1
|
von Bibra C, Hinkel R. Non-human primate studies for cardiomyocyte transplantation-ready for translation? Front Pharmacol 2024; 15:1408679. [PMID: 38962314 PMCID: PMC11221829 DOI: 10.3389/fphar.2024.1408679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Non-human primates (NHP) are valuable models for late translational pre-clinical studies, often seen as a last step before clinical application. The unique similarity between NHPs and humans is often the subject of ethical concerns. However, it is precisely this analogy in anatomy, physiology, and the immune system that narrows the translational gap to other animal models in the cardiovascular field. Cell and gene therapy approaches are two dominant strategies investigated in the research field of cardiac regeneration. Focusing on the cell therapy approach, several xeno- and allogeneic cell transplantation studies with a translational motivation have been realized in macaque species. This is based on the pressing need for novel therapeutic options for heart failure patients. Stem cell-based remuscularization of the injured heart can be achieved via direct injection of cardiomyocytes (CMs) or patch application. Both CM delivery approaches are in the late preclinical stage, and the first clinical trials have started. However, are we already ready for the clinical area? The present review concentrates on CM transplantation studies conducted in NHPs, discusses the main sources and discoveries, and provides a perspective about human translation.
Collapse
Affiliation(s)
- Constantin von Bibra
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| | - Rabea Hinkel
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| |
Collapse
|
2
|
Liang Z, Li J, Lin H, Zhang S, Liu F, Rao Z, Chen J, Feng Y, Zhang K, Quan D, Lin Z, Bai Y, Huang Q. Understanding the multi-functionality and tissue-specificity of decellularized dental pulp matrix hydrogels for endodontic regeneration. Acta Biomater 2024; 181:202-221. [PMID: 38692468 DOI: 10.1016/j.actbio.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Dental pulp is the only soft tissue in the tooth which plays a crucial role in maintaining intrinsic multi-functional behaviors of the dentin-pulp complex. Nevertheless, the restoration of fully functional pulps after pulpitis or pulp necrosis, termed endodontic regeneration, remained a major challenge for decades. Therefore, a bioactive and in-situ injectable biomaterial is highly desired for tissue-engineered pulp regeneration. Herein, a decellularized matrix hydrogel derived from porcine dental pulps (pDDPM-G) was prepared and characterized through systematic comparison against the porcine decellularized nerve matrix hydrogel (pDNM-G). The pDDPM-G not only exhibited superior capabilities in facilitating multi-directional differentiation of dental pulp stem cells (DPSCs) during 3D culture, but also promoted regeneration of pulp-like tissues after DPSCs encapsulation and transplantation. Further comparative proteomic and transcriptome analyses revealed the differential compositions and potential mechanisms that endow the pDDPM-G with highly tissue-specific properties. Finally, it was realized that the abundant tenascin C (TNC) in pDDPM served as key factor responsible for the activation of Notch signaling cascades and promoted DPSCs odontoblastic differentiation. Overall, it is believed that pDDPM-G is a sort of multi-functional and tissue-specific hydrogel-based material that holds great promise in endodontic regeneration and clinical translation. STATEMENT OF SIGNIFICANCE: Functional hydrogel-based biomaterials are highly desirable for endodontic regeneration treatments. Decellularized extracellular matrix (dECM) preserves most extracellular matrix components of its native tissue, exhibiting unique advantages in promoting tissue regeneration and functional restoration. In this study, we prepared a porcine dental pulp-derived dECM hydrogel (pDDPM-G), which exhibited superior performance in promoting odontogenesis, angiogenesis, and neurogenesis of the regenerating pulp-like tissue, further showed its tissue-specificity compared to the peripheral nerve-derived dECM hydrogel. In-depth proteomic and transcriptomic analyses revealed that the activation of tenascin C-Notch axis played an important role in facilitating odontogenic regeneration. This biomaterial-based study validated the great potential of the dental pulp-specific pDDPM-G for clinical applications, and provides a springboard for research strategies in ECM-related regenerative medicine.
Collapse
Affiliation(s)
- Zelin Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Junda Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Hongkun Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Fan Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiaxin Chen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuwen Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Kexin Zhang
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qiting Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
3
|
Rakshit P, Giri TK, Mukherjee K. Progresses and perspectives on natural polysaccharide based hydrogels for repair of infarcted myocardium. Int J Biol Macromol 2024; 269:132213. [PMID: 38729464 DOI: 10.1016/j.ijbiomac.2024.132213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Myocardial infarction (MI) is serious health threat and impairs the quality of life. It is a major causative factor of morbidity and mortality. MI leads to the necrosis of cardio-myocytes, cardiac remodelling and dysfunction, eventually leading to heart failure. The limitations of conventional therapeutic and surgical interventions and lack of heart donors have necessitated the evolution of alternate treatment approaches for MI. Polysaccharide hydrogel based repair of infarcted myocardium have surfaced as viable option for MI treatment. Polysaccharide hydrogels may be injectable hydrogels or cardiac patches. Injectable hydrogels can in situ deliver cells and bio-actives, facilitating in situ cardiac regeneration and repair. Polysaccharide hydrogel cardiac patches reduce cardiac wall stress, and inhibit ventricular expansion and promote angiogenesis. Herein, we discuss about MI pathophysiology and myocardial microenvironment and how polysaccharide hydrogels are designed to mimic and support the microenvironment for cardiac repair. We also put forward the versatility of the different polysaccharide hydrogels in mimicking diverse cardiac properties, and acting as a medium for delivery of cells, and therapeutics for promoting angiogenesis and cardiac repair. The objectives of this review is to summarize the factors leading to MI and to put forward how polysaccharide based hydrogels promote cardiac repair. This review is written to enable researchers understand the factors promoting MI so that they can undertake and design novel hydrogels for cardiac regeneration.
Collapse
Affiliation(s)
- Pallabita Rakshit
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Kaushik Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
4
|
Sugiura T, Shahannaz DC, Ferrell BE. Current Status of Cardiac Regenerative Therapy Using Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:5772. [PMID: 38891960 PMCID: PMC11171475 DOI: 10.3390/ijms25115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Heart failure (HF) is a life-threatening disorder and is treated by drug therapies and surgical interventions such as heart transplantation and left ventricular assist device (LVAD). However, these treatments can lack effectiveness in the long term and are associated with issues such as donor shortage in heart transplantation, and infection, stroke, or gastrointestinal bleeding in LVADs. Therefore, alternative therapeutic strategies are still needed. In this respect, stem cell therapy has been introduced for the treatment of HF and numerous preclinical and clinical studies are employing a range of stem cell varieties. These stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have been shown to improve cardiac function and attenuate left ventricular remodeling. IPSCs, which have a capacity for unlimited proliferation and differentiation into cardiomyocytes, are a promising cell source for myocardial regeneration therapy. In this review, we discuss the following topics: (1) what are iPSCs; (2) the limitations and solutions for the translation of iPSC-CMs practically; and (3) the current therapeutic clinical trials.
Collapse
Affiliation(s)
- Tadahisa Sugiura
- Department of Cardiothoracic and Vascular Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY 10467, USA; (D.C.S.); (B.E.F.)
| | | | | |
Collapse
|
5
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Othman SS, Saafan A, Al-Halbosiy MMF, Fathy I, Khursheed Alam M, El-Beialy AR, Al-Shmgani HS, Sulaiman GM. Ameliorating orthodontic relapse using laser bio-stimulation and mesenchymal stem cells in rats. J Genet Eng Biotechnol 2024; 22:100331. [PMID: 38494247 PMCID: PMC10980849 DOI: 10.1016/j.jgeb.2023.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Orthodontic relapse is a frequent problem that many patients experience. Although orthodontic therapy has advanced, recurrence rates can still reach 90%. We undertook a study to look at the possibilities of laser bio-stimulation and stem cells because they have showed promising outcomes in lowering recurrence rates. OBJECTIVES Our objective was to analyze the effects of Low-level laser therapy (LLLT) and Mesenchymal stem cells (MSC) alone and collectively on the rate of orthodontic relapse in rats radiographically and histologically. METHODS Rat maxillary central incisors were moved distally for two weeks. One week later, the incisors were retained. Animals (n = 40) were split into four groups. Control group (C); laser treatment Group (L), Bone marrow mesenchymal stem cells Group (BMSCs) and combination of Stem cells and laser-irradiation group (BMSCs-L). Removed retainer permitted relapse. Before stem cell application or laser irradiation, each animal underwent two CBCT scans. Rat maxillae were stained with Hx&E, Masson trichrome, and tartrate-resistant acid phosphatase antibody for histology, histochemistry, and immunohistochemistry. RESULTS AND CONCLUSIONS LLLT could reduce the relapse tendency, as shown by increased bone density and enhanced remodeling of hetero-formed periodontal ligament (PDL). Furthermore, the transfer of BMMSCs on the pressure side had positive effects on PDL remodeling and decreased, but did not inhibit, the relapse rate. Finally, the synergistic effects of the application of LLLT and BMMSC were better than the control but still moderate and long-lasting. CLINICAL SIGNIFICANCE Based on the improved relapse rate as proven in the present study, the Application of both LLLT and stem cells can be adopted to reduce the relapse tendency either lonely or collectively.
Collapse
Affiliation(s)
- Samer S Othman
- Department of Clinical Sciences, College of Dentistry, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq
| | - Ali Saafan
- Department of Medical Applications of Laser, National Institute for Laser Enhanced Sciences, Cairo University, Cairo, Egypt
| | | | - Iman Fathy
- Department of Oral Biology, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Mohamed Khursheed Alam
- Professor of Orthodontics, Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakakah, Saudi Arabia
| | - Amr R El-Beialy
- Department of Orthodontics and Dentofacial Orthopedics, Faculty of Dentistry, Cairo University, Cairo, Egypt.
| | - Hanady S Al-Shmgani
- Department of Biology, College of Education for Pure Sciences, Ibn Al-Haitham University of Baghdad, Baghdad 10066, Iraq.
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| |
Collapse
|
7
|
Yang Y, Yang H, Kiskin FN, Zhang JZ. The new era of cardiovascular research: revolutionizing cardiovascular research with 3D models in a dish. MEDICAL REVIEW (2021) 2024; 4:68-85. [PMID: 38515776 PMCID: PMC10954298 DOI: 10.1515/mr-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024]
Abstract
Cardiovascular research has heavily relied on studies using patient samples and animal models. However, patient studies often miss the data from the crucial early stage of cardiovascular diseases, as obtaining primary tissues at this stage is impracticable. Transgenic animal models can offer some insights into disease mechanisms, although they usually do not fully recapitulate the phenotype of cardiovascular diseases and their progression. In recent years, a promising breakthrough has emerged in the form of in vitro three-dimensional (3D) cardiovascular models utilizing human pluripotent stem cells. These innovative models recreate the intricate 3D structure of the human heart and vessels within a controlled environment. This advancement is pivotal as it addresses the existing gaps in cardiovascular research, allowing scientists to study different stages of cardiovascular diseases and specific drug responses using human-origin models. In this review, we first outline various approaches employed to generate these models. We then comprehensively discuss their applications in studying cardiovascular diseases by providing insights into molecular and cellular changes associated with cardiovascular conditions. Moreover, we highlight the potential of these 3D models serving as a platform for drug testing to assess drug efficacy and safety. Despite their immense potential, challenges persist, particularly in maintaining the complex structure of 3D heart and vessel models and ensuring their function is comparable to real organs. However, overcoming these challenges could revolutionize cardiovascular research. It has the potential to offer comprehensive mechanistic insights into human-specific disease processes, ultimately expediting the development of personalized therapies.
