1
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
2
|
Bode C, Preissl S, Hein L, Lother A. Catecholamine treatment induces reversible heart injury and cardiomyocyte gene expression. Intensive Care Med Exp 2024; 12:48. [PMID: 38733526 PMCID: PMC11088585 DOI: 10.1186/s40635-024-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Catecholamines are commonly used as therapeutic drugs in intensive care medicine to maintain sufficient organ perfusion during shock. However, excessive or sustained adrenergic activation drives detrimental cardiac remodeling and may lead to heart failure. Whether catecholamine treatment in absence of heart failure causes persistent cardiac injury, is uncertain. In this experimental study, we assessed the course of cardiac remodeling and recovery during and after prolonged catecholamine treatment and investigated the molecular mechanisms involved. RESULTS C57BL/6N wild-type mice were assigned to 14 days catecholamine treatment with isoprenaline and phenylephrine (IsoPE), treatment with IsoPE and subsequent recovery, or healthy control groups. IsoPE improved left ventricular contractility but caused substantial cardiac fibrosis and hypertrophy. However, after discontinuation of catecholamine treatment, these alterations were largely reversible. To uncover the molecular mechanisms involved, we performed RNA sequencing from isolated cardiomyocyte nuclei. IsoPE treatment resulted in a transient upregulation of genes related to extracellular matrix formation and transforming growth factor signaling. While components of adrenergic receptor signaling were downregulated during catecholamine treatment, we observed an upregulation of endothelin-1 and its receptors in cardiomyocytes, indicating crosstalk between both signaling pathways. To follow this finding, we treated mice with endothelin-1. Compared to IsoPE, treatment with endothelin-1 induced minor but longer lasting changes in cardiomyocyte gene expression. DNA methylation-guided analysis of enhancer regions identified immediate early transcription factors such as AP-1 family members Jun and Fos as key drivers of pathological gene expression following catecholamine treatment. CONCLUSIONS The results from this study show that prolonged catecholamine exposure induces adverse cardiac remodeling and gene expression before the onset of left ventricular dysfunction which has implications for clinical practice. The observed changes depend on the type of stimulus and are largely reversible after discontinuation of catecholamine treatment. Crosstalk with endothelin signaling and the downstream transcription factors identified in this study provide new opportunities for more targeted therapeutic approaches that may help to separate desired from undesired effects of catecholamine treatment.
Collapse
Affiliation(s)
- Christine Bode
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Li H, Ren Y, Wang L, Li Y. The association of plasma connective tissue growth factor levels with left ventricular diastolic dysfunction in patients with overt hyperthyroidism. Front Endocrinol (Lausanne) 2024; 15:1333001. [PMID: 38375196 PMCID: PMC10874995 DOI: 10.3389/fendo.2024.1333001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/04/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Background Left ventricular (LV) diastolic dysfunction is an independent predictor of future cardiovascular events. Early detection of patients with LV diastolic dysfunction can improve clinical outcomes through active management. However, the assessment of diastolic function is very complicated, and there are currently lack of effective biomarkers to assess the risk of LV diastolic dysfunction. Connective tissue growth factor (CTGF) plays a significant role in cardiac remodeling and dysfunction. We aimed to investigate the associations between plasma CTGF level and the risk of LV diastolic dysfunction in this study and judge its effectiveness in diagnosing LV diastolic dysfunction. Methods A total of 169 patients with overt hyperthyroidism were included. LV diastolic function was evaluated and the subjects were divided into normal LV diastolic function group and LV diastolic dysfunction group. Routine clinical medical data, biochemical data, thyroid related parameters and echocardiographic parameters were recorded for analysis. Results Compared with normal LV diastolic function group, the LV diastolic dysfunction group had higher age and BMI, as well as lower heart rate, lower serum albumin, lower eGFR, higher serum TgAb and BNP level, and the incidences of hypertension were also higher (all P <0.05). Circulating plasma CTGF levels in the LV diastolic dysfunction group were significantly higher (normal LV diastolic function group: 7.026 [5.567-8.895], LV diastolic dysfunction group: 8.290 [7.054-9.225] ng/ml, median [(Interquartile range)], P = 0.004); Compared with the lowest quartile group, the crude odds ratios (OR) of LV diastolic dysfunction in the second, third, and fourth quartile group were 3.207, 5.032 and 4.554, respectively (all P<0.05). After adjustment for the potentially confounding variables, the adjusted OR values of the third and fourth quartile group had no obvious change. The results of ROC showed that the plasma CTGF had the largest area under the ROC curve, and the value was 0.659 (P = 0.005). Conclusion The level of circulating plasma CTGF in the LV diastolic dysfunction group was significantly increased. Plasma CTGF level is an independent risk factor for LV diastolic dysfunction. Compared with serum BNP level, the plasma CTGF level may have auxiliary diagnostic value for LV diastolic dysfunction in hyperthyroid patients.
Collapse
Affiliation(s)
- Huan Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yahui Ren
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linfang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuming Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
4
|
Wang J, Rong Y, Liu Y, Zhu M, Chen W, Chen Z, Guo J, Deng C, Manyande A, Wang P, Zhang H, Xiang Y. The effect of ET1-CTGF mediated pathway on the accumulation of extracellular matrix in the trabecular meshwork and its contribution to the increase in IOP. Int Ophthalmol 2023:10.1007/s10792-023-02733-y. [PMID: 37160587 DOI: 10.1007/s10792-023-02733-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2022] [Accepted: 04/22/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE To investigate the effect of endothelin-1 (ET-1) in excessive accumulation of extracellular matrix (ECM) of the trabecular meshwork (TM) and its role in intraocular pressure (IOP) regulation. METHODS Cultured human TM cells (HTMCs) were treated with ET-1, ET-1 + ETA receptor (ETAR) antagonist BQ123, ET-1 + ETB receptor (ETBR) antagonist BQ788. The expressions of fibronectin (FN) and collagen type IV (Col IV) were evaluated by western blotting and immunofluorescence. A time course effect of ET-1 on the transcription level of connective tissue growth factor (CTGF) was investigated by qRT-PCR. Next, the transcription level of CTGF was downregulated by using antisense oligodeoxynucleotide sequence. Then HTMCs were treated with ET-1, and the expression levels of FN and Col IV were evaluated by western blotting. In addition, by using an ex-vivo model of cultured anterior eye segment, we explored the effect of ET-1 on IOP changes and the expressions of FN and Col IV. RESULTS In cultured HTMCs, the expressions of FN and Col IV were significantly increased after ET-1 treatment, which were blocked by the pretreatment of ETAR antagonist BQ123, rather than ETBR antagonist BQ788. Besides, the CTGF mRNA level increased significantly and reached a peak after 48 h of ET-1 treatment. However, the effect of ET-1 on increasing the expressions of FN and Col IV in HTMCs could be inhibited by the downregulation of CTGF. In an ex-vivo model, IOP increased significantly after ET-1 administration, which could be blocked by BQ123 but not by BQ788. Furthermore, elevated expressions of FN and Col IV in TM were observed after ET-1 perfusion, and could be inhibited by BQ123 pretreatment. CONCLUSION Excessive ET-1 in aqueous humor could lead to the abnormal accumulation of FN and Col IV in TM via the ETA-CTGF pathway, thereby increasing IOP.
Collapse
Affiliation(s)
- Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yan Rong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Ying Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Mengxia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Wei Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Jingmin Guo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Ping Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yan Xiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Mao Y, Zhao K, Li P, Sheng Y. The emerging role of leptin in obesity-associated cardiac fibrosis: evidence and mechanism. Mol Cell Biochem 2022; 478:991-1011. [PMID: 36214893 DOI: 10.1007/s11010-022-04562-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Cardiac fibrosis is a hallmark of various cardiovascular diseases, which is quite commonly found in obesity, and may contribute to the increased incidence of heart failure arrhythmias, and sudden cardiac death in obese populations. As an endogenous regulator of adiposity metabolism, body mass, and energy balance, obesity, characterized by increased circulating levels of the adipocyte-derived hormone leptin, is a critical contributor to the pathogenesis of cardiac fibrosis. Although there are some gaps in our knowledge linking leptin and cardiac fibrosis, this review will focus on the interplay between leptin and major effectors involved in the pathogenesis underlying cardiac fibrosis at both cellular and molecular levels based on the current reports. The profibrotic effect of leptin is predominantly mediated by activated cardiac fibroblasts but may also involve cardiomyocytes, endothelial cells, and immune cells. Moreover, a series of molecular signals with a known profibrotic property is closely involved in leptin-induced fibrotic events. A more comprehensive understanding of the underlying mechanisms through which leptin contributes to the pathogenesis of cardiac fibrosis may open up a new avenue for the rapid emergence of a novel therapy for preventing or even reversing obesity-associated cardiac fibrosis.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Yanhui Sheng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, Jiangsu Province Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology. Int J Mol Sci 2022; 23:ijms23031338. [PMID: 35163259 PMCID: PMC8836004 DOI: 10.3390/ijms23031338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.
