1
|
Mori S, Kimura R, Morihara H, Tomimatsu M, Fuchigami S, Matsumoto K, Tanaka S, Okada Y, Maeda M, Obana M, Fujio Y. Suppression of Dad1 induces cardiomyocyte death by weakening cell adhesion. Am J Physiol Cell Physiol 2025; 328:C95-C106. [PMID: 39611549 DOI: 10.1152/ajpcell.00509.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
As cardiomyocyte loss causes heart failure, inhibition of cardiomyocyte death may be a therapeutic strategy against heart failure. In this study, we have identified defender against cell death 1 (Dad1) as a candidate regulator of cardiomyocyte death, using complementary DNA microarray and siRNA knockdown screening. Dad1 is a subunit of oligosaccharyltransferase (OST) complex that is responsible for protein N-glycosylation; however, its function in cardiomyocytes remains unknown. Importantly, the knockdown of Dad1 using siRNA reduced the viability of neonatal rat cardiomyocytes (NRCMs), accompanied by cleaved caspase3 expression, independent of endoplasmic reticulum stress. Dad1 knockdown impaired cell spreading and reduced myofibrillogenesis in NRCMs, suggesting that Dad1 knockdown induced anoikis, apoptosis by disrupting cell-matrix interactions. Consistently, knockdown of Dad1 impaired N-glycosylation of integrins α5 and β1, accompanied by inactivation of focal adhesion kinase. When cell adhesion was enhanced using adhesamine, fibronectin, or collagen type IV, cardiomyocyte death induced by Dad1 knockdown was reduced. Dad1 knockdown decreased the expression of staurosporine and temperature-sensitive 3 A (Stt3A), a catalytic subunit of OST complex. Interestingly, Stt3A knockdown using Stt3A siRNA reduced the expression of Dad1, indicating that both Dad1 and Stt3A were required for OST stabilization. In conclusion, Dad1 plays an important role in maintaining the expression of mature N-glycosylated integrins and their downstream signaling molecules to suppress cardiomyocyte anoikis.NEW & NOTEWORTHY This study found for the first time that the knockdown of Dad1 induced cardiomyocyte death, accompanied by impairment of myofibrillogenesis and cell spreading. Dad1 regulates the N-glycosylation of integrins in cooperation with Stt3A and preserves cell adhesion activity, promoting cardiomyocyte survival. This is the first demonstration that Dad1 contributes to the maintenance of cardiac homeostasis through the posttranslational modification of integrins, providing a novel insight into the biological significance of OST complex in cardiomyocytes.
Collapse
Affiliation(s)
- Shota Mori
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
| | - Rumi Kimura
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
| | - Hirofumi Morihara
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Masashi Tomimatsu
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
| | - Shota Fuchigami
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
| | - Kotaro Matsumoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
| | - Makiko Maeda
- Laboratory of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
- Department of Medical Innovation, Medical Center for Translational Research, Osaka University Hospital, Suita City, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Suita City, Japan
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Suita City, Japan
- Global Center for Medical Engineering and Informatics (MEI), Osaka University, Suita City, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Suita City, Japan
| |
Collapse
|
2
|
Liu C, Xu X, Sun G, Song C, Jiang S, Sun P, Tian J. Targeting DUSP26 to drive cardiac mitochondrial dynamics via FAK-ERK signaling in diabetic cardiomyopathy. Free Radic Biol Med 2024; 225:856-870. [PMID: 39510451 DOI: 10.1016/j.freeradbiomed.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a severe cardiac complication of diabetes mellitus, characterized by structural and functional myocardial abnormalities. The molecular mechanisms underlying DCM, particularly the role of dual-specificity phosphatase 26 (DUSP26), remain insufficiently understood. Our study reveals that DUSP26 expression is markedly downregulated in the cardiomyocytes of diabetic db/db mice and under glucolipotoxic stress. Overexpression of DUSP26 in db/db mice significantly improved cardiac function, as demonstrated by enhanced left ventricular ejection fraction and fractional shortening, alongside reduced myocardial fibrosis and hypertrophy. Mitochondrial analysis indicated that DUSP26 overexpression led to increased ATP production, enhanced mitochondrial fusion, and improved structural integrity. In addition, lipid accumulation was reduced, reflecting enhanced metabolic function. We also discovered that DUSP26 is necessary for regulating the focal adhesion kinase (FAK)-extracellular signal-regulated kinase (ERK) pathway, with pharmacological activation of FAK partially offsetting the benefits of DUSP26 overexpression in rescue experiments. These findings underscore the pivotal role of DUSP26 as a potential therapeutic target, highlighting the importance of developing targeted molecular interventions to address diabetic cardiac complications.
Collapse
MESH Headings
- Animals
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/genetics
- Mice
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Dual-Specificity Phosphatases/metabolism
- Dual-Specificity Phosphatases/genetics
- Mitochondrial Dynamics
- MAP Kinase Signaling System
- Focal Adhesion Kinase 1/metabolism
- Focal Adhesion Kinase 1/genetics
- Male
- Humans
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/complications
- Mitogen-Activated Protein Kinase Phosphatases/metabolism
- Mitogen-Activated Protein Kinase Phosphatases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Extracellular Signal-Regulated MAP Kinases/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Chong Liu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin City, NO. 38, Weixing Road, Daowai District, Harbin, 150086, China
| | - Guiming Sun
- Department of Ultrasound, Harbin Traditional Chinese Medicine Hospital, NO. 2, Xinglin Road, Daoli District, Harbin, 150086, China
| | - Chengchao Song
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China
| | - Shuangquan Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China.
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China.
| |
Collapse
|
3
|
Li Q, Tan G, Wu F. The functions and roles of C2H2 zinc finger proteins in hepatocellular carcinoma. Front Physiol 2023; 14:1129889. [PMID: 37457025 PMCID: PMC10339807 DOI: 10.3389/fphys.2023.1129889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
C2H2 zinc finger (C2H2-ZF) proteins are the majority group of human transcription factors and they have many different molecular functions through different combinations of zinc finger domains. Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the main reason for cancer-related deaths worldwide. More and more findings support the abnormal expression of C2H2-ZF protein in the onset and progression of HCC. The C2H2-ZF proteins are involved in various biological functions in HCC, such as EMT, stemness maintenance, metabolic reprogramming, cell proliferation and growth, apoptosis, and genomic integrity. The study of anti-tumor drug resistance also highlights the pivotal roles of C2H2-ZF proteins at the intersection of biological functions (EMT, stemness maintenance, autophagy)and chemoresistance in HCC. The involvement of C2H2-ZF protein found recently in regulating different molecules, signal pathways and pathophysiological activities indicate these proteins as the possible therapeutic targets, and diagnostic or prognostic biomarkers for HCC.
