1
|
Forghani P, Liu W, Wang Z, Ling Z, Takaesu F, Yang E, Tharp GK, Nielsen S, Doraisingam S, Countryman S, Davis ME, Wu R, Jia S, Xu C. Spaceflight alters protein levels and gene expression associated with stress response and metabolic characteristics in human cardiac spheroids. Biomaterials 2025; 317:123080. [PMID: 39809079 DOI: 10.1016/j.biomaterials.2024.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous advantage for cardiac regeneration. However, cell survival is challenging upon cell transplantation. Since microgravity can profoundly affect cellular properties, we investigated the effect of spaceflight on hiPSC-CMs. Cardiac spheroids derived from hiPSCs were transported to the International Space Station (ISS) via the SpaceX Crew-8 mission and cultured under space microgravity for 8 days. Beating cardiac spheroids were observed on the ISS and upon successful experimentation by the astronauts in space, the live cultures were returned to Earth. These cells had normal displacement (an indicator of contraction) and Ca2+ transient parameters in 3D live cell imaging. Proteomic analysis revealed that spaceflight upregulated many proteins involved in metabolism (n = 90), cellular component of mitochondrion (n = 62) and regulation of proliferation (n = 10). Specific metabolic pathways enriched by spaceflight included glutathione metabolism, biosynthesis of amino acids, and pyruvate metabolism. In addition, the top upregulated proteins in spaceflight samples included those involved in cellular stress response, cell survival, and metabolism. Transcriptomic profiles indicated that spaceflight upregulated genes associated with cardiomyocyte development, and cellular components of cardiac structure and mitochondrion. Furthermore, spaceflight upregulated genes in metabolic pathways associated with cell survival such as glycerophospholipid metabolism and glycerolipid metabolism. These findings indicate that short-term exposure of 3D hiPSC-CMs to the space environment led to significant changes in protein levels and gene expression involved in cell survival and metabolism.
Collapse
Affiliation(s)
- Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zeyu Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhi Ling
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felipe Takaesu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Evan Yang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | | - Michael E Davis
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Grancharova T, Gerbin KA, Rosenberg AB, Roco CM, Arakaki JE, DeLizo CM, Dinh SQ, Donovan-Maiye RM, Hirano M, Nelson AM, Tang J, Theriot JA, Yan C, Menon V, Palecek SP, Seelig G, Gunawardane RN. A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes. Sci Rep 2021; 11:15845. [PMID: 34349150 PMCID: PMC8338992 DOI: 10.1038/s41598-021-94732-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
We performed a comprehensive analysis of the transcriptional changes occurring during human induced pluripotent stem cell (hiPSC) differentiation to cardiomyocytes. Using single cell RNA-seq, we sequenced > 20,000 single cells from 55 independent samples representing two differentiation protocols and multiple hiPSC lines. Samples included experimental replicates ranging from undifferentiated hiPSCs to mixed populations of cells at D90 post-differentiation. Differentiated cell populations clustered by time point, with differential expression analysis revealing markers of cardiomyocyte differentiation and maturation changing from D12 to D90. We next performed a complementary cluster-independent sparse regression analysis to identify and rank genes that best assigned cells to differentiation time points. The two highest ranked genes between D12 and D24 (MYH7 and MYH6) resulted in an accuracy of 0.84, and the three highest ranked genes between D24 and D90 (A2M, H19, IGF2) resulted in an accuracy of 0.94, revealing that low dimensional gene features can identify differentiation or maturation stages in differentiating cardiomyocytes. Expression levels of select genes were validated using RNA FISH. Finally, we interrogated differences in cardiac gene expression resulting from two differentiation protocols, experimental replicates, and three hiPSC lines in the WTC-11 background to identify sources of variation across these experimental variables.
Collapse
Affiliation(s)
| | | | - Alexander B Rosenberg
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA.,, Parse Biosciences, Seattle, WA, USA
| | - Charles M Roco
- , Parse Biosciences, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Matthew Hirano
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | | | - Joyce Tang
- Allen Institute for Cell Science, Seattle, WA, USA
| | - Julie A Theriot
- Allen Institute for Cell Science, Seattle, WA, USA.,Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Calysta Yan
- Allen Institute for Cell Science, Seattle, WA, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
3
|
Rampoldi A, Singh M, Wu Q, Duan M, Jha R, Maxwell JT, Bradner JM, Zhang X, Saraf A, Miller GW, Gibson G, Brown LA, Xu C. Cardiac Toxicity From Ethanol Exposure in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Toxicol Sci 2020; 169:280-292. [PMID: 31059573 DOI: 10.1093/toxsci/kfz038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alcohol use prior to and during pregnancy remains a significant societal problem and can lead to developmental fetal abnormalities including compromised myocardia function and increased risk for heart disease later in life. Alcohol-induced cardiac toxicity has traditionally been studied in animal-based models. These models have limitations due to physiological differences from human cardiomyocytes (CMs) and are also not suitable for high-throughput screening. We hypothesized that human-induced pluripotent stem cell-derived CMs (hiPSC-CMs) could serve as a useful tool to study alcohol-induced cardiac defects and/or toxicity. In this study, hiPSC-CMs were treated with ethanol at doses corresponding to the clinically relevant levels of alcohol intoxication. hiPSC-CMs exposed to ethanol showed a dose-dependent increase in cellular damage and decrease in cell viability, corresponding to increased production of reactive oxygen species. Furthermore, ethanol exposure also generated dose-dependent increased irregular Ca2+ transients and contractility in hiPSC-CMs. RNA-seq analysis showed significant alteration in genes belonging to the potassium voltage-gated channel family or solute carrier family, partially explaining the irregular Ca2+ transients and contractility in ethanol-treated hiPSC-CMs. RNA-seq also showed significant upregulation in the expression of genes associated with collagen and extracellular matrix modeling, and downregulation of genes involved in cardiovascular system development and actin filament-based process. These results suggest that hiPSC-CMs can be a novel and physiologically relevant system for the study of alcohol-induced cardiac toxicity.