Collapse
Affiliation(s)
- Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
7
|
Rebolledo DL, Lipson KE, Brandan E. Driving fibrosis in neuromuscular diseases: Role and regulation of Connective tissue growth factor (CCN2/CTGF). Matrix Biol Plus 2021; 11:100059. [PMID: 34435178 PMCID: PMC8377001 DOI: 10.1016/j.mbplus.2021.100059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Connective tissue growth factor or cellular communication network 2 (CCN2/CTGF) is a matricellular protein member of the CCN family involved in several crucial biological processes. In skeletal muscle, CCN2/CTGF abundance is elevated in human muscle biopsies and/or animal models for diverse neuromuscular pathologies, including muscular dystrophies, neurodegenerative disorders, muscle denervation, and muscle overuse. In this context, CCN2/CTGF is deeply involved in extracellular matrix (ECM) modulation, acting as a strong pro-fibrotic factor that promotes excessive ECM accumulation. Reducing CCN2/CTGF levels or biological activity in pathological conditions can decrease fibrosis, improve muscle architecture and function. In this work, we summarize information about the role of CCN2/CTGF in fibrosis associated with neuromuscular pathologies and the mechanisms and signaling pathways that regulate their expression in skeletal muscle.
Collapse
Affiliation(s)
- Daniela L Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Punta Arenas, Chile
| | | | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
8
|
Dolivo D, Rodrigues A, Sun L, Li Y, Hou C, Galiano R, Hong SJ, Mustoe T. The Na x (SCN7A) channel: an atypical regulator of tissue homeostasis and disease. Cell Mol Life Sci 2021; 78:5469-5488. [PMID: 34100980 PMCID: PMC11072345 DOI: 10.1007/s00018-021-03854-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022]
Abstract
Within an articulately characterized family of ion channels, the voltage-gated sodium channels, exists a black sheep, SCN7A (Nax). Nax, in contrast to members of its molecular family, has lost its voltage-gated character and instead rapidly evolved a new function as a concentration-dependent sensor of extracellular sodium ions and subsequent signal transducer. As it deviates fundamentally in function from the rest of its family, and since the bulk of the impressive body of literature elucidating the pathology and biochemistry of voltage-gated sodium channels has been performed in nervous tissue, reports of Nax expression and function have been sparse. Here, we investigate available reports surrounding expression and potential roles for Nax activity outside of nervous tissue. With these studies as justification, we propose that Nax likely acts as an early sensor that detects loss of tissue homeostasis through the pathological accumulation of extracellular sodium and/or through endothelin signaling. Sensation of homeostatic aberration via Nax then proceeds to induce pathological tissue phenotypes via promotion of pro-inflammatory and pro-fibrotic responses, induced through direct regulation of gene expression or through the generation of secondary signaling molecules, such as lactate, that can operate in an autocrine or paracrine fashion. We hope that our synthesis of much of the literature investigating this understudied protein will inspire more research into Nax not simply as a biochemical oddity, but also as a potential pathophysiological regulator and therapeutic target.
Collapse
Affiliation(s)
- David Dolivo
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Adrian Rodrigues
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Lauren Sun
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Yingxing Li
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Chun Hou
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
- Department of Plastic and Cosmetic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Robert Galiano
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Seok Jong Hong
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA.
- , 300 E. Superior St., Chicago, IL, 60611, USA.
| | - Thomas Mustoe
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA.
- , 737 N. Michigan Ave., Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Li H, Zeng RL, Liao YF, Fu MF, Zhang H, Wang LF, Li YM. Association of Plasma Connective Tissue Growth Factor Levels with Hyperthyroid Heart Disease. Curr Med Sci 2021; 41:348-355. [PMID: 33877553 DOI: 10.1007/s11596-021-2354-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Hyperthyroid heart disease (HHD) is one of the most severe complications of overt hyperthyroidism and increases the risk of mortality in affected patients. Early identification of patients at a higher risk of developing HHD can improve clinical outcomes through active surveillance and management. Connective tissue growth factor (CTGF), a secreted extracellular protein, plays a significant role in cardiac remodeling and dysfunction. We aimed to investigate the association between plasma CTGF level and the risk of HHD in this study. A total of 142 overt hyperthyroid patients without HHD and 99 patients with HHD were included. The plasma CTGF levels were measured using ELISA kits. Routine clinical medical data and echocardiography parameters were recorded for analysis. The plasma CTGF level was significantly higher in patients with HHD than in those without HHD (P=0.002). The plasma CTGF level was positively correlated with free triiodothyronin, tryrotropin receptor antibody, troponin I and lactate dehydrogenase levels and the left atrium diameters, right atrium diameters, and right ventricular end-diastolic diameters (all P<0.05). Logistic regression analysis showed that quartiles 3 and 4 of plasma CTGF levels were significantly associated with the increased risk of HHD (crude OR: 2.529; 95% CI: 1.188-5.387). However, after adjustment for the potentially confounding variables, quartile 4 alone was significantly associated with the higher risk of HHD relative to quartile 1. Hyperthyroid patients with HHD display higher plasma CTGF levels. Furthermore, CTGF is an independent risk factor for HHD. Therefore, the plasma CTGF level may be a potential biomarker for the risk of HHD.
Collapse
Affiliation(s)
- Huan Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Ren-Li Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Meng-Fei Fu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Huan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Lin-Fang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu-Ming Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China.
| |
Collapse
|
10
|
YAP and endothelin-1 signaling: an emerging alliance in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:27. [PMID: 33422090 PMCID: PMC7797087 DOI: 10.1186/s13046-021-01827-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/01/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022]
Abstract
The rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1 (β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have discovered that ET-1R/β-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions, hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/β-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells and concurrently sensitizes to high-efficacy combined therapeutics.
Collapse
|
11
|
Abstract
For the past decades, heart diseases remain the leading cause of death worldwide. In the adult mammalian heart, damaged cardiomyocytes will be replaced by non-contractile fibrotic scar tissues due to the poor regenerative ability of heart, causing heart failure subsequently. The development of tissue engineering has launched a new medical innovation for heart regeneration. As one of the most outstanding technology, cardiac patches hold the potential to restore cardiac function clinically. Consisted of two components: therapeutic ingredients and substrate scaffolds, the fabrication of cardiac patches requires both advanced bioactive molecules and biomaterials. In this review, we will present the most state-of-the-art cardiac patches and analysis their compositional details. The therapeutic ingredients will be discussed from cell sources to bioactive molecules. In the meanwhile, the recent advances to obtain scaffold biomaterials will be highlighted, including synthetic and natural materials. Also, we have focused on the challenges and potential strategies to fabricate clinically applicable cardiac patches.