Collapse
|
4
|
Halim A, Narayanan G, Hato T, Ho L, Wan D, Siedlecki AM, Rhee EP, Allegretti AS, Nigwekar SU, Zehnder D, Hiemstra TF, Bonventre JV, Charytan DM, Kalim S, Thadhani R, Lu T, Lim K. Myocardial Cytoskeletal Adaptations in Advanced Kidney Disease. J Am Heart Assoc 2022; 11:e022991. [PMID: 35179046 PMCID: PMC9075094 DOI: 10.1161/jaha.121.022991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022]
Abstract
Background The myocardial cytoskeleton functions as the fundamental framework critical for organelle function, bioenergetics and myocardial remodeling. To date, impairment of the myocardial cytoskeleton occurring in the failing heart in patients with advanced chronic kidney disease has been largely undescribed. Methods and Results We conducted a 3-arm cross-sectional cohort study of explanted human heart tissues from patients who are dependent on hemodialysis (n=19), hypertension (n=10) with preserved renal function, and healthy controls (n=21). Left ventricular tissues were subjected to pathologic examination and next-generation RNA sequencing. Mechanistic and interference RNA studies utilizing in vitro human cardiac fibroblast models were performed. Left ventricular tissues from patients undergoing hemodialysis exhibited increased myocardial wall thickness and significantly greater fibrosis compared with hypertension patients (P<0.05) and control (P<0.01). Transcriptomic analysis revealed that the focal adhesion pathway was significantly enriched in hearts from patients undergoing hemodialysis. Hearts from patients undergoing hemodialysis exhibited dysregulated components of the focal adhesion pathway including reduced β-actin (P<0.01), β-tubulin (P<0.01), vimentin (P<0.05), and increased expression of vinculin (P<0.05) compared with controls. Cytoskeletal adaptations in hearts from the hemodialysis group were associated with impaired mitochondrial bioenergetics, including dysregulated mitochondrial dynamics and fusion, and loss of cell survival pathways. Mechanistic studies revealed that cytoskeletal changes can be driven by uremic and metabolic abnormalities of chronic kidney disease, in vitro. Furthermore, focal adhesion kinase silencing via interference RNA suppressed major cytoskeletal proteins synergistically with mineral stressors found in chronic kidney disease in vitro. Conclusions Myocardial failure in advanced chronic kidney disease is characterized by impairment of the cytoskeleton involving disruption of the focal adhesion pathway, mitochondrial failure, and loss of cell survival pathways.
Collapse
Affiliation(s)
- Arvin Halim
- Division of Nephrology and HypertensionIndiana University School of MedicineIndianapolisIN
| | - Gayatri Narayanan
- Division of Nephrology and HypertensionIndiana University School of MedicineIndianapolisIN
| | - Takashi Hato
- Division of Nephrology and HypertensionIndiana University School of MedicineIndianapolisIN
| | - Lilun Ho
- Department of Computer Science, Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeMA
| | - Douglas Wan
- Division of CardiologyUniversity of Toronto and Sunnybrook Health Sciences CentreTorontoCanada
| | | | - Eugene P. Rhee
- Division of Nephrology, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Andrew S. Allegretti
- Division of Nephrology, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Sagar U. Nigwekar
- Division of Nephrology, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | - Daniel Zehnder
- Department of Nephrology and Department of Acute MedicineNorth Cumbria University Hospital NHS TrustCarlisleUnited Kingdom
| | - Thomas F. Hiemstra
- Cambridge Clinical Trials Unit and School of Clinical MedicineUniversity of CambridgeUnited Kingdom
| | | | - David M. Charytan
- Division of NephrologyNew York University School of MedicineNew YorkNY
| | - Sahir Kalim
- Division of Nephrology, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| | | | - Tzongshi Lu
- Renal Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonMA
| | - Kenneth Lim
- Division of Nephrology and HypertensionIndiana University School of MedicineIndianapolisIN
| |
Collapse
|
5
|
Johnstone EKM, Abhayawardana RS, See HB, Seeber RM, O'Brien SL, Thomas WG, Pfleger KDG. Complex interactions between the angiotensin II type 1 receptor, the epidermal growth factor receptor and TRIO-dependent signaling partners. Biochem Pharmacol 2021; 188:114521. [PMID: 33741329 DOI: 10.1016/j.bcp.2021.114521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Transactivation of the epidermal growth factor receptor (EGFR) by the angiotensin II (AngII) type 1 (AT1) receptor is involved in AT1 receptor-dependent growth effects and cardiovascular pathologies, however the mechanisms underpinning this transactivation are yet to be fully elucidated. Recently, a potential intermediate of this process was identified following the discovery that a kinase called TRIO was involved in AngII/AT1 receptor-mediated transactivation of EGFR. To investigate the mechanisms by which TRIO acts as an intermediate in AngII/AT1 receptor-mediated EGFR transactivation we used bioluminescence resonance energy transfer (BRET) assays to investigate proximity between the AT1 receptor, EGFR, TRIO and other proteins of interest. We found that AngII/AT1 receptor activation caused a Gαq-dependent increase in proximity of TRIO with Gγ2 and the AT1-EGFR heteromer, as well as trafficking of TRIO towards the Kras plasma membrane marker and into early, late and recycling endosomes. In contrast, we found that AngII/AT1 receptor activation caused a Gαq-independent increase in proximity of TRIO with Grb2, GRK2 and PKCζ, as well as trafficking of TRIO up to the plasma membrane from the Golgi. Furthermore, we confirmed the proximity between the AT1 receptor and the EGFR using the Receptor-Heteromer Investigation Technology, which showed AngII-induced recruitment of Grb2, GRK2, PKCζ, Gγ2 and TRIO to the EGFR upon AT1 coexpression. In summary, our results provide further evidence for the existence of the AT1-EGFR heteromer and reveal potential mechanisms by which TRIO contributes to the transactivation process.
Collapse
Affiliation(s)
- Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Rekhati S Abhayawardana
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Heng B See
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Ruth M Seeber
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Shannon L O'Brien
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia; Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Walter G Thomas
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; Dimerix Limited, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
6
|
Alexander RA, Lot I, Saha K, Abadie G, Lambert M, Decosta E, Kobayashi H, Beautrait A, Borrull A, Asnacios A, Bouvier M, Scott MGH, Marullo S, Enslen H. Beta-arrestins operate an on/off control switch for focal adhesion kinase activity. Cell Mol Life Sci 2020; 77:5259-5279. [PMID: 32040695 PMCID: PMC11104786 DOI: 10.1007/s00018-020-03471-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins β-arrestins and G proteins. Depletion of β-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that β-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-β-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT1AR and subsequent translocation of the FAK-β-arrestin complex to the plasma membrane, β-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient β-arrestin and by a specific inhibitor of β-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of β-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.