Collapse
Affiliation(s)
- Antonio Rampoldi
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Meixue Duan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Joshua T Maxwell
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Anita Saraf
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Lou Ann Brown
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
4
|
Pourrier M, Fedida D. The Emergence of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) as a Platform to Model Arrhythmogenic Diseases. Int J Mol Sci 2020; 21:ijms21020657. [PMID: 31963859 PMCID: PMC7013748 DOI: 10.3390/ijms21020657] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
There is a need for improved in vitro models of inherited cardiac diseases to better understand basic cellular and molecular mechanisms and advance drug development. Most of these diseases are associated with arrhythmias, as a result of mutations in ion channel or ion channel-modulatory proteins. Thus far, the electrophysiological phenotype of these mutations has been typically studied using transgenic animal models and heterologous expression systems. Although they have played a major role in advancing the understanding of the pathophysiology of arrhythmogenesis, more physiological and predictive preclinical models are necessary to optimize the treatment strategy for individual patients. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have generated much interest as an alternative tool to model arrhythmogenic diseases. They provide a unique opportunity to recapitulate the native-like environment required for mutated proteins to reproduce the human cellular disease phenotype. However, it is also important to recognize the limitations of this technology, specifically their fetal electrophysiological phenotype, which differentiates them from adult human myocytes. In this review, we provide an overview of the major inherited arrhythmogenic cardiac diseases modeled using hiPSC-CMs and for which the cellular disease phenotype has been somewhat characterized.
Collapse
Affiliation(s)
- Marc Pourrier
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- IonsGate Preclinical Services Inc., Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
5
|
Pasipoularides A. Implementing genome-driven personalized cardiology in clinical practice. J Mol Cell Cardiol 2018; 115:142-157. [PMID: 29343412 PMCID: PMC5820118 DOI: 10.1016/j.yjmcc.2018.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 12/18/2022]
Abstract
Genomics designates the coordinated investigation of a large number of genes in the context of a biological process or disease. It may be long before we attain comprehensive understanding of the genomics of common complex cardiovascular diseases (CVDs) such as inherited cardiomyopathies, valvular diseases, primary arrhythmogenic conditions, congenital heart syndromes, hypercholesterolemia and atherosclerotic heart disease, hypertensive syndromes, and heart failure with preserved/reduced ejection fraction. Nonetheless, as genomics is evolving rapidly, it is constructive to survey now pertinent concepts and breakthroughs. Today, clinical multimodal electronic medical/health records (EMRs/EHRs) incorporating genomic information establish a continuously-learning, vast knowledge-network with seamless cycling between clinical application and research. It can inform insights into specific pathogenetic pathways, guide biomarker-assisted precise diagnoses and individualized treatments, and stratify prognoses. Complex CVDs blend multiple interacting genomic variants, epigenetics, and environmental risk-factors, engendering progressions of multifaceted disease-manifestations, including clinical symptoms and signs. There is no straight-line linkage between genetic cause(s) or causal gene-variant(s) and disease phenotype(s). Because of interactions involving modifier-gene influences, (micro)-environmental, and epigenetic effects, the same variant may actually produce dissimilar abnormalities in different individuals. Implementing genome-driven personalized cardiology in clinical practice reveals that the study of CVDs at the level of molecules and cells can yield crucial clinical benefits. Complementing evidence-based medicine guidelines from large ("one-size fits all") randomized controlled trials, genomics-based personalized or precision cardiology is a most-creditable paradigm: It provides customizable approaches to prevent, diagnose, and manage CVDs with treatments directly/precisely aimed at causal defects identified by high-throughput genomic technologies. They encompass stem cell and gene therapies exploiting CRISPR-Cas9-gene-editing, and metabolomic-pharmacogenomic therapeutic modalities, precisely fine-tuned for the individual patient. Following the Human Genome Project, many expected genomics technology to provide imminent solutions to intractable medical problems, including CVDs. This eagerness has reaped some disappointment that advances have not yet materialized to the degree anticipated. Undoubtedly, personalized genetic/genomics testing is an emergent technology that should not be applied without supplementary phenotypic/clinical information: Genotype≠Phenotype. However, forthcoming advances in genomics will naturally build on prior attainments and, combined with insights into relevant epigenetics and environmental factors, can plausibly eradicate intractable CVDs, improving human health and well-being.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Consulting Professor of Surgery, Emeritus Faculty of Surgery and of Biomedical Engineering, Duke University School of Medicine and Graduate School, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Lin B, Lin X, Stachel M, Wang E, Luo Y, Lader J, Sun X, Delmar M, Bu L. Culture in Glucose-Depleted Medium Supplemented with Fatty Acid and 3,3',5-Triiodo-l-Thyronine Facilitates Purification and Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Endocrinol (Lausanne) 2017; 8:253. [PMID: 29067001 PMCID: PMC5641374 DOI: 10.3389/fendo.2017.00253] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/14/2017] [Indexed: 01/23/2023] Open