Collapse
Affiliation(s)
- Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
12
|
Mao L, Liu L, Zhang T, Wu X, Zhang T, Xu Y. MKL1 mediates TGF-β-induced CTGF transcription to promote renal fibrosis. J Cell Physiol 2019; 235:4790-4803. [PMID: 31637729 DOI: 10.1002/jcp.29356] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Aberrant fibrogenesis impairs the architectural and functional homeostasis of the kidneys. It also predicts poor diagnosis in patients with end-stage renal disease (ESRD). Renal tubular epithelial cells (RTEC) can trans-differentiate into myofibroblasts to produce extracellular matrix proteins and contribute to renal fibrosis. Connective tissue growth factor (CTGF) is a cytokine upregulated in RTECs during renal fibrosis. In the present study, we investigated the regulation of CTGF transcription by megakaryocytic leukemia 1 (MKL1). Genetic deletion or pharmaceutical inhibition of MKL1 in mice mitigated renal fibrosis following the unilateral ureteral obstruction procedure. Notably, MKL1 deficiency in mice downregulated CTGF expression in the kidneys. Likewise, MKL1 knockdown or inhibition in RTEs blunted TGF-β induced CTGF expression. Further, it was discovered that MKL1 bound directly to the CTGF promoter by interacting with SMAD3 to activate CTGF transcription. In addition, MKL1 mediated the interplay between p300 and WDR5 to regulate CTGF transcription. CTGF knockdown dampened TGF-β induced pro-fibrogenic response in RTEs. MKL1 activity was reciprocally regulated by CTGF. In conclusion, we propose that targeting the MKL1-CTGF axis may generate novel therapeutic solutions against aberrant renal fibrogenesis.
Collapse
Affiliation(s)
- Lei Mao
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Tianyi Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Geriatric Nephrology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
13
|
Rebolledo DL, González D, Faundez-Contreras J, Contreras O, Vio CP, Murphy-Ullrich JE, Lipson KE, Brandan E. Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biol 2019; 82:20-37. [DOI: 10.1016/j.matbio.2019.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
|
14
|
Chaqour B. Caught between a "Rho" and a hard place: are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness? J Cell Commun Signal 2019; 14:21-29. [PMID: 31376071 DOI: 10.1007/s12079-019-00529-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is a deformable dynamic structure that dictates the behavior, function and integrity of blood vessels. The composition, density, chemistry and architecture of major globular and fibrillar proteins of the matrisome regulate the mechanical properties of the vasculature (i.e., stiffness/compliance). ECM proteins are linked via integrins to a protein adhesome directly connected to the actin cytoskeleton and various downstream signaling pathways that enable the cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. However, cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, ischemia and aging compromise the mechanical balance of the vascular wall. Stiffening of large blood vessels is associated with well-known qualitative and quantitative changes of fibrillar and fibrous macromolecules of the vascular matrisome. However, the mechanical properties of the thin-walled microvasculature are essentially defined by components of the subendothelial matrix. Cellular communication network (CCN) 1 and 2 proteins (aka Cyr61 and CTGF, respectively) of the CCN protein family localize in and act on the pericellular matrix of microvessels and constitute primary candidate markers and regulators of microvascular compliance. CCN1 and CCN2 bind various integrin and non-integrin receptors and initiate signaling pathways that regulate connective tissue remodeling and response to injury, the associated mechanoresponse of vascular cells, and the subsequent inflammatory response. The CCN1 and CCN2 genes are themselves responsive to mechanical stimuli in vascular cells, wherein mechanotransduction signaling converges into the common Rho GTPase pathway, which promotes actomyosin-based contractility and cellular stiffening. However, CCN1 and CCN2 each exhibit unique functional attributes in these processes. A better understanding of their synergistic or antagonistic effects on the maintenance (or loss) of microvascular compliance in physiological and pathological situations will assist more broadly based studies of their functional properties and translational value.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Cell Biology and Department of Ophthalmology, State University of New York - SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
15
|
Ichihara S, Li P, Mise N, Suzuki Y, Izuoka K, Nakajima T, Gonzalez F, Ichihara G. Ablation of aryl hydrocarbon receptor promotes angiotensin II-induced cardiac fibrosis through enhanced c-Jun/HIF-1α signaling. Arch Toxicol 2019; 93:1543-1553. [PMID: 31016362 DOI: 10.1007/s00204-019-02446-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2018] [Accepted: 04/09/2019] [Indexed: 12/01/2022]
Abstract
Aryl hydrocarbon receptor (AHR) is a transcription factor that binds to DNA as a heterodimer with the AHR nuclear translocator (ARNT) after interaction with ligands, such as polycyclic and halogenated aromatic hydrocarbons and other xenobiotics. The endogenous ligands and functions of AHR have been the subject of many investigations. In the present study, the potential role of AHR signaling in the development of left ventricular hypertrophy and cardiac fibrosis by angiotensin II (Ang II) infusion was investigated in mice lacking the AHR gene (Ahr-/-). We also assessed the hypothesis that fenofibrate, a peroxisome proliferator-activated receptor-α (PPARα) activator, reduces cardiac fibrosis through the c-Jun signaling. Male Ahr-/- and age-matched wild-type mice (n = 8 per group) were infused with Ang II at 100 ng/kg/min daily for 2 weeks. Treatment with Ang II increased systolic blood pressure to comparable levels in Ahr-/- and wild-type mice. However, Ahr-/- mice developed severe cardiac fibrosis after Ang II infusion compared with wild-type mice. Ang II infusion also significantly increased the expression of endothelin in the left ventricles of Ahr-/- mice, but not in wild-type mice, and significantly increased the c-Jun signaling in Ahr-/- mice. Ang II infusion also significantly enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and the downstream target vascular endothelial growth factor (VEGF) in the left ventricles of Ahr-/- mice. These results suggested pathogenic roles for the AHR signaling pathway in the development of cardiac fibrosis. Treatment with fenofibrate reduced cardiac fibrosis and abrogated the effects of Ang II on the expression of endothelin, HIF-1α, and VEGF. The inhibitory effect of fenofibrate on cardiac fibrosis was mediated by suppression of VEGF expression through modulation of c-Jun/HIF-1α signaling.
Collapse
Affiliation(s)
- Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan. .,Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, 329-0498, Japan.
| | - Ping Li
- Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, 329-0498, Japan
| | - Yuka Suzuki
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Kiyora Izuoka
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Tamie Nakajima
- Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Lifelong Sports and Health Sciences, Chubu University, Kasugai, Japan
| | - Frank Gonzalez
- Laboratory of Metabolism, Center of Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Gaku Ichihara
- Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| |
Collapse
|
16
|
Amygdalar Endothelin-1 Regulates Pyramidal Neuron Excitability and Affects Anxiety. Sci Rep 2017; 7:2316. [PMID: 28539637 PMCID: PMC5443782 DOI: 10.1038/s41598-017-02583-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2016] [Accepted: 04/13/2017] [Indexed: 11/24/2022] Open
Abstract
An abnormal neuronal activity in the amygdala is involved in the pathogenesis of anxiety disorders. However, little is known about the mechanisms. High-anxiety mice and low-anxiety mice, representing the innate extremes of anxiety-related behaviors, were first grouped according to their anxiety levels in the elevated plus maze test. We found that the mRNA for endothelin-1 (ET1) and ET1 B-type receptors (ETBRs) in the amygdala was down-regulated in high-anxiety mice compared with low-anxiety mice. Knocking down basolateral amygdala (BLA) ET1 expression enhanced anxiety-like behaviors, whereas over-expressing ETBRs, but not A-type receptors (ETARs), had an anxiolytic effect. The combined down-regulation of ETBR and ET1 had no additional anxiogenic effect compared to knocking down the ETBR gene alone, suggesting that BLA ET1 acts through ETBRs to regulate anxiety-like behaviors. To explore the mechanism underlying this phenomenon further, we verified that most of the ET1 and the ET1 receptors in the BLA were expressed in pyramidal neurons. The ET1–ETBR signaling pathway decreased the firing frequencies and threshold currents for the action potentials of BLA pyramidal neurons but did not alter BLA synaptic neurotransmission. Together, these results indicate that amygdalar ET1-ETBR signaling could attenuate anxiety-like behaviors by directly decreasing the excitability of glutamatergic neurons.
