1
|
Han JC, Pham T, Taberner AJ, Loiselle DS, Tran K. Resolving an inconsistency in the estimation of the energy for excitation of cardiac muscle contraction. Front Physiol 2023; 14:1269900. [PMID: 38028799 PMCID: PMC10656740 DOI: 10.3389/fphys.2023.1269900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
In the excitation of muscle contraction, calcium ions interact with transmembrane transporters. This process is accompanied by energy consumption and heat liberation. To quantify this activation energy or heat in the heart or cardiac muscle, two non-pharmacological approaches can be used. In one approach using the "pressure-volume area" concept, the same estimate of activation energy is obtained regardless of the mode of contraction (either isovolumic/isometric or ejecting/shortening). In the other approach, an accurate estimate of activation energy is obtained only when the muscle contracts isometrically. If the contraction involves muscle shortening, then an additional component of heat associated with shortening is liberated, over and above that of activation. The present study thus examines the reconcilability of the two approaches by performing experiments on isolated muscles measuring contractile force and heat output. A framework was devised from the experimental data to allow us to replicate several mechanoenergetics results gleaned from the literature. From these replications, we conclude that the choice of initial muscle length (or ventricular volume) underlies the divergence of the two approaches in the estimation of activation energy when the mode of contraction involves shortening (ejection). At low initial muscle lengths, the heat of shortening is relatively small, which can lead to the misconception that activation energy is contraction mode independent. In fact, because cardiac muscle liberates heat of shortening when allowed to shorten, estimation of activation heat must be performed only under isometric (isovolumic) contractions. We thus recommend caution when estimating activation energy using the "pressure-volume area" concept.
Collapse
Affiliation(s)
- June-Chiew Han
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Toan Pham
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science and Biomedical Engineering, The University of Auckland, Auckland, New Zealand
| | - Denis S. Loiselle
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Usui Y, Kimoto M, Hanashima A, Hashimoto K, Mohri S. Cardiac hemodynamics and ventricular stiffness of sea-run cherry salmon (Oncorhynchus masou masou) differ critically from those of landlocked masu salmon. PLoS One 2022; 17:e0267264. [PMID: 36331913 PMCID: PMC9635730 DOI: 10.1371/journal.pone.0267264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Ventricular diastolic mechanical properties are important determinants of cardiac function and are optimized by changes in cardiac structure and physical properties. Oncorhynchus masou masou is an anadromous migratory fish of the Salmonidae family, and several ecological studies on it have been conducted; however, the cardiac functions of the fish are not well known. Therefore, we investigated ventricular diastolic function in landlocked (masu salmon) and sea-run (cherry salmon) types at 29–30 months post fertilization. Pulsed-wave Doppler echocardiography showed that the atrioventricular inflow waveforms of cherry salmon were biphasic with early diastolic filling and atrial contraction, whereas those of masu salmon were monophasic with atrial contraction. In addition, end-diastolic pressure–volume relationship analysis revealed that the dilatability per unit myocardial mass of the ventricle in cherry salmon was significantly suppressed compared to that in masu salmon, suggesting that the ventricle of the cherry salmon was relatively stiffer (relative ventricular stiffness index; p = 0.0263). Contrastingly, the extensibility of cardiomyocytes, characterized by the expression pattern of Connectin isoforms in their ventricles, was similar in both types. Histological analysis showed that the percentage of the collagen accumulation area in the compact layer of cherry salmon increased compared with that of the masu salmon, which may contribute to ventricle stiffness. Although the heart mass of cherry salmon was about 11-fold greater than that of masu salmon, there was no difference in the morphology of the isolated cardiomyocytes, suggesting that the heart of the cherry salmon grows by cardiomyocyte proliferation, but not cell hypertrophy. The cardiac physiological function of the teleosts varies with differences in their developmental processes and life history. Our multidimensional analysis of the O. masou heart may provide a clue to the process by which the heart acquires a biphasic blood-filling pattern, i.e., a ventricular diastolic suction.