Collapse
Affiliation(s)
- Revu Ann Alexander
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Isaure Lot
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Kusumika Saha
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Guillaume Abadie
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mireille Lambert
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Eleonore Decosta
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hiroyuki Kobayashi
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Alexandre Beautrait
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Aurélie Borrull
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Michel Bouvier
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Mark G H Scott
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Stefano Marullo
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hervé Enslen
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
7
|
Role of FAK signaling in chagasic cardiac hypertrophy. Braz J Infect Dis 2020; 24:386-397. [PMID: 32931757 PMCID: PMC9392126 DOI: 10.1016/j.bjid.2020.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Cardiac hypertrophy and dysfunction are a significant complication of chronic Chagas disease, with heart failure, stroke, and sudden death related to disease progression. Thus, understanding the signaling pathways involved in the chagasic cardiac hypertrophy may provide potential targets for pharmacological therapy. Herein, we investigated the implication of focal adhesion kinase (FAK) signaling pathway in triggering hypertrophic phenotype during acute and chronic T. cruzi infection. C57BL/6 mice infected with T. cruzi (Brazil strain) were evaluated for electrocardiographic (ECG) changes, plasma levels of endothelin-1 (ET-1) and activation of signaling pathways involved in cardiac hypertrophy, including FAK and ERK1/2, as well as expression of hypertrophy marker and components of the extracellular matrix in the different stages of T. cruzi infection (60-210 dpi). Heart dysfunction, evidenced by prolonged PR interval and decrease in heart rates in ECG tracing, was associated with high plasma ET-1 level, extracellular matrix remodeling and FAK signaling activation. Upregulation of both FAK tyrosine 397 (FAK-Y397) and serine 910 (FAK-S910) residues phosphorylation as well as ERK1/2 activation, lead to an enhancement of atrial natriuretic peptide gene expression in chronic infection. Our findings highlight FAK-ERK1/2 signaling as a regulator of cardiac hypertrophy in Trypanosoma cruzi infection. Both mechanical stress, induced by cardiac extracellular matrix (ECM) augment and cardiac overload, and ET-1 stimuli orchestrated FAK signaling activation with subsequent activation of the fetal cardiac gene program in the chronic phase of infection, highlighting FAK as an attractive target for Chagas disease therapy.
Collapse
|
8
|
Mapping signalling perturbations in myocardial fibrosis via the integrative phosphoproteomic profiling of tissue from diverse sources. Nat Biomed Eng 2020; 4:889-900. [PMID: 32661320 DOI: 10.1038/s41551-020-0585-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/14/2020] [Indexed: 12/13/2022]
Abstract
Study of the molecular basis of myocardial fibrosis is hampered by limited access to tissues from human patients and by confounding variables associated with sample accessibility, collection, processing and storage. Here, we report an integrative strategy based on mass spectrometry for the phosphoproteomic profiling of normal and fibrotic cardiac tissue obtained from surgical explants from patients with hypertrophic cardiomyopathy, from a transaortic-constriction mouse model of cardiac hypertrophy and fibrosis, and from a heart-on-a-chip model of cardiac fibrosis. We used the integrative approach to map the relative abundance of thousands of proteins, phosphoproteins and phosphorylation sites specific to each tissue source, to identify key signalling pathways driving fibrosis and to screen for anti-fibrotic compounds targeting glycogen synthase kinase 3, which has a consistent role as a key mediator of fibrosis in all three types of tissue specimen. The integrative disease-modelling strategy may reveal new insights into mechanisms of cardiac disease and serve as a test bed for drug screening.
Collapse
|
9
|
Salgado-Lucio ML, Ramírez-Ramírez D, Jorge-Cruz CY, Roa-Espitia AL, Hernández-González EO. FAK regulates actin polymerization during sperm capacitation via the ERK2/GEF-H1/RhoA signaling pathway. J Cell Sci 2020; 133:jcs239186. [PMID: 32107290 DOI: 10.1242/jcs.239186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Actin polymerization is a crucial process during sperm capacitation. We have recently described the participation of FAK during actin polymerization in guinea pig spermatozoa. However, the mechanism by which FAK mediates these processes is unknown. Our previous data have shown that MAPK1 (hereafter referred to as ERK2) is activated during the first minutes of capacitation, and inhibition of ERK2 blocked actin polymerization and the acrosome reaction. In this current study, we found that FAK is involved in ERK2 activation - as FAK was phosphorylated at tyrosine residue 925 and bound to Grb2 - and that inhibition of FAK results in a significant decrease of ERK2 activation. We also confirmed the presence of Rho guanine nucleotide exchange factor 2 (ARHGEF2, hereafter referred to as GEF-H1), which is able to associate with RhoA during capacitation. RhoA activation and its participation in actin polymerization were also analyzed. Inhibition of FAK or ERK1/2 impeded GEF-H1 phosphorylation, RhoA activation, and the association between GEF-H1 and RhoA. Finally, we observed the presence of fibronectin on the sperm surface, its role in sperm-sperm interaction as well as participation of β-integrin in the activation of ERK2. Our results show that the signaling pathway downstream of fibronectin, via integrin, FAK, Grb2, MEK1/2, ERK2, GEF-H1 and RhoA regulates the actin polymerization associated with spermatozoa capacitation.
Collapse
Affiliation(s)
- Monica L Salgado-Lucio
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Danelia Ramírez-Ramírez
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Coral Y Jorge-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Ana L Roa-Espitia
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Enrique O Hernández-González
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| |
Collapse
|
10
|
ASIC1a promotes synovial invasion of rheumatoid arthritis via Ca 2+/Rac1 pathway. Int Immunopharmacol 2019; 79:106089. [PMID: 31865241 DOI: 10.1016/j.intimp.2019.106089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
Acid-sensitive ion channels (ASICs) as Ca2+ and Na+ cation channels are activated by changing in extracellular pH, which expressed in various diseases and participated in underlying pathogenesis. ASIC1a is involved in migration and invasion of various tumor cells. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) located at the edge of the synovium were identified as key players in the pathophysiological process of rheumatoid arthritis and reported to have many similar properties to tumor cells. Here, we investigated the roles of ASIC1a in synovial invasion in vivo and the migration and invasion of RA-FLSs in vitro. Our results showed ASIC1a highly expressed in RA synovial tissues and RA-FLSs. Inhibition of ASIC1a by PCTX-1 reduces synovial invasion and the expressions of MMP2, MMP9, p-FAK to protect articular cartilage in AA rats. Moreover, the acidity-promoted invasion and migration as well as the expressions of MMP2, MMP9, p-FAK of RA-FLSs were down-regulated by ASIC1a-RNAi and PCTX-1 while they were increased by overexpression-ASIC1a. ASIC1a mediated Ca2+ influx and the activation of Ras-related C3 botulinum toxin substrate 1(Rac1), which was decreased by the intracellular calcium chelating agent BAPTA-AM. Meanwhile, the migration and invasion as well as the expressions of MMP2, MMP9, p-FAK of RA-FLSs were decreased by Rac1 specific blocker NSC23766. In conclusion, this study indicated that ASIC1a may be a master regulator of synovial invasion via Ca2+/Rac1 pathway.
Collapse
|
11
|
ZNF32 induces anoikis resistance through maintaining redox homeostasis and activating Src/FAK signaling in hepatocellular carcinoma. Cancer Lett 2018; 442:271-278. [PMID: 30439540 DOI: 10.1016/j.canlet.2018.09.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Tumor cells need to attain anoikis resistance to survive prior to metastasis making it a vital trait of malignancy. The molecular mechanism by which hepatocellular carcinoma (HCC) cells resist anoikis remains not fully understood. Here, we report that ZNF32 expression is markedly upregulated in HCC cells upon detachment. Enforced ZNF32 expression significantly promotes the anchorage-independent growth capability of HepG2 and Huh7 cells, whereas knockdown of ZNF32 results in increased apoptosis of HCC cells after detachment. Mechanistically, we demonstrate that ZNF32 overexpression suppresses the reactive oxygen species (ROS) accumulation and maintains mitochondrial membrane potential, leading to ATP, GSH and NADPH elevation and promoting HCC cell survival in response to suspension. Moreover, ZNF32 enhances the phosphorylation and activation of Src/FAK signaling. Src and FAK inhibitors effectively reverse ZNF32-induced anoikis resistance in HCC cells. Collectively, our findings not only reveal a novel and important mechanism by which ZNF32 contributes to anoikis resistance through maintaining redox homeostasis and activating Src/FAK signaling, but also suggest the potential therapeutic value of ZNF32 in HCC patients.