Collapse
|
17
|
Chen M, Shu S, Yan HH, Pei L, Wang ZF, Wan Q, Bi LL. Hippocampal Endothelin-1 decreases excitability of pyramidal neurons and produces anxiolytic effects. Neuropharmacology 2017; 118:242-250. [PMID: 28302570 DOI: 10.1016/j.neuropharm.2017.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2016] [Revised: 03/03/2017] [Accepted: 03/12/2017] [Indexed: 02/01/2023]
Abstract
Anxiety disorders contribute to the pathophysiology of psychiatric diseases, including major depression, substance abuse, and schizophrenia. The hippocampus is important for anxiety modulation. However, the mechanisms that control the neuronal activity of the hippocampus in anxiety are still not clear. We found that Endothelin-1 (ET1) mRNA in the hippocampus was down-regulated in high-anxiety mice. Neutralizing endogenous ET1 in the hippocampal CA1 enhanced anxiety-like behaviors. We next revealed that most expression of ET1 and its receptors in the CA1 takes place in pyramidal neurons, and the ET1 signaling pathway directly regulated the excitability of CA1 pyramidal neurons and glutamatergic synaptic neurotransmission. Finally, we proved that neutralizing endogenous CA1 ET1 produces anxiogenic effects on low-anxiety mice, whereas infusing exogenous ET1 into the CA1 alleviates the anxiety susceptibility of high-anxiety mice. Together, these results indicate that ET1 signaling is critical in maintaining the excitability of glutamatergic neurons in the hippocampus and, thus, in modulating anxiety-like behaviors. Because ET1 is a risk factor for ischemic stroke, our findings might also help to explain the potential mechanism of emotional abnormality in stroke.
Collapse
Affiliation(s)
- Ming Chen
- Department of Pathology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shu Shu
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan-Huan Yan
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Pei
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ze-Fen Wang
- Department of Physiology, Basic Medical Sciences, Wuhan University School, Wuhan 430071, China
| | - Qi Wan
- Department of Physiology, Basic Medical Sciences, Wuhan University School, Wuhan 430071, China
| | - Lin-Lin Bi
- Department of Pathology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
18
|
Wang Z, Liu P, Zhou X, Wang T, Feng X, Sun YP, Xiong Y, Yuan HX, Guan KL. Endothelin Promotes Colorectal Tumorigenesis by Activating YAP/TAZ. Cancer Res 2017; 77:2413-2423. [PMID: 28249901 DOI: 10.1158/0008-5472.can-16-3229] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2016] [Revised: 12/28/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Endothelin receptor A (ETAR) promotes tumorigenesis by stimulating cell proliferation, migration, and survival. However, the mechanism of ETAR in promoting tumor growth is largely unknown. In this study, we demonstrate that ETAR stimulates colon cell proliferation, migration, and tumorigenesis through the activation of YAP/TAZ, two transcription coactivators of the Hippo tumor suppressor pathway. Endothelin-1 treatment induced YAP/TAZ dephosphorylation, nuclear accumulation, and transcriptional activation in multiple colon cancer cells. ETAR stimulation acted via downstream G-protein Gαq/11 and Rho GTPase to suppress the Hippo pathway, thus leading to YAP/TAZ activation, which was required for ETAR-induced tumorigenesis. Overall, these results indicate a critical role of the YAP/TAZ axis in ETAR signaling. Cancer Res; 77(9); 2413-23. ©2017 AACR.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Liu
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Zhou
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Tianxiang Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Feng
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Xiong
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hai-Xin Yuan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
19
|
Wermuth PJ, Li Z, Mendoza FA, Jimenez SA. Stimulation of Transforming Growth Factor-β1-Induced Endothelial-To-Mesenchymal Transition and Tissue Fibrosis by Endothelin-1 (ET-1): A Novel Profibrotic Effect of ET-1. PLoS One 2016; 11:e0161988. [PMID: 27583804 PMCID: PMC5008786 DOI: 10.1371/journal.pone.0161988] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2016] [Accepted: 08/16/2016] [Indexed: 11/29/2022] Open
Abstract
TGF-β-induced endothelial-to-mesenchymal transition (EndoMT) is a newly recognized source of profibrotic activated myofibroblasts and has been suggested to play a role in the pathogenesis of various fibrotic processes. Endothelin-1 (ET-1) has been implicated in the development of tissue fibrosis but its participation in TGF-β-induced EndoMT has not been studied. Here we evaluated the role of ET-1 on TGF-β1-induced EndoMT in immunopurified CD31+/CD102+ murine lung microvascular endothelial cells. The expression levels of α-smooth muscle actin (α-SMA), of relevant profibrotic genes, and of various transcription factors involved in the EndoMT process were assessed employing quantitative RT-PCR, immunofluorescence histology and Western blot analysis. TGF-β1 caused potent induction of EndoMT whereas ET-1 alone had a minimal effect. However, ET-1 potentiated TGF-β1-induced EndoMT and TGF-β1-stimulated expression of mesenchymal cell specific and profibrotic genes and proteins. ET-1 also induced expression of the TGF-β receptor 1 and 2 genes, suggesting a plausible autocrine mechanism to potentiate TGF-β-mediated EndoMT and fibrosis. Stimulation of TGF-β1-induced skin and lung fibrosis by ET-1 was confirmed in vivo in an animal model of TGF-β1-induced tissue fibrosis. These results suggest a novel role for ET-1 in the establishment and progression of tissue fibrosis.
Collapse
Affiliation(s)
- Peter J. Wermuth
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Zhaodong Li
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Fabian A. Mendoza
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Emerging roles of CCN proteins in vascular development and pathology. J Cell Commun Signal 2016; 10:251-257. [PMID: 27241177 DOI: 10.1007/s12079-016-0332-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2016] [Accepted: 05/19/2016] [Indexed: 01/02/2023] Open
Abstract
The CCN family of proteins consists of 6 members (CCN1-CCN6) that share conserved functional domains. These matricellular proteins interact with growth factors, extracellular matrix (ECM) proteins, cell surface integrins and other receptors to promote ECM-intracellular signaling. This signaling leads to propagation of a variety of cellular actions, including adhesion, invasion, migration and proliferation within several cell types, including epithelial, endothelial and smooth muscle cells. Though CCNs share significant homology, the function of each is unique due to distinct and cell specific expression patterns. Thus, their correct spatial and temporal expressions are critical during embryonic development, wound healing, angiogenesis and fibrosis. Disruption of these patterns leads to severe development disorders and contributes to the pathological progression of cancers, vascular diseases and chronic inflammatory diseases such as colitis, rheumatoid arthritis and atherosclerosis. While the effects of CCNs are diverse, this review will focus on the role of CCNs within the vasculature during development and in vascular diseases.
Collapse
|
21
|
Ishibashi K, Nehashi K, Oshima T, Ohkura N, Atsumi GI. Differentiation with elaidate tends to impair insulin-dependent glucose uptake and GLUT4 translocation in 3T3-L1 adipocytes. Int J Food Sci Nutr 2016; 67:99-110. [DOI: 10.3109/09637486.2016.1144721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kenichi Ishibashi
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Kana Nehashi
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Toshiyuki Oshima
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Naoki Ohkura
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Gen-Ichi Atsumi
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
22
|
Bartella V, De Francesco EM, Perri MG, Curcio R, Dolce V, Maggiolini M, Vivacqua A. The G protein estrogen receptor (GPER) is regulated by endothelin-1 mediated signaling in cancer cells. Cell Signal 2015; 28:61-71. [PMID: 26607335 DOI: 10.1016/j.cellsig.2015.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor involved in many diseases, including certain cardiovascular disorders and cancer. As previous studies have shown that the G protein estrogen receptor (GPER) may regulate ET-1 dependent effects on the vascular system, we evaluated whether GPER could contribute to the effects elicited by ET-1 in breast cancer and hepatocarcinoma cells. Here, we demonstrate that ET-1 increases GPER expression through endothelin receptor A (ETAR) and endothelin receptor B (ETBR) along with the activation of PI3K/ERK/c-Fos/AP1 transduction pathway. In addition, we show that GPER is involved in important biological responses observed upon ET-1 exposure, as the migration of the aforementioned tumor cells and the formation of tube-like structures in human umbilical vein endothelial cells (HUVECs). Our data suggest that GPER may contribute to ET-1 action toward the progression of some types of tumor.