Abstract
With recent advances in stem cell technology, it is becoming efficient to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes, which can subsequently be used for myriad purposes, ranging from interrogating mechanisms of cardiovascular disease, developing novel cellular therapeutic approaches, as well as assessing the cardiac safety profile of compounds. However, the relative inability to acquire abundant pure and mature cardiomyocytes still hinders these applications. Recently, it was reported that glucose-depleted culture medium supplemented with lactate can facilitate purification of hPSC-derived cardiomyocytes. Here, we report that fatty acid as a lactate replacement has not only a similar purification effect but also improves the electrophysiological characteristics of hPSC-derived cardiomyocytes. Glucose-depleted culture medium supplemented with fatty acid and 3,3',5-Triiodo-l-thyronine (T3) was used during enrichment of hPSC-derived cardiomyocytes. Compared to untreated control cells, the treated cardiomyocytes exhibited enhanced action potential (AP) maximum upstroke velocity (as shown by a significant increase in dV/dtmax), action potential amplitude, as well as AP duration at 50% (APD50) and 90% (APD90) of repolarization. The treated cardiomyocytes displayed higher sensitivity to isoproterenol, more organized sarcomeric structures, and lower proliferative activity. Expression profiling showed that various ion channel and cardiac-specific genes were elevated as well. Our results suggest that the use of fatty acid and T3 can facilitate purification and maturation of hPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Bin Lin
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Xianming Lin
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Maxine Stachel
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Elisha Wang
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Yumei Luo
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joshua Lader
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Lei Bu
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
- Department of Cell Biology, The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Der Sarkissian S, Lévesque T, Noiseux N. Optimizing stem cells for cardiac repair: Current status and new frontiers in regenerative cardiology. World J Stem Cells 2017; 9:9-25. [PMID: 28154736 PMCID: PMC5253186 DOI: 10.4252/wjsc.v9.i1.9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/20/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Cell therapy has the potential to improve healing of ischemic heart, repopulate injured myocardium and restore cardiac function. The tremendous hope and potential of stem cell therapy is well understood, yet recent trials involving cell therapy for cardiovascular diseases have yielded mixed results with inconsistent data thereby readdressing controversies and unresolved questions regarding stem cell efficacy for ischemic cardiac disease treatment. These controversies are believed to arise by the lack of uniformity of the clinical trial methodologies, uncertainty regarding the underlying reparative mechanisms of stem cells, questions concerning the most appropriate cell population to use, the proper delivery method and timing in relation to the moment of infarction, as well as the poor stem cell survival and engraftment especially in a diseased microenvironment which is collectively acknowledged as a major hindrance to any form of cell therapy. Indeed, the microenvironment of the failing heart exhibits pathological hypoxic, oxidative and inflammatory stressors impairing the survival of transplanted cells. Therefore, in order to observe any significant therapeutic benefit there is a need to increase resilience of stem cells to death in the transplant microenvironment while preserving or better yet improving their reparative functionality. Although stem cell differentiation into cardiomyocytes has been observed in some instance, the prevailing reparative benefits are afforded through paracrine mechanisms that promote angiogenesis, cell survival, transdifferentiate host cells and modulate immune responses. Therefore, to maximize their reparative functionality, ex vivo manipulation of stem cells through physical, genetic and pharmacological means have shown promise to enable cells to thrive in the post-ischemic transplant microenvironment. In the present work, we will overview the current status of stem cell therapy for ischemic heart disease, discuss the most recurring cell populations employed, the mechanisms by which stem cells deliver a therapeutic benefit and strategies that have been used to optimize and increase survival and functionality of stem cells including ex vivo preconditioning with drugs and a novel “pharmaco-optimizer” as well as genetic modifications.