Collapse
|
12
|
Jiang M, Lyu Q, Bai YG, Liu H, Yang J, Cheng JH, Zheng M, Ma J. Focal adhesions are involved in simulated-microgravity-induced basilar and femoral arterial remodelling in rats. Can J Physiol Pharmacol 2018. [PMID: 29527943 DOI: 10.1139/cjpp-2017-0665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have suggested that microgravity-induced arterial remodelling contributes to post-flight orthostatic intolerance and that multiple mechanisms are involved in arterial remodelling. However, the initial mechanism by which haemodynamic changes induce arterial remodelling is unknown. Focal adhesions (FAs) are dynamic protein complexes that have mechanotransduction properties. This study aimed to investigate the role of FAs in simulated-microgravity-induced basilar and femoral arterial remodelling. A 4-week hindlimb-unweighted (HU) rat model was used to simulate the effects of microgravity, and daily 1-hour intermittent artificial gravity (IAG) was used to prevent arterial remodelling. After 4-week HU, wall thickness, volume of smooth muscle cells (SMCs) and collagen content were increased in basilar artery but decreased in femoral artery (P < 0.05). Additionally, the expression of p-FAK Y397 and p-Src Y418 was increased and reduced in SMCs of basilar and femoral arteries, respectively, by HU (P < 0.05). The number of FAs was increased in basilar artery and reduced in femoral artery by HU (P < 0.05). Furthermore, daily 1-hour IAG prevented HU-induced differential structural adaptations and changes in FAs of basilar and femoral arteries. These results suggest that FAs may act as mechanosensors in arterial remodelling by initiating intracellular signal transduction in response to altered mechanical stress induced by microgravity.
Collapse
Affiliation(s)
- Min Jiang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Qiang Lyu
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Huan Liu
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jing Yang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jiu-Hua Cheng
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Ming Zheng
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jin Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
13
|
Medrano JL, Naya FJ. The transcription factor MEF2A fine-tunes gene expression in the atrial and ventricular chambers of the adult heart. J Biol Chem 2017; 292:20975-20988. [PMID: 29054930 PMCID: PMC5743072 DOI: 10.1074/jbc.m117.806422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
The distinct morphological and functional properties of the cardiac chambers arise from an elaborate developmental program involving cell lineage determination, morphogenesis, and dynamic spatiotemporal gene expression patterns. Although a number of transcription factors have been identified for proper gene regulation in the chambers, the complete transcriptional network that controls these patterns remains poorly defined. Previous studies have implicated the MEF2C transcription factor in the regulation of chamber-restricted enhancers. To better understand the mechanisms of MEF2-mediated regional gene regulation in the heart, we took advantage of MEF2A knock-out (KO) mice, a model that displays a predominantly ventricular chamber phenotype. Transcriptomic analysis of atrial and ventricular tissue from adult MEF2A KO hearts revealed a striking difference in chamber gene expression, with a larger proportion of dysregulated genes in the atrial chambers. Canonical pathway analysis of genes preferentially dysregulated in the atria and ventricles revealed distinct MEF2A-dependent cellular processes in each cardiac chamber. In the atria, MEF2A regulated genes involved in fibrosis and adhesion, whereas in the ventricles, it controlled inflammation and endocytosis. Finally, analysis of transcription factor-binding site motifs of differentially dysregulated genes uncovered distinct MEF2A co-regulators for the atrial and ventricular gene sets, and a subset of these was found to cooperate with MEF2A. In conclusion, our results suggest a mechanism in which MEF2 transcriptional activity is differentially recruited to fine-tune gene expression levels in each cardiac chamber. This regulatory mechanism ensures optimal output of these gene products for proper physiological function of the atrial and ventricular chambers.
Collapse
Affiliation(s)
- Jose L Medrano
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
14
|
Mohanty P, Bhatnagar S. Structure of focal adhesion kinase in healthy heart versus pathological cardiac hypertrophy: A modeling and simulation study. J Mol Graph Model 2017; 80:15-24. [PMID: 29306139 DOI: 10.1016/j.jmgm.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Focal adhesion kinase (FAK) is required for signaling in the heart. S910 phosphorylated FAK is known to cause pathological cardiac hypertrophy. The switching of FAK between its inactive (-i), activated (-a) and hyperactive (-h) state is controlled by phosphorylation. FAK consists of three domains, namely: FERM, Kinase, and FAT joined by linkers L1 and L2. The structural basis of FAK phosphorylation and signaling to the downstream pathways is not understood. In this work, we carried out homology modeling and domain assembly of full length human iFAK and aFAK. 100 ns classical molecular dynamic simulations were performed using AMBER14 and effect of S910 phosphorylation on FAK was investigated. The iFAK model superposed on a small angel X-ray scattering (SAXS) derived model with RMSD of 1.18 Å for 590 Cα atoms. aFAK showed S910 phosphorylation site in L2 shielded by FERM. S910 phosphorylation in hFAK led to its exposure accompanied by a large conformational change and exposing the previously buried Grb2 interaction site responsible for causing cardiac hypertrophy. The models of FAK are in agreement with diverse experimental data and observed differences in biological action. Understanding the structure activity relationships of FAK in response to phosphorylation is important for its future therapeutic modulation.
Collapse
Affiliation(s)
- Pallavi Mohanty
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi 110078, India.