Collapse
Affiliation(s)
- Viviana Bartella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | | | - Maria Grazia Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
23
|
p63RhoGEF regulates auto- and paracrine signaling in cardiac fibroblasts. J Mol Cell Cardiol 2015; 88:39-54. [PMID: 26392029 DOI: 10.1016/j.yjmcc.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/18/2015] [Revised: 09/04/2015] [Accepted: 09/16/2015] [Indexed: 01/14/2023]
Abstract
Cardiac remodeling, a hallmark of heart disease, is associated with intense auto- and paracrine signaling leading to cardiac fibrosis. We hypothesized that the specific mediator of Gq/11-dependent RhoA activation p63RhoGEF, which is expressed in cardiac fibroblasts, plays a role in the underlying processes. We could show that p63RhoGEF is up-regulated in mouse hearts subjected to transverse aortic constriction (TAC). In an engineered heart muscle model (EHM), p63RhoGEF expression in cardiac fibroblasts increased resting and twitch tensions, and the dominant negative p63ΔN decreased both. In an engineered connective tissue model (ECT), p63RhoGEF increased tissue stiffness and its knockdown as well as p63ΔN reduced stiffness. In 2D cultures of neonatal rat cardiac fibroblasts, p63RhoGEF regulated the angiotensin II (Ang II)-dependent RhoA activation, the activation of the serum response factor, and the expression and secretion of the connective tissue growth factor (CTGF). All these processes were inhibited by the knockdown of p63RhoGEF or by p63ΔN likely based on their negative influence on the actin cytoskeleton. Moreover, we show that p63RhoGEF also regulates CTGF in engineered tissues and correlates with it in the TAC model. Finally, confocal studies revealed a closely related localization of p63RhoGEF and CTGF in the trans-Golgi network.
Collapse
|
24
|
Mahajan R, Lau DH, Sanders P. Impact of obesity on cardiac metabolism, fibrosis, and function. Trends Cardiovasc Med 2015; 25:119-26. [PMID: 25446049 DOI: 10.1016/j.tcm.2014.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/15/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 12/13/2022]
|
25
|
Endothelin receptor blockade ameliorates renal injury by inhibition of RhoA/Rho-kinase signalling in deoxycorticosterone acetate-salt hypertensive rats. J Hypertens 2014; 32:795-805. [PMID: 24463935 DOI: 10.1097/hjh.0000000000000092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Excessive production of fibrosis is a feature of hypertension-induced renal injury. Activation of RhoA/Rho-kinase (ROCK) axis has been shown in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We assessed whether selective endothelin receptor blockers can attenuate renal fibrosis by inhibiting RhoA/ROCK axis in DOCA-salt rats. METHODS At 4 weeks after the start of DOCA-salt treatment and uninephrectomization, male Wistar rats were randomized into three groups for 4 weeks: vehicle, ABT-627 (endothelin-A receptor inhibitor) and A192621 (endothelin-B receptor inhibitor). RESULTS DOCA-salt was characterized by increased blood pressure, decreased renal function, increased proteinuria, increased glomerulosclerosis and tubulointerstitial fibrosis with myofibroblast accumulation, increased renal endothelin-1 levels and RhoA activity along with increased expression of connective tissue growth factor at both mRNA and protein levels as compared with uninephrectomized control male Wistar rats. Treatment with a selective mineralocorticoid receptor antagonist, eplerenone, ameliorated proteinuria. Impaired renal function and histological changes were overcome by treatment with ABT-627, but not with A192621. The beneficial effects of bosentan, a nonspecific endothelin receptor blocker, on proteinuria, RhoA activity, and connective tissue growth factor levels were similar to ABT-627. Furthermore, in an isolated perfuse kidney, a RhoA inhibitor, C3 exoenzyme, and two ROCK inhibitors, fasudil and Y-27632, significantly attenuated connective tissue growth factor levels. CONCLUSIONS These results indicate that DOCA-salt elevates renal endothelin-1 levels and RhoA activity via activation of mineralocorticoid receptor, resulting in renal fibrosis and proteinuria. Endothelin-A receptor blockade can attenuate DOCA-salt-induced renal fibrosis probably through the inhibition of RhoA/ROCK activity and connective tissue growth factor expression.
Collapse
|
26
|
Lin CH, Shih CH, Tseng CC, Yu CC, Tsai YJ, Bien MY, Chen BC. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways. PLoS One 2014; 9:e104746. [PMID: 25121739 PMCID: PMC4133236 DOI: 10.1371/journal.pone.0104746] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023] Open
Abstract
CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Huang Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Chieh Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Jhih Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mauo-Ying Bien
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Talarico JA, Carter RL, Grisanti LA, Yu JE, Repas AA, Tilley DG. β-adrenergic receptor-dependent alterations in murine cardiac transcript expression are differentially regulated by gefitinib in vivo. PLoS One 2014; 9:e99195. [PMID: 24901703 PMCID: PMC4047088 DOI: 10.1371/journal.pone.0099195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 11/18/2022] Open
Abstract
β-adrenergic receptor (βAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute βAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the βAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib), including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, βAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib.
Collapse
Affiliation(s)
- Jennifer A. Talarico
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rhonda L. Carter
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Laurel A. Grisanti
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Justine E. Yu
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ashley A. Repas
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Douglas G. Tilley
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Weng CM, Yu CC, Kuo ML, Chen BC, Lin CH. Endothelin-1 induces connective tissue growth factor expression in human lung fibroblasts by ETAR-dependent JNK/AP-1 pathway. Biochem Pharmacol 2014; 88:402-11. [PMID: 24486572 DOI: 10.1016/j.bcp.2014.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 01/22/2023]
Abstract
Endothelin-1 (ET-1) acts as a key mediator of vasoconstriction and tissue repair. Overproduction of connective tissue growth factor (CTGF) underlies the development of lung fibrosis. ET-1 induces expression of matrix-associated genes in lung fibroblasts, however, little is known about the signaling pathway of CTGF expression caused by ET-1. In this study, we found that ET-1 caused concentration- and time-dependently increases in CTGF expression in human embryonic lung fibroblast cell line (WI-38). ET-1-induced CTGF expression was inhibited by BQ123 (ETAR antagonist), but not BQ788 (ETBR antagonist). Moreover, ET-1-induced CTGF expression was significantly reduced by JNK inhibitor (SP600125), the dominant-negative mutants of JNK1/2 (JNK1/2 DN), and AP-1 inhibitor (curcumin). ET-1 induced phosphorylations of JNK and c-Jun in time-dependent manners. AP-1 luciferase activity was concentration-dependently increased by ET-1, and this effect was attenuated by SP600125. We also found that ET-1-induced CTGF expression was most controlled by the AP-1 binding region of CTGF promoter. ET-1-indiced CTGF luciferase activity was predominately controlled by the sequence -747 to -408 bp upstream of the transcription start site on the human CTGF promoter. Furthermore, ET-1 caused the formation of AP-1-specific DNA-protein complex and the recruitment of c-Jun to the CTGF promoter. Moreover, we found that ET-1 induced α-smooth muscle actin (α-SMA) expression, which was inhibited by BQ123, SP600125, curcumin, and anti-CTGF antibody. These results suggest that ET-1 stimulates expressions of CTGF and α-SMA through ETAR/JNK/AP-1 signaling pathway, and CTGF is required for ET-1-induced α-SMA expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Chih-Ming Weng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Min-Liang Kuo
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Graduate Institute of Biomedical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
29
|
The epidermal growth factor receptor and its ligands in cardiovascular disease. Int J Mol Sci 2013; 14:20597-613. [PMID: 24132149 PMCID: PMC3821633 DOI: 10.3390/ijms141020597] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2013] [Revised: 09/20/2013] [Accepted: 10/08/2013] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family and its ligands serve as a switchboard for the regulation of multiple cellular processes. While it is clear that EGFR activity is essential for normal cardiac development, its function in the vasculature and its role in cardiovascular disease are only beginning to be elucidated. In the blood vessel, endothelial cells and smooth muscle cells are both a source and a target of EGF-like ligands. Activation of EGFR has been implicated in blood pressure regulation, endothelial dysfunction, neointimal hyperplasia, atherogenesis, and cardiac remodeling. Furthermore, increased circulating EGF-like ligands may mediate accelerated vascular disease associated with chronic inflammation. Although EGFR inhibitors are currently being used clinically for the treatment of cancer, additional studies are necessary to determine whether abrogation of EGFR signaling is a potential strategy for the treatment of cardiovascular disease.