Collapse
Affiliation(s)
- Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Fedir N. Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Joe Z. Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| |
Collapse
|
8
|
Alipanah-Moghadam R, Khodaei M, Aghamohammadi V, Malekzadeh V, Afrouz M, Nemati A, Zahedian H. Andrographolide induced heme oxygenase-1 expression in MSC-like cells isolated from rat bone marrow exposed to environmental stress. Biochem Biophys Res Commun 2023; 687:149212. [PMID: 37944470 DOI: 10.1016/j.bbrc.2023.149212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Mesenchymal stem cells (MSC-like cells) are the most important stem cells that are used in transplantation clinically in various applications. The survival rate of MSC-like cells is strongly reduced due to adverse conditions in the microenvironment of transplantation, including environmental stress. Heme oxygenase-1 (HO-1) is a member of the heat shock protein, as well as a stress-induced enzyme, present throughout the body. The present study was conducted to investigate the effect of andrographolide, an active derivative from andrographolide paniculate, on HO-1 expression in mesenchymal stem cells derived from rat bone marrow. MATERIALS AND METHODS The rat bone marrow-derived mesenchymal stem cells (BMSC-like cells) were extracted and proliferated in several passages. The identity of MSC-like cells was confirmed by morphological observations and differential tests. The flow cytometry method was used to verify the MSC-specific markers. Isolated MSC-like cells were treated with different concentrations of andrographolide and then exposed to environmental stress. Cell viability was assessed using the MTT colorimetric assay. A real-time PCR technique was employed to evaluate the expression level of HO-1 in the treated MSC-like cells. RESULTS Isolated MSC-like cells demonstrated fibroblast-like morphology. These cells in different culture mediums differentiated into osteocytes and adipocytes and were identified using alizarin red and oil red staining, respectively. As well, MSC-like cells were verified by the detection of CD105 surface antigen and the absence of CD14 and CD45 antigens. The results of the MTT assay showed that the pre-treatment of MSC-like cells with andrographolide concentration independently increased the viability and resistance of these cells to environmental stress caused by hydrogen peroxide and serum deprivation (SD). Real-time PCR findings indicated a significant increase in HO-1 gene expression in the andrographolide-receiving groups (p < 0.01). CONCLUSION Our results suggest that andrographolide creates a promising strategy for enhancing the quality of cell therapy by increasing the resistance of MSC-like cells to environmental stress and inducing the expression of HO-1.
Collapse
Affiliation(s)
- Reza Alipanah-Moghadam
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Khodaei
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Vadoud Malekzadeh
- Department of Anatomical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Afrouz
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Iran.
| | - Ali Nemati
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hoda Zahedian
- Department of Deutsch-Sprachen, Volkshochschule, Gütersloh, Germany
| |
Collapse
|
9
|
Qian B, Shen A, Huang S, Shi H, Long Q, Zhong Y, Qi Z, He X, Zhang Y, Hai W, Wang X, Cui Y, Chen Z, Xuan H, Zhao Q, You Z, Ye X. An Intrinsically Magnetic Epicardial Patch for Rapid Vascular Reconstruction and Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303033. [PMID: 37964406 PMCID: PMC10754083 DOI: 10.1002/advs.202303033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Indexed: 11/16/2023]
Abstract
Myocardial infarction (MI) is a major cause of mortality worldwide. The major limitation of regenerative therapy for MI is poor cardiac retention of therapeutics, which results from an inefficient vascular network and poor targeting ability. In this study, a two-layer intrinsically magnetic epicardial patch (MagPatch) prepared by 3D printing with biocompatible materials like poly (glycerol sebacate) (PGS) is designed, poly (ε-caprolactone) (PCL), and NdFeB. The two-layer structure ensured that the MagPatch multifariously utilized the magnetic force for rapid vascular reconstruction and targeted drug delivery. MagPatch accumulates superparamagnetic iron oxide (SPION)-labelled endothelial cells, instantly forming a ready-implanted organization, and rapidly reconstructs a vascular network anastomosed with the host. In addition, the prefabricated vascular network within the MagPatch allowed for the efficient accumulation of SPION-labelled therapeutics, amplifying the therapeutic effects of cardiac repair. This study defined an extendable therapeutic platform for vascularization-based targeted drug delivery that is expected to assist in the progress of regenerative therapies in clinical applications.
Collapse
Affiliation(s)
- Bei Qian
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Ao Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Hongpeng Shi
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Qiang Long
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Xiaojun He
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Xinming Wang
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Yanna Cui
- Department of Pharmacology and Chemical BiologyShanghai Jiaotong University School of MedicineShanghai200000China
| | - Ziheng Chen
- School of Mechatronics Engineering and AutomationShanghai UniversityShanghai200000China
| | - Huixia Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| |
Collapse
|
10
|
He H, Yuan Y, Wu Y, Lu J, Yang X, Lu K, Liu A, Cao Z, Sun M, Yu M, Wang H. Exoskeleton Partial-Coated Stem Cells for Infarcted Myocardium Restoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307169. [PMID: 37962473 DOI: 10.1002/adma.202307169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The integration of abiotic materials with live cells has emerged as an exciting strategy for the control of cellular functions. Exoskeletons consisting ofmetal-organic frameworks are generated to produce partial-coated bone marrow stem cells (BMSCs) to overcome low cell survival leading to disappointing effects for cell-based cardiac therapy. Partially coated exoskeletons can promote the survival of suspended BMSCs by integrating the support of exoskeletons and unimpaired cellular properties. In addition, partial exoskeletons exhibit protective effects against detrimental environmental conditions, including reactive oxygen species, pH changes, and osmotic pressure. The partial-coated cells exhibit increased intercellular adhesion forces to aggregate and adhere, promoting cell survival and preventing cell escape during cell therapy. The exoskeletons interact with cell surface receptors integrin α5β1, leading to augmented biological functions with profitable gene expression alteration, such as Vegfa, Cxcl12, and Adm. The partial-coated BMSCs display enhanced cell retention in infarcted myocardium through non-invasive intravenous injections. The repair of myocardial infarction has been achieved with improved cardiac function, myocardial angiogenesis, proliferation, and inhibition of cell apoptosis. This discovery advances the elucidation of potential molecular and cellular mechanisms for cell-exoskeleton interactions and benefits the rational design and manufacture of next-generation nanobiohybrids.
Collapse
Affiliation(s)
- Huihui He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yuan Yuan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, 310058, China
| | - Yunhong Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyi Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xiaofu Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Kejie Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - An Liu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, China
| | - Zelin Cao
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Miao Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
11
|
Hong X, Luo AC, Doulamis I, Oh N, Im GB, Lin CY, del Nido PJ, Lin RZ, Melero-Martin JM. Photopolymerizable Hydrogel for Enhanced Intramyocardial Vascular Progenitor Cell Delivery and Post-Myocardial Infarction Healing. Adv Healthc Mater 2023; 12:e2301581. [PMID: 37611321 PMCID: PMC10840685 DOI: 10.1002/adhm.202301581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Cell transplantation success for myocardial infarction (MI) treatment is often hindered by low engraftment due to washout effects during myocardial contraction. A clinically viable biomaterial that enhances cell retention can optimize intramyocardial cell delivery. In this study, a therapeutic cell delivery method is developed for MI treatment utilizing a photocrosslinkable gelatin methacryloyl (GelMA) hydrogel. Human vascular progenitor cells, capable of forming functional vasculatures upon transplantation, are combined with an in situ photopolymerization approach and injected into the infarcted zones of mouse hearts. This strategy substantially improves acute cell retention and promotes long-term post-MI cardiac healing, including stabilized cardiac functions, preserved viable myocardium, and reduced cardiac fibrosis. Additionally, engrafted vascular cells polarize recruited bone marrow-derived neutrophils toward a non-inflammatory phenotype via transforming growth factor beta (TGFβ) signaling, fostering a pro-regenerative microenvironment. Neutrophil depletion negates the therapeutic benefits generated by cell delivery in ischemic hearts, highlighting the essential role of non-inflammatory, pro-regenerative neutrophils in cardiac remodeling. In conclusion, this GelMA hydrogel-based intramyocardial vascular cell delivery approach holds promise for enhancing the treatment of acute myocardial infarction.
Collapse
Affiliation(s)
- Xuechong Hong
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ilias Doulamis
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Oh
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Gwang-Bum Im
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Yen Lin
- Department of Lymphoma and Myeloma, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Juan M. Melero-Martin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Cheng YC, Hsieh ML, Lin CJ, Chang CMC, Huang CY, Puntney R, Wu Moy A, Ting CY, Herr Chan DZ, Nicholson MW, Lin PJ, Chen HC, Kim GC, Zhang J, Coonen J, Basu P, Simmons HA, Liu YW, Hacker TA, Kamp TJ, Hsieh PCH. Combined Treatment of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Endothelial Cells Regenerate the Infarcted Heart in Mice and Non-Human Primates. Circulation 2023; 148:1395-1409. [PMID: 37732466 PMCID: PMC10683868 DOI: 10.1161/circulationaha.122.061736] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Remuscularization of the mammalian heart can be achieved after cell transplantation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs). However, several hurdles remain before implementation into clinical practice. Poor survival of the implanted cells is related to insufficient vascularization, and the potential for fatal arrhythmogenesis is associated with the fetal cell-like nature of immature CMs. METHODS We generated 3 lines of hiPSC-derived endothelial cells (ECs) and hiPSC-CMs from 3 independent donors and tested hiPSC-CM sarcomeric length, gap junction protein, and calcium-handling ability in coculture with ECs. Next, we examined the therapeutic effect of the cotransplantation of hiPSC-ECs and hiPSC-CMs in nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice undergoing myocardial infarction (n≥4). Cardiac function was assessed by echocardiography, whereas arrhythmic events were recorded using 3-lead ECGs. We further used healthy non-human primates (n=4) with cell injection to study the cell engraftment, maturation, and integration of transplanted hiPSC-CMs, alone or along with hiPSC-ECs, by histological analysis. Last, we tested the cell therapy in ischemic reperfusion injury in non-human primates (n=4, 3, and 4 for EC+CM, CM, and control, respectively). Cardiac function was evaluated by echocardiography and cardiac MRI, whereas arrhythmic events were monitored by telemetric ECG recorders. Cell engraftment, angiogenesis, and host-graft integration of human grafts were also investigated. RESULTS We demonstrated that human iPSC-ECs promote the maturity and function of hiPSC-CMs in vitro and in vivo. When cocultured with ECs, CMs showed more mature phenotypes in cellular structure and function. In the mouse model, cotransplantation augmented the EC-accompanied vascularization in the grafts, promoted the maturity of CMs at the infarct area, and improved cardiac function after myocardial infarction. Furthermore, in non-human primates, transplantation of ECs and CMs significantly enhanced graft size and vasculature and improved cardiac function after ischemic reperfusion. CONCLUSIONS These results demonstrate the synergistic effect of combining iPSC-derived ECs and CMs for therapy in the postmyocardial infarction heart, enabling a promising strategy toward clinical translation.