Collapse
Affiliation(s)
- Yuu Usui
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
- * E-mail:
| | - Misaki Kimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| | - Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
3
|
Shackebaei D, Hesari M, Ramezani-Aliakbari S, Hoseinkhani Z, Ramezani-Aliakbari F. Gallic acid protects against isoproterenol-induced cardiotoxicity in rats. Hum Exp Toxicol 2022; 41:9603271211064532. [PMID: 35193428 DOI: 10.1177/09603271211064532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gallic acid (GA) is a polyphenolic agent with interesting pharmacological impacts on the cardiovascular system. OBJECTIVE The present study purposed to study the protective effects of GA at 25 and 50 mg/kg against isoproterenol (ISO)-induced cardiac damage in ischemia/reperfusion (I/R) in rats. METHODS Male Wistar rats were randomly assigned into six groups: Control, Control treated with GA at 25 mg/kg (GA25), Control treated with GA at 50 mg/kg (GA50), Hypertrophic rats induced by ISO (ISO), Hypertrophic rats treated with GA at 25 mg/kg (ISO+GA25), and Hypertrophic rats treated with GA at 50 mg/kg (ISO+GA50). Heart isolation was performed to induce a cardiac I/R injury model. Cardiac hemodynamic parameters were recorded. Serum Lactate Dehydrogenase (LDH) and Creatine Kinase-MB (CK-MB) and cardiac Superoxide dismutases (SOD) levels were evaluated. The gene expression of Sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) was assessed. RESULTS We found that GA at 50 mg/kg was significantly increased cardiac function at post I/R period in ISO-induced hypertrophic hearts. Moreover, it suppressed cardiac hypertrophy, the serum LDH and CK-MB levels in ISO injected rats. Administration of GA at 50 mg/kg was significantly increased SOD level and SERCA2a gene expression in the hypertrophic hearts. CONCLUSION GA at 50 mg/kg could improve cardiac performance possibly by increasing antioxidant defense enzymes, reducing cell damage, and enhancing SERCA2a gene expression in hypertrophic heart induced by ISO in I/R injury conditions.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Cardiovascular Research Center, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soudabeh Ramezani-Aliakbari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical School, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Ramezani-Aliakbari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Physiology, School of Medicine, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Qu Z, Lu X, Qu Y, Tao T, Liu X, Li X. Attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities induced by tunicamycin or hypoxia/reoxygenation in neonatal rat cardiomyocytes by SERCA2a overexpression. Int J Mol Med 2021; 47:113. [PMID: 33907834 PMCID: PMC8075284 DOI: 10.3892/ijmm.2021.4946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the effects of the overexpression of sarco/endoplasmic reticulum Ca2+‑ATPase (SERCA2a) on endoplasmic reticulum (ER) stress (ERS)‑associated inflammation in neonatal rat cardiomyocytes (NRCMs) induced by tunicamycin (TM) or hypoxia/reoxygenation (H/R). The optimal multiplicity of infection (MOI) was 2 pfu/cell. Neonatal Sprague‑Dawley rat cardiomyocytes cultured in vitro were infected with adenoviral vectors carrying SERCA2a or enhanced green fluorescent protein genes, the latter used as a control. At 48 h following gene transfer, the NRCMs were treated with TM (10 µg/ml) or subjected to H/R to induce ERS. The results of electrophoretic mobility shift assay (EMSA) revealed that overexpression of SERCA2a attenuated the upregulation of nuclear factor (NF)‑κB and activator protein‑1 (AP‑1) DNA‑binding activities induced by TM or H/R. Western blot analysis and semi‑quantitative RT‑PCR revealed that the overexpression of SERCA2a attenuated the activation of the inositol‑requiring 1α (IRE1α) signaling pathway and ERS‑associated apoptosis induced by TM. The overexpression of SERCA2a also decreased the level of phospho‑p65 (Ser536) in the nucleus, as assessed by western blot analysis. However, the overexpression of SERCA2a induced the further nuclear translocation of NF‑κB p65 and higher levels of tumor necrosis factor (TNF)‑α transcripts in the NRCMs, indicating the occurrence of the ER overload response (EOR). Therefore, the overexpression of SERCA2a has a 'double‑edged sword' effect on ERS‑associated inflammation. On the one hand, it attenuates ERS and the activation of the IRE1α signaling pathway induced by TM, resulting in the attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities in the nucleus, and on the other hand, it induces EOR, leading to the further nuclear translocation of NF‑κB and the transcription of TNF‑α. The preceding EOR may precondition the NRCMs against subsequent ERS induced by TM. Further studies using adult rat cardiomyocytes are required to prevent the interference of EOR. The findings of the present study may enhance the current understanding of the role of SERCA2a in cardiomyocytes.