Collapse
|
8
|
Smith AST, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017; 35:77-94. [PMID: 28007615 PMCID: PMC5237393 DOI: 10.1016/j.biotechadv.2016.12.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Winnie Leung
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Michael A Laflamme
- Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
9
|
Lewandowski J, Kolanowski TJ, Kurpisz M. Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. J Tissue Eng Regen Med 2016; 11:1658-1674. [PMID: 26777594 DOI: 10.1002/term.2117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/16/2015] [Accepted: 11/18/2015] [Indexed: 01/04/2023]
Abstract
The derivation of pluripotent stem cells from human embryos and the generation of induced pluripotent stem cells (iPSCs) from somatic cells opened a new chapter in studies on the regeneration of the post-infarction heart and regenerative medicine as a whole. Thus, protocols for obtaining iPSCs were enthusiastically adopted and widely used for further experiments on cardiac differentiation. iPSC-mediated cardiomyocytes (iPSC-CMs) under in vitro culture conditions are generated by simulating natural cardiomyogenesis and involve the wingless-type mouse mammary tumour virus integration site family (WNT), transforming growth factor beta (TGF-β) and fibroblast growth factor (FGF) signalling pathways. New strategies have been proposed to take advantage of small chemical molecules, organic compounds and even electric or mechanical stimulation. There are three main approaches to support cardiac commitment in vitro: embryoid bodis (EBs), monolayer in vitro cultures and inductive co-cultures with visceral endoderm-like (END2) cells. In EB technique initial uniform size of pluripotent stem cell (PSC) colonies has a pivotal significance. Hence, some methods were designed to support cells aggregation. Another well-suited procedure is based on culturing cells in monolayer conditions in order to improve accessibility of growth factors and nutrients. Other distinct tactics are using visceral endoderm-like cells to culture them with PSCs due to secretion of procardiac cytokines. Finally, the appropriate purification of the obtained cardiomyocytes is required prior to their administration to a patient under the prospective cellular therapy strategy. This goal can be achieved using non-genetic methods, such as the application of surface markers and fluorescent dyes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jarosław Lewandowski
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz J Kolanowski
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Kurpisz
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
10
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
11
|
Jha R, Xu RH, Xu C. Efficient differentiation of cardiomyocytes from human pluripotent stem cells with growth factors. Methods Mol Biol 2015; 1299:115-131. [PMID: 25836579 PMCID: PMC4886660 DOI: 10.1007/978-1-4939-2572-8_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human pluripotent stem cells have tremendous replicative capacity and demonstrated potential to generate functional cardiomyocytes. These cardiomyocytes represent a promising source for cell replacement therapy to treat heart disease and may serve as a useful tool for drug discovery and disease modeling. Efficient cardiomyocyte differentiation, a prerequisite for the application of stem cell-derived cardiomyocytes, can be achieved with a growth factor-guided method. Undifferentiated cells are sequentially treated with activin A and BMP4 in a serum-free and insulin-free medium and then maintained in a serum-free medium with insulin. This method yields as much as >75% cardiomyocytes in the differentiation culture within 2 weeks, and the beating cardiomyocytes have expected molecular, cellular, and electrophysiological characteristics. In this chapter, we describe in detail the differentiation protocol and follow-up characterization focusing on immunocytochemistry, quantitative RT-PCR, and flow cytometry analysis.
Collapse
Affiliation(s)
- Rajneesh Jha
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| |
Collapse
|
12
|
Abstract
Stem cells have emerged as promising tools for the treatment of incurable neural and heart diseases and tissue damage. However, the survival of transplanted stem cells is reported to be low, reducing their therapeutic effects. The major causes of poor survival of stem cells in vivo are linked to anoikis, potential immune rejection, and oxidative damage mediating apoptosis. This review investigates novel methods and potential molecular mechanisms for stem cell preconditioning in vitro to increase their retention after transplantation in damaged tissues. Microenvironmental preconditioning (e.g., hypoxia, heat shock, and exposure to oxidative stress), aggregate formation, and hydrogel encapsulation have been revealed as promising strategies to reduce cell apoptosis in vivo while maintaining biological functions of the cells. Moreover, this review seeks to identify methods of optimizing cell dose preparation to enhance stem cell survival and therapeutic function after transplantation.
Collapse
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory , CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| |
Collapse
|
13
|
Leyton-Mange JS, Milan DJ. Pluripotent stem cells as a platform for cardiac arrhythmia drug screening. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2014; 16:334. [PMID: 25074263 DOI: 10.1007/s11936-014-0334-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OPINION STATEMENT Since the first demonstrations of the differentiation of pluripotent stem cells to produce functional human cellular models such as cardiomyocytes, the scientific community has been captivated [1, 2••, 3]. In the time since that seminal work, the field has been catapulted forward by the demonstration that adult somatic cells can be reprogrammed to an induced state of pluripotency [4••], and more recently by the development of efficient and sophisticated genome editing tools [5••, 6••, 7], which together afford a theoretically unlimited supply of relevant genetic disease models. In particular, many of the early successes with induced pluripotent stem cell technology have been realized with cardiac arrhythmia syndromes [8••, 9-15]. There is interest in applying stem cell models in large-scale screens to discover novel therapeutics or drug toxicities. This manuscript aims to discuss the potential role of hPSC-derived cardiomyocyte models in therapeutic arrhythmia screens and review recent advances in the field that bring us closer to this reality.
Collapse
|
14
|
Nguyen DC, Hookway TA, Wu Q, Jha R, Preininger MK, Chen X, Easley CA, Spearman P, Deshpande SR, Maher K, Wagner MB, McDevitt TC, Xu C. Microscale generation of cardiospheres promotes robust enrichment of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports 2014; 3:260-8. [PMID: 25254340 PMCID: PMC4175548 DOI: 10.1016/j.stemcr.2014.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 10/26/2022] Open
Abstract
Cardiomyocytes derived from human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, disease modeling, and drug discovery, all of which require enriched cardiomyocytes, ideally ones with mature phenotypes. However, current methods are typically performed in 2D environments that produce immature cardiomyocytes within heterogeneous populations. Here, we generated 3D aggregates of cardiomyocytes (cardiospheres) from 2D differentiation cultures of hPSCs using microscale technology and rotary orbital suspension culture. Nearly 100% of the cardiospheres showed spontaneous contractility and synchronous intracellular calcium transients. Strikingly, from starting heterogeneous populations containing ∼10%-40% cardiomyocytes, the cell population within the generated cardiospheres featured ∼80%-100% cardiomyocytes, corresponding to an enrichment factor of up to 7-fold. Furthermore, cardiomyocytes from cardiospheres exhibited enhanced structural maturation in comparison with those from a parallel 2D culture. Thus, generation of cardiospheres represents a simple and robust method for enrichment of cardiomyocytes in microtissues that have the potential use in regenerative medicine as well as other applications.