Collapse
Affiliation(s)
- Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Marvin L Hsieh
- Model Organisms Research Core, Department of Medicine (M.L.H., C.M.C.C., T.A.H.), University of Wisconsin-Madison
| | - Chen-Ju Lin
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Cindy M C Chang
- Model Organisms Research Core, Department of Medicine (M.L.H., C.M.C.C., T.A.H.), University of Wisconsin-Madison
| | - Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Riley Puntney
- Wisconsin National Primate Research Center (R.P., A.W.M., J.C., P.B., H.A.S.), University of Wisconsin-Madison
| | - Amy Wu Moy
- Wisconsin National Primate Research Center (R.P., A.W.M., J.C., P.B., H.A.S.), University of Wisconsin-Madison
| | - Chien-Yu Ting
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Darien Zhing Herr Chan
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Martin W Nicholson
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Po-Ju Lin
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Hung-Chih Chen
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Gina C Kim
- Department of Medicine and Stem Cell and Regenerative Medicine Center (G.C.K., J.Z., T.J.K., P.C.H.H.), University of Wisconsin-Madison
| | - Jianhua Zhang
- Department of Medicine and Stem Cell and Regenerative Medicine Center (G.C.K., J.Z., T.J.K., P.C.H.H.), University of Wisconsin-Madison
| | - Jennifer Coonen
- Wisconsin National Primate Research Center (R.P., A.W.M., J.C., P.B., H.A.S.), University of Wisconsin-Madison
| | - Puja Basu
- Wisconsin National Primate Research Center (R.P., A.W.M., J.C., P.B., H.A.S.), University of Wisconsin-Madison
| | - Heather A Simmons
- Wisconsin National Primate Research Center (R.P., A.W.M., J.C., P.B., H.A.S.), University of Wisconsin-Madison
| | - Yen-Wen Liu
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Y.W.L.)
| | - Timothy A Hacker
- Model Organisms Research Core, Department of Medicine (M.L.H., C.M.C.C., T.A.H.), University of Wisconsin-Madison
| | - Timothy J Kamp
- Department of Medicine and Stem Cell and Regenerative Medicine Center (G.C.K., J.Z., T.J.K., P.C.H.H.), University of Wisconsin-Madison
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
- Department of Medicine and Stem Cell and Regenerative Medicine Center (G.C.K., J.Z., T.J.K., P.C.H.H.), University of Wisconsin-Madison
- Institute of Medical Genomics and Proteomics and Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (P.C.H.H.)
| |
Collapse
|
13
|
Ledford BT, Chen M, Van Dyke M, Barron C, Zhang X, Cartaya A, Zheng Y, Ceylan A, Goldstein A, He JQ. Keratose Hydrogel Drives Differentiation of Cardiac Vascular Smooth Muscle Progenitor Cells: Implications in Ischemic Treatment. Stem Cell Rev Rep 2023; 19:2341-2360. [PMID: 37392292 DOI: 10.1007/s12015-023-10574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Peripheral artery disease (PAD) is a common vascular disorder in the extremity of limbs with limited clinical treatments. Stem cells hold great promise for the treatment of PAD, but their therapeutic efficiency is limited due to multiple factors, such as poor engraftment and non-optimal selection of cell type. To date, stem cells from a variety of tissue sources have been tested, but little information is available regarding vascular smooth muscle cells (VSMCs) for PAD therapy. The present study examines the effects of keratose (KOS) hydrogels on c-kit+/CD31- cardiac vascular smooth muscle progenitor cell (cVSMPC) differentiation and the therapeutic potential of the resultant VSMCs in a mouse hindlimb ischemic model of PAD. The results demonstrated that KOS but not collagen hydrogel was able to drive the majority of cVSMPCs into functional VSMCs in a defined Knockout serum replacement (SR) medium in the absence of differentiation inducers. This effect could be inhibited by TGF-β1 antagonists. Further, KOS hydrogel increased expression of TGF-β1-associated proteins and modulated the level of free TGF-β1 during differentiation. Finally, transplantation of KOS-driven VSMCs significantly increased blood flow and vascular densities of ischemic hindlimbs. These findings indicate that TGF-β1 signaling is involved in KOS hydrogel-preferred VSMC differentiation and that enhanced blood flow are likely resulted from angiogenesis and/or arteriogenesis induced by transplanted VSMCs.
Collapse
Affiliation(s)
- Benjamin T Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Miao Chen
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaonan Zhang
- Beijing Yulong Shengshi Biotechnology, Haidian District, Beijing, 100085, China
| | - Aurora Cartaya
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Youjing Zheng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ahmet Ceylan
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Aaron Goldstein
- Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
14
|
Haoran S, Zhishan J, Yan M, Ruilin M, Jianjian C, Zejun Y, Jianwen Z, Hui G, Yin Z. Hypoxic Preconditioning Enhances Cellular Viability and Migratory Ability: Role of DANCR/miR-656-3p/HIF-1α Axis in Placental Mesenchymal Stem Cells. Stem Cells 2023; 41:877-891. [PMID: 37317862 DOI: 10.1093/stmcls/sxad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Preeclampsia (PE) is a common complication of pregnancy characterized by new-onset hypertension, albuminuria, or end-stage organ dysfunction, which is seriously harmful to maternal and infant health. Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from extraembryonic mesoderm. They have the potential for self-renewal, multidirectional differentiation, immunomodulation, and tissue regeneration. Several in vivo and in vitro experiments have confirmed that MSCs can delay the pathological progression of PE and improve maternal and fetal outcomes. However, the major limitations in the application of MSCs are their low-survival rates in ischemic and hypoxic disease areas after transplantation and their low rate of successful migration to the diseased regions. Therefore, enhancing cell viability and migration ability of MSCs in both ischemic and anoxic environments is important. This study aimed to investigate the effects of hypoxic preconditioning on the viability and migration ability of placental mesenchymal stem cells (PMSCs) and their underlying mechanisms. In this study, we found that hypoxic preconditioning enhanced the viability and migration ability of PMSCs, increased the expression of DANCR and hypoxia-inducible factor-1α (HIF-1α), and decreased the expression of miR-656-3p in PMSCs. Inhibiting the expression of HIF-1α and DACNR in PMSCs under hypoxia can inhibit the promotive effect of hypoxic preconditioning on viability and migration ability. In addition, RNA pull down and double luciferase assays confirmed that miR-656-3p could directly bind to DANCR and HIF-1α. In conclusion, our study showed that hypoxia could promote the viability and migration ability of PMSCs through the DANCR/miR-656-3p/HIF-1α axis.
Collapse
Affiliation(s)
- Shi Haoran
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jin Zhishan
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Mao Yan
- Department of Obstetrics and Gynecology, Guangshui Second People's Hospital of Hubei Province, Suizhou, People's Republic of China
| | - Ma Ruilin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Cui Jianjian
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yang Zejun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhu Jianwen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Gao Hui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhao Yin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
15
|
Tan Y, Coyle RC, Barrs RW, Silver SE, Li M, Richards DJ, Lin Y, Jiang Y, Wang H, Menick DR, Deleon-Pennell K, Tian B, Mei Y. Nanowired human cardiac organoid transplantation enables highly efficient and effective recovery of infarcted hearts. SCIENCE ADVANCES 2023; 9:eadf2898. [PMID: 37540743 PMCID: PMC10403216 DOI: 10.1126/sciadv.adf2898] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
Human cardiac organoids hold remarkable potential for cardiovascular disease modeling and human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) transplantation. Here, we show cardiac organoids engineered with electrically conductive silicon nanowires (e-SiNWs) significantly enhance the therapeutic efficacy of hPSC-CMs to treat infarcted hearts. We first demonstrated the biocompatibility of e-SiNWs and their capacity to improve cardiac microtissue engraftment in healthy rat myocardium. Nanowired human cardiac organoids were then engineered with hPSC-CMs, nonmyocyte supporting cells, and e-SiNWs. Nonmyocyte supporting cells promoted greater ischemia tolerance of cardiac organoids, and e-SiNWs significantly improved electrical pacing capacity. After transplantation into ischemia/reperfusion-injured rat hearts, nanowired cardiac organoids significantly improved contractile development of engrafted hPSC-CMs, induced potent cardiac functional recovery, and reduced maladaptive left ventricular remodeling. Compared to contemporary studies with an identical injury model, greater functional recovery was achieved with a 20-fold lower dose of hPSC-CMs, revealing therapeutic synergy between conductive nanomaterials and human cardiac organoids for efficient heart repair.
Collapse
Affiliation(s)
- Yu Tan
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Robert C. Coyle
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Mei Li
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Dylan J. Richards
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Yiliang Lin
- Department of Chemistry, The James Franck Institute and the Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Yuanwen Jiang
- Department of Chemistry, The James Franck Institute and the Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Donald R. Menick
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristine Deleon-Pennell
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bozhi Tian
- Department of Chemistry, The James Franck Institute and the Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Bui TQ, Binh NT, Pham TLB, Le Van T, Truong NH, Nguyen DPH, Luu TTT, Nguyen-Xuan Pham T, Cam Tran T, Nguyen HTT, Thuy-Trinh N, Tran PA. The Efficacy of Transplanting Human Umbilical Cord Mesenchymal Stem Cell Sheets in the Treatment of Myocardial Infarction in Mice. Biomedicines 2023; 11:2187. [PMID: 37626684 PMCID: PMC10452263 DOI: 10.3390/biomedicines11082187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The transplantation of mesenchymal stem cell (MSC) sheets derived from human umbilical cords (hUCs) was investigated in this study as a potential application in treating myocardial infarction (MI). Two groups of hUC-MSC sheets were formed by populating LunaGelTM, which are 3D scaffolds of photo-crosslinkable gelatin-based hydrogel with two different cell densities. An MI model was created by ligating the left anterior descending coronary artery of healthy BALB/c mice. After two weeks, the cell sheets were applied directly to the MI area and the efficacy of the treatment was evaluated over the next two weeks by monitoring the mice's weight, evaluating the left ventricle ejection fraction, and assessing the histology of the heart tissue at the end of the experiment. Higher cell density showed significantly greater efficiency in MI mice treatment in terms of weight gain and the recovery of ejection fraction. The heart tissue of the groups receiving cell sheets showed human-CD44-positive staining and reduced fibrosis and apoptosis. In conclusion, the hUC-MSC sheets ameliorated heart MI injury in mice and the efficacy of the cell sheets improved as the number of cells increased.
Collapse
Affiliation(s)
| | - Nguyen Trong Binh
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (T.L.-B.P.); (D.P.-H.N.); (T.N.-X.P.)
| | - Truc Le-Buu Pham
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (T.L.-B.P.); (D.P.-H.N.); (T.N.-X.P.)
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Trinh Le Van
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City 700000, Vietnam; (T.L.V.); (N.H.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam;
| | - Nhung Hai Truong
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City 700000, Vietnam; (T.L.V.); (N.H.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam;
| | - Dang Phu-Hai Nguyen
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (T.L.-B.P.); (D.P.-H.N.); (T.N.-X.P.)
| | - Thao Thi-Thu Luu
- Histology-Embryology-Pathology Department, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | - Trang Nguyen-Xuan Pham
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (T.L.-B.P.); (D.P.-H.N.); (T.N.-X.P.)
| | - Tu Cam Tran
- Institute of Tropical Biology, Ho Chi Minh City 700000, Vietnam;
| | - Huyen Thuong-Thi Nguyen
- Divison of Human and Animal Physiology, HCMC University of Education, Ho Chi Minh City 700000, Vietnam;
| | - Nhu Thuy-Trinh
- Vietnam National University, Ho Chi Minh City 700000, Vietnam;
- School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam
| | - Phong Anh Tran
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia;
| |
Collapse
|
17
|
Topoliova K, Harsanyi S, Danisovic L, Ziaran S. Tissue Engineering and Stem Cell Therapy in Neurogenic Bladder Dysfunction: Current and Future Perspectives. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1416. [PMID: 37629705 PMCID: PMC10456466 DOI: 10.3390/medicina59081416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Tissue engineering (TE) is a rapidly evolving biomedical discipline that can play an important role in treating neurogenic bladder dysfunction and compensating for current conventional options' shortcomings. This review aims to analyze the current status of preclinical and clinical trials and discuss what could be expected in the future based on the current state of the art. Although most preclinical studies provide promising results on the effectiveness of TE and stem cell therapies, the main limitations are mainly the very slow translation of preclinical trials to clinical trials, lack of quality research on neurogenic preconditions of neurogenic bladder dysfunction outside of the spinal cord injury and varying therapeutic methods of the existing research that lacks a standardized approach.
