marrow cells were obtained from the femora and tibiae of SD rats, and bMSCs were isolated by density gradient centrifugation and attachment culture. Surface antigens were determined by FACS before the experiment using antibodies conjugated directly against anti-rat CD34, anti-CD45, anti-CD29, and anti-CD44. Passage 3 bMSCs were used for all experiments. The effect of LPS preconditioning on bMSCs apoptosis in response to Hypoxia/SD was investigated by an Annexin V-FITC/PI binding assay and a mitochondrial membrane potential (△Ψm) assay. Cyc-c released into the cytosol from mitochondria and CX43 in bMSCs was determined by Western blot before and after LPS preconditioning. Subsequently, extracellular signal-regulated kinase (ERK) was inhibited with PD98059 to analyze the role of ERK in modulating CX43 expression after LPS preconditioning. The bMSCs surface antigen profiles obtained by flow cytometry were positive for CD29 and CD44 and negative for CD34 and CD45. The Hypoxia/SD conditions induced significant apoptosis of bMSCs. Compared with the Hypoxia/SD group, cells treated with LPS prevented △Ψm from falling significantly. LPS inhibited Hypoxia/SD-induced Cyc-c release. These results were consistent with the total analysis of apoptosis of MSCs. Compared with the control group, the level of CX43 expression in the Hypoxia/SD group and LPS + Hypoxia/SD group decreased significantly at each time point. The level of CX43 expression in the Hypoxia/SD group was lower than that in the LPS + Hypoxia/SD group, while the difference was not significant between the PD98059 + LPS + Hypoxia/SD group and the PD98059 + Hypoxia/SD group (P > 0.05). Compared with the LPS + Hypoxia/SD group, CX43 level in the PD98059 + LPS + Hypoxia/SD group and PD98059 + Hypoxia/SD group decreased significantly (P < 0.05). These results demonstrated that Hypoxia/SD conditions could induce apoptosis of bMSCs markedly. Low-dose LPS preconditioning may preserve the mitochondrial function by maintaining the mitochondrial transmembrane potential and inhibiting Cyc-c release in Hypoxia/SD-induced bMSCs apoptosis. LPS preconditioning also had a stabilizing effect on the cell membrane by inhibiting the decrease of CX43, and this modulating mechanism may be related to the ERK signaling pathway.
Collapse
|
33
|
Chang WW, Lai CH, Chen MC, Liu CF, Kuan YD, Lin ST, Lee CH. Salmonella enhance chemosensitivity in tumor through connexin 43 upregulation. Int J Cancer 2013; 133:1926-35. [PMID: 23558669 DOI: 10.1002/ijc.28155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/21/2013] [Indexed: 01/30/2023]
Abstract
The use of preferentially replicating bacteria as oncolytic agents is one of the innovative approaches for the treatment of cancer. The capability of Salmonella to disperse within tumors and hence to delay tumor growth was augmented when combined with chemotherapy. This work is warranted to elucidate the underlying mechanism of antitumor effects by the combination therapy of Salmonella and cisplatin. The presence of functional gap junctions is highly relevant for the success of chemotherapy. Following Salmonella treatment, dose- and time-dependent upregulation of connexin 43 (Cx43) expressions were observed. Moreover, Salmonella significantly enhanced gap intercellular communication (GJIC), as revealed by the fluorescent dye scrape loading assay. To study the pathway underlying these Salmonella-induced effects, we found that Salmonella induced a significant increase in mitogen-activated protein kinases (MAPK) signaling pathways. The Salmonella-induced upregulation of Cx43 was prevented by treatment of cells with the phosphorylated p38 inhibitor, but not phosphorylated extracellular signal-regulated kinase (pERK) inhibitor or phosphorylated c-jun N terminal kinase (pJNK) inhibitor. Specific knockdown of Cx43 had an inhibitory effect on GJIC and resulted in a reduction of cell death after Salmonella and cisplatin treatment. Our results suggest that accumulation of Salmonella in tumor sites leads to increase Cx43 gap junction communication and enhances the combination of Salmonella and cisplatin therapeutic effects.