Collapse
Affiliation(s)
- Doan C Nguyen
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Tracy A Hookway
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Qingling Wu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Rajneesh Jha
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Marcela K Preininger
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Xuemin Chen
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Charles A Easley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul Spearman
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Shriprasad R Deshpande
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kevin Maher
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mary B Wagner
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Todd C McDevitt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
15
|
Ting S, Chen A, Reuveny S, Oh S. An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res 2014; 13:202-13. [PMID: 25043964 DOI: 10.1016/j.scr.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 12/17/2022] Open
Abstract
The development of novel platforms for large scale production of human embryonic stem cells (hESC) derived cardiomyocytes (CM) becomes more crucial as the demand for CMs in preclinical trials, high throughput cardio toxicity assays and future regenerative therapeutics rises. To this end, we have designed a microcarrier (MC) suspension agitated platform that integrates pluripotent hESC expansion followed by CM differentiation in a continuous, homogenous process. Hydrodynamic shear stresses applied during the hESC expansion and CM differentiation steps drastically reduced the capability of the cells to differentiate into CMs. Applying vigorous stirring during pluripotent hESC expansion on Cytodex 1 MC in spinner cultures resulted in low CM yields in the following differentiation step (cardiac troponin-T (cTnT): 22.83±2.56%; myosin heavy chain (MHC): 19.30±5.31%). Whereas the lower shear experienced in side to side rocker (wave type) platform resulted in higher CM yields (cTNT: 47.50±7.35%; MHC: 42.85±2.64%). The efficiency of CM differentiation is also affected by the hydrodynamic shear stress applied during the first 3days of the differentiation stage. Even low shear applied continuously by side to side rocker agitation resulted in very low CM differentiation efficiency (cTnT<5%; MHC<2%). Simply by applying intermittent agitation during these 3days followed by continuous agitation for the subsequent 9days, CM differentiation efficiency can be substantially increased (cTNT: 65.73±10.73%; MHC: 59.73±9.17%). These yields are 38.3% and 39.3% higher (for cTnT and MHC respectively) than static culture control. During the hESC expansion phase, cells grew on continuously agitated rocker platform as pluripotent cell/MC aggregates (166±88×10(5)μm(2)) achieving a cell concentration of 3.74±0.55×10(6)cells/mL (18.89±2.82 fold expansion) in 7days. These aggregates were further differentiated into CMs using a WNT modulation differentiation protocol for the subsequent 12days on a rocking platform with an intermittent agitation regime during the first 3days. Collectively, the integrated MC rocker platform produced 190.5±58.8×10(6) CMs per run (31.75±9.74 CM/hESC seeded). The robustness of the system was demonstrated by using 2 cells lines, hESC (HES-3) and human induced pluripotent stem cell (hiPSC) IMR-90. The CM/MC aggregates formed extensive sarcomeres that exhibited cross-striations confirming cardiac ontogeny. Functionality of the CMs was demonstrated by monitoring the effect of inotropic drug, Isoproterenol on beating frequency. In conclusion, we have developed a simple robust and scalable platform that integrates both hESC expansion and CM differentiation in one unit process which is capable of meeting the need for large amounts of CMs.
Collapse
Affiliation(s)
- Sherwin Ting
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore 138668, Singapore
| | - Allen Chen
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore 138668, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore 138668, Singapore
| | - Steve Oh
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore 138668, Singapore.
| |
Collapse
|
16
|
Malecki M, Putzer E, Sabo C, Foorohar A, Quach C, Stampe C, Beauchaine M, Tombokan X, Malecki R, Anderson M. Directed cardiomyogenesis of autologous human induced pluripotent stem cells recruited to infarcted myocardium with bioengineered antibodies. MOLECULAR AND CELLULAR THERAPIES 2014; 2:13. [PMID: 25132967 PMCID: PMC4131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/01/2014] [Indexed: 11/21/2023]
Abstract
OBJECTIVE Myocardial infarctions constitute a major factor contributing to non-natural mortality world-wide. Clinical trials of myocardial regenerative therapy, currently pursued by cardiac surgeons, involve administration of stem cells into the hearts of patients suffering from myocardial infarctions. Unfortunately, surgical acquisition of these cells from bone marrow or heart is traumatic, retention of these cells to sites of therapeutic interventions is low, and directed differentiation of these cells in situ into cardiomyocytes is difficult. The specific aims of this work were: (1) to generate autologous, human, pluripotent, induced stem cells (ahiPSCs) from the peripheral blood of the patients suffering myocardial infarctions; (2) to bioengineer heterospecific antibodies (htAbs) and use them for recruitment of the ahiPSCs to infarcted myocardium; (3) to initiate in situ directed cardiomyogenesis of the ahiPSCs retained to infarcted myocardium. METHODS Peripheral blood was drawn from six patients scheduled for heart transplants. Mononuclear cells were isolated and reprogrammed, with plasmids carrying six genes (NANOG, POU5F1, SOX2, KLF4, LIN28A, MYC), to yield the ahiPSCs. Cardiac tissues were excised from the injured hearts of the patients, who received transplants during orthotopic surgery. These tissues were used to prepare in vitro models of stem cell therapy of infarcted myocardium. The htAbs were bioengineered, which simultaneously targeted receptors displayed on pluripotent stem cells (SSEA-4, SSEA-3, TRA-1-60, TRA-1-81) and proteins of myocardial sarcomeres (myosin, α-actinin, actin, titin). They were used to bridge the ahiPSCs to the infarcted myocardium. The retained ahiPSCs were directed with bone morphogenetic proteins and nicotinamides to differentiate towards myocardial lineage. RESULTS The patients' mononuclear cells were efficiently reprogrammed into the ahiPSCs. These ahiPSCs were administered to infarcted myocardium in in vitro models. They were recruited to and retained at the treated myocardium with higher efficacy and specificity, if were preceded with the htAbs, than with isotype antibodies or plain buffers. The retained cells differentiated into cardiomyocytes. CONCLUSIONS The proof of concept has been attained, for reprogramming the patients' blood mononuclear cells (PBMCs) into the ahiPSCs, recruiting these cells to infarcted myocardium, and initiating their cardiomyogenesis. This novel strategy is ready to support the ongoing clinical trials aimed at regeneration of infarcted myocardium.