Collapse
Affiliation(s)
- Katarina Topoliova
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (K.T.); (S.H.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 833 05 Bratislava, Slovakia
| | - Stefan Harsanyi
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (K.T.); (S.H.); (S.Z.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (K.T.); (S.H.); (S.Z.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
- Regenmed Ltd., Medena 29, 811 02 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (K.T.); (S.H.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 833 05 Bratislava, Slovakia
| |
Collapse
|
18
|
Ahmadi Somaghian S, Pajouhi N, Dezfoulian O, Pirnia A, Kaeidi A, Rasoulian B. The protective effects of hyperoxic pre-treatment in human-derived adipose tissue mesenchymal stem cells against in vitro oxidative stress and a rat model of renal ischaemia-reperfusion. Arch Physiol Biochem 2023:1-10. [PMID: 37506037 DOI: 10.1080/13813455.2023.2238918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Objective: Improvement of cell survival is essential for achieving better clinical outcomes in stem cell therapy. We investigated the effects of hyperoxic pre-treatment (HP) on the viability of human adipose stromal stem cells (ASCs).Materials and Methods: MTT and Western blot tests were used to assess cell viability and the expression of apoptosis-related proteins, respectively. For the in-vivo trial, the rats were subjected to renal ischaemia-reperfusion (IR).Results: The results showed that HP could significantly increase the viability of ASCs and decrease apoptotic markers (Bax/BCL-2 ratio and Caspase-3) compared with control cells. There were some additional effects with regard to the improvement of renal structure and function in the animal model. However, the difference between the treated and non-treated transplanted ASCs failed to reach significance.Conclusion: These results suggested that HP could increase the survival of ASCs against oxidative stress-induced damages in the in-vitro condition, but this strategy was not highly effective in renal IR.
Collapse
Affiliation(s)
- Shahram Ahmadi Somaghian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Naser Pajouhi
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Afshin Pirnia
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Science, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Bahram Rasoulian
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
19
|
Cao Y, Redd MA, Fang C, Mizikovsky D, Li X, Macdonald PS, King GF, Palpant NJ. New Drug Targets and Preclinical Modelling Recommendations for Treating Acute Myocardial Infarction. Heart Lung Circ 2023:S1443-9506(23)00139-7. [PMID: 37230806 DOI: 10.1016/j.hlc.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 05/27/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide and the primary underlying risk factor for heart failure. Despite decades of research and clinical trials, there are no drugs currently available to prevent organ damage from acute ischaemic injuries of the heart. In order to address the increasing global burden of heart failure, drug, gene, and cell-based regeneration technologies are advancing into clinical testing. In this review we highlight the burden of disease associated with AMI and the therapeutic landscape based on market analyses. New studies revealing the role of acid-sensitive cardiac ion channels and other proton-gated ion channels in cardiac ischaemia are providing renewed interest in pre- and post-conditioning agents with novel mechanisms of action that may also have implications for gene- and cell-based therapeutics. Furthermore, we present guidelines that couple new cell technologies and data resources with traditional animal modelling pipelines to help de-risk drug candidates aimed at treating AMI. We propose that improved preclinical pipelines and increased investment in drug target identification for AMI is critical to stem the increasing global health burden of heart failure.
Collapse
Affiliation(s)
- Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Chen Fang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Xichun Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Peter S Macdonald
- Cardiopulmonary Transplant Unit, St Vincent's Hospital, Sydney, NSW, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia.
| |
Collapse
|
20
|
Zhang T, Zhang Q, Yu WC. Mammalian Ste20-like kinase 1 inhibition as a cellular mediator of anoikis in mouse bone marrow mesenchymal stem cells. World J Stem Cells 2023; 15:90-104. [PMID: 37007455 PMCID: PMC10052341 DOI: 10.4252/wjsc.v15.i3.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The low survival rate of mesenchymal stem cells (MSCs) caused by anoikis, a form of apoptosis, limits the therapeutic efficacy of MSCs. As a proapoptotic molecule, mammalian Ste20-like kinase 1 (Mst1) can increase the production of reactive oxygen species (ROS), thereby promoting anoikis. Recently, we found that Mst1 inhibition could protect mouse bone marrow MSCs (mBMSCs) from H2O2-induced cell apoptosis by inducing autophagy and reducing ROS production. However, the influence of Mst1 inhibition on anoikis in mBMSCs remains unclear.
AIM To investigate the mechanisms by which Mst1 inhibition acts on anoikis in isolated mBMSCs.
METHODS Poly-2-hydroxyethyl methacrylate-induced anoikis was used following the silencing of Mst1 expression by short hairpin RNA (shRNA) adenovirus transfection. Integrin (ITGs) were tested by flow cytometry. Autophagy and ITGα5β1 were inhibited using 3-methyladenine and small interfering RNA, respectively. The alterations in anoikis were measured by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling and anoikis assays. The levels of the anoikis-related proteins ITGα5, ITGβ1, and phospho-focal adhesion kinase and the activation of caspase 3 and the autophagy-related proteins microtubules associated protein 1 light chain 3 II/I, Beclin1 and p62 were detected by Western blotting.
RESULTS In isolated mBMSCs, Mst1 expression was upregulated, and Mst1 inhibition significantly reduced cell apoptosis, induced autophagy and decreased ROS levels. Mechanistically, we found that Mst1 inhibition could upregulate ITGα5 and ITGβ1 expression but not ITGα4, ITGαv, or ITGβ3 expression. Moreover, autophagy induced by upregulated ITGα5β1 expression following Mst1 inhibition played an essential role in the protective efficacy of Mst1 inhibition in averting anoikis.
CONCLUSION Mst1 inhibition ameliorated autophagy formation, increased ITGα5β1 expression, and decreased the excessive production of ROS, thereby reducing cell apoptosis in isolated mBMSCs. Based on these results, Mst1 inhibition may provide a promising strategy to overcome anoikis of implanted MSCs.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China
| | - Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China
| | - Wan-Cheng Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China
| |
Collapse
|
21
|
Microfabrication methods for 3D spheroids formation and their application in biomedical engineering. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Wang J, An M, Haubner BJ, Penninger JM. Cardiac regeneration: Options for repairing the injured heart. Front Cardiovasc Med 2023; 9:981982. [PMID: 36712238 PMCID: PMC9877631 DOI: 10.3389/fcvm.2022.981982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiac regeneration is one of the grand challenges in repairing injured human hearts. Numerous studies of signaling pathways and metabolism on cardiac development and disease pave the way for endogenous cardiomyocyte regeneration. New drug delivery approaches, high-throughput screening, as well as novel therapeutic compounds combined with gene editing will facilitate the development of potential cell-free therapeutics. In parallel, progress has been made in the field of cell-based therapies. Transplantation of human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) can partially rescue the myocardial defects caused by cardiomyocyte loss in large animals. In this review, we summarize current cell-based and cell-free regenerative therapies, discuss the importance of cardiomyocyte maturation in cardiac regenerative medicine, and envision new ways of regeneration for the injured heart.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Bernhard Johannes Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Josef M. Penninger
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC – Vienna BioCenter, Vienna, Austria
| |
Collapse
|
23
|
Ai X, Yan B, Witman N, Gong Y, Yang L, Tan Y, Chen Y, Liu M, Lu T, Luo R, Wang H, Chien KR, Wang W, Fu W. Transient secretion of VEGF protein from transplanted hiPSC-CMs enhances engraftment and improves rat heart function post MI. Mol Ther 2023; 31:211-229. [PMID: 35982619 PMCID: PMC9840120 DOI: 10.1016/j.ymthe.2022.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 08/12/2022] [Indexed: 01/28/2023] Open
Abstract
Cell-based therapies offer an exciting and novel treatment for heart repair following myocardial infarction (MI). However, these therapies often suffer from poor cell viability and engraftment rates, which involve many factors, including the hypoxic conditions of the infarct environment. Meanwhile, vascular endothelial growth factor (VEGF) has previously been employed as a therapeutic agent to limit myocardial damage and simultaneously induce neovascularization. This study took an approach to transiently overexpress VEGF protein, in a controlled manner, by transfecting human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with VEGF mRNA prior to transplantation. The conditioning of iPSC-CMs with VEGF mRNA ultimately led to greater survival rates of the transplanted cells, which promoted a stable vascular network in the grafted region. Furthermore, bulk RNA transcriptomics data and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) and AGE-RAGE signaling pathways were significantly upregulated in the VEGF-treated iPSC-CMs group. The over-expression of VEGF from iPSC-CMs stimulated cell proliferation and partially attenuated the hypoxic environment in the infarcted area, resulting in reduced ventricular remodeling. This study provides a valuable solution for the survival of transplanted cells in tissue-engineered heart regeneration and may further promote the application of modified mRNA (modRNA) in the field of tissue engineering.
Collapse
Affiliation(s)
- Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yiqi Gong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Chen
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minglu Liu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Lu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Runjiao Luo
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Wei Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
24
|
Mehrabani M, Mohammadyar S, Rajizadeh MA, Bejeshk MA, Ahmadi B, Nematollahi MH, Mirtajaddini Goki M, Bahrampour Juybari K, Amirkhosravi A. Boosting therapeutic efficacy of mesenchymal stem cells in pulmonary fibrosis: The role of genetic modification and preconditioning strategies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1001-1015. [PMID: 37605719 PMCID: PMC10440137 DOI: 10.22038/ijbms.2023.69023.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/14/2023] [Indexed: 08/23/2023]
Abstract
Pulmonary fibrosis (PF) is the end stage of severe lung diseases, in which the lung parenchyma is replaced by fibrous scar tissue. The result is a remarkable reduction in pulmonary compliance, which may lead to respiratory failure and even death. Idiopathic pulmonary fibrosis (IPF) is the most prevalent form of PF, with no reasonable etiology. However, some factors are believed to be behind the etiology of PF, including prolonged administration of several medications (e.g., bleomycin and amiodarone), environmental contaminant exposure (e.g., gases, asbestos, and silica), and certain systemic diseases (e.g., systemic lupus erythematosus). Despite significant developments in the diagnostic approach to PF in the last few years, efforts to find more effective treatments remain challenging. With their immunomodulatory, anti-inflammatory, and anti-fibrotic properties, stem cells may provide a promising approach for treating a broad spectrum of fibrotic conditions. However, they may lose their biological functions after long-term in vitro culture or exposure to harsh in vivo situations. To overcome these limitations, numerous modification techniques, such as genetic modification, preconditioning, and optimization of cultivation methods for stem cell therapy, have been adopted. Herein, we summarize the previous investigations that have been designed to assess the effects of stem cell preconditioning or genetic modification on the regenerative capacity of stem cells in PF.