Collapse
Affiliation(s)
- Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
OBJECTIVES Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis associated with chronic pancreatitis and pancreatic cancer. Connexins (Cxs) allow direct intercellular communications as components of gap junction but also play important roles in the regulation of cell proliferation, cell differentiation, and tissue development. We here examined the expression of Cxs and Cx-mediated regulation of cell functions in PSCs. METHODS Human PSCs were isolated from patients undergoing operation for chronic pancreatitis or pancreatic cancer. The expression of Cxs was examined by reverse transcription polymerase chain reaction, Western blotting, and immunofluorescent staining. The roles of Cxs in PSC functions were examined by using carbenoxolone, a broad-spectrum Cx inhibitor, and small interfering RNA for Cx43. RESULTS Human activated PSCs expressed a variety of Cxs including Cx43 both in vitro and in vivo. Carbenoxolone inhibited platelet-derived growth factor-BB-induced proliferation and migration, and type I collagen expression in PSCs. In addition, carbenoxolone inhibited the activation of quiescent PSCs to a myofibroblastlike phenotype. Decreased Cx43 expression by small interfering RNA resulted in decreased proliferation and type I collagen expression. CONCLUSIONS Pancreatic stellate cells expressed a variety of Cxs. Connexins, especially Cx43, might regulate the cell functions and activation of PSCs.
Collapse
|
35
|
Kim FY, Marhefka G, Ruggiero NJ, Adams S, Whellan DJ. Saphenous vein graft disease: review of pathophysiology, prevention, and treatment. Cardiol Rev 2013; 21:101-9. [PMID: 22968180 DOI: 10.1097/crd.0b013e3182736190] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Saphenous vein graft (SVG) disease after coronary artery bypass grafting (CABG) occurs in three phases: thrombosis, intimal hyperplasia, and atherosclerosis. Within the first month, thrombosis plays a major role. From month 1 to month 12, intimal hyperplasia occurs. Beyond 12 months, atherosclerosis becomes the primary cause for late graft failure. Endothelial damage has been shown to be the major underlying pathophysiology of SVG disease. Many factors contribute to endothelial damage from the moment the vein is harvested to when the vein is grafted into an arterial environment. To address this disease process, various therapeutic modalities, from surgical methods to medical treatment, have been evaluated. Surgically, the technical method of harvesting the vein has been shown to affect SVG patency. From a pharmacologic perspective, only two guideline class I recommended medications, aspirin and statins, have been shown to improve short- and long-term SVG patency after CABG. Despite these surgical and medical advances, SVG disease remains a significant problem with 1-year patency rates of 89% dropping to 61% after 10 years. This review discusses the pathogenesis of SVG disease, predictors of SVG failure, and current surgical and pharmacologic therapies to address SVG disease, including possible future treatment.
Collapse
Affiliation(s)
- Francis Y Kim
- Jefferson Coordinating Center for Clinical Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
36
|
Yu L, Zhao Y, Xu S, Ding F, Jin C, Fu G, Weng S. Advanced Glycation End Product (AGE)-AGE Receptor (RAGE) System Upregulated Connexin43 Expression in Rat Cardiomyocytes via PKC and Erk MAPK Pathways. Int J Mol Sci 2013; 14:2242-57. [PMID: 23348924 PMCID: PMC3587986 DOI: 10.3390/ijms14022242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/19/2012] [Accepted: 01/08/2013] [Indexed: 12/25/2022] Open
Abstract
The remodeling of cardiac gap junction contributes to the arrhythmias in a diabetic heart. We previously reported that high glucose reduced Cx43 protein level in neonatal rat cardiomyocytes. But, the effect and mechanisms of advanced glycation end product (AGE) on Cx43 expression still remain unclear. In this study, we measured the AGE receptor (RAGE) and Cx43 expression by immunohistochemisty in AGE-infused Sprague-Dawley (SD) rats. In vitro, the Cx43 and RAGE levels were detected in AGE-treated cardiomyocytes by Western blot and real-time RT-PCR. The function of cells coupling was measured by Scrap loading dye transfer assay. Our results showed that the AGE-infused rat hearts exhibited increased cardiac RAGE and Cx43, as well as Cx43 redistribution. In cultured cardiomyocytes, AGE elevated RAGE expression in a time- and dose-dependent manner. Cx43 protein and mRNA levels were upregulated by AGE (200 mg/L, 24 h), but the gap junction function was not enhanced. RAGE-targeted knock-down or the addition of PKC, and Erk inhibitors abolished the effect of AGE on Cx43. Therefore, AGE-RAGE system might elevate Cx43 expression in rat cardiomyocytes by activating PKC and Erk MAPK pathways, and it also enhanced Cx43 redistribution in vivo, which might contribute to the arrhythmias in diabetes.