Collapse
Affiliation(s)
- Marek Malecki
- />Phoenix Biomolecular Engineering Foundation, San Francisco, CA USA
- />National Magnetic Resonance Facility, National Institutes of Health, Madison, WI USA
- />University of Wisconsin, Madison, Madison, WI USA
| | - Emily Putzer
- />University of Wisconsin, Madison, Madison, WI USA
- />Latin American Youth Center, Washington, DC USA
| | - Chelsea Sabo
- />University of Wisconsin, Madison, Madison, WI USA
- />University of Sheffield, Sheffield, EU UK
| | - Afsoon Foorohar
- />Phoenix Biomolecular Engineering Foundation, San Francisco, CA USA
- />Western University, Lebanon, OR USA
| | - Carol Quach
- />Phoenix Biomolecular Engineering Foundation, San Francisco, CA USA
- />Western University, Pomona, CA USA
| | | | | | | | - Raf Malecki
- />San Francisco State University, San Francisco, CA USA
| | - Mark Anderson
- />National Magnetic Resonance Facility, National Institutes of Health, Madison, WI USA
- />University of Wisconsin, Madison, Madison, WI USA
| |
Collapse
|
17
|
Li Y, Liu M, Yang ST. Dendritic cells derived from pluripotent stem cells: Potential of large scale production. World J Stem Cells 2014; 6:1-10. [PMID: 24567783 PMCID: PMC3927009 DOI: 10.4252/wjsc.v6.i1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/23/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are promising sources for hematopoietic cells due to their unlimited growth capacity and the pluripotency. Dendritic cells (DCs), the unique immune cells in the hematopoietic system, can be loaded with tumor specific antigen and used as vaccine for cancer immunotherapy. While autologous DCs from peripheral blood are limited in cell number, hPSC-derived DCs provide a novel alternative cell source which has the potential for large scale production. This review summarizes recent advances in differentiating hPSCs to DCs through the intermediate stage of hematopoietic stem cells. Step-wise growth factor induction has been used to derive DCs from hPSCs either in suspension culture of embryoid bodies (EBs) or in co-culture with stromal cells. To fulfill the clinical potential of the DCs derived from hPSCs, the bioprocess needs to be scaled up to produce a large number of cells economically under tight quality control. This requires the development of novel bioreactor systems combining guided EB-based differentiation with engineered culture environment. Hence, recent progress in using bioreactors for hPSC lineage-specific differentiation is reviewed. In particular, the potential scale up strategies for the multistage DC differentiation and the effect of shear stress on hPSC differentiation in bioreactors are discussed in detail.
Collapse
|
18
|
Chen A, Ting S, Seow J, Reuveny S, Oh S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 2014; 5:12. [PMID: 24444355 PMCID: PMC4055057 DOI: 10.1186/scrt401] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived cardiomyocytes have attracted attention as an unlimited source of cells for cardiac therapies. One of the factors to surmount to achieve this is the production of hPSC-derived cardiomyocytes at a commercial or clinical scale with economically and technically feasible platforms. Given the limited proliferation capacity of differentiated cardiomyocytes and the difficulties in isolating and culturing committed cardiac progenitors, the strategy for cardiomyocyte production would be biphasic, involving hPSC expansion to generate adequate cell numbers followed by differentiation to cardiomyocytes for specific applications. This review summarizes and discusses up-to-date two-dimensional cell culture, cell-aggregate and microcarrier-based platforms for hPSC expansion. Microcarrier-based platforms are shown to be the most suitable for up-scaled production of hPSCs. Subsequently, different platforms for directing hPSC differentiation to cardiomyocytes are discussed. Monolayer differentiation can be straightforward and highly efficient and embryoid body-based approaches are also yielding reasonable cardiomyocyte efficiencies, whereas microcarrier-based approaches are in their infancy but can also generate high cardiomyocyte yields. The optimal target is to establish an integrated scalable process that combines hPSC expansion and cardiomyocyte differentiation into a one unit operation. This review discuss key issues such as platform selection, bioprocess parameters, medium development, downstream processing and parameters that meet current good manufacturing practice standards.