Collapse
Affiliation(s)
- Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sohaib Mohammadyar
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahareh Ahmadi
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Kobra Bahrampour Juybari
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Arian Amirkhosravi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Chiang MC, Chern E. More than Antibiotics: Latest Therapeutics in the Treatment and Prevention of Ocular Surface Infections. J Clin Med 2022; 11:4195. [PMID: 35887958 PMCID: PMC9323953 DOI: 10.3390/jcm11144195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Ocular surface infections have been common issues for ophthalmologists for decades. Traditional strategies for infection include antibiotics, antiviral agents, and steroids. However, multiple drug-resistant bacteria have become more common with the prevalence of antibiotic use. Furthermore, an ideal treatment for an infectious disease should not only emphasize eliminating the microorganism but also maintaining clear and satisfying visual acuity. Immunogenetic inflammation, tissue fibrosis, and corneal scarring pose serious threats to vision, and they are not attenuated or prevented by traditional antimicrobial therapeutics. Herein, we collected information about current management techniques including stem-cell therapy, probiotics, and gene therapy as well as preventive strategies related to Toll-like receptors. Finally, we will introduce the latest research findings in ocular drug-delivery systems, which may enhance the bioavailability and efficiency of ocular therapeutics. The clinical application of improved delivery systems and novel therapeutics may support people suffering from ocular surface infections.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
26
|
Fang J, Li JJ, Zhong X, Zhou Y, Lee RJ, Cheng K, Li S. Engineering stem cell therapeutics for cardiac repair. J Mol Cell Cardiol 2022; 171:56-68. [PMID: 35863282 DOI: 10.1016/j.yjmcc.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular disease is the leading cause of death in the world. Stem cell-based therapies have been widely investigated for cardiac regeneration in patients with heart failure or myocardial infarction (MI) and surged ahead on multiple fronts over the past two decades. To enhance cellular therapy for cardiac regeneration, numerous engineering techniques have been explored to engineer cells, develop novel scaffolds, make constructs, and deliver cells or their derivatives. This review summarizes the state-of-art stem cell-based therapeutics for cardiac regeneration and discusses the emerged bioengineering approaches toward the enhancement of therapeutic efficacy of stem cell therapies in cardiac repair. We cover the topics in stem cell source and engineering, followed by stem cell-based therapies such as cell aggregates and cell sheets, and biomaterial-mediated stem cell therapies such as stem cell delivery with injectable hydrogel, three-dimensional scaffolds, and microneedle patches. Finally, we discuss future directions and challenges of engineering stem cell therapies for clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jennifer J Li
- Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Xintong Zhong
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Ke Cheng
- Department of Biomedical Engineering, North Carolina State University, NC, USA
| | - Song Li
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
27
|
Yao L, Hu X, Dai K, Yuan M, Liu P, Zhang Q, Jiang Y. Mesenchymal stromal cells: promising treatment for liver cirrhosis. Stem Cell Res Ther 2022; 13:308. [PMID: 35841079 PMCID: PMC9284869 DOI: 10.1186/s13287-022-03001-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022] Open
Abstract
Liver fibrosis is a wound-healing process that occurs in response to severe injuries and is hallmarked by the excessive accumulation of extracellular matrix or scar tissues within the liver. Liver fibrosis can be either acute or chronic and is induced by a variety of hepatotoxic causes, including lipid deposition, drugs, viruses, and autoimmune reactions. In advanced fibrosis, liver cirrhosis develops, a condition for which there is no successful therapy other than liver transplantation. Although liver transplantation is still a viable option, numerous limitations limit its application, including a lack of donor organs, immune rejection, and postoperative complications. As a result, there is an immediate need for a different kind of therapeutic approach. Recent research has shown that the administration of mesenchymal stromal cells (MSCs) is an attractive treatment modality for repairing liver injury and enhancing liver regeneration. This is accomplished through the cell migration into liver sites, immunoregulation, hepatogenic differentiation, as well as paracrine mechanisms. MSCs can also release a huge variety of molecules into the extracellular environment. These molecules, which include extracellular vesicles, lipids, free nucleic acids, and soluble proteins, exert crucial roles in repairing damaged tissue. In this review, we summarize the characteristics of MSCs, representative clinical study data, and the potential mechanisms of MSCs-based strategies for attenuating liver cirrhosis. Additionally, we examine the processes that are involved in the MSCs-dependent modulation of the immune milieu in liver cirrhosis. As a result, our findings lend credence to the concept of developing a cell therapy treatment for liver cirrhosis that is premised on MSCs. MSCs can be used as a candidate therapeutic agent to lengthen the survival duration of patients with liver cirrhosis or possibly reverse the condition in the near future.
Collapse
Affiliation(s)
- Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
28
|
Robinson AM, Stavely R, Miller S, Eri R, Nurgali K. Mesenchymal stem cell treatment for enteric neuropathy in the Winnie mouse model of spontaneous chronic colitis. Cell Tissue Res 2022; 389:41-70. [PMID: 35536444 DOI: 10.1007/s00441-022-03633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gut inflammation with periods of acute flares and remission. Beneficial effects of a single dose of mesenchymal stem cell (MSC)-based treatment have been demonstrated in acute models of colitis. No studies investigated therapeutic effects of MSCs for the attenuation of enteric neuropathy in a chronic model of colitis. The short and long-term effects of MSC treatment in modulating inflammation and damage to the enteric nervous system (ENS) were studied in the Winnie mouse model of spontaneous chronic colitis highly representative of human IBD. Winnie mice received a single dose of either 1 × 106 human bone marrow-derived MSCs or 100µL PBS by intracolonic enema. C57BL/6 mice received 100µL PBS. Colon tissues were collected at 3 and 60 days post MSC administration to evaluate the short-term and long-term effects of MSCs on inflammation and enteric neuropathy by histological and immunohistochemical analyses. In a separate set of experiments, multiple treatments with 4 × 106 and 2 × 106 MSCs were performed and tissue collected at 3 days post treatment. Chronic intestinal inflammation in Winnie mice was associated with persistent diarrhea, perianal bleeding, morphological changes, and immune cell infiltration in the colon. Significant changes to the ENS, including impairment of cholinergic, noradrenergic and sensory innervation, and myenteric neuronal loss were prominent in Winnie mice. Treatment with a single dose of bone marrow-derived MSCs was ineffective in attenuating chronic inflammation and enteric neuropathy in Winnie.
Collapse
Affiliation(s)
- Ainsley M Robinson
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah Miller
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, TAS, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Cardiac Cell Therapy with Pluripotent Stem Cell-Derived Cardiomyocytes: What Has Been Done and What Remains to Do? Curr Cardiol Rep 2022; 24:445-461. [PMID: 35275365 PMCID: PMC9068652 DOI: 10.1007/s11886-022-01666-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Exciting pre-clinical data presents pluripotent stem cell-derived cardiomyocytes (PSC-CM) as a novel therapeutic prospect following myocardial infarction, and worldwide clinical trials are imminent. However, despite notable advances, several challenges remain. Here, we review PSC-CM pre-clinical studies, identifying key translational hurdles. We further discuss cell production and characterization strategies, identifying markers that may help generate cells which overcome these barriers. RECENT FINDINGS PSC-CMs can robustly repopulate infarcted myocardium with functional, force generating cardiomyocytes. However, current differentiation protocols produce immature and heterogenous cardiomyocytes, creating related issues such as arrhythmogenicity, immunogenicity and poor engraftment. Recent efforts have enhanced our understanding of cardiovascular developmental biology. This knowledge may help implement novel differentiation or gene editing strategies that could overcome these limitations. PSC-CMs are an exciting therapeutic prospect. Despite substantial recent advances, limitations of the technology remain. However, with our continued and increasing biological understanding, these issues are addressable, with several worldwide clinical trials anticipated in the coming years.
Collapse
|
30
|
Luo Y, Liang F, Wan X, Liu S, Fu L, Mo J, Meng X, Mo Z. Hyaluronic Acid Facilitates Angiogenesis of Endothelial Colony Forming Cell Combining With Mesenchymal Stem Cell via CD44/ MicroRNA-139-5p Pathway. Front Bioeng Biotechnol 2022; 10:794037. [PMID: 35350177 PMCID: PMC8957954 DOI: 10.3389/fbioe.2022.794037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Stem cells and progenitor cells have been identified as potential new therapeutic options for severe limb ischemia to induce angiogenesis, and hyaluronic acid (HA) is commonly applied as a biomaterial in tissue engineering. However, the efficiency of HA combined with human umbilical cord blood-derived endothelial colony forming cells (ECFCs) and human umbilical-derived mesenchymal stem cells (MSCs) on angiogenesis is unclear. In the present study, we showed that HA promoted angiogenesis induced by MSCs-ECFCs in Matrigel plugs and promoted blood perfusion of murine ischemic muscles. Laser confocal microscopy revealed that human-derived cells grew into the host vasculature and formed connections, as shown by mouse-specific CD31+/human-specific CD31+ double staining. In vitro assays revealed that HA supported cell proliferation and migration, enhanced CD44 expression and reduced microRNA (miR)-139-5p expression. Further analysis revealed that miR-139-5p expression was negatively regulated by CD44 in ECFCs. Flow cytometry assays showed that HA increased CD31 positive cells proportion in MSC-ECFC and could be reversed by miR-139-5p mimics transfection. Moreover, the improvement of MSC-ECFC proliferation and migration induced by HA could be blocked by upregulation of miR-139-5p expression. In conclusion, HA facilitates angiogenesis of MSCs-ECFCs, and this positive effect be associated with activation of the CD44/miR-139-5p pathway, providing a promising strategy for improving severe limb ischemia.
Collapse
Affiliation(s)
- Yufang Luo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Fang Liang
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Shengping Liu
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Lanfang Fu
- Department of Endocrinology, Haikou People’s Hospital and Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Jiake Mo
- School of Medicine, Hunan Normal University, Changsha, China
| | - Xubiao Meng
- Department of Endocrinology, Haikou People’s Hospital and Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- *Correspondence: Xubiao Meng, ; Zhaohui Mo,
| | - Zhaohui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
- *Correspondence: Xubiao Meng, ; Zhaohui Mo,
| |
Collapse
|
31
|
Chiang MC, Chern E. Current Development, Obstacle and Futural Direction of Induced Pluripotent Stem Cell and Mesenchymal Stem Cell Treatment in Degenerative Retinal Disease. Int J Mol Sci 2022; 23:ijms23052529. [PMID: 35269671 PMCID: PMC8910526 DOI: 10.3390/ijms23052529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Degenerative retinal disease is one of the major causes of vision loss around the world. The past several decades have witnessed emerging development of stem cell treatment for retinal disease. Nevertheless, sourcing stem cells remains controversial due to ethical concerns and their rarity. Furthermore, induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are both isolated from patients’ mature tissues; thus, issues such as avoiding moral controversy and adverse events related to immunosuppression and obtaining a large number of cells have opened a new era in regenerative medicine. This review focuses on the current application and development, clinical trials, and latest research of stem cell therapy, as well as its limitations and future directions.