Collapse
Affiliation(s)
- Lu Yu
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Anti-proliferative effect of rosiglitazone on angiotensin II-induced vascular smooth muscle cell proliferation is mediated by the mTOR pathway. Cell Biol Int 2012; 36:305-10. [PMID: 22050182 DOI: 10.1042/cbi20100524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
VSMC (vascular smooth muscle cell) proliferation contributes significantly to intimal thickening in atherosclerosis, restenosis and venous bypass graft diseases. Ang II (angiotensin II) has been implicated in VSMC proliferation though the activation of multiple growth-promoting signals. Although TZDs (thiazolidinediones) can inhibit VSMC proliferation and reduce Ang II-induced fibrosis, the mechanism underlying the inhibition of VSMC proliferation and fibrosis needs elucidation. We have used primary cultured rat aortic VSMCs and specific antibodies to investigate the inhibitory mechanism of rosiglitazone on Ang II-induced VSMC proliferation. Rosiglitazone treatment significantly inhibited Ang II-induced rat aortic VSMC proliferation in a dose-dependent manner. Western blot analysis showed that rosiglitazone significantly lowered phosphorylated ERK1/2 (extracellular-signal-regulated kinase 1/2), Akt (also known as protein kinase B), mTOR (mammalian target of rapamycin), p70S6K (70 kDa S6 kinase) and 4EBP1 (eukaryotic initiation factor 4E-binding protein) levels in Ang II-treated VSMCs. In addition, PPAR-γ (peroxisome-proliferator-activated receptor γ) mRNA increased significantly and CTGF (connective tissue growth factor), Fn (fibronectin) and Col III (collagen III) levels decreased significantly. The results demonstrate that the rosiglitazone directly inhibits the pro-atherosclerotic effect of Ang II on rat aortic VSMCs. It also attenuates Ang II-induced ECM (extracellular matrix) molecules and CTGF production in rat aortic VSMCs, reducing fibrosis. Importantly, PPAR-γ activation mediates these effects, in part, through the mTOR-p70S6K and -4EBP1 system.
Collapse
|
38
|
Jia G, Stormont RM, Gangahar DM, Agrawal DK. Role of matrix Gla protein in angiotensin II-induced exacerbation of vascular calcification. Am J Physiol Heart Circ Physiol 2012; 303:H523-32. [PMID: 22796540 PMCID: PMC3468471 DOI: 10.1152/ajpheart.00826.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 06/28/2012] [Indexed: 02/02/2023]
Abstract
Vascular calcification predicts an increased risk for cardiovascular events in atherosclerosis, diabetes, and end-stage kidney diseases. Matrix Gla protein (MGP), an inhibitor of calcification, limits calcium phosphate deposition in the vessel wall. There are many factors contributing to the progression of atherosclerosis, including hypertension, hyperlipidemia, the renin-angiotensin system, and inflammation. Angiotensin II (ANG II) plays a crucial role in the atherogenic process through not only its pressor responses but also its growth-promoting and inflammatory effects. In this study, we investigated the role of MGP in ANG II-induced exacerbation of vascular calcification in human vascular smooth muscle cells (VSMCs). The expression of MGP, calcification, and apoptosis in human VSMCs were examined by Western blot analysis, real-time PCR, in situ terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling, and enzyme-linked immunosorbent assay, respectively. Increase in VSMC calcification in human atherosclerotic plaques upregulates MGP expression and apoptosis in a negative feedback manner. ANG II inhibited MGP expression in VSMCs via and in vitro in a dose- and time-dependent manner through ANG II type 1 receptor and NF-κB signaling pathway. Meanwhile, MGP inhibited the calcification, caspase-3 activity, activation of runt-related transcription factor 2, and release of inflammatory cytokines by VSMCs induced by calcification medium (2.5 mM P(i)) and ANG II in vitro. These observations provide evidence that ANG II exacerbates vascular calcification through activation of the transcription factors, runt-related transcription factor 2 and NF-κB, and regulation of MGP, inflammatory cytokines expression in human VSMCs.