| |
Collapse
|
15
|
Abstract
The CB1 and CB2 cannabinoid receptors (CB1R, CB2R) are members of the G protein-coupled receptor (GPCR) family that were identified over 20 years ago. CB1Rs and CB2Rs mediate the effects of Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of marijuana, and subsequently identified endogenous cannabinoids (endocannabinoids) anandamide and 2-arachidonoyl glycerol. CB1Rs and CB2Rs have both similarities and differences in their pharmacology. Both receptors recognize multiple classes of agonist and antagonist compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. This chapter will discuss their pharmacological characterization, distribution, phylogeny, and signaling pathways. In addition, the effects of extended agonist exposure and how that affects signaling and expression patterns of the receptors are considered.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- Humans
- Phylogeny
- Polymorphism, Genetic
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Allyn C Howlett
- Center for Research on Substance Use and Addiction, Wake Forest University Health Sciences, Winston-Salem, NC, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
16
|
Impact of shear stress on Src and focal adhesion kinase phosphorylation in fibrinogen-adherent platelets. Blood Coagul Fibrinolysis 2017; 28:279-285. [DOI: 10.1097/mbc.0000000000000593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Wang X, Chen W, Zhang J, Khan A, Li L, Huang F, Qiu Z, Wang L, Chen X. Critical Role of ADAMTS2 (A Disintegrin and Metalloproteinase With Thrombospondin Motifs 2) in Cardiac Hypertrophy Induced by Pressure Overload. Hypertension 2017; 69:1060-1069. [PMID: 28373586 DOI: 10.1161/hypertensionaha.116.08581] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 10/29/2016] [Accepted: 03/04/2017] [Indexed: 12/31/2022]
Abstract
ADAMTS2 (A Disintegrin and Metalloproteinase With Thrombospondin Motifs 2) is recognized as a metalloproteinase that promotes the cleavage of amino propeptides of types I, II, III, and V procollagens. However, the role of ADAMTS2 in the heart has not yet been defined. Herein, we observed the upregulated expression of ADAMTS2 in failing human hearts and hypertrophic murine hearts. Mice lacking ADAMTS2 display exacerbated cardiac hypertrophy on pressure overload-induced hypertrophic response, whereas mice with cardiac-specific overexpression of ADAMTS2 display alleviation of this detrimental phenotype. Consistent with these results, in vitro loss or gain of function experiments in neonatal rat cardiomyocytes confirmed that ADAMTS2 negatively regulates cardiomyocyte hypertrophy in response to Ang II. Mechanistically, blockage of the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)-dependent signaling pathway with specific inhibitors both in vivo and in vitro could rescue the aggravated hypertrophic response to the loss of ADAMTS2. Collectively, we propose that ADAMTS2 regulates the hypertrophic response through inhibiting the activation of the PI3K/AKT-dependent signaling pathway. Because ADAMTS2 is an extracellular protein, it could be effectively manipulated using pharmacological means to modulate cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiaodi Wang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Wen Chen
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Jie Zhang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Aiman Khan
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Liangpeng Li
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Fuhua Huang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Zhibing Qiu
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Liming Wang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Xin Chen
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Targeted inhibition of Focal Adhesion Kinase Attenuates Cardiac Fibrosis and Preserves Heart Function in Adverse Cardiac Remodeling. Sci Rep 2017; 7:43146. [PMID: 28225063 PMCID: PMC5320468 DOI: 10.1038/srep43146] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 12/02/2022] Open
Abstract
Cardiac fibrosis in post-myocardial infarction (MI), seen in both infarcted and non-infarcted myocardium, is beneficial to the recovery of heart function. But progressively pathological fibrosis impairs ventricular function and leads to poor prognosis. FAK has recently received attention as a potential mediator of fibrosis, our previous study reported that pharmacological inhibition of FAK can attenuate cardiac fibrosis in post MI models. However, the long-term effects on cardiac function and adverse cardiac remodelling were not clearly investigated. In this study, we tried to determine the preliminary mechanisms in regulating CF transformation to myofibroblasts and ECM synthesis relevant to the development of adverse cardiac remolding in vivo and in vitro. Our study provides even more evidence that FAK is directly related to the activation of CF in hypoxia condition in a dose-dependent and time-dependent manner. Pharmacological inhibition of FAK significantly reduces myofibroblast differentiation; our in vivo data demonstrated that a FAK inhibitor significantly decreases fibrotic score, and preserves partial left ventricular function. Both PI3K/AKT signalling and ERK1/2 are necessary for hypoxia-induced CF differentiation and ECM synthesis; this process also involves lysyl oxidase (LOX). These findings suggest that pharmacological inhibition of FAK may become an effective therapeutic strategy against adverse fibrosis.
Collapse
|
19
|
Lv Q, Zhu XY, Xia YF, Dai Y, Wei ZF. Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and RhoA GTPases and activation of the PI3K/Akt and JNK signaling pathways. Chin J Nat Med 2016; 13:831-841. [PMID: 26614458 DOI: 10.1016/s1875-5364(15)30087-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Indexed: 02/05/2023]
Abstract
Tetrandrine (Tet), the main active constituent of Stephania tetrandra root, has been demonstrated to alleviate adjuvant-induced arthritis in rats. The present study was designed to investigate the effects of Tet on the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and explore the underlying mechanisms. By using cultures of primary FLS isolated from synoviums of RA patients and cell line MH7A, Tet (0.3, 1 μmol·L(-1)) was proven to significantly impede migration and invasion of RA-FLS, but not cell proliferation. Tet also greatly reduced the activation and expressions of matrix degrading enzymes MMP-2/9, the expression of F-actin and the activation of FAK, which controlled the morphologic changes in migration process of FLS. To identify the key signaling pathways by which Tet exerts anti-migration effect, the specific inhibitors of multiple signaling pathways LY294002, Triciribine, SP600125, U0126, SB203580, and PDTC (against PI3K, Akt, JNK, ERK, p38 MAPK and NF-κB-p65, respectively) were used. Among them, LY294002, Triciribine, and SP600125 were shown to obviously inhibit the migration of MH7A cells. Consistently, Tet was able to down-regulate the activation of Akt and JNK as demonstrated by Western blotting assay. Moreover, Tet could reduce the expressions of migration-related proteins Rho GTPases Rac1, Cdc42, and RhoA in MH7A cells. In conclusion, Tet can impede the migration and invasion of RA-FLS, which provides a plausible explanation for its protective effect on RA. The underlying mechanisms involve the reduction of the expressions of Rac1, Cdc42, and RhoA, inhibition of the activation of Akt and JNK, and subsequent down-regulation of activation and/or expressions of MMP-2/9, F-actin, and FAK.
Collapse
Affiliation(s)
- Qi Lv
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Xian-Yang Zhu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Feng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhi-Feng Wei
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
20
|
Fan D, Takawale A, Shen M, Samokhvalov V, Basu R, Patel V, Wang X, Fernandez-Patron C, Seubert JM, Oudit GY, Kassiri Z. A Disintegrin and Metalloprotease-17 Regulates Pressure Overload-Induced Myocardial Hypertrophy and Dysfunction Through Proteolytic Processing of Integrin β1. Hypertension 2016; 68:937-48. [PMID: 27550917 DOI: 10.1161/hypertensionaha.116.07566] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
Abstract
A disintegrin and metalloprotease-17 (ADAM17) belongs to a family of transmembrane enzymes, and it can mediate ectodomain shedding of several membrane-bound molecules. ADAM17 levels are elevated in patients with hypertrophic and dilated cardiomyopathy; however, its direct role in hypertrophic cardiomyopathy is unknown. Cardiomyocyte-specific ADAM17 knockdown mice (ADAM17(flox/flox)/αMHC-Cre; ADAM17(f/f)/Cre) and littermates with intact ADAM17 levels (ADAM17(f/f)) were subjected to cardiac pressure-overload by transverse aortic constriction. Cardiac function/architecture was assessed by echocardiography at 2 and 5 weeks post transverse aortic constriction. ADAM17 knockdown enhanced myocardial hypertrophy, fibrosis, more severe left ventricular dilation, and systolic dysfunction at 5 weeks post transverse aortic constriction. Pressure overload-induced upregulation of integrin β1 was much greater with ADAM17 knockdown, concomitant with the greater activation of the focal adhesion kinase pathway, suggesting that integrin β1 could be a substrate for ADAM17. ADAM17 knockdown did not alter other cardiomyocyte integrins, integrin α5 or α7, and HB-EGF (heparin-bound epidermal growth factor), another potential substrate for ADAM17, remained unaltered after pressure overload. ADAM17-mediated cleavage of integrin β1 was confirmed by an in vitro assay. Intriguingly, ADAM17 knockdown did not affect the myocardial hypertrophy induced by a subpressor dose of angiotensin II, which occurs independent from the integrin β1-mediated pathway. ADAM17-knockdown enhanced the hypertrophic response to cyclic mechanical stretching in neonatal rat cardiomyocytes. This study reports a novel cardioprotective function for ADAM17 in pressure overload cardiomyopathy, where loss of ADAM17 promotes hypertrophy by reducing the cleavage of cardiac integrin β1, a novel substrate for ADAM17. This function of ADAM17 is selective for pressure overload-induced myocardial hypertrophy and dysfunction, and not agonist-induced hypertrophy.