Collapse
|
32
|
Yang Y, Gao J, Wang S, Wang W, Zhu FL, Wang X, Liang S, Feng Z, Lin S, Zhang L, Chen X, Cai G. Efficacy of umbilical cord mesenchymal stem cell transfusion for the treatment of severe AKI: a protocol for a randomised controlled trial. BMJ Open 2022; 12:e047622. [PMID: 35190406 PMCID: PMC8862499 DOI: 10.1136/bmjopen-2020-047622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a common and severe clinical problem that is associated with high mortality, a long hospital stays and high healthcare resource consumption. Approximately a quarter of AKI survivors will develop chronic kidney disease. Mesenchymal stem cells (MSCs) are multipotent stem cells with antiapoptotic, immunomodulatory, antioxidative and proangiogenic properties. Therefore, MSCs have been considered as a potential new therapy for the treatment of AKI. Several clinical trials have been performed, but the results have been inconsistent. This trial investigated whether MSCs can improve renal recovery and mortality in patients with severe AKI. METHODS AND ANALYSIS One hundred subjects suffering from severe AKI will participate in this patient-blinded, randomised, placebo-controlled, parallel design clinical trial. Participants will be randomly assigned to receive two doses of MSCs or placebo (saline) on days 0 and 7. Urinary biomarkers of renal injury and repair will be measured using commercially available ELISA kits. The main outcome measures are changes in renal function levels within the first 28 days following MSC infusion. ETHICS AND DISSEMINATION The study was approved by the Ethics Committee of the Chinese PLA General Hospital. The findings of the study will be disseminated through public and scientific channels. TRIAL REGISTRATION NUMBER NCT04194671.
Collapse
Affiliation(s)
- Yuanjun Yang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Jianjun Gao
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Siyang Wang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Wenjuan Wang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Fang-Lei Zhu
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Xiaolong Wang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Shuang Liang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Zhe Feng
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Shupeng Lin
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Li Zhang
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Soltani S, Emadi R, Haghjooy Javanmard S, Kharaziha M, Rahmati A, Thakur VK, Lotfian S. Development of an Injectable Shear-Thinning Nanocomposite Hydrogel for Cardiac Tissue Engineering. Gels 2022; 8:121. [PMID: 35200502 PMCID: PMC8871917 DOI: 10.3390/gels8020121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) offer a promising therapeutic method for cardiac tissue regeneration. However, to monitor the fate of MSCs for tissue repair, a better stem cell delivery carrier is needed. Developing a unique injectable and shear-thinning dual cross-linked hybrid hydrogel for MSC delivery for cardiac tissue engineering is highly desirable. This hydrogel was synthesised using guest: host reaction based on alginate-cyclodextrin (Alg-CD) and adamantane-graphene oxide (Ad-GO). Here, the role of macromere concentration (10 and 12%) on the MSC function is discussed. Our hybrid hydrogels reveal a suitable oxygen pathway required for cell survival. However, this value is strongly dependent on the macromere concentrations, while the hydrogels with 12% macromere concentration (2DC12) significantly enhanced the oxygen permeability value (1.16-fold). Moreover, after two weeks of culture, rat MSCs (rMSCs) encapsulated in Alg-GO hydrogels expressed troponin T (TNT) and GATA4 markers. Noticeably, the 2DC12 hydrogels enhance rMSCs differentiation markers (1.30-times for TNT and 1.21-times for GATA4). Overall, our findings indicate that tuning the hydrogel compositions regulates the fate of encapsulated rMSCs within hydrogels. These outcomes may promote the advancement of new multifunctional platforms that consider the spatial and transient guidelines of undifferentiated cell destiny and capacity even after transplantation for heart tissue regeneration.
Collapse
Affiliation(s)
- Samaneh Soltani
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (S.S.); (R.E.); (M.K.)
| | - Rahmatollah Emadi
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (S.S.); (R.E.); (M.K.)
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mahshid Kharaziha
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (S.S.); (R.E.); (M.K.)
| | - Abbas Rahmati
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Saeid Lotfian
- Faculty of Engineering, University of Strathclyde, Glasgow G4 0LZ, UK
| |
Collapse
|
34
|
Pang H, Zhou Y, Wang J, Wu H, Liu X, Gao F, Xiao Z. Berberine Influences the Survival of Fat Grafting by Inhibiting Autophagy and Apoptosis of Human Adipose Derived Mesenchymal Stem Cells. Drug Des Devel Ther 2021; 15:4795-4809. [PMID: 34876804 PMCID: PMC8643163 DOI: 10.2147/dddt.s337215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Human adipose-derived mesenchymal stem cells (ADSCs) have the potential to be applied to solid organ treatments. However, tissue regeneration is limited by the death of transplanted cells. Ischemia is the main cause of the poor outcome. This study aimed to investigate the effect of berberine (BBR) on ADSCs after fat grafting. Methods The antioxidant BBR on apoptosis and autophagy of ADSCs in vitro ischemia model was induced by hypoxia and serum deprivation (HY/SD). The autophagy promoter rapamycin and autophagy inhibitor 3-MA were incubated separately to investigate the crosstalk between autophagy and apoptosis. Pathway inhibitors further verified whether the autophagy and apoptosis were regulated by AMPK/mTor signaling pathway. Fat survival, fibrosis, level of inflammatory cell infiltration, and the effect of angiogenesis after BBR treatment were observed in vivo. Results BBR could reduce ROS production and reverse the decreasing cell survival rate. HY/SD would induce apoptosis and autophagy in ADSCs, and BBR could alleviate these processes. After interfering with the level of autophagy, we also proved that apoptosis was regulated by autophagy and changed accordingly. The results also indicated that BBR could protect against autophagy and apoptosis of ADSCs through AMPK/mTor pathway. The treated human-derived adipose tissue was transplanted into BALB/c nude mice, and with the intervention of BBR, the fat grafting had a higher survival rate, lower inflammatory cell infiltration and fibrosis level. Conclusion Our present study revealed that BBR was a promising anti-autophagy and apoptosis agent for improving the survival rate of ADSCs during cell transplantation.
Collapse
Affiliation(s)
- Hao Pang
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People's Republic of China
| | - Yongting Zhou
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People's Republic of China
| | - Jie Wang
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People's Republic of China
| | - Hao Wu
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People's Republic of China
| | - Xueyi Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People's Republic of China
| | - Feng Gao
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People's Republic of China
| | - Zhibo Xiao
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People's Republic of China
| |
Collapse
|
35
|
Ahmed HH, Aglan HA, Mahmoud NS, Aly RM. Preconditioned human dental pulp stem cells with cerium and yttrium oxide nanoparticles effectively ameliorate diabetic hyperglycemia while combatting hypoxia. Tissue Cell 2021; 73:101661. [PMID: 34656024 DOI: 10.1016/j.tice.2021.101661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
The development of efficient insulin producing cells (IPC) induction system is fundamental for the regenerative clinical applications targeting Diabetes Mellitus. This study was set to generate IPC from human dental pulp stem cells (hDPSCs) capable of surviving under hypoxic conditions in vitro and in vivo. METHODS hDPSCs were cultured in IPCs induction media augmented with Cerium or Yttrium oxide nanoparticles along with selected growth factors & cytokines. The generated IPC were subjected to hypoxic stress in vitro to evaluate the ability of the nanoparticles to combat hypoxia. Next, they were labelled and implanted into diabetic rats. Twenty eight days later, blood glucose and serum insulin levels, hepatic hexokinase and glucose-6-phosphate dehydrogenase activities were measured. Pancreatic vascular endothelial growth factor (VEGF), pancreatic duodenal homeobox1 (Pdx-1), hypoxia inducible factor 1 alpha (HIF-1α) and Caspase-3 genes expression level were evaluated. RESULTS hDPSCs were successfully differentiated into IPCs after incubation with the inductive media enriched with nanoparticles. The generated IPCs released significant amounts of insulin in response to increasing glucose concentration both in vitro & in vivo. The generated IPCs showed up-regulation in the expression levels of anti-apoptotic genes in concomitant with down-regulation in the expression levels of hypoxic, and apoptotic genes. The in vivo study confirmed the homing of PKH-26-labeled cells in pancreas of treated groups. A significant up-regulation in the expression of pancreatic VEGF and PDX-1 genes associated with significant down-regulation in the expression of pancreatic HIF-1α and caspase-3 was evident. CONCLUSION The achieved results highlight the promising role of the Cerium & Yttrium oxide nanoparticles in promoting the generation of IPCs that have the ability to combat hypoxia and govern diabetes mellitus.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, National Research Centre, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hadeer A Aglan
- Hormones Department, National Research Centre, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Nadia S Mahmoud
- Hormones Department, National Research Centre, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Riham M Aly
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt; Basic Dental Science Department, National Research Centre, Giza, Egypt.
| |
Collapse
|
36
|
Tani H, Tohyama S, Kishino Y, Kanazawa H, Fukuda K. Production of functional cardiomyocytes and cardiac tissue from human induced pluripotent stem cells for regenerative therapy. J Mol Cell Cardiol 2021; 164:83-91. [PMID: 34822838 DOI: 10.1016/j.yjmcc.2021.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022]
Abstract
The emergence of human induced pluripotent stem cells (hiPSCs) has revealed the potential for curing end-stage heart failure. Indeed, transplantation of hiPSC-derived cardiomyocytes (hiPSC-CMs) may have applications as a replacement for heart transplantation and conventional regenerative therapies. However, there are several challenges that still must be overcome for clinical applications, including large-scale production of hiPSCs and hiPSC-CMs, elimination of residual hiPSCs, purification of hiPSC-CMs, maturation of hiPSC-CMs, efficient engraftment of transplanted hiPSC-CMs, development of an injection device, and avoidance of post-transplant arrhythmia and immunological rejection. Thus, we developed several technologies based on understanding of the metabolic profiles of hiPSCs and hiPSC derivatives. In this review, we outline how to overcome these hurdles to realize the transplantation of hiPSC-CMs in patients with heart failure and introduce cutting-edge findings and perspectives for future regenerative therapy.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
37
|
Kim YJ, Kim SW, Lee JR, Um SH, Joung YK, Bhang SH. Comparing the cytotoxic effect of light-emitting and organic light-emitting diodes based light therapy on human adipose-derived stem cells. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Campiglio CE, Carcano A, Draghi L. RGD-pectin microfiber patches for guiding muscle tissue regeneration. J Biomed Mater Res A 2021; 110:515-524. [PMID: 34423891 DOI: 10.1002/jbm.a.37301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Opportunely arranged microscaled fibers offer an attractive 3D architecture for tissue regeneration as they may enhance and stimulate specific tissue regrowth. Among different scaffolding options, encapsulating cells in degradable hydrogel microfibers appears as particularly attractive strategy. Hydrogel patches, in fact, offer a highly hydrated environment, allow easy incorporation of biologically active molecules, and can easily adapt to implantation site. In addition, microfiber architecture is intrinsically porous and can improve mass transport, vascularization, and cell survival after grafting. Anionic polysaccharides, as pectin or the more popular alginate, represent a particularly promising choice for the fabrication of cell-laden patches, due to their extremely mild gelation in the presence of divalent ions and widely accepted biocompatibility. In this study, to combine the favorable properties of hydrogel and fibrous architecture, a simple coaxial flow wet-spinning system was used to prepare cell-laden, 3D fibrous patches using RGD-modified pectin. Rapid fabrication of coherent self-standing patches, with diameter in the range of 100-200 μm and high cell density, was possible by accurate choice of pectin and calcium ions concentrations. Cells were homogeneously dispersed throughout the microfibers and remained highly viable for up to 2 weeks, when the initial stage of myotubes formation was observed. Modified-pectin microfibers appear as promising scaffold to support muscle tissue regeneration, due to their inherent porosity, the favorable cell-material interaction, and the possibility to guide cell alignment toward a functional tissue.