Collapse
Affiliation(s)
- Zhigang Qu
- Medical School of Chinese PLA, Beijing 100853, P.R. China
- Department of General Practice, The 900th Hospital of The Joint Logistic Support Force, Fuzhou, Fujian 350025, P.R. China
| | - Xiaochun Lu
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Qu
- Department of Functional Examination, Penglai Traditional Chinese Medicine Hospital, Penglai, Shandong 265600, P.R. China
| | - Tianqi Tao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoying Li
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
5
|
Obata K, Morita H, Takaki M. Mechanism underlying the negative inotropic effect in rat left ventricle in hyperthermia: the role of TRPV1. J Physiol Sci 2020; 70:4. [PMID: 32039693 PMCID: PMC7002332 DOI: 10.1186/s12576-020-00734-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Abstract
We have previously reported that the negative inotropic effects of hyperthermia (42 °C) on left ventricular (LV) mechanoenergetics using the excised, cross-circulated rat heart model. Here, we investigated the role of TRPV1 on LV mechanoenergetics in hyperthermia. We analyzed the LV end-systolic pressure-volume relation (ESPVR) and the linear relation between the myocardial oxygen consumption per beat (VO2) and the systolic pressure-volume area (PVA; a total mechanical energy per beat) during infusion of capsazepine (CPZ) in hyperthermia, or capsaicin (Cap) under 300 bpm pacing. LV ESP decreased in each LV volume and the resultant downward-shift of LV ESPVR was suppressed by CPZ infusion in hyperthermia-hearts. In Cap-treated hearts, LV ESPVR shifted downward from the control ESPVR, similar to hyperthermia-hearts. The slopes of VO2-PVA relationship were unchanged. The VO2 intercepts in hyperthermia-hearts did not decrease because of decreased E-C coupling VO2, and inversely increased basal metabolic VO2, which was suppressed by CPZ, though the VO2 intercepts in Cap-treated hearts significantly decreased. The levels of phosphorylated phospholamban at serine 16 decreased significantly in hyperthermia-hearts, as well as Cap-treated hearts. These results indicate that a Cap-induced decrease in the LV contractility, like in cases of hyperthermia, are due to the down-regulation of the total calcium handling in E-C coupling, suggesting that negative inotropic effect in hyperthermia-heart is, at least in part, mediated through TRPV1 signaling pathway.
Collapse
Affiliation(s)
- Koji Obata
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Miyako Takaki
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
6
|
CD47 Deficiency Attenuates Isoproterenol-Induced Cardiac Remodeling in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7121763. [PMID: 31827695 PMCID: PMC6885801 DOI: 10.1155/2019/7121763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
In this study, we investigated whether CD47 deficiency attenuates isoproterenol- (ISO-) induced cardiac remodeling in mice. Cardiac remodeling was induced by intraperitoneal (i.p.) injection of ISO (60 mg·kg−1·d−1 in 100 μl of sterile normal saline) daily for 14 days and was confirmed by increased levels of lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB), increased heart weight to body weight (HW/BW) ratios, and visible cardiac fibrosis. Apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were found to be significantly higher in the ISO group than in the control group, while superoxide dismutase (SOD) levels were suppressed in the ISO group. However, CD47 knockout significantly limited ISO-induced increases in LDH, CK-MB, and HW/BW ratios, cardiac fibrosis, oxidative stress, and apoptosis in the heart. In addition, CD47 deficiency also increased p-AMPK and LAMP2 expression and decreased HDAC3, cleaved Caspase-3, cleaved Caspase-9, LC3II, and p62 expression in cardiac tissues. In conclusion, CD47 deficiency reduced i.p. ISO-induced cardiac remodeling probably by inhibiting the HDAC3 pathway, improving AMPK signaling and autophagy flux, and rescuing autophagic clearance.