Collapse
|
19
|
Malecki M, Putzer E, Sabo C, Foorohar A, Quach C, Stampe C, Beauchaine M, Malecki R, Tombokan X, Anderson M. Directed cardiomyogenesis of autologous human induced pluripotent stem cells recruited to infarcted myocardium with bioengineered antibodies. MOLECULAR AND CELLULAR THERAPIES 2014; 2. [PMID: 25132967 PMCID: PMC4131312 DOI: 10.1186/2052-8426-2-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective Myocardial infarctions constitute a major factor contributing to non-natural mortality world-wide. Clinical trials ofmyocardial regenerative therapy, currently pursued by cardiac surgeons, involve administration of stem cells into the hearts of patients suffering from myocardial infarctions. Unfortunately, surgical acquisition of these cells from bone marrow or heart is traumatic, retention of these cells to sites of therapeutic interventions is low, and directed differentiation of these cells in situ into cardiomyocytes is difficult. The specific aims of this work were: (1) to generate autologous, human, pluripotent, induced stem cells (ahiPSCs) from the peripheral blood of the patients suffering myocardial infarctions; (2) to bioengineer heterospecific tetravalent antibodies (htAbs) and use them for recruitment of the ahiPSCs to infarcted myocardium; (3) to initiate in situ directed cardiomyogenesis of the ahiPSCs retained to infarcted myocardium. Methods Peripheral blood was drawn from six patients scheduled for heart transplants. Mononuclear cells were isolated and reprogrammed, with plasmids carrying six genes (NANOG, POU5F1, SOX2, KLF4, LIN28A, MYC), to yield the ahiPSCs. Cardiac tissues were excised from the injured hearts of the patients, who received transplants during orthotopic surgery. These tissues were used to prepare in vitro model of stem cell therapy of infarcted myocardium. The htAbs were bioengineered, which simultaneously targeted receptors displayed on pluripotent stem cells (SSEA-4, SSEA-3, TRA-1-60, TRA-1-81) and proteins of myocardial sarcomeres (myosin, α-actinin, actin, titin). They were used to bridge the ahiPSCs to the infarcted myocardium. The retained ahiPSCs were directed with bone morphogenetic proteins and nicotinamides to differentiate towards myocardial lineage. Results The patients’ mononuclear cells were efficiently reprogrammed into the ahiPSCs. These ahiPSCs were administered to infarcted myocardium in in vitro models. They were recruited to and retained at the treated myocardium with higher efficacy and specificity, if were preceded the htAbs, than with isotype antibodies or plain buffers. The retained cells differentiated into cardiomyocytes. Conclusions The proof of concept has been attained, for reprogramming the patients’ blood mononuclear cells (PBMCs) into the ahiPSCs, recruiting these cells to infarcted myocardium, and initiating their cardiomyogenesis. This novel strategy is ready to support the ongoing clinical trials aimed at regeneration of infarcted myocardium.
Collapse
Affiliation(s)
- Marek Malecki
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA ; National Magnetic Resonance Facility, National Institutes of Health, Madison, WI, USA ; University of Wisconsin, Madison, WI, USA
| | - Emily Putzer
- University of Wisconsin, Madison, WI, USA ; American Youth Center, Washington, DC, USA
| | - Chelsea Sabo
- University of Wisconsin, Madison, WI, USA ; University of Sheffield, Sheffield, UK, EU
| | - Afsoon Foorohar
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA ; Western University, Lebanon, OR, USA
| | - Carol Quach
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA ; Western University, Pomona, CA, USA
| | | | | | - Raf Malecki
- San Francisco State University, San Francisco, CA, USA
| | | | - Mark Anderson
- National Magnetic Resonance Facility, National Institutes of Health, Madison, WI, USA ; University of Wisconsin, Madison, WI, USA
| |
Collapse
|
20
|
Sarić T, Halbach M, Khalil M, Er F. Induced pluripotent stem cells as cardiac arrhythmic in vitro models and the impact for drug discovery. Expert Opin Drug Discov 2013; 9:55-76. [PMID: 24294840 DOI: 10.1517/17460441.2014.863275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The development of new antiarrhythmic agents is challenging and is hampered by high attrition rate of novel drug candidates. One of the reasons for this is limited predictability of existing preclinical models for drug assessment. Cardiomyocytes (CMs) derived from disease-specific induced pluripotent stem cells (iPSC) represent a novel in vitro cellular model of cardiac arrhythmias with an unprecedented potential for generating new mechanistic insight into disease pathophysiology and improving the process of drug development. AREAS COVERED This review outlines recent studies demonstrating the suitability and limitations of iPSC-derived CMs (iPS-CMs) for in vitro modeling inherited arrhythmias and drug testing. The authors focus on channelopathies and outline the properties of iPS-CMs, highlighting their utility and limitations for investigating the mechanism of cardiac arrhythmias and drug discovery. EXPERT OPINION The iPS-CMs represent a valuable addition to the already existing armamentarium of cardiac arrhythmic models. However, the superiority of iPS-CMs over other arrhythmia models has not yet been rigorously established and the limitations of the model must be overcome before its full potential for antiarrhythmic drug discovery can be realized. Nevertheless, iPS cell-based platforms hold a great potential for increasing our knowledge about cellular arrhythmia mechanisms and improving the drug discovery process.