Collapse
Affiliation(s)
- Chiara Emma Campiglio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM-National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Anna Carcano
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM-National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| |
Collapse
|
39
|
Zhang K, Sun H, Cao H, Jia Y, Shu X, Cao H, Zhang Y, Yang X. The impact of recipient age on the effects of umbilical cord mesenchymal stem cells on HBV-related acute-on-chronic liver failure and liver cirrhosis. Stem Cell Res Ther 2021; 12:466. [PMID: 34416908 PMCID: PMC8379867 DOI: 10.1186/s13287-021-02544-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background The results of a previous study verified that umbilical cord mesenchymal stem cells (UCMSCs) have good therapeutic effects for the treatment of HBV-related acute-on-chronic liver failure (ACLF) and liver cirrhosis (LC). Nevertheless, it is still unknown whether the effects of UCMSCs are affected by recipient age. Methods Patients treated with UCMSCs who met the criteria of HBV-related ACLF and liver cirrhosis were identified in this retrospective observational study. Patients were divided into subgroups according to the World Health Organization (WHO) age criteria (< 45 vs. ≥ 45 years). Group A included young ACLF patients (< 45 y), and group B included older ACLF patients (≥ 45 y). Young LC patients (< 45 y) were assigned to group C, and group D included older LC patients (≥ 45 y). Patients’ clinical characteristics, demographics, biochemical factors, and model for end-stage liver disease (MELD) scores were compared for 24 weeks. Results Sixty-four ACLF patients and 59 LC patients were enrolled in this study. Compared with patients in groups B and C, patients in group A did not show significant superiority in terms of the levels of ALT, AST, TBIL, AFP, and PTA and MELD scores. However, the median decrease and cumulative decrease in the TBIL and ALT levels of patients in group C were larger than those of patients in group D after four weeks of UCMSC transfusions. For older patients (≥ 45 y), the cumulative decrease and the median decrease in the TBIL of ACLF patients were significantly greater than those of LC patients after UCMSC treatment. However, the median decrease in ALT levels of ACLF patients was significantly greater than that of LC patients during UCMSC treatment, and the cumulative decrease in ALT levels of ACLF patients was significantly greater than that of LC patients at all time points. Conclusion The therapeutic effects of UCMSCs for HBV-related acute-on-chronic liver failure and liver cirrhosis varied partly by patient age. Assessing patient age is necessary prior to UCMSC clinical use. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02544-x.
Collapse
Affiliation(s)
- Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Haixia Sun
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huijuan Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yifan Jia
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xin Shu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yufeng Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Xiaoan Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
40
|
Kusamori K. Development of Advanced Cell-Based Therapy by Regulating Cell-Cell Interactions. Biol Pharm Bull 2021; 44:1029-1036. [PMID: 34334488 DOI: 10.1248/bpb.b21-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-based therapy for disease treatment involves the transplantation of cells obtained either from self or others into relevant patients. While cells constituting the body tissues maintain homeostasis by performing remarkable functions through complicated cell-cell interactions, transplanted cells, which are generally cultured as a monolayer, are unable to recapitulate similar interactions in vivo. The regulation of cell-cell interactions can immensely increase the function and therapeutic effect of transplanted cells. This review aims to summarize the methods of regulating cell-cell interactions that could significantly increase the therapeutic effects of transplanted cells. The first method involves the generation of multicellular spheroids by three-dimensional cell culture. Spheroid formation greatly improved the survival and therapeutic effects of insulin-secreting cells in diabetic mice after transplantation. Moreover, mixed multicellular spheroids, composed of insulin-secreting cells and aorta endothelial cells or fibroblasts, were found to significantly improve insulin secretion. Secondly, adhesamine derivatives, which are low-molecular-weight compounds that accelerate cell adhesion and avoid anoikis and anchorage-dependent apoptosis, have been used to improve the survival of bone marrow-derived cells and significantly enhanced the therapeutic effects in a diabetic mouse model of delayed wound healing. Finally, the avidin-biotin complex method, a cell surface modification method, has been applied to endow tumor-homing mesenchymal stem cells with anti-tumor ability by modifying them with doxorubicin-encapsulated liposomes. The modified cells showed excellent effectiveness in cell-based cancer-targeting therapy. The discussed methods can be useful tools for advanced cell-based therapy, promising future clinical applications.
Collapse
Affiliation(s)
- Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
41
|
Pharmacological Preconditioning Improves the Viability and Proangiogenic Paracrine Function of Hydrogel-Encapsulated Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:6663467. [PMID: 34367293 PMCID: PMC8342149 DOI: 10.1155/2021/6663467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
The efficacy of cell therapy is limited by low retention and survival of transplanted cells in the target tissues. In this work, we hypothesize that pharmacological preconditioning with celastrol, a natural potent antioxidant, could improve the viability and functions of mesenchymal stromal cells (MSC) encapsulated within an injectable scaffold. Bone marrow MSCs from rat (rMSC) and human (hMSC) origin were preconditioned for 1 hour with celastrol 1 μM or vehicle (DMSO 0.1% v/v), then encapsulated within a chitosan-based thermosensitive hydrogel. Cell viability was compared by alamarBlue and live/dead assay. Paracrine function was studied first by quantifying the proangiogenic growth factors released, followed by assessing scratched HUVEC culture wound closure velocity and proliferation of HUVEC when cocultured with encapsulated hMSC. In vivo, the proangiogenic activity was studied by evaluating the neovessel density around the subcutaneously injected hydrogel after one week in rats. Preconditioning strongly enhanced the viability of rMSC and hMSC compared to vehicle-treated cells, with 90% and 75% survival versus 36% and 58% survival, respectively, after 7 days in complete media and 80% versus 64% survival for hMSC after 4 days in low serum media (p < 0.05). Celastrol-treated cells increased quantities of proangiogenic cytokines compared to vehicle-pretreated cells, with a significant 3.0-fold and 1.8-fold increase of VEGFa and SDF-1α, respectively (p < 0.05). The enhanced paracrine function of preconditioned MSC was demonstrated by accelerated growth and wound closure velocity of injured HUVEC monolayer (p < 0.05) in vitro. Moreover, celastrol-treated cells, but not vehicle-treated cells, led to a significant increase of neovessel density in the peri-implant region after one week in vivo compared to the control (blank hydrogel). These results suggest that combining cell pretreatment with celastrol and encapsulation in hydrogel could potentiate MSC therapy for many diseases, benefiting particularly ischemic diseases.
Collapse
|
42
|
Sun X, Wu J, Qiang B, Romagnuolo R, Gagliardi M, Keller G, Laflamme MA, Li RK, Nunes SS. Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte engraftment and cardiac function after infarction in rats. Sci Transl Med 2021; 12:12/562/eaax2992. [PMID: 32967972 DOI: 10.1126/scitranslmed.aax2992] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer an unprecedented opportunity to remuscularize infarcted human hearts. However, studies have shown that most hiPSC-CMs do not survive after transplantation into the ischemic myocardial environment, limiting their regenerative potential and clinical application. We established a method to improve hiPSC-CM survival by cotransplanting ready-made microvessels obtained from adipose tissue. Ready-made microvessels promoted a sixfold increase in hiPSC-CM survival and superior functional recovery when compared to hiPSC-CMs transplanted alone or cotransplanted with a suspension of dissociated endothelial cells in infarcted rat hearts. Microvessels showed unprecedented persistence and integration at both early (~80%, week 1) and late (~60%, week 4) time points, resulting in increased vessel density and graft perfusion, and improved hiPSC-CM maturation. These findings provide an approach to cell-based therapies for myocardial infarction, whereby incorporation of ready-made microvessels can improve functional outcomes in cell replacement therapies.
Collapse
Affiliation(s)
- Xuetao Sun
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Jun Wu
- Division of Cardiovascular Surgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mark Gagliardi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada.,Division of Cardiovascular Surgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada. .,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
43
|
Guan Z, Chen S, Pan F, Fan L, Sun D. Effects of Gene Delivery Approaches on Differentiation Potential and Gene Function of Mesenchymal Stem Cells. IEEE Trans Biomed Eng 2021; 69:83-95. [PMID: 34101578 DOI: 10.1109/tbme.2021.3087129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Introduction of a gene to mesenchymal stem cells (MSCs) is a well-known strategy to purposely manipulate the cell fate and further enhance therapeutic performance in cell-based therapy. Viral and chemical approaches for gene delivery interfere with differentiation potential. Although microinjection as a physical delivery method is commonly used for transfection, its influence on MSC cell fate is not fully understood. The current study aimed to evaluate the effects of four nonviral gene delivery methods on stem cell multi-potency. The four delivery methods are robotic microinjection, polyethylenimine (PEI), cationic liposome (cLipo), and calcium phosphate nanoparticles (CaP). Among the four methods, microinjection has exhibited the highest transfection efficiency of ~60%, while the three others showed lower efficiency of 10-25%. Robotic microinjection preserved fibroblast-like cell morphology, stress fibre intactness, and mature focal adhesion complex, while PEI caused severe cytotoxicity. No marked differentiation bias was observed after microinjection and cLipo treatment. By contrast, CaP-treated MSCs exhibited excessive osteogenesis, while PEI-treated MSCs showed excessive adipogenesis. Robotic microinjection system was used to inject the CRISPR/Cas9-encoding plasmid to knock out PPAR gene in MSCs, and the robotic microinjection did not interfere with PPAR function in differentiation commitment. Meanwhile, the bias in osteo-adipogenic differentiation exhibited in CaP and PEI-treated MSCs after PPAR knockout via chemical carriers. Our results indicate that gene delivery vehicles variously disturb MSCs differentiation and interfere with exogenous gene function. Our findings further suggest that robotic microinjection offers a promise of generating genetically modified MSCs without disrupting stem cell multi-potency and therapeutic gene function.
Collapse
|
44
|
Hu XM, Zhang Q, Zhou RX, Wu YL, Li ZX, Zhang DY, Yang YC, Yang RH, Hu YJ, Xiong K. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications. World J Stem Cells 2021; 13:386-415. [PMID: 34136072 PMCID: PMC8176847 DOI: 10.4252/wjsc.v13.i5.386] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based therapy raises hopes for a better approach to promoting tissue repair and functional recovery. However, transplanted stem cells show a high death percentage, creating challenges to successful transplantation and prognosis. Thus, it is necessary to investigate the mechanisms underlying stem cell death, such as apoptotic cascade activation, excessive autophagy, inflammatory response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. Targeting the molecular pathways involved may be an efficient strategy to enhance stem cell viability and maximize transplantation success. Notably, a more complex network of cell death receives more attention than one crucial pathway in determining stem cell fate, highlighting the challenges in exploring mechanisms and therapeutic targets. In this review, we focus on programmed cell death in transplanted stem cells. We also discuss some promising strategies and challenges in promoting survival for further study.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rui-Xin Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yan-Lin Wu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rong-Hua Yang
- Department of Burns, Fo Shan Hospital of Sun Yat-Sen University, Foshan 528000, Guangdong Province, China
| | - Yong-Jun Hu
- Department of Cardiovascular Medicine, Hunan People's Hospital (the First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
45
|
Stulpinas A, Uzusienis T, Imbrasaite A, Krestnikova N, Unguryte A, Kalvelyte AV. Cell-cell and cell-substratum contacts in the regulation of MAPK and Akt signalling: Importance in therapy, biopharmacy and bioproduction. Cell Signal 2021; 84:110034. [PMID: 33933583 DOI: 10.1016/j.cellsig.2021.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
The use of cultured cells as a tool for research, precision medicine, biopharmacy, and biomanufacturing is constantly increasing. In parallel, the role of cell-cell and cell-substratum contacts in cell functioning is increasingly validated. Adhesion signalling plays a key role here. The activity of cell fate-regulating signalling molecules is an important factor in determining cell behaviour, as well as their response to treatment, depending on cell phenotypic status and location in the body. Three cellular state models (adherent, single cells in suspension, and aggregated cells) were compared for cell signalling, including focal adhesion (FAK), mitogen-activated (MAPK), as well as Akt protein kinases, and transcription factor cJun, by using lung adenocarcinoma A549, muscle-derived stem Myo, as well as primary lung cancer cell lines. Survival of both A549 and Myo cells was dependent on kinases Akt and ERK in detached conditions. Intercellular contacts in aggregates promoted activation of Akt and ERK, and cell survival. Loss of contacts with the substrate increased phosphorylation of MAP kinases JNK and p38, while decreased Akt phosphorylation by processes involving FAK. Unexpectedly, detachment increased phosphorylation of antiapoptotic kinase ERK in A549, while in Myo stem cells ERK phosphorylation was downregulated. JNK target transcription factor cJun protein level was markedly diminished by contacts between cells possibly involving mechanism of proteasomal degradation. Furthermore, studies revealed the opposite dependence of molecules of the same signalling pathway - phospho-cJun and phospho-JNK - on cell culture density. Differences in ERK activation under detachment conditions indicate that targeting of prosurvival kinases during anoikis should be different in different cells. Moreover, the outcome of JNK activation in cells may depend on the amount of cJun, which is determined by cell-cell contacts.