Collapse
|
7
|
Obata K, Morita H, Takaki M. The energy-saving effect of a new myosin activator, omecamtiv mecarbil, on LV mechanoenergetics in rat hearts with blood-perfused isovolumic contraction model. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1065-1070. [PMID: 31267148 DOI: 10.1007/s00210-019-01685-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
Abstract
A novel myosin activator, omecamtiv mecarbil (OM), is a cardiac inotropic agent with a unique new mechanism of action, which is thought to arise from an increase in the transition rate of myosin into the actin-bound force-generating state without increasing calcium (Ca2+) transient. There remains, however, considerable controversy about the effects of OM on cardiac contractility and energy expenditure. In the present study, we investigated the effects of OM on left ventricular (LV) mechanical work and energetics, i.e., mechanoenergetics in rat normal hearts (CTL) and failing hearts induced by chronic administration of isoproterenol (1.2 mg/kg/day) for 4 weeks (ISO-HF). We analyzed the LV end-systolic pressure-volume relation (ESPVR) and the linear relation between the myocardial oxygen consumption per beat (VO2) and systolic pressure-volume area (PVA; a total mechanical energy per beat) in isovolumically contracting rat hearts at 240- or 300-bpm pacing in the absence or presence of OM. OM did not change the ESPVR in CTL and ISO-HF. OM, however, significantly decreased the slope of VO2-PVA relationship in both CTL and ISO-HF, and significantly increased the mean VO2 intercept without changes in basal metabolism in ISO-HF. These results suggested that OM improved the oxygen cost of PVA (contractile efficiency) with the unchanged LV contractility in both CTL and ISO-HF but increased VO2 for Ca2+ handling in excitation-contraction (E-C) coupling in ISO-HF. We concluded that OM improves contractile efficiency in normal and failing hearts but increases O2 consumption of Ca2+ handling in failing hearts in isovolumically contracting rat model.
Collapse
Affiliation(s)
- Koji Obata
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Miyako Takaki
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
8
|
Obata K, Takeshita D, Morita H, Takaki M. Left ventricular mechanoenergetics in excised, cross-circulated rat hearts under hypo-, normo-, and hyperthermic conditions. Sci Rep 2018; 8:16246. [PMID: 30390094 PMCID: PMC6214925 DOI: 10.1038/s41598-018-34666-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022] Open
Abstract
We investigated the effects of altering cardiac temperature on left ventricular (LV) myocardial mechanical work and energetics using the excised, cross-circulated rat heart model. We analyzed the LV end-systolic pressure-volume relationship (ESPVR) and linear relationship between myocardial oxygen consumption per beat (VO2) and systolic pressure-volume area (PVA; total mechanical energy per beat) in isovolumically contracting rat hearts during hypo- (32 °C), normo- (37 °C), and hyperthermia (42 °C) under a 300-beats per minute pacing. LV ESPVR shifted downward with increasing cardiac temperature. The VO2-PVA relationship was superimposable in these different thermal conditions; however, each data point of VO2-PVA shifted left-downward during increasing cardiac temperature on the superimposable VO2-PVA relationship line. VO2 for Ca2+ handling in excitation-contraction coupling decreased, which was associated with increasing cardiac temperature, during which sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity was suppressed, due to phospholamban phosphorylation inhibition, and instead, O2 consumption for basal metabolism was increased. The O2 cost of LV contractility for Ca2+ also increased with increasing cardiac temperature. Logistic time constants evaluating LV relaxation time were significantly shortened with increasing cardiac temperature related to the acceleration of the detachment in cross-bridge (CB) cycling, indicating increased myosin ATPase activity. The results suggested that increasing cardiac temperature induced a negative inotropic action related to SERCA activity suppression in Ca2+ handling and increased myosin ATPase activity in CB cycling. We concluded that thermal intervention could modulate cardiac inotropism by changing CB cycling, Ca2+ handling, and basal metabolism in rat hearts.