Collapse
Affiliation(s)
- Tomo Sarić
- University of Cologne, Institute for Neurophysiology, Center for Physiology and Pathophysiology, Medical Center , Robert Koch Str. 39, 50931 Cologne , Germany +49 221 478 86686 ; +49 221 478-3834 ;
| | | | | | | |
Collapse
|
21
|
Musa S, Xin LZ, Govindasamy V, Fuen FW, Kasim NHA. Global search for right cell type as a treatment modality for cardiovascular disease. Expert Opin Biol Ther 2013; 14:63-73. [DOI: 10.1517/14712598.2014.858694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnol Adv 2013; 31:1032-46. [DOI: 10.1016/j.biotechadv.2013.03.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 01/28/2013] [Accepted: 03/11/2013] [Indexed: 01/14/2023]
|
23
|
Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Res 2013; 11:1335-47. [PMID: 24095945 DOI: 10.1016/j.scr.2013.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/21/2013] [Accepted: 09/10/2013] [Indexed: 11/22/2022] Open
Abstract
Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers.
Collapse
|
24
|
Abbasalizadeh S, Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv 2013; 31:1600-23. [PMID: 23962714 DOI: 10.1016/j.biotechadv.2013.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/20/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022]
Abstract
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing.
Collapse
Affiliation(s)
- Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
25
|
Dental stem cells as an alternative source for cardiac regeneration. Med Hypotheses 2013; 81:704-6. [PMID: 23932760 DOI: 10.1016/j.mehy.2013.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/17/2013] [Indexed: 01/09/2023]
Abstract
Dental tissues contains stem cells or progenitors that have high proliferative capacity, are clonogenic in vitro and demonstrate the ability to differentiate to multiple type cells involving neurons, bone, cartilage, fat and smooth muscle. Numerous experiments have demonstrated that the multipotent stem cells are not rejected by immune system and therefore it may be possible to use these cells in allogeneic settings. In addition, these remarkable cells are easily abundantly available couple with less invasive procedure in isolating comparing to bone marrow aspiration. Here we proposed dental stem cells as candidate for cardiac regeneration based on its immature characteristic and propensity towards cardiac lineage via PI3-Kinase/Aktsignalling pathway.
Collapse
|
26
|
Malecki M. Improved targeting and enhanced retention of the human, autologous, fibroblast-derived, induced, pluripotent stem cells to the sarcomeres of the infarcted myocardium with the aid of the bioengineered, heterospecific, tetravalent antibodies. ACTA ACUST UNITED AC 2013; 3. [PMID: 23956947 DOI: 10.4172/2157-7633.1000138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical trials, to regenerate the human heart injured by myocardial infarction, involve the delivery of stem cells to the site of the injury. However, only a small fraction of the introduced stem cells are detected at the site of the injury, merely two weeks after this therapeutic intervention. This significantly hampers the effectiveness of the stem cell therapy. To resolve the aforementioned problem, we genetically and molecularly bioengineered heterospecific, tetravalent antibodies (htAbs), which have both exquisite specificity and high affinity towards human, pluripotent, stem cells through the htAbs' domains binding SSEA-4, SSEA-3, TRA-1-60, and TRA-1-81, as well as towards the injured cardiac muscle through the htAbs' domains binding human cardiac myosin, α-actinin, actin, and titin. The cardiac tissue was acquired from the patients, who were receiving heart transplants. The autologous, human, induced, pluripotent stem cells (hiPSCs) were generated from the patients' fibroblasts by non-viral delivery and transient expression of the DNA constructs for: Oct4, Nanog, Sox2, Lin28, Klf4, c-Myc. In the trials involving the htAbs, the human, induced, pluripotent stem cells anchored to the myocardial sarcomeres with the efficiency, statistically, significantly higher, than in the trials with non-specific or without antibodies (p < 0.0003). Moreover, application of the htAbs resulted in cross-linking of the sarcomeric proteins to create the stable scaffolds for anchoring of the stem cells. Thereafter, these human, induced pluripotent stem cells differentiated into cardiomyocytes at their anchorage sites. By bioengineering of these novel heterospecific, tetravalent antibodies and using them to guide and to anchor the stem cells specifically to the stabilized sarcomeric scaffolds, we demonstrated the proof of concept in vitro for improving effectiveness of regenerative therapy of myocardial infarction and created the foundations for the trials in vivo.
Collapse
Affiliation(s)
- Marek Malecki
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
| |
Collapse
|
27
|
Simmons CS, Petzold BC, Pruitt BL. Microsystems for biomimetic stimulation of cardiac cells. LAB ON A CHIP 2012; 12:3235-48. [PMID: 22782590 DOI: 10.1039/c2lc40308k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The heart is a complex integrated system that leverages mechanoelectrical signals to synchronize cardiomyocyte contraction and push blood throughout the body. The correct magnitude, timing, and distribution of these signals is critical for proper functioning of the heart; aberrant signals can lead to acute incidents, long-term pathologies, and even death. Due to the heart's limited regenerative capacity and the wide variety of pathologies, heart disease is often studied in vitro. However, it is difficult to accurately replicate the cardiac environment outside of the body. Studying the biophysiology of the heart in vitro typically consists of studying single cells in a tightly controlled static environment or whole tissues in a complex dynamic environment. Micro-electromechanical systems (MEMS) allow us to bridge these two extremes by providing increasing complexity for cell culture without having to use a whole tissue. Here, we carefully describe the electromechanical environment of the heart and discuss MEMS specifically designed to replicate these stimulation modes. Strengths, limitations and future directions of various designs are discussed for a variety of applications.
Collapse
Affiliation(s)
- Chelsey S Simmons
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|