Collapse
MESH Headings
- Aged
- Angiotensin II/metabolism
- Apoptosis
- Blotting, Western
- Calcium Phosphates/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/immunology
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/pathology
- Caspase 3/metabolism
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- Cytokines/metabolism
- Enzyme Activation
- Enzyme-Linked Immunosorbent Assay
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Feedback, Physiological
- Gene Expression Regulation
- Humans
- In Situ Nick-End Labeling
- Inflammation Mediators/metabolism
- Middle Aged
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/metabolism
- Plaque, Atherosclerotic
- Real-Time Polymerase Chain Reaction
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Vascular Calcification/genetics
- Vascular Calcification/immunology
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Matrix Gla Protein
Collapse
Affiliation(s)
- Guanghong Jia
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | |
Collapse
|
39
|
High-dose insulin inhibits gap junction intercellular communication in vascular smooth muscle cells. Mol Med Rep 2012; 12:331-6. [DOI: 10.3892/mmr.2015.3437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/30/2015] [Indexed: 11/05/2022] Open
|
40
|
Jia G, Aggarwal A, Yohannes A, Gangahar DM, Agrawal DK. Cross-talk between angiotensin II and IGF-1-induced connexin 43 expression in human saphenous vein smooth muscle cells. J Cell Mol Med 2012; 15:1695-702. [PMID: 20731749 PMCID: PMC3000445 DOI: 10.1111/j.1582-4934.2010.01161.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vascular restenosis following coronary artery bypass graft can cause major clinical complications due to intimal hyperplasia in venous conduits. However, the precise underlying mechanisms of intimal hyperplasia are still unclear. We have recently reported that increased expression of connexin43 (Cx43) is involved in the proliferation of vascular smooth muscle cells (SMCs) in human saphenous vein (SV). In this study, we investigated the signalling transduction pathway involved in Cx43 expression and SV SMC proliferation. Angiotensin-II (AT-II, 100 ng/ml) increased AT-II receptor 1 (AT-1R) protein expression and insulin-like growth factor-1 (IGF-1) (100 ng/ml) up-regulated IGF-1 receptor (IGF-1R) protein expression in SV SMCs. Interestingly, AT-1R expression was also increased by IGF-1 treatment, and IGF-1R expression was increased by AT-II treatment, which was blocked by siRNA-IGF-1R and siRNA-AT-1R, respectively. Furthermore, the effect of AT-II and IGF-1 signal cross-talk i nducing up-regulation of their reciprocal receptors was blocked by siRNA against extracellular signal-regulated kinases 1/2 (Erk 1/2) in SMCs of SV. Moreover, AT-II and IGF-1-induced Cx43 expression via phosphorylation of Erk 1/2 and activation of transcription factor activator protein 1 (AP-1) through their reciprocal receptors in SV SMCs. These data demonstrate a cross-talk between IGF-1R and AT-1R in AT-II and IGF-1-induced Cx43 expression in SV SMCs involving Erk 1/2 and downstream activation of the AP-1 transcription factor.