Collapse
Affiliation(s)
- Koji Obata
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Daisuke Takeshita
- Department of Artificial Organs, National Cerebral and Cardiovascular Center Research Institute, Suita, 565-8565, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Miyako Takaki
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Department of Orthopaedic Surgery, Nara Medical University, School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
9
|
Hong HQ, Lu J, Fang XL, Zhang YH, Cai Y, Yuan J, Liu PQ, Ye JT. G3BP2 is involved in isoproterenol-induced cardiac hypertrophy through activating the NF-κB signaling pathway. Acta Pharmacol Sin 2018; 39:184-194. [PMID: 28816235 DOI: 10.1038/aps.2017.58] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/13/2017] [Indexed: 12/25/2022] Open
Abstract
The RasGAP SH3 domain-binding proteins (G3BPs) are a family of RNA-binding proteins that can co-ordinate signal transduction and post-transcriptional gene regulation. G3BPs have been shown to be involved in mediating a great diversity of cellular processes such as cell survival, growth, proliferation and apoptosis. But the potential roles of G3BPs in the pathogenesis and progression of cardiovascular diseases remain to be clarified. In the present study, we provide the first evidence that suggests the participation of G3BP2 in cardiac hypertrophy. In cultured neonatal rat cardiomyocytes (NRCMs), treatment with isoproterenol (ISO, 0.1-100 μmol/L) significantly elevated the mRNA and protein levels of G3BP2. Similar results were observed in the hearts of rats subjected to 7D-injection of ISO, accompanied by obvious heart hypertrophy and elevated the expression of hypertrophy marker genes ANF, BNP and β-MHC in heart tissues. Overexpression of G3BP2 in NRCMs led to hypertrophic responses evidenced by increased cellular surface area and the expression of hypertrophy marker genes, whereas knockdown of G3BP2 significantly attenuated ISO-induced hypertrophy of NRCMs. We further showed that G3BP2 directly interacted with IκBα and promoted the aggregation of the NF-κB subunit p65 in the nucleus and increased NF-κB-dependent transcriptional activity. NF-κB inhibition with PDTC (50 μmol/L) or p65 knockdown significantly decreased the hypertrophic responses in NRCMs induced by ISO or G3BP2 overexpression. These results give new insight into the functions of G3BP2 and may help further elucidate the molecular mechanisms underlying cardiac hypertrophy.
Collapse
|
10
|
STAT3 Suppression Is Involved in the Protective Effect of SIRT6 Against Cardiomyocyte Hypertrophy. J Cardiovasc Pharmacol 2017; 68:204-14. [PMID: 27124607 DOI: 10.1097/fjc.0000000000000404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The activation of signal transducer and activator of transcription 3 (STAT3) is critical for the development of cardiac hypertrophy and heart failure. Sirtuin 6 (SIRT6) protects cardiomyocytes from hypertrophy. This study focused on the association between SIRT6 and STAT3 in the regulation of cardiomyocyte hypertrophy. In the phenylephrine (PE)-induced hypertrophic cardiomyocyte model and in the hearts of isoprenaline-induced cardiac hypertrophic rat model, the mRNA and protein expressions of STAT3 and its phosphorylated level at tyrosine 705 (P-STAT3) were significantly increased. By contrast, the deacetylation activity of SIRT6 was weakened without altering its protein expression. In addition, the nuclear localization of STAT3 and P-STAT3 was enhanced by PE, suggesting that STAT3 was activated in cardiomyocyte hypertrophy. Adenovirus infection-induced SIRT6 overexpression repressed the activation of STAT3 by decreasing its mRNA and protein levels, by suppressing its transcriptional activity, and by hindering the expressions of its target genes. Moreover, the effect of SIRT6 overexpression on eliminating PE-induced expressions of hypertrophic biomarkers, such as atrial natriuretic factor and brain natriuretic peptide, was reversed by STAT3 overexpression. Likewise, SIRT6 knockdown-induced upregulation of atrial natriuretic factor and brain natriuretic peptide was reversed by STAT3 silencing. These observations suggest that the antihypertrophic effect of SIRT6 involves STAT3 suppression. In conclusion, SIRT6 prevents PE-induced activation of STAT3 in cardiomyocyte hypertrophy; the inhibitory effect of SIRT6 on STAT3 contributes to cardiac protection.