Collapse
|
30
|
Chen G, Chen X, Sukumar A, Gao B, Curley J, Schnaper HW, Ingram AJ, Krepinsky JC. TGFβ receptor I transactivation mediates stretch-induced Pak1 activation and CTGF upregulation in mesangial cells. J Cell Sci 2013; 126:3697-712. [PMID: 23781022 DOI: 10.1242/jcs.126714] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023] Open
Abstract
Increased intraglomerular pressure is an important pathogenic determinant of kidney fibrosis in the progression of chronic kidney disease, and can be modeled by exposing glomerular mesangial cells (MC) to mechanical stretch. MC produce extracellular matrix and profibrotic cytokines, including connective tissue growth factor (CTGF) when stretched. We show that p21-activated kinase 1 (Pak1) is activated by stretch in MC in culture and in vivo in a process marked by elevated intraglomerular pressures. Its activation is essential for CTGF upregulation. Rac1 is an upstream regulator of Pak1 activation. Stretch induces transactivation of the type I transforming growth factor β1 receptor (TβRI) independently of ligand binding. TβRI transactivation is required not only for Rac1/Pak1 activation, but also for activation of the canonical TGFβ signaling intermediate Smad3. We show that Smad3 activation is an essential requirement for CTGF upregulation in MC under mechanical stress. Pak1 regulates Smad3 C-terminal phosphorylation and transcriptional activation. However, a second signaling pathway, that of RhoA/Rho-kinase and downstream Erk activation, is also required for stretch-induced CTGF upregulation in MC. Importantly, this is also regulated by Pak1. Thus, Pak1 serves as a novel central mediator in the stretch-induced upregulation of CTGF in MC.
Collapse
Affiliation(s)
- Guang Chen
- Division of Nephrology, St. Joseph's Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Koshman YE, Patel N, Chu M, Iyengar R, Kim T, Ersahin C, Lewis W, Heroux A, Samarel AM. Regulation of connective tissue growth factor gene expression and fibrosis in human heart failure. J Card Fail 2013; 19:283-94. [PMID: 23582094 DOI: 10.1016/j.cardfail.2013.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2012] [Revised: 12/26/2012] [Accepted: 01/28/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Heart failure (HF) is associated with excessive extracellular matrix (ECM) deposition and abnormal ECM degradation leading to cardiac fibrosis. Connective tissue growth factor (CTGF) modulates ECM production during inflammatory tissue injury, but available data on CTGF gene expression in failing human heart and its response to mechanical unloading are limited. METHODS AND RESULTS Left ventricle (LV) tissue from patients undergoing cardiac transplantation for ischemic (ICM; n = 20) and dilated (DCM; n = 20) cardiomyopathies and from nonfailing (NF; n = 20) donor hearts were examined. Paired samples (n = 15) from patients undergoing LV assist device (LVAD) implantation as "bridge to transplant" (34-1,145 days) also were analyzed. There was more interstitial fibrosis in both ICM and DCM compared with NF hearts. Hydroxyproline concentration was also significantly increased in DCM compared with NF samples. The expression of CTGF, transforming growth factor (TGF) β1, collagen (COL) 1-α1, COL3-α1, matrix metalloproteinase (MMP) 2, and MMP9 mRNA in ICM and DCM were also significantly elevated compared with NF samples. Although TGF-β1, CTGF, COL1-α1, and COL3-α1 mRNA levels were reduced by unloading, there was only a modest reduction in tissue fibrosis and no difference in protein-bound hydroxyproline concentration between pre- and post-LVAD tissue samples. The persistent fibrosis may be related to a concomitant reduction in MMP9 mRNA and protein levels following unloading. CONCLUSIONS CTGF may be a key regulator of fibrosis during maladaptive remodeling and progression to HF. Although mechanical unloading normalizes most genotypic and functional abnormalities, its effect on ECM remodeling during HF is incomplete.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ponticos M. Connective tissue growth factor (CCN2) in blood vessels. Vascul Pharmacol 2013; 58:189-93. [DOI: 10.1016/j.vph.2013.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 12/31/2022]
|
33
|
Chilukoti RK, Mostertz J, Bukowska A, Aderkast C, Felix SB, Busch M, Völker U, Goette A, Wolke C, Homuth G, Lendeckel U. Effects of irbesartan on gene expression revealed by transcriptome analysis of left atrial tissue in a porcine model of acute rapid pacing in vivo. Int J Cardiol 2013; 168:2100-8. [PMID: 23414741 DOI: 10.1016/j.ijcard.2013.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/21/2012] [Revised: 12/18/2012] [Accepted: 01/13/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is characterized by electrical and structural remodeling of the atria with atrial fibrosis being one hallmark. Angiotensin II (AngII) is a major contributing factor and blockage of its type I receptor (AT1R) prevents remodeling to some extent. Here we explored the effects of the AT1R antagonist irbesartan on global gene expression and profibrotic signaling pathways after induction of rapid atrial pacing (RAP) in vivo in pigs. METHODS AND RESULTS Microarray-based RNA profiling was used to screen left atrial (LA) tissue specimens for differences in atrial gene expression in a model of acute RAP. RAP caused an overall expression profile that reflected AngII-induced ROS production, tissue remodeling, and energy depletion. Of special note, the mRNA levels of EDN1, SGK1, and CTGF encoding pro-endothelin, stress- and glucocorticoid activated kinase-1, and of connective tissue growth factor were identified to be significantly increased after 7h of rapid pacing. These specific expression changes were additionally validated by RT-qPCR or immunoblot analyses in LA, RA, and partly in LV samples. All RAP-induced differential gene expression patterns were partially attenuated in the presence of irbesartan. Similar results were obtained after RAP of HL-1 cardiomyocytes in vitro. Furthermore, exogenously added endothelin-1 (ET1) induced CTGF expression concomitant to the transcriptional activation of SGK1 in HL-1 cells. CONCLUSIONS RAP provokes substantial changes in atrial and ventricular myocardial gene expression that could be partly reversed by irbesartan. ET1 contributes to AF-dependent atrial fibrosis by synergistic activity with AngII to stimulate SGK1 expression and enhance phosphorylation of the SGK1 protein which, in turn, induces CTGF. The latter has been consistently associated with tissue fibrosis. These findings suggest ETR antagonists as being beneficial in AF treatment.
Collapse
Affiliation(s)
- Ravi Kumar Chilukoti
- University Medicine, Ernst-Moritz-Arndt-University Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vecile E, Dobrina A, Salloum FN, Van Tassell BW, Falcione A, Gustini E, Secchiero S, Crovella S, Sinagra G, Finato N, Nicklin MJ, Abbate A. Intracellular function of interleukin-1 receptor antagonist in ischemic cardiomyocytes. PLoS One 2013; 8:e53265. [PMID: 23308180 PMCID: PMC3540084 DOI: 10.1371/journal.pone.0053265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2012] [Accepted: 11/27/2012] [Indexed: 01/24/2023] Open
Abstract
Background Loss of cardiac myocytes due to apoptosis is a relevant feature of ischemic heart disease. It has been described in infarct and peri-infarct regions of the myocardium in coronary syndromes and in ischemia-linked heart remodeling. Previous studies have provided protection against ischemia-induced cardiomyocyte apoptosis by the anti-inflammatory cytokine interleukin-1 receptor-antagonist (IL-1Ra). Mitochondria triggering of caspases plays a central role in ischemia-induced apoptosis. We examined the production of IL-1Ra in the ischemic heart and, based on dual intra/extracellular function of some other interleukins, we hypothesized that IL-1Ra may also directly inhibit mitochondria-activated caspases and cardiomyocyte apoptosis. Methodology/Principal Findings Synthesis of IL-1Ra was evidenced in the hearts explanted from patients with ischemic heart disease. In the mouse ischemic heart and in a mouse cardiomyocyte cell line exposed to long-lasting hypoxia, IL-1Ra bound and inhibited mitochondria-activated caspases, whereas inhibition of caspase activation was not observed in the heart of mice lacking IL-1Ra (Il-1ra−/−) or in siRNA to IL-1Ra-interfered cells. An impressive 6-fold increase of hypoxia-induced apoptosis was observed in cells lacking IL-1Ra. IL-1Ra down-regulated cells were not protected against caspase activation and apoptosis by knocking down of the IL-1 receptor, confirming the intracellular, receptor-independent, anti-apoptotic function of IL-1Ra. Notably, the inhibitory effect of IL-1Ra was not influenced by enduring ischemic conditions in which previously described physiologic inhibitors of apoptosis are neutralized. Conclusions/Significance These observations point to intracellular IL-1Ra as a critical mechanism of the cell self-protection against ischemia-induced apoptosis and suggest that this cytokine plays an important role in the remodeling of heart by promoting survival of cardiomyocytes in the ischemic regions.