Collapse
Affiliation(s)
- Guanghong Jia
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | | | | | | | | |
Collapse
|
41
|
Kameritsch P, Pogoda K, Pohl U. Channel-independent influence of connexin 43 on cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1993-2001. [PMID: 22155212 DOI: 10.1016/j.bbamem.2011.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/10/2011] [Accepted: 11/18/2011] [Indexed: 01/06/2023]
Abstract
In this review we focus on the role of connexins, especially of Cx43, as modulators of migration - a fundamental process in embryogenesis and in physiologic functions of the adult organism. This impact of connexins is partly mediated by their function as intercellular channels but an increasing number of studies support the view that at least part of the effects are truly independent of the channel function. The channel-independent function comprises extrinsic guidance of migrating cells due to connexin mediated cell adhesion as well as intracellular processes. Cx43 has been shown to exert effects on migration by interfering with receptor signalling, cytoskeletal remodelling and tubulin dynamics. These effects are mainly dependent on the presence of the carboxyl tail of Cx43. The molecular basis of this channel-independent connexin function is still not yet fully understood but early results open an exciting view towards new functions of connexins in the cell. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
42
|
Wang CY, Liu HJ, Chen HJ, Lin YC, Wang HH, Hung TC, Yeh HI. AGE-BSA down-regulates endothelial connexin43 gap junctions. BMC Cell Biol 2011; 12:19. [PMID: 21575204 PMCID: PMC3224147 DOI: 10.1186/1471-2121-12-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/16/2011] [Indexed: 12/26/2022] Open
Abstract
Background Advanced glycation end products generated in the circulation of diabetic patients were reported to affect the function of vascular wall. We examined the effects of advanced glycation end products-bovine serum albumin (AGE-BSA) on endothelial connexin43 (Cx43) expression and gap-junction communication. Results In human aortic endothelial cells (HAEC) treated with a series concentrations of AGE-BSA (0-500 μg/ml) for 24 and 48 hours, Cx43 transcript and Cx43 protein were reduced in a dose dependent manner. In addition, gap-junction communication was reduced. To clarify the mechanisms underlying the down-regulation, MAPKs pathways in HAEC were examined. Both a MEK1 inhibitor (PD98059) and a p38 MAPK inhibitor (SB203580) significantly reversed the reductions of Cx43 mRNA and protein induced by AGE-BSA. Consistently, phosphorylation of ERK and p38 MAPK was enhanced in response to exposure to AGE-BSA. However, all reversions of down-regulated Cx43 by inhibitors did not restore the functional gap-junction communication. Conclusions AGE-BSA down-regulated Cx43 expression in HAEC, mainly through reduced Cx43 transcription, and the process involved activation of ERK and p38 MAPK.
Collapse
Affiliation(s)
- Chi-Young Wang
- Department of Internal Medicine, Mackay Memorial Hospital, New Taipei City 251, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Matsuyama D, Kawahara K. Oxidative stress-induced formation of a positive-feedback loop for the sustained activation of p38 MAPK leading to the loss of cell division in cardiomyocytes soon after birth. Basic Res Cardiol 2011; 106:815-28. [PMID: 21479589 DOI: 10.1007/s00395-011-0178-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 03/15/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
Shortly after birth, mammalian cardiomyocytes irreversibly exit from the cell cycle and become terminally differentiated. The cellular mechanisms responsible for the cessation of cell division and terminal differentiation of cardiomyocytes soon after birth have intrigued developmental biologists as well as cardiovascular physicians, but the genetic cues for the irreversible exit from the cell cycle soon after birth remain largely unknown. We examined whether and if so how oxidative stress to mammalian hearts during fetal-neonatal transition produces changes in the proliferative activity and terminal differentiation of cardiomyocytes. Scavenging of reactive oxygen species (ROS) during fetal-neonatal transition, especially after birth, resulted in an increase in the proliferative activity and a decrease in the ratio of binucleated cardiomyocytes. Exposure to ROS in cultured cardiomyocytes increased the activity of p38 MAPK and the expression of connexin 43 (Cx43). Not only knockdown of Cx43 using siRNA but also the inhibition of p38 MAPK activity resulted in a significant decrease in the production of ROS in cardiomyocytes, suggesting that the signaling pathway ROS-p38 MAPK-Cx43 (especially, Cx43 at mitochondria, mtCx43) constituted a closed regulatory system with positive feedback. In addition, continuous scavenging of ROS or suppression of p38 MAPK activity for 4 days after birth resulted in a significant decrease in the expression of mtCx43 and in the number of binucleated cardiomyocytes. This study demonstrated that the ROS-induced formation of a positive-feedback loop ROS-p38 MAPK-mtCx43 for the sustained activation of p38 MAPK soon after birth possibly contributes to the loss of cell division and binucleation in mammalian cardiomyocytes.