Collapse
Affiliation(s)
- Aurimas Stulpinas
- Dept. of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10257, Lithuania
| | - Tomas Uzusienis
- Dept. of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10257, Lithuania
| | - Ausra Imbrasaite
- Dept. of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10257, Lithuania
| | - Natalija Krestnikova
- Dept. of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10257, Lithuania
| | - Ausra Unguryte
- Centre for Innovative Medicine, Santariškių g. 5, LT-08406, Lithuania
| | - Audrone V Kalvelyte
- Dept. of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10257, Lithuania.
| |
Collapse
|
46
|
Rheault-Henry M, White I, Grover D, Atoui R. Stem cell therapy for heart failure: Medical breakthrough, or dead end? World J Stem Cells 2021; 13:236-259. [PMID: 33959217 PMCID: PMC8080540 DOI: 10.4252/wjsc.v13.i4.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure continues to be one of the leading causes of morbidity and mortality worldwide. Myocardial infarction is the primary causative agent of chronic heart failure resulting in cardiomyocyte necrosis and the subsequent formation of fibrotic scar tissue. Current pharmacological and non-pharmacological therapies focus on managing symptoms of heart failure yet remain unable to reverse the underlying pathology. Heart transplantation usually cannot be relied on, as there is a major discrepancy between the availability of donors and recipients. As a result, heart failure carries a poor prognosis and high mortality rate. As the heart lacks significant endogenous regeneration potential, novel therapeutic approaches have incorporated the use of stem cells as a vehicle to treat heart failure as they possess the ability to self-renew and differentiate into multiple cell lineages and tissues. This review will discuss past, present, and future clinical trials, factors that influence stem cell therapy outcomes as well as ethical and safety considerations. Preclinical and clinical studies have shown a wide spectrum of outcomes when applying stem cells to improve cardiac function. This may reflect the infancy of clinical trials and the limited knowledge on the optimal cell type, dosing, route of administration, patient parameters and other important variables that contribute to successful stem cell therapy. Nonetheless, the field of stem cell therapeutics continues to advance at an unprecedented pace. We remain cautiously optimistic that stem cells will play a role in heart failure management in years to come.
Collapse
Affiliation(s)
| | - Ian White
- Northern Ontario School of Medicine, Sudbury P3E 2C6, Ontario, Canada
| | - Diya Grover
- Ross University School of Medicine, St. Michael BB11093, Barbados
| | - Rony Atoui
- Division of Cardiac Surgery, Health Sciences North, Northern Ontario School of Medicine, Sudbury P3E 3Y9, Ontario, Canada
| |
Collapse
|
47
|
Hsu TW, Lu YJ, Lin YJ, Huang YT, Hsieh LH, Wu BH, Lin YC, Chen LC, Wang HW, Chuang JC, Fang YQ, Huang CC. Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury. Biomaterials 2021; 272:120765. [PMID: 33780686 DOI: 10.1016/j.biomaterials.2021.120765] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/02/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022]
Abstract
Ischemic stroke, and the consequent brain cell death, is a common cause of death and disability worldwide. Current treatments that primarily aim to relieve symptoms are relatively inefficient in achieving brain tissue regeneration and functional recovery, and thus novel therapeutic options are urgently needed. Although cell-based therapies have shown promise for treating the infarcted brain, a recurring challenge is the inadequate retention and engraftment of transplanted cells at the target tissue, thereby limiting the ultimate therapeutic efficacy. Here, we show that transplantation of preassembled three-dimensional (3D) spheroids of mesenchymal stem cells (MSCs) and vascular endothelial cells (ECs) results in significantly improved cell retention and survival compared with conventional mixed-cell suspensions. The transplanted 3D spheroids exhibit notable neuroprotective, proneurogenic, proangiogenic and anti-scarring potential as evidenced by clear extracellular matrix structure formation and paracrine factor expression and secretion; this ultimately results in increased structural and motor function recovery in the brain of an ischemic stroke mouse model. Therefore, transplantation of MSCs and ECs using the 3D cell spheroid configuration not only reduces cell loss during cell harvesting/administration but also enhances the resultant therapeutic benefit, thus providing important proof-of-concept for future clinical translation.
Collapse
Affiliation(s)
- Ting-Wei Hsu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, 33305, Taiwan; Centre for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Centre for Biomedical Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Ting Huang
- College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Li-Hung Hsieh
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bing-Huan Wu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Chi Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsin-Wen Wang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jui-Che Chuang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Qiao Fang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
48
|
Zhang J, Lan T, Han X, Xu Y, Liao L, Xie L, Yang B, Tian W, Guo W. Improvement of ECM-based bioroot regeneration via N-acetylcysteine-induced antioxidative effects. Stem Cell Res Ther 2021; 12:202. [PMID: 33752756 PMCID: PMC7986250 DOI: 10.1186/s13287-021-02237-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The low survival rate or dysfunction of extracellular matrix (ECM)-based engineered organs caused by the adverse effects of unfavourable local microenvironments on seed cell viability and stemness, especially the effects of excessive reactive oxygen species (ROS), prompted us to examine the importance of controlling oxidative damage for tissue transplantation and regeneration. We sought to improve the tolerance of seed cells to the transplant microenvironment via antioxidant pathways, thus promoting transplant efficiency and achieving better tissue regeneration. METHODS We improved the antioxidative properties of ECM-based bioroots with higher glutathione contents in dental follicle stem cells (DFCs) by pretreating cells or loading scaffolds with the antioxidant NAC. Additionally, we developed an in situ rat alveolar fossa implantation model to evaluate the long-term therapeutic effects of NAC in bioroot transplantation. RESULTS The results showed that NAC decreased H2O2-induced cellular damage and maintained the differentiation potential of DFCs. The transplantation experiments further verified that NAC protected the biological properties of DFCs by repressing replacement resorption or ankylosis, thus facilitating bioroot regeneration. CONCLUSIONS The following findings suggest that NAC could significantly protect stem cell viability and stemness during oxidative stress and exert better and prolonged effects in bioroot intragrafts.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Tingting Lan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Xue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Yuchan Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China. .,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China. .,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.
| |
Collapse
|
49
|
Lin YJ, Lee YW, Chang CW, Huang CC. 3D Spheroids of Umbilical Cord Blood MSC-Derived Schwann Cells Promote Peripheral Nerve Regeneration. Front Cell Dev Biol 2020; 8:604946. [PMID: 33392194 PMCID: PMC7773632 DOI: 10.3389/fcell.2020.604946] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Schwann cells (SCs) are promising candidates for cell therapy due to their ability to promote peripheral nerve regeneration. However, SC-based therapies are hindered by the lack of a clinically renewable source of SCs. In this study, using a well-defined non-genetic approach, umbilical cord blood mesenchymal stem cells (cbMSCs), a clinically applicable cell type, were phenotypically, epigenetically, and functionally converted into SC-like cells (SCLCs) that stimulated effective sprouting of neuritic processes from neuronal cells. To further enhance their therapeutic capability, the cbMSC-derived SCLCs were assembled into three-dimensional (3D) cell spheroids by using a methylcellulose hydrogel system. The cell-cell and cell-extracellular matrix interactions were well-preserved within the formed 3D SCLC spheroids, and marked increases in neurotrophic, proangiogenic and anti-apoptotic factors were detected compared with cells that were harvested using conventional trypsin-based methods, demonstrating the superior advantage of SCLCs assembled into 3D spheroids. Transplantation of 3D SCLC spheroids into crush-injured rat sciatic nerves effectively promoted the recovery of motor function and enhanced nerve structure regeneration. In summary, by simply assembling cells into a 3D-spheroid conformation, the therapeutic potential of SCLCs derived from clinically available cbMSCs for promoting nerve regeneration was enhanced significantly. Thus, these cells hold great potential for translation to clinical applications for treating peripheral nerve injury.
Collapse
Affiliation(s)
- Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Wei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Che-Wei Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
50
|
Coyle RC, Barrs RW, Richards DJ, Ladd EP, Menick DR, Mei Y. Targeting HIF-α for robust prevascularization of human cardiac organoids. J Tissue Eng Regen Med 2020; 15:189-202. [PMID: 33868541 DOI: 10.1002/term.3165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prevascularized 3D microtissues have been shown to be an effective cell delivery vehicle for cardiac repair. To this end, our lab has explored the development of self-organizing, prevascularized human cardiac organoids by co-seeding human cardiomyocytes with cardiac fibroblasts, endothelial cells, and stromal cells into agarose microwells. We hypothesized that this prevascularization process is facilitated by the endogenous upregulation of hypoxia-inducible factor (HIF) pathway in the avascular 3D microtissues. In this study, we used Molidustat, a selective PHD (prolyl hydroxylase domain enzymes) inhibitor that stabilizes HIF-α, to treat human cardiac organoids, which resulted in 150 ± 61% improvement in endothelial expression (CD31) and 220 ± 20% improvement in the number of lumens per organoids. We hypothesized that the improved endothelial expression seen in Molidustat treated human cardiac organoids was dependent upon upregulation of VEGF, a well-known downstream target of HIF pathway. Through the use of immunofluorescent staining and ELISA assays, we determined that Molidustat treatment improved VEGF expression of non-endothelial cells and resulted in improved co-localization of supporting cell types and endothelial structures. We further demonstrated that Molidustat treated human cardiac organoids maintain cardiac functionality. Lastly, we showed that Molidustat treatment improves survival of cardiac organoids when exposed to both hypoxic and ischemic conditions in vitro. For the first time, we demonstrate that targeted HIF-α stabilization provides a robust strategy to improve endothelial expression and lumen formation in cardiac microtissues, which will provide a powerful framework for prevascularization of various microtissues in developing successful cell transplantation therapies.
Collapse
Affiliation(s)
- Robert C Coyle
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Ryan W Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Dylan J Richards
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Emma P Ladd
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Donald R Menick
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|