Collapse
Affiliation(s)
- Dong Fan
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Abhijit Takawale
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Mengcheng Shen
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Victor Samokhvalov
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Ratnadeep Basu
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Vaibhav Patel
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Xiuhua Wang
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Carlos Fernandez-Patron
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - John M Seubert
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Gavin Y Oudit
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Zamaneh Kassiri
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.).
| |
Collapse
|
21
|
Cardoso AC, Pereira AHM, Ambrosio ALB, Consonni SR, Rocha de Oliveira R, Bajgelman MC, Dias SMG, Franchini KG. FAK Forms a Complex with MEF2 to Couple Biomechanical Signaling to Transcription in Cardiomyocytes. Structure 2016; 24:1301-1310. [PMID: 27427476 DOI: 10.1016/j.str.2016.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/06/2016] [Accepted: 06/04/2016] [Indexed: 11/27/2022]
Abstract
Focal adhesion kinase (FAK) has emerged as a mediator of mechanotransduction in cardiomyocytes, regulating gene expression during hypertrophic remodeling. However, how FAK signaling is relayed onward to the nucleus is unclear. Here, we show that FAK interacts with and regulates myocyte enhancer factor 2 (MEF2), a master cardiac transcriptional regulator. In cardiomyocytes exposed to biomechanical stimulation, FAK accumulates in the nucleus, binds to and upregulates the transcriptional activity of MEF2 through an interaction with the FAK focal adhesion targeting (FAT) domain. In the crystal structure (2.9 Å resolution), FAT binds to a stably folded groove in the MEF2 dimer, known to interact with regulatory cofactors. FAK cooperates with MEF2 to enhance the expression of Jun in cardiomyocytes, an important component of hypertrophic response to mechanical stress. These findings underscore a connection between the mechanotransduction involving FAK and transcriptional regulation by MEF2, with potential relevance to the pathogenesis of cardiac disease.
Collapse
Affiliation(s)
- Alisson Campos Cardoso
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Ana Helena Macedo Pereira
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Andre Luis Berteli Ambrosio
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Silvio Roberto Consonni
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Renata Rocha de Oliveira
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Marcio Chain Bajgelman
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Sandra Martha Gomes Dias
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Kleber Gomes Franchini
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil; Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, São Paulo 13081-970, Brazil.
| |
Collapse
|
22
|
Wirbisky SE, Damayanti NP, Mahapatra CT, Sepúlveda MS, Irudayaraj J, Freeman JL. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene. Chem Res Toxicol 2016; 29:169-79. [PMID: 26745549 DOI: 10.1021/acs.chemrestox.5b00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Nur P Damayanti
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Cecon T Mahapatra
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Maria S Sepúlveda
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Joseph Irudayaraj
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, ‡Agricultural and Biological Engineering, §Department of Forestry and Natural Resources, ∥Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Xu L, Brink M. mTOR, cardiomyocytes and inflammation in cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1894-903. [PMID: 26775585 DOI: 10.1016/j.bbamcr.2016.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) is an evolutionary conserved kinase that senses the nutrient and energy status of cells, the availability of growth factors, stress stimuli and other cellular and environmental cues. It responds by regulating a range of cellular processes related to metabolism and growth in accordance with the available resources and intracellular needs. mTOR has distinct functions depending on its assembly in the structurally distinct multiprotein complexes mTORC1 or mTORC2. Active mTORC1 enhances processes including glycolysis, protein, lipid and nucleotide biosynthesis, and it inhibits autophagy. Reported functions for mTORC2 after growth factor stimulation are very diverse, are tissue and cell-type specific, and include insulin-stimulated glucose transport and enhanced glycogen synthesis. In accordance with its cellular functions, mTOR has been demonstrated to regulate cardiac growth in response to pressure overload and is also known to regulate cells of the immune system. The present manuscript presents recently obtained insights into mechanisms whereby mTOR may change anabolic, catabolic and stress response pathways in cardiomocytes and discusses how mTOR may affect inflammatory cells in the heart during hemodynamic stress. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Lifen Xu
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Marijke Brink
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| |
Collapse
|
24
|
Graham ZA, Gallagher PM, Cardozo CP. Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil 2015; 36:305-15. [PMID: 26142360 PMCID: PMC4659753 DOI: 10.1007/s10974-015-9415-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health.
Collapse
Affiliation(s)
- Zachary A Graham
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Christopher P Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Drolet MC, Desbiens-Brassard V, Roussel E, Tu V, Couet J, Arsenault M. Blockade of the acute activation of mTOR complex 1 decreases hypertrophy development in rats with severe aortic valve regurgitation. SPRINGERPLUS 2015; 4:435. [PMID: 26306297 PMCID: PMC4542859 DOI: 10.1186/s40064-015-1230-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/10/2015] [Indexed: 01/19/2023]
Abstract
Background Hypertrophy (H) is an adaptive response of the heart to a hemodynamic overload. Severe left ventricular (LV) volume overload (VO) from valve regurgitations (aortic (AR) or mitral regurgitation) leads to eccentric LVH. Increased protein turnover is a major event during development of LVH and the mechanistic target of rapamycin (mTOR) is a key molecule for its control. The role of mTOR inhibition in the development of LVH using rapamycin for relatively short periods of time (days to a few weeks) has been studied in the past in pressure overload models but not in VO models. We investigated if mTOR pathway was activated during LVH development in a model of severe VO (AR) in rats and if a rapamycin treatment can slow heart remodeling in this situation. Methods and Results Male rats with severe AR were studied acutely at 2 days, at 8 weeks (compensated phase) and 6 months (late phase) after VO induction. mTOR complex (mTORC) 1 (ribosomal S6 protein phosphorylation) was activated early after AR induction but not later in the disease whereas mTORC2 activity levels (Akt phosphorylation at Ser473) remained stable. We observed that a moderate dose of rapamycin (2 mg/kg/day; orally) for 8 weeks prevented severe LVH caused by AR (−46 %: p < 0.001). Rapamycin treatment specifically inhibited LV mTORC1 without altering mTORC2 activity at 8 weeks. Rapamycin also prevented cardiac myocyte hypertrophy caused by AR. Conclusion Rapamycin slows hypertrophy in LV VO by inhibiting early activation of mTORC1 without modulating mTORC2.