Collapse
Affiliation(s)
- Daisuke Matsuyama
- Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | | |
Collapse
|
44
|
Wuertz CM, Lorincz A, Vettel C, Thomas MA, Wieland T, Lutz S. p63RhoGEF—a key mediator of angiotensin II‐dependent signaling and processes in vascular smooth muscle cells. FASEB J 2010. [DOI: 10.1096/fj.10.155499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christina M. Wuertz
- Institute of Experimental and Clinical Pharmacology and Toxicology Heidelberg Germany
| | - Akos Lorincz
- Institute of Experimental and Clinical Pharmacology and Toxicology Heidelberg Germany
| | - Christiane Vettel
- Institute of Experimental and Clinical Pharmacology and Toxicology Heidelberg Germany
| | - Martin A. Thomas
- Institute of Experimental and Clinical Pharmacology and Toxicology Heidelberg Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology Heidelberg Germany
| | - Susanne Lutz
- Medical Faculty MannheimUniversity of Heidelberg Heidelberg Germany
- Department of PharmacologyMedical Faculty Goettingen, University of Goettingen Goettingen Germany
| |
Collapse
|
45
|
Vinken M, Decrock E, De Vuyst E, Ponsaerts R, D'hondt C, Bultynck G, Ceelen L, Vanhaecke T, Leybaert L, Rogiers V. Connexins: sensors and regulators of cell cycling. Biochim Biophys Acta Rev Cancer 2010; 1815:13-25. [PMID: 20801193 DOI: 10.1016/j.bbcan.2010.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 12/13/2022]
Abstract
It is nowadays well established that gap junctions are critical gatekeepers of cell proliferation, by controlling the intercellular exchange of essential growth regulators. In recent years, however, it has become clear that the picture is not as simple as originally anticipated, as structural precursors of gap junctions can affect cell cycling by performing actions not related to gap junctional intercellular communication. Indeed, connexin hemichannels also foresee a pathway for cell growth communication, albeit between the intracellular compartment and the extracellular environment, while connexin proteins as such can directly or indirectly influence the production of cell cycle regulators independently of their channel activities. Furthermore, a novel set of connexin-like proteins, the pannexins, have lately joined in as regulators of the cell proliferation process, which they can affect as either single units or as channel entities. In the current paper, these multifaceted aspects of connexin-related signalling in cell cycling are reviewed.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wuertz CM, Lorincz A, Vettel C, Thomas MA, Wieland T, Lutz S. p63RhoGEF--a key mediator of angiotensin II-dependent signaling and processes in vascular smooth muscle cells. FASEB J 2010; 24:4865-76. [PMID: 20739613 DOI: 10.1096/fj.10-155499] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of our study was to investigate the role of endogenous p63RhoGEF in G(q/11)-dependent RhoA activation and signaling in rat aortic smooth muscle cells (RASMCs). Therefore, we studied the expression and subcellular localization in freshly isolated RASMCs and performed loss of function experiments to analyze its contribution to RhoGTPase activation and functional responses such as proliferation and contraction. By this, we could show that p63RhoGEF is endogenously expressed in RASMCs and acts there as the dominant mediator of the fast angiotensin II (ANG II)-dependent but not of the sphingosine-1-phosphate (S(1)P)-dependent RhoA activation. p63RhoGEF is not an activator of the concomitant Rac1 activation and functions independently of caveolae. The knockdown of endogenous p63RhoGEF significantly reduced the mitogenic response of ANG II, abolished ANG II-induced stress fiber formation and cell elongation in 2-D culture, and impaired the ANG II-driven contraction in a collagen-based 3-D model. In conclusion, our data provide for the first time evidence that p63RhoGEF is an important mediator of ANG II-dependent RhoA activation in RASMCs and therewith a leading actor in the subsequently triggered cellular processes, such as proliferation and contraction.