Collapse
|
11
|
Lu J, Zhang R, Hong H, Yang Z, Sun D, Sun S, Guo X, Ye J, Li Z, Liu P. The poly(ADP-ribosyl)ation of FoxO3 mediated by PARP1 participates in isoproterenol-induced cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1863:3027-3039. [PMID: 27686254 DOI: 10.1016/j.bbamcr.2016.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
The Forkhead box-containing protein, O subfamily 3 (FoxO3) transcription factor negatively regulates myocardial hypertrophy, and its transcriptional activity is finely conditioned by diverse posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, methylation and glycosylation. Here, we introduce a novel modification of the FoxO3 protein in cardiomyocytes: poly(ADP-ribosyl)ation (PARylation) mediated by poly(ADP-ribose) polymerase-1 (PARP1). This process catalyzes the NAD+-dependent synthesis of polymers of ADP-ribose (PAR) and their subsequent attachment to target proteins by PARPs. Primary-cultured neonatal rat cardiomyocytes were incubated with isoproterenol (ISO) to induce hypertrophy, or were infected with recombinant adenovirus vectors harboring PARP1 cDNA (Ad-PARP1). Sprague-Dawley (SD) rats were treated with ISO to induce cardiac hypertrophy, or were injected with Ad-PARP1 into the anterior and posterior left ventricular walls. Cardiomyocyte surface area, the mRNA expression of hypertrophic biomarkers, echocardiography, morphometry of the hearts were measured. The PARP1 activity was tested by cellular PAR levels. Interactions of PARP1 and FoxO3 were investigated by co-immunoprecipitation and immunofluorescence technique. PARylation of FoxO3 mediated by PARP1 facilitated its phosphorylation at the T32, S252 and S314 sites, triggered its nucleus export and suppressed its transcriptional activity and target genes expression, ultimately inducing cardiac hypertrophy. Additionally, PARP1 silencing or specific inhibition by 3-Aminobenzamide (3AB) and veliparib (ABT-888) alleviated the inhibition of FoxO3 activity by ISO, thus suppressing ISO-induced cardiac hypertrophy. Our data provide the first evidence that PARP1 exacerbates cardiac hypertrophy by PARylation of FoxO3.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Renwei Zhang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Huiqi Hong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Zuolong Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Duanping Sun
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Shuya Sun
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Xiaolei Guo
- Infinitus (China) Company Ltd., Guangzhou 510623, Guangdong, PR China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
12
|
Manivasagam S, Subramanian V, Tumala A, Vellaichamy E. Differential expression and regulation of anti-hypertrophic genes Npr1 and Npr2 during β-adrenergic receptor activation-induced hypertrophic growth in rats. Mol Cell Endocrinol 2016; 433:117-29. [PMID: 27283501 DOI: 10.1016/j.mce.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/04/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
We sought to determine the effect of chronic activation of β-adrenergic receptor (β-AR) on the left ventricular (LV) expression profile of Npr1 and Npr2 (coding for NPR-A and NPR-B, respectively) genes, and the functional activity of these receptors in adult Wistar rat hearts. The Npr1 gene expression was markedly reduced (3.5-fold), while the Npr2 gene expression was up regulated (4-fold) in Isoproterenol (ISO)-treated heart as compared with controls. A gradual reduction in NPR-A protein (3-fold), cGMP levels (75%) and a steady increased expression of NPR-B protein (4-fold), were noticed in ISO hearts. Further, in-vitro membranes assay shows that NPR-A dependent guanylyl cyclase (GC) activity was down-regulated (2-fold), whereas NPR-B dependent GC activity was increased (5-fold) in ISO treated hearts. Atenolol treatment normalized the altered expression of Npr1 and Npr2 genes. In conclusion, the chronic β-AR activation differentially regulates Npr1 and Npr2 genes in the heart. Npr1 down regulation is positively associated with the development of left ventricular hypertrophy (LVH) in ISO rats.
Collapse
Affiliation(s)
| | - Vimala Subramanian
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Anusha Tumala
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Elangovan Vellaichamy
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
13
|
Clouet S, Di Pietrantonio L, Daskalopoulos EP, Esfahani H, Horckmans M, Vanorlé M, Lemaire A, Balligand JL, Beauloye C, Boeynaems JM, Communi D. Loss of Mouse P2Y6 Nucleotide Receptor Is Associated with Physiological Macrocardia and Amplified Pathological Cardiac Hypertrophy. J Biol Chem 2016; 291:15841-52. [PMID: 27231349 DOI: 10.1074/jbc.m115.684118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
The study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced postnatal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy.