Collapse
Affiliation(s)
- Marie-Claude Drolet
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| | - Vincent Desbiens-Brassard
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| | - Elise Roussel
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| | - Veronique Tu
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| | - Jacques Couet
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| | - Marie Arsenault
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| |
Collapse
|
26
|
Zhu X, Fang J, Jiang DS, Zhang P, Zhao GN, Zhu X, Yang L, Wei X, Li H. Exacerbating Pressure Overload-Induced Cardiac Hypertrophy: Novel Role of Adaptor Molecule Src Homology 2-B3. Hypertension 2015; 66:571-81. [PMID: 26101343 DOI: 10.1161/hypertensionaha.115.05183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
The adaptor protein Src homology 2-B3 (SH2B3), which belongs to a subfamily of Src homology 2 proteins, is a broad inhibitor of growth factors and cytokine signaling in hematopoietic cells. However, the role of SH2B3 in nonhematopoietic systems, particularly cardiomyocytes, has not been defined. In this study, we observed noticeable increase in SH2B3 protein expression during pathological cardiac remodeling in both humans and rodents. Follow-up in vitro gain- and loss-of-function studies suggested that SH2B3 promotes the cardiomyocyte hypertrophy response. Consistent with the cell phenotype, SH2B3 knockout (SH2B3(-/-)) mice exhibited attenuated cardiac remodeling with preserved cardiac function after chronic pressure overload. Conversely, cardiac-specific SH2B3 overexpression aggravated pressure overload-triggered cardiac hypertrophy, fibrosis, and dysfunction. Mechanistically, SH2B3 accelerates and exacerbates cardiac remodeling through the activation of focal adhesion kinase, which, in turn, activates the prohypertrophic downstream phosphoinositide 3-kinase-AKT-mammalian target of rapamycin/glycogen synthase kinase 3β signaling pathway. Finally, we generated a novel SH2B3 knockout rat line and further confirmed the protective effects of SH2B3 deficiency on cardiac remodeling across species. Collectively, our data indicate that SH2B3 functions as a novel and effective modulator of cardiac remodeling and failure.
Collapse
Affiliation(s)
- Xuehai Zhu
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Jing Fang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Ding-Sheng Jiang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Peng Zhang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Guang-Nian Zhao
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Xueyong Zhu
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Ling Yang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Xiang Wei
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.).
| | - Hongliang Li
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.).
| |
Collapse
|
27
|
Pereira MBM, Santos AM, Gonçalves DC, Cardoso AC, Consonni SR, Gozzo FC, Oliveira PS, Pereira AHM, Figueiredo AR, Tiroli-Cepeda AO, Ramos CHI, de Thomaz AA, Cesar CL, Franchini KG. αB-crystallin interacts with and prevents stress-activated proteolysis of focal adhesion kinase by calpain in cardiomyocytes. Nat Commun 2014; 5:5159. [PMID: 25319025 DOI: 10.1038/ncomms6159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022] Open
Abstract
Focal adhesion kinase (FAK) contributes to cellular homeostasis under stress conditions. Here we show that αB-crystallin interacts with and confers protection to FAK against calpain-mediated proteolysis in cardiomyocytes. A hydrophobic patch mapped between helices 1 and 4 of the FAK FAT domain was found to bind to the β4-β8 groove of αB-crystallin. Such an interaction requires FAK tyrosine 925 and is enhanced following its phosphorylation by Src, which occurs upon FAK stimulation. αB-crystallin silencing results in calpain-dependent FAK depletion and in the increased apoptosis of cardiomyocytes in response to mechanical stress. FAK overexpression protects cardiomyocytes depleted of αB-crystallin against the stretch-induced apoptosis. Consistently, load-induced apoptosis is blunted in the hearts from cardiac-specific FAK transgenic mice transiently depleted of αB-crystallin by RNA interference. These studies define a role for αB-crystallin in controlling FAK function and cardiomyocyte survival through the prevention of calpain-mediated degradation of FAK.
Collapse
Affiliation(s)
- Michelle B M Pereira
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Aline M Santos
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Danieli C Gonçalves
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Alisson C Cardoso
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Sílvio R Consonni
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Fabio C Gozzo
- Chemistry Institute, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Paulo S Oliveira
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Ana Helena M Pereira
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Alana R Figueiredo
- Chemistry Institute, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Ana O Tiroli-Cepeda
- Chemistry Institute, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Carlos H I Ramos
- Chemistry Institute, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - André A de Thomaz
- Gleb Wataghin Physics Institute, University of Campinas, Campinas, São Paulo 13083-859, Brazil
| | - Carlos L Cesar
- Gleb Wataghin Physics Institute, University of Campinas, Campinas, São Paulo 13083-859, Brazil
| | - Kleber G Franchini
- 1] Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil [2] Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, São Paulo 13081-970, Brazil
| |
Collapse
|
28
|
Rafiq K, Kolpakov MA, Seqqat R, Guo J, Guo X, Qi Z, Yu D, Mohapatra B, Zutshi N, An W, Band H, Sanjay A, Houser SR, Sabri A. c-Cbl inhibition improves cardiac function and survival in response to myocardial ischemia. Circulation 2014; 129:2031-43. [PMID: 24583314 PMCID: PMC4045410 DOI: 10.1161/circulationaha.113.007004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The proto-oncogene Casitas b-lineage lymphoma (c-Cbl) is an adaptor protein with an intrinsic E3 ubiquitin ligase activity that targets receptor and nonreceptor tyrosine kinases, resulting in their ubiquitination and downregulation. However, the function of c-Cbl in the control of cardiac function is currently unknown. In this study, we examined the role of c-Cbl in myocyte death and cardiac function after myocardial ischemia. METHODS AND RESULTS We show increased c-Cbl expression in human ischemic and dilated cardiomyopathy hearts and in response to pathological stress stimuli in mice. c-Cbl-deficient mice demonstrated a more robust functional recovery after myocardial ischemia/reperfusion injury and significantly reduced myocyte apoptosis and improved cardiac function. Ubiquitination and downregulation of key survival c-Cbl targets, epidermal growth factor receptors and focal adhesion kinase, were significantly reduced in c-Cbl knockout mice. Inhibition of c-Cbl expression or its ubiquitin ligase activity in cardiac myocytes offered protection against H2O2 stress. Interestingly, c-Cbl deletion reduced the risk of death and increased cardiac functional recovery after chronic myocardial ischemia. This beneficial effect of c-Cbl deletion was associated with enhanced neoangiogenesis and increased expression of vascular endothelial growth factor-a and vascular endothelial growth factor receptor type 2 in the infarcted region. CONCLUSIONS c-Cbl activation promotes myocyte apoptosis, inhibits angiogenesis, and causes adverse cardiac remodeling after myocardial infarction. These findings point to c-Cbl as a potential therapeutic target for the maintenance of cardiac function and remodeling after myocardial ischemia.