Collapse
Affiliation(s)
- Christina M Wuertz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Muto A, Model L, Ziegler K, Eghbalieh SD, Dardik A. Mechanisms of vein graft adaptation to the arterial circulation: insights into the neointimal algorithm and management strategies. Circ J 2010; 74:1501-1512. [PMID: 20606326 PMCID: PMC3662001 DOI: 10.1253/circj.cj-10-0495] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
For patients with coronary artery disease or limb ischemia, placement of a vein graft as a conduit for a bypass is an important and generally durable strategy among the options for arterial reconstructive surgery. Vein grafts adapt to the arterial environment, and the limited formation of intimal hyperplasia in the vein graft wall is thought to be an important component of successful vein graft adaptation. However, it is also known that abnormal, or uncontrolled, adaptation may lead to abnormal vessel wall remodeling with excessive neointimal hyperplasia, and ultimately vein graft failure and clinical complications. Therefore, understanding the venous-specific pathophysiological and molecular mechanisms of vein graft adaptation are important for clinical vein graft management. Of particular importance, it is currently unknown whether there exist several specific distinct molecular differences in the venous mechanisms of adaptation that are distinct from arterial post-injury responses; in particular, the participation of the venous determinant Eph-B4 and the vascular protective molecule Nogo-B may be involved in mechanisms of vessel remodeling specific to the vein. This review describes (1) venous biology from embryonic development to the mature quiescent state, (2) sequential pathologies of vein graft neointima formation, and (3) novel candidates for strategies of vein graft management. Scientific inquiry into venous-specific adaptation mechanisms will ultimately provide improvements in vein graft clinical outcomes.
Collapse
Affiliation(s)
- Akihito Muto
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Lynn Model
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Kenneth Ziegler
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Sammy D.D. Eghbalieh
- Interdepartmental Program in Vascular Biology and Therapeutics
- St. Mary's Hospital, Waterbury, CT
| | - Alan Dardik
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
- the VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
48
|
Jia G, Mitra AK, Gangahar DM, Agrawal DK. Insulin-like growth factor-1 induces phosphorylation of PI3K-Akt/PKB to potentiate proliferation of smooth muscle cells in human saphenous vein. Exp Mol Pathol 2010; 89:20-6. [PMID: 20471974 DOI: 10.1016/j.yexmp.2010.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 11/26/2022]
Abstract
Coronary revascularization by coronary artery bypass grafting (CABG) is recommended in patients with recurrent myocardial ischemia. However, the long-term results of CABG using saphenous vein (SV) graft, compared to internal mammary artery (IMA) graft, have not been satisfactory. The SV graft failure is due to the development of intimal hyperplasia, a process characterized by abnormal migration and proliferation of smooth muscle cells (SMCs) in the intimal layer of the vein graft. Insulin growth factor 1 (IGF-1) is a major mitogenic growth factor released at the site of the shear stress-induced graft injury. This study, for the first time, compares the extent of IGF-1-PI3K-Akt activation in isolated human bypass graft conduits. Human SV and IMA vessels were collected and SMCs isolated and cultured. In cultured SMCs, effect of IGF-1 was examined on total and phosphorylated PI3K, Akt and IGF-1R by Western blot analysis. Cell proliferation was measured using BrdU ELISA. There was no significant difference in the basal expression of phosphorylated PI3K, Akt and IGF-1R in SV and IMA SMCs from human bypass conduits. However, we observed an upregulation of IGF-1 receptors in the SV SMCs in response to IGF-1 stimulation with no effect in IMA SMCs. Furthermore, the immunoblotting and cellular activation of signaling ELISA (CASE) assay demonstrated a significantly higher activity of both PI3K and Akt in IGF-1-stimulated SV SMCs than IMA. This was inhibited by an IGF-1R blocking antibody. IGF-1 induced proliferation in both SV and IMA SMCs was inhibited by a PI3K inhibitor, wortmannin. These data demonstrate differential activity of IGF-1-induced PI3K-Akt activation, which was quantitatively and temporally greater in SV SMCs than in the IMA. This, at least in part, could explain the greater propensity of the SV conduits than the IMA to undergo intimal hyperplasia following CABG.