Collapse
Affiliation(s)
- Sophie Clouet
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Larissa Di Pietrantonio
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | | | - Hrag Esfahani
- the Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, 1200 Brussels, and
| | - Michael Horckmans
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Marion Vanorlé
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Anne Lemaire
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Jean-Luc Balligand
- the Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, 1200 Brussels, and
| | - Christophe Beauloye
- the Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 1200 Brussels
| | - Jean-Marie Boeynaems
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels, the Department of Laboratory Medicine, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Didier Communi
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels,
| |
Collapse
|
14
|
Feng XJ, Gao H, Gao S, Li Z, Li H, Lu J, Wang JJ, Huang XY, Liu M, Zou J, Ye JT, Liu PQ. The orphan receptor NOR1 participates in isoprenaline-induced cardiac hypertrophy by regulating PARP-1. Br J Pharmacol 2015; 172:2852-63. [PMID: 25625556 DOI: 10.1111/bph.13091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/29/2014] [Accepted: 01/16/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE The orphan nuclear receptor NOR1 belongs to the NR4A subfamily of the nuclear hormone receptor superfamily, and is involved in glucose and fat metabolism. However, its potential contribution to cardiovascular diseases remains to be assessed. Here, the roles of NOR1 in cardiac hypertrophy induced by isoprenaline and the underlying molecular mechanisms were investigated. EXPERIMENTAL APPROACH NOR1 was expressed in cardiomyocytes treated with isoprenaline. After NOR1 overexpression or knockdown in neonatal rat cardiomyocytes, cellular hypertrophy was monitored by measuring cell surface area and the mRNA of hypertrophic biomarkers. Interactions between NOR1 and PARP-1 were investigated by co-immunoprecipitation. NOR1 expression and PARP-1 activity were measured in rats with cardiac hypertrophy induced by isoprenaline. KEY RESULTS Treatment with isoprenaline significantly up-regulated NOR1 expression and PARP-1 activity both in vivo and in vitro. Specific gene silencing of NOR1 attenuated isoprenaline-induced cardiomyocyte hypertrophy, whereas NOR1 overexpression exacerbated cardiac hypertrophy. We identified a physical interaction between NOR1 and PARP-1, which was enhanced by NOR1 transfection and thereby led to PARP-1 activation. Overexpression of NOR1, but not C293Y, a NOR1 mutant lacking the PARP-1 binding activity, increased cellular surface area and the mRNA levels of atrial natriuretic factor and brain natriuretic polypeptide, effects blocked by the PARP-1 inhibitor 3-aminobenzamide or siRNA for PARP-1. CONCLUSIONS AND IMPLICATIONS This is the first evidence that NOR1 was involved in isoprenaline-induced cardiac hypertrophy. The pro-hypertrophic effect of NOR1 can be partly attributed to its regulation of PARP-1 enzymic activity.
Collapse
Affiliation(s)
- Xiao-Jun Feng
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hui Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Department of Pharmacology, School of Medicine, Jishou University, Jishou, China
| | - Si Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hong Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiao-Jiao Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yang Huang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jian Zou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, China
| | - Jian-Tao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Pei-Qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Simko F, Bednarova KR, Krajcirovicova K, Hrenak J, Celec P, Kamodyova N, Gajdosechova L, Zorad S, Adamcova M. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J Pineal Res 2014; 57:177-84. [PMID: 24942291 DOI: 10.1111/jpi.12154] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 02/05/2023]
Abstract
Melatonin was previously shown to reduce blood pressure and left ventricular (LV) remodeling in several models of experimental heart damage. This study investigated whether melatonin prevents LV remodeling and improves survival in isoproterenol-induced heart failure. In the first experiment, four groups of 3-month-old male Wistar rats (12 per group) were treated for 2 wk as follows: controls, rats treated with melatonin (10 mg/kg/day) (M), rats treated with isoproterenol (5 mg/kg/day intraperitoneally the second week) (Iso), and rats treated with melatonin (2 wk) and isoproterenol (the second week) in corresponding doses (IsoM). In the second experiment, 30 rats were treated with isoproterenol and 30 rats with isoproterenol plus melatonin for a period of 28 days and their mortality was investigated. Isoproterenol-induced heart failure with hypertrophy of the left and right ventricles (LV, RV), lowered systolic blood pressure (SBP) and elevated pulmonary congestion. Fibrotic rebuilding was accompanied by alterations of tubulin level in the LV and oxidative stress development. Melatonin failed to reduce the weight of the LV or RV; however, it curtailed the weight of the lungs and attenuated the decline in SBP. Moreover, melatonin decreased the level of oxidative stress and of insoluble and total collagen and partly prevented the beta-tubulin alteration in the LV. Most importantly, melatonin reduced mortality and prolonged the average survival time. In conclusion, melatonin exerts cardioprotective effects and improves outcome in a model of isoproterenol-induced heart damage. The antiremodeling effect of melatonin may be of potential benefit in patients with heart failure.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, School of Medicine, Comenius University, Bratislava, Slovak Republic; 3rd Clinic of Medicine, School of Medicine, Comenius University, Bratislava, Slovak Republic; Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic; Center of Excellence NOREG, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|