Collapse
Affiliation(s)
- Khadija Rafiq
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Mikhail A Kolpakov
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Rachid Seqqat
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Jianfen Guo
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Xinji Guo
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Zhao Qi
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Daohai Yu
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Bhopal Mohapatra
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Neha Zutshi
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Wei An
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Hamid Band
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Archana Sanjay
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Steven R Houser
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay)
| | - Abdelkarim Sabri
- From the Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (K.R., M.A.K., R.S., J.G., X.G., Z.Q., D.Y., S.R.H., A. Sabri); Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha (B.M., N.Z., W.A., H.B.); and Department of Surgery, University of Connecticut Health Center, Farmington (A. Sanjay).
| |
Collapse
|
29
|
Tarone G, Balligand JL, Bauersachs J, Clerk A, De Windt L, Heymans S, Hilfiker-Kleiner D, Hirsch E, Iaccarino G, Knöll R, Leite-Moreira AF, Lourenço AP, Mayr M, Thum T, Tocchetti CG. Targeting myocardial remodelling to develop novel therapies for heart failure. Eur J Heart Fail 2014; 16:494-508. [DOI: 10.1002/ejhf.62] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/02/2014] [Accepted: 01/18/2014] [Indexed: 02/04/2023] Open
Affiliation(s)
- Guido Tarone
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Università di Torino; Torino Italy
| | - Jean-Luc Balligand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole de Pharmacologie et Thérapeutique (UCL-FATH) and Department of Medicine, Cliniques Saint-Luc; Université catholique de Louvain; Bruxelles Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology; Medizinische Hochschule-Hannover; Hannover Germany
| | - Angela Clerk
- School of Biological Sciences; University of Reading; Reading UK
| | - Leon De Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases; Maastricht University; Maastricht The Netherlands
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM); Maastricht University; The Netherlands
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology; Medizinische Hochschule-Hannover; Hannover Germany
| | - Emilio Hirsch
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Università di Torino; Torino Italy
| | - Guido Iaccarino
- Facoltà di Medicina; Università di Salerno; Salerno Italy
- IRCCS ‘Multimedica’; Milano Italy
| | - Ralph Knöll
- National Heart & Lung Institute; Imperial College London; London UK
| | - Adelino F. Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine; University of Porto; Porto Portugal
| | - André P. Lourenço
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine; University of Porto; Porto Portugal
| | - Manuel Mayr
- King's British Heart Foundation Centre; King's College London; London UK
| | - Thomas Thum
- National Heart & Lung Institute; Imperial College London; London UK
- Institute of Molecular and Translational Therapeutic Strategies; Hannover Medical School; Hannover Germany
| | | |
Collapse
|
30
|
Kaushik G, Engler AJ. From stem cells to cardiomyocytes: the role of forces in cardiac maturation, aging, and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:219-42. [PMID: 25081620 DOI: 10.1016/b978-0-12-394624-9.00009-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stem cell differentiation into a variety of lineages is known to involve signaling from the extracellular niche, including from the physical properties of that environment. What regulates stem cell responses to these cues is there ability to activate different mechanotransductive pathways. Here, we will review the structures and pathways that regulate stem cell commitment to a cardiomyocyte lineage, specifically examining proteins within muscle sarcomeres, costameres, and intercalated discs. Proteins within these structures stretch, inducing a change in their phosphorylated state or in their localization to initiate different signals. We will also put these changes in the context of stem cell differentiation into cardiomyocytes, their subsequent formation of the chambered heart, and explore negative signaling that occurs during disease.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
31
|
Nguyen N, Yi JS, Park H, Lee JS, Ko YG. Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis. J Biol Chem 2013; 289:3209-16. [PMID: 24344130 DOI: 10.1074/jbc.m113.525154] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The striated muscle-specific mitsugumin 53 (MG53) is a novel E3 ligase that induces the ubiquitination of insulin receptor substrate 1 (IRS-1) during skeletal myogenesis, negatively regulating insulin-like growth factor and insulin signaling. Here we show that focal adhesion kinase (FAK) is the second target of MG53 during skeletal myogenesis. The FAK protein level gradually decreased, whereas its mRNA level was constant during myogenesis in C2C12 cells and MyoD-overexpressing mouse embryonic fibroblasts. The FAK protein was associated with the E2 enzyme UBE2H and the E3 enzyme MG53 in endogenous and exogenous immunoprecipitation experiments. FAK ubiquitination and degradation was induced by MG53 overexpression in myoblasts but abolished by MG53 or UBE2H knockdown in myotubes. Because RING-disrupted MG53 mutants (C14A and ΔR) did not induce FAK ubiquitination and degradation, the RING domain was determined to be required for MG53-induced FAK ubiquitination. Taken together, these data indicate that MG53 induces FAK ubiquitination with the aid of UBE2H during skeletal myogenesis.
Collapse
Affiliation(s)
- Nga Nguyen
- From the Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | | | | | | | | |
Collapse
|
32
|
Cho W, Kim H, Lee JH, Hong SH, Choe J. Syntenin is expressed in human follicular dendritic cells and involved in the activation of focal adhesion kinase. Immune Netw 2013; 13:199-204. [PMID: 24198745 PMCID: PMC3817301 DOI: 10.4110/in.2013.13.5.199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/02/2013] [Accepted: 09/11/2013] [Indexed: 12/26/2022] Open
Abstract
Syntenin is an adaptor molecule containing 2 PDZ domains which mediate molecular interactions with diverse integral or cytoplasmic proteins. Most of the results on the biological function of syntenin were obtained from studies with malignant cells, necessitating exploration into the role of syntenin in normal cells. To understand its role in normal cells, we investigated expression and function of syntenin in human lymphoid tissue and cells in situ and in vitro. Syntenin expression was denser in the germinal center than in the extrafollicular area. Inside the germinal center, syntenin expression was obvious in follicular dendritic cells (FDCs). Flow cytometric analysis with isolated cells confirmed a weak expression of syntenin in T and B cells and a strong expression in FDCs. In FDC-like cells, HK cells, most syntenin proteins were found in the cytoplasm compared to weak expression in the nucleus. To study the function of syntenin in FDC, we examined its role in the focal adhesion of HK cells by depleting syntenin by siRNA technology. Knockdown of syntenin markedly impaired focal adhesion kinase phosphorylation in HK cells. These results suggest that syntenin may play an important role in normal physiology as well as in cancer pathology.
Collapse
Affiliation(s)
- Whajung Cho
- Department of Microbiology and Immunology, Kangwon National University School of Medicine, Chuncheon 200-701, Korea
| | | | | | | | | |
Collapse
|
33
|
Focal adhesion kinase mediates atrial fibrosis via the AKT/S6K signaling pathway in chronic atrial fibrillation patients with rheumatic mitral valve disease. Int J Cardiol 2013; 168:3200-7. [DOI: 10.1016/j.ijcard.2013.04.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 12/23/2022]
|
34
|
Swimming exercise training-induced left ventricular hypertrophy involves microRNAs and synergistic regulation of the PI3K/AKT/mTOR signaling pathway. Eur J Appl Physiol 2013; 113:2473-86. [DOI: 10.1007/s00421-013-2685-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/18/2013] [Indexed: 01/16/2023]
|
35
|
Focal adhesion kinase regulates intestinal epithelial barrier function via redistribution of tight junction. Biochim Biophys Acta Mol Basis Dis 2013; 1832:151-9. [DOI: 10.1016/j.bbadis.2012.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/16/2012] [Accepted: 10/02/2012] [Indexed: 12/24/2022]
|
36
|
Riehl BD, Park JH, Kwon IK, Lim JY. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:288-300. [PMID: 22335794 DOI: 10.1089/ten.teb.2011.0465] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Collapse
Affiliation(s)
- Brandon D Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | |
Collapse
|
37
|
|