Collapse
Affiliation(s)
- Guanghong Jia
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA.
| | | | | | | |
Collapse
|
49
|
Interleukin-1beta increases gap junctional communication among synovial fibroblasts via the extracellular-signal-regulated kinase pathway. Biol Cell 2009; 102:37-49. [PMID: 19656083 DOI: 10.1042/bc20090056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The gap junction protein, Cx43 (connexin 43), has been implicated in the aetiology of osteoarthritis. Studies have revealed that the size and number of gap junctions increase in synovial biopsies from patients with osteoarthritis. Furthermore, pharmacological inhibition of Cx43 function has been shown to reduce IL-1beta (interleukin-1beta)-induced metalloproteinase production by synovial fibroblasts in vitro. RESULTS In the present study, we examined the link between IL-1beta and Cx43 function. We demonstrated that treatment of a rabbit synovial fibroblast cell line with IL-1beta markedly increased the level of the Cx43 protein in a concentration- and time-dependent manner. The impact on Cx43 protein levels appeared to occur post-transcriptionally, as mRNA levels are unaffected by IL-1beta administration. Additionally, we showed by fluorescence microscopy that IL-1beta alters the cellular distribution of Cx43 to cell-cell junctions and is concomitant with a striking increase in gap junction communication. Furthermore, we demonstrated that the increase in Cx43 protein, and the associated change in protein localization and gap junction communication following IL-1beta treatment, are dependent upon activation of the ERK (extracellular-signal-regulated kinase) signalling cascade. CONCLUSION These data show that IL-1beta acts through the ERK signalling cascade to alter the expression and function of Cx43 in synovial fibroblasts.
Collapse
|
50
|
Min Q, Bai YT, Jia G, Wu J, Xiang JZ. High glucose enhances angiotensin-II-mediated peroxisome proliferation-activated receptor-gamma inactivation in human coronary artery endothelial cells. Exp Mol Pathol 2009; 88:133-7. [PMID: 19796634 DOI: 10.1016/j.yexmp.2009.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/21/2009] [Indexed: 01/11/2023]
Abstract
Activation of the renin-angiotensin system plays an important role in the pathogenesis of vascular complications of hyperglycemia. Clinical studies have demonstrated that hypoglycemic effects of peroxisome proliferation-activated receptor-gamma (PPAR-gamma) activation is potentially associated with a significant decrease of cardiovascular disease events in diabetes patients. We assessed the effect of high glucose on the angiotensin II (Ang II), which induced the inactivation of PPAR-gamma and its signal pathways in human coronary artery endothelial cells (HCAECs). The expression of angiotensin II receptor I (AT1R) protein was analyzed by Western blot and knocked down using siRNA. PPAR-gamma activation was examined using a luminometer and a Dual Luciferase Reporter Assay System. Adhesion molecule expressions of HCAECs were measured using ELISA. Both high glucose and Ang II induced a progressive increase in AT1R protein expression on the HCAECs. Troglitazone, a PPAR-gamma activator, significantly increased the transcription activity of PPAR-gamma in HCAECs in vitro. However, activation of PPAR-gamma was significantly inhibited by high glucose and Ang II stimulation. Furthermore, silencing of AT1R expression was able to inhibit the inactivation of PPAR-gamma induced by Ang II and high glucose. Meanwhile, expression of proinflammatory adhesion molecules was increased by high glucose and Ang II in HCAECs, which is blocked by troglitazone and silencing of AT1R expression. These data strongly suggest high glucose enhanced Ang-II-mediated peroxisome proliferation-activated receptor-gamma inactivation and expression of proinflammatory adhesion molecules in human coronary artery endothelial cells.
Collapse
MESH Headings
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Cell Adhesion Molecules/drug effects
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Chromans/pharmacology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Silencing
- Glucose/pharmacology
- Humans
- PPAR gamma/drug effects
- PPAR gamma/metabolism
- RNA, Small Interfering/genetics
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Thiazolidinediones/pharmacology
- Troglitazone
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Qing Min
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | | | | | | | | |
Collapse
|