Collapse
Affiliation(s)
- Elena Vecile
- Department of Life Sciences, University of Trieste, Italy
| | - Aldo Dobrina
- Department of Life Sciences, University of Trieste, Italy
- * E-mail:
| | - Fadi N. Salloum
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Benjamin W. Van Tassell
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | | | | | | | - Sergio Crovella
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Nicoletta Finato
- Department of Medical and Morphological Research, University of Udine, Italy
| | - Martin J. Nicklin
- Division of Genomic Medicine, Sir Henry Wellcome Laboratories for Medical Research, University of Sheffield, United Kingdom
| | - Antonio Abbate
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
35
|
Abstract
The term matricellular proteins describes a family of structurally unrelated extracellular macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue architecture, but are induced following injury and modulate cell-cell and cell-matrix interactions. When released to the matrix, matricellular proteins associate with growth factors, cytokines, and other bioactive effectors and bind to cell surface receptors transducing signaling cascades. Matricellular proteins are upregulated in the injured and remodeling heart and play an important role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. Thrombospondin (TSP)-1, -2, and -4 as well as tenascin-C and -X secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin, and members of the CCN family (including CCN1 and CCN2/connective tissue growth factor) are involved in a variety of cardiac pathophysiological conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated myocardial remodeling, myocarditis, diabetic cardiomyopathy, and valvular disease. This review discusses the properties and characteristics of the matricellular proteins and presents our current knowledge on their role in cardiac adaptation and disease. Understanding the role of matricellular proteins in myocardial pathophysiology and identification of the functional domains responsible for their actions may lead to design of peptides with therapeutic potential for patients with heart disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer G46B, Bronx, NY 10461, USA.
| |
Collapse
|
36
|
Kassan M, Galán M, Partyka M, Saifudeen Z, Henrion D, Trebak M, Matrougui K. Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice. Arterioscler Thromb Vasc Biol 2012; 32:1652-61. [PMID: 22539597 DOI: 10.1161/atvbaha.112.249318] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cardiac damage and vascular dysfunction are major causes of morbidity and mortality in hypertension. In the present study, we explored the beneficial therapeutic effect of endoplasmic reticulum (ER) stress inhibition on cardiac damage and vascular dysfunction in hypertension. METHODS AND RESULTS Mice were infused with angiotensin II (400 ng/kg per minute) with or without ER stress inhibitors (taurine-conjugated ursodeoxycholic acid and 4-phenylbutyric acid) for 2 weeks. Mice infused with angiotensin II displayed an increase in blood pressure, cardiac hypertrophy and fibrosis associated with enhanced collagen I content, transforming growth factor-β1 (TGF-β1) activity, and ER stress markers, which were blunted after ER stress inhibition. Hypertension induced ER stress in aorta and mesenteric resistance arteries (MRA), enhanced TGF-β1 activity in aorta but not in MRA, and reduced endothelial NO synthase phosphorylation and endothelium-dependent relaxation (EDR) in aorta and MRA. The inhibition of ER stress significantly reduced TGF-β1 activity, enhanced endothelial NO synthase phosphorylation, and improved EDR. The inhibition of TGF-β1 pathway improved EDR in aorta but not in MRA, whereas the reduction in reactive oxygen species levels ameliorated EDR in MRA only. Infusion of tunicamycin in control mice induced ER stress in aorta and MRA, and reduced EDR by a TGF-β1-dependent mechanism in aorta and reactive oxygen species-dependent mechanism in MRA. CONCLUSIONS ER stress inhibition reduces cardiac damage and improves vascular function in hypertension. Therefore, ER stress could be a potential target for cardiovascular diseases.
Collapse
Affiliation(s)
- Modar Kassan
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Goudis CA, Kallergis EM, Vardas PE. Extracellular matrix alterations in the atria: insights into the mechanisms and perpetuation of atrial fibrillation. Europace 2012; 14:623-30. [PMID: 22237583 DOI: 10.1093/europace/eur398] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023] Open
Abstract
Atrial fibrillation is the most common arrhythmia in clinical practice and is associated with increased cardiovascular morbidity and mortality. Atrial fibrosis, a detrimental process that causes imbalance in extracellular matrix deposition and degradation, has been implicated as a substrate for atrial fibrillation, but the precise mechanisms of structural remodelling and the relationship between atrial fibrosis and atrial fibrillation are not completely understood. A large number of experimental and clinical studies have shed light on the mechanisms of atrial fibrosis at the molecular and cellular level, including interactions between matrix metalloproteinases and their endogenous tissue inhibitors, and profibrotic signals through specific molecules and mediators such as angiotensin II, transforming growth factor-β1, connective tissue growth factor, and platelet-derived growth factor. This review focuses on the mechanisms of atrial fibrosis and highlights the relationship between atrial fibrosis and atrial fibrillation.
Collapse
Affiliation(s)
- Christos A Goudis
- Department of Cardiology, University General Hospital, Heraklion, Crete, Voutes 71110, Greece
| | | | | |
Collapse
|
38
|
Ramachandran A, Gong EM, Pelton K, Ranpura SA, Mulone M, Seth A, Gomez P, Adam RM. FosB regulates stretch-induced expression of extracellular matrix proteins in smooth muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2977-89. [PMID: 21996678 DOI: 10.1016/j.ajpath.2011.08.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/07/2011] [Revised: 07/29/2011] [Accepted: 08/09/2011] [Indexed: 11/19/2022]
Abstract
Fibroproliferative remodeling in smooth muscle-rich hollow organs is associated with aberrant extracellular matrix (ECM) production. Although mechanical stimuli regulate ECM protein expression, the transcriptional mediators of this process remain poorly defined. Previously, we implicated AP-1 as a mediator of smooth muscle cell (SMC) mechanotransduction; however, its role in stretch-induced ECM regulation has not been explored. Herein, we identify a novel role for the AP-1 subunit FosB in stretch-induced ECM expression in SMCs. The DNA-binding activity of AP-1 increased after stretch stimulation of SMCs in vitro. In contrast to c-Jun and c-fos, which are also activated by the SMC mitogen platelet-derived growth factor, FosB was only activated by stretch. FosB silencing attenuated the expression of the profibrotic factors tenascin C (TNC) and connective tissue growth factor (CTGF), whereas forced expression of Jun~FosB stimulated TNC and CTGF promoter activity. Chromatin immunoprecipitation revealed enrichment of AP-1 at the TNC and CTGF promoters. Bladder distension in vivo enhanced nuclear localization of c-jun and FosB. Finally, the distension-induced expression of TNC and CTGF in the detrusor smooth muscle of bladders from wild-type mice was significantly attenuated in FosB-null mice. Together, these findings identify FosB as a mechanosensitive regulator of ECM production in smooth muscle.
Collapse
Affiliation(s)
- Aruna Ramachandran
- Urological Diseases Research Center, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Waks JW, Scirica BM. Established and novel biomarkers in ST-elevation myocardial infarction. Future Cardiol 2011; 7:523-46. [PMID: 21797748 DOI: 10.2217/fca.11.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Cardiac biomarkers assist in the diagnosis of and risk stratification in acute coronary syndromes. In ST-elevation myocardial infarction (STEMI), rapid diagnosis and initiation of reperfusion via primary percutaneous coronary intervention or fibrinolysis is often based on the clinical history and presenting ECG, but measurement of biomarkers in the early and/or late phases of STEMI may allow the selection of patients who are at increased or decreased risk of subsequent complications. Although the measurement of only three biomarkers (troponin, natriuretic peptides and C-reactive protein) are currently included in practice guidelines, more than 20 other novel cardiac biomarkers have been proposed to provide improved risk stratification after a STEMI.
Collapse
Affiliation(s)
- Jonathan W Waks
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Mechanism of cancer-induced bone destruction: An association of connective tissue growth factor (CTGF/CCN2) in the bone metastasis. JAPANESE DENTAL SCIENCE REVIEW 2011. [DOI: 10.1016/j.jdsr.2010.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
|
41
|
Mayyas F, Niebauer M, Zurick A, Barnard J, Gillinov AM, Chung MK, Van Wagoner DR. Association of left atrial endothelin-1 with atrial rhythm, size, and fibrosis in patients with structural heart disease. Circ Arrhythm Electrophysiol 2010; 3:369-79. [PMID: 20495015 DOI: 10.1161/circep.109.924985] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) promotes atrial remodeling and can develop secondary to heart failure or mitral valve disease. Cardiac endothelin-1 (ET-1) expression responds to wall stress and can promote myocyte hypertrophy and interstitial fibrosis. We tested the hypothesis that atrial ET-1 is elevated in AF and is associated with AF persistence. METHODS AND RESULTS Left atrial appendage tissue was studied from coronary artery bypass graft, valve repair, and/or Maze procedure in patients in sinus rhythm with no history of AF (SR, n=21), with history of AF but in SR at surgery (AF/SR, n=23), and in AF at surgery (AF/AF, n=32). The correlation of LA size with atrial protein and mRNA expression of ET-1 and ET-1 receptors (ETAR and ETBR) was evaluated. LA appendage ET-1 content was higher in AF/AF than in SR, but receptor levels were similar. Immunostaining revealed that ET-1 and its receptors were present both in atrial myocytes and in fibroblasts. ET-1 content was positively correlated with LA size, heart failure, AF persistence, and severity of mitral regurgitation. Multivariate analysis confirmed associations of ET-1 with AF, hypertension, and LA size. LA size was associated with ET-1 and MR severity. ET-1 mRNA levels were correlated with genes involved in cardiac dilatation, hypertrophy, and fibrosis. CONCLUSIONS Elevated atrial ET-1 content is associated with increased LA size, AF rhythm, hypertension, and heart failure. ET-1 is associated with atrial dilatation, fibrosis, and hypertrophy and probably contributes to AF persistence. Interventions that reduce atrial ET-1 expression and/or block its receptors may slow AF progression.
Collapse
Affiliation(s)
- Fadia Mayyas
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Bo Yang, Chen YD, Li TD, Feng QZ. Endothelin-1 receptor blockade induces upregulation of renin-angiotensin-aldosterone system expression in terms of blood pressure regulation. J Renin Angiotensin Aldosterone Syst 2010; 11:119-23. [PMID: 20093323 DOI: 10.1177/1470320309358108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Objective. To compare the level of expression of the renin-angiotensin-aldosterone system (RAAS) in mice with or without the endothelin-1 receptor antagonist bosentan and to examine the potential value in blood pressure regulation. Materials and methods. Bosentan (10 mg/kg/d) and placebo were given to two groups of male C57BL/6 mice (n=5) from ages 6 to 12 weeks. The mRNAs of liver, kidney and lung were isolated for Northern blot analysis. A further 15 male C57BL/6 mice were divided into three groups (n=5): mice in group A were given the angiotensin II type 1 receptor blocker valsartan (10 mg/kg/d); mice in group B were given bosentan (10 mg/kg/d); and mice in group C were given both valsartan and bosentan (10 mg/ kg/d for each drug). All mice were administered the drugs from 6 to 12 weeks of age and had their systolic blood pressure (SBP) measured at the end of the drug treatments. Results. Northern blot analysis demonstrated that the expression levels of angiotensinogen in liver (p=0.0126), renin in kidney (p=0.002), and angiotensin-converting enzyme in lung (p=0.0041) were upregulated in mice treated with bosentan. No difference in SBP was found among the groups before drug administration. Six weeks after monotherapy with valsartan, SBP was slightly lowered (126±2 vs. 122±3 mmHg, p=0.0381). Monotherapy with bosentan also had a small effect on SBP (126±2 vs. 122±3 mmHg, p=0.0381), whereas dual blockade with valsartan and bosentan significantly lowered SBP (127±3 vs. 103±3 mmHg, p<0.001). Conclusions. We conclude that RAAS components are upregulated under endothelin blockade. Dual blockade of the RAAS and endothelin system is beneficial for blood pressure control.
Collapse
Affiliation(s)
- Bo Yang
- Department of Cardiology, Chinese PLA (People's Liberation Army) General Hospital, No. 28, Fu-xing Road, Beijing, 100853, China
| | - Yun-Dai Chen
- Department of Cardiology, Chinese PLA (People's Liberation Army) General Hospital, No. 28, Fu-xing Road, Beijing, 100853, China
| | - Tian-De Li
- Department of Cardiology, Chinese PLA (People's Liberation Army) General Hospital, No. 28, Fu-xing Road, Beijing, 100853, China
| | - Quan-Zhou Feng
- Department of Cardiology, Chinese PLA (People's Liberation Army) General Hospital, No. 28, Fu-xing Road, Beijing, 100853, China
| |
Collapse
|
43
|
Thorin E, Webb DJ. Endothelium-derived endothelin-1. Pflugers Arch 2009; 459:951-8. [PMID: 19967386 DOI: 10.1007/s00424-009-0763-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 12/20/2022]
Abstract
One year after the revelation by Dr. Furchgott in 1980 that the endothelium was obligatory for acetylcholine to relax isolated arteries, it was clearly shown that the endothelium could also promote contraction. In 1988, Dr. Yanagisawa's group identified endothelin-1 (ET-1) as the first endothelium-derived contracting factor. The circulating levels of this short (21-amino acid) peptide were quickly determined in humans, and it was reported that, in most cardiovascular diseases, circulating levels of ET-1 were increased, and ET-1 was then tagged as "a bad guy." The discovery of two receptor subtypes in 1990, ET(A) and ET(B), permitted optimization of the first dual ET-1 receptor antagonist in 1993 by Dr. Clozel's team, who entered clinical development with bosentan, which was offered to patients with pulmonary arterial hypertension in 2001. The revelation of Dr. Furchgott opened a Pandora's box with ET-1 as one of the actors. In this brief review, we will discuss the physiological and pathophysiological role of endothelium-derived ET-1 focusing on the regulation of the vascular tone, and as much as possible in humans. The coronary bed will be used as a running example in this review because it is the most susceptible to endothelial dysfunction, but references to the cerebral and renal circulation will also be made. Many of the cardiovascular complications associated with aging and cardiovascular risk factors are initially attributable, at least in part, to endothelial dysfunction, particularly dysregulation of the vascular function associated with an imbalance in the close interdependence of nitric oxide and ET-1.
Collapse
Affiliation(s)
- Eric Thorin
- Department of Surgery and Research Center, Institut de Cardiologie de Montréal, Université de Montréal, Montréal, QC, Canada.
| | | |
Collapse
|
44
|
Pellman J, Lyon RC, Sheikh F. Extracellular matrix remodeling in atrial fibrosis: mechanisms and implications in atrial fibrillation. J Mol Cell Cardiol 2009; 48:461-7. [PMID: 19751740 DOI: 10.1016/j.yjmcc.2009.09.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/29/2009] [Revised: 08/29/2009] [Accepted: 09/02/2009] [Indexed: 12/28/2022]
Abstract
Atrial fibrosis has been strongly associated with the presence of heart diseases/arrhythmias, including congestive heart failure (CHF) and atrial fibrillation (AF). Inducibility of AF as a result of atrial fibrosis has been the subject of intense recent investigation since it is the most commonly encountered arrhythmia in adults and can substantially increase the risk of premature death. Rhythm and rate control drugs as well as surgical interventions are used as therapies for AF; however, increased attention has been diverted to mineralocorticoid receptor (MR) antagonists including spironolactone as potential therapies for human AF because of their positive effects on reducing atrial fibrosis and associated AF in animal models. Spironolactone has been shown to exert positive effects in human patients with heart failure; however, the mechanisms and effects in human atrial fibrosis and AF remain undetermined. This review will discuss and highlight developments on (i) the relationship between atrial fibrosis and AF, (ii) spironolactone, as a drug targeted to atrial fibrosis and AF, as well as (iii) the distinct and common mechanisms important for regulating atrial and ventricular fibrosis, inclusive of the key extracellular matrix regulatory proteins involved.
Collapse
Affiliation(s)
- Jason Pellman
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613, USA
| | | | | |
Collapse
|