1
|
Feitosa MBJ, Araújo SS, Mesquita TRR, Gioda CR, Sá LADE, Almeida GKM, Miguel-Dos-Santos R, Barbosa AM, Vasconcelos CMLDE, Camargo EA, Barreiros ALBS, Estevam CS, Moraes ÉRDE, Amaral RG, Lauton-Santos S. Antioxidants and cardioprotective effects of ethyl acetate fraction of Canavalia rosea leaves in myocardial ischemia-reperfusion injury. AN ACAD BRAS CIENC 2023; 95:e20220514. [PMID: 37493694 DOI: 10.1590/0001-3765202320220514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 07/27/2023] Open
Abstract
Different degrees in the biological activities of Canavalia rosea had been previously reported . In this study, our group assessed the cardioprotective effects of the ethyl acetate fraction (EAcF) of the Canavalia rosea leaves. Firstly, it was confirmed, by in vitro approach, that the EAcF has high antioxidant properties due to the presence of important secondary metabolites, as flavonoids. In order to explore their potential protector against cardiovascular disorders, hearts were previously perfused with EAcF (300 μg.mL-1) and submitted to the global ischemia followed by reperfusion in Langendorff system. The present findings have demonstrated that EAcF restored the left ventricular developed pressure and decreased the arrhythmias severity index. Furthermore, EAcF significantly increased the glutathiones peroxidase activity with decreased malondialdehyde and creatine kinase levels. EAcF was effective upon neither the superoxide dismutase, glutationes reductase nor the catalase activities. In addition, the Western blot analysis revealed that ischemia-reperfusion injury significantly upregulates caspase 3 protein expression, while EAcF abolishes this effect. These results provide evidence that the EAcF reestablishes the cardiac contractility and prevents arrhythmias; it is suggested that EAcF could be used to reduce injury caused by cardiac reperfusion. However more clinical studies should be performed, before applying it in the clinic.
Collapse
Affiliation(s)
- Maraísa B J Feitosa
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Silvan S Araújo
- Federal University of Sergipe, Laboratory of Biochemistry and Chemistry of Natural Products, Biological Sciences and Health Centre, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Thássio Ricardo R Mesquita
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Carolina R Gioda
- Federal University of Rio Grande, Institute of Biological Sciences, Campus Carreiros, Avenida Itália Km 8, 96203-900 Rio Grande, RS, Brazil
| | - Lucas A DE Sá
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Grace Kelly M Almeida
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Rodrigo Miguel-Dos-Santos
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Andriele M Barbosa
- Tiradentes University, Center for Study on Colloidal Systems (NUESC), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
| | - Carla Maria L DE Vasconcelos
- Federal University of Sergipe, Laboratory of Heart Biophysics - Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Enilton A Camargo
- Federal University of Sergipe, Laboratory of Inflammatory Process Pharmacology - Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - André Luís B S Barreiros
- Federal University of Sergipe, Natural Products Laboratory - Sciences and Technology Center, Department of Chemistry, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Charles S Estevam
- Federal University of Sergipe, Laboratory of Biochemistry and Chemistry of Natural Products, Biological Sciences and Health Centre, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Éder Ricardo DE Moraes
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Ricardo G Amaral
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Sandra Lauton-Santos
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| |
Collapse
|
2
|
Cely-Ortiz A, Felice JI, Díaz-Zegarra LA, Valverde CA, Federico M, Palomeque J, Wehrens XHT, Kranias EG, Aiello EA, Lascano EC, Negroni JA, Mattiazzi A. Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling. J Gen Physiol 2021; 152:152125. [PMID: 32986800 PMCID: PMC7594441 DOI: 10.1085/jgp.201912512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023] Open
Abstract
Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.
Collapse
Affiliation(s)
- Alejandra Cely-Ortiz
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan I Felice
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Leandro A Díaz-Zegarra
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marilén Federico
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Xander H T Wehrens
- Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), Neuroscience, Pediatrics, Center for Space Medicine, Baylor College of Medicine, Cardiovascular Research Institute, Houston, TX
| | - Evangelia G Kranias
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Elena C Lascano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Negroni
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J 2021; 42:3904-3916. [PMID: 34392353 PMCID: PMC8497074 DOI: 10.1093/eurheartj/ehab544] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/06/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
The field of cardiac electrophysiology (EP) had adopted simple artificial intelligence (AI) methodologies for decades. Recent renewed interest in deep learning techniques has opened new frontiers in electrocardiography analysis including signature identification of diseased states. Artificial intelligence advances coupled with simultaneous rapid growth in computational power, sensor technology, and availability of web-based platforms have seen the rapid growth of AI-aided applications and big data research. Changing lifestyles with an expansion of the concept of internet of things and advancements in telecommunication technology have opened doors to population-based detection of atrial fibrillation in ways, which were previously unimaginable. Artificial intelligence-aided advances in 3D cardiac imaging heralded the concept of virtual hearts and the simulation of cardiac arrhythmias. Robotics, completely non-invasive ablation therapy, and the concept of extended realities show promise to revolutionize the future of EP. In this review, we discuss the impact of AI and recent technological advances in all aspects of arrhythmia care.
Collapse
Affiliation(s)
- Venkat D Nagarajan
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,Department of Cardiology, Doncaster and Bassetlaw Hospitals, NHS Foundation Trust, Thorne Road, Doncaster DN2 5LT, UK
| | - Su-Lin Lee
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), UCL, Foley Street, London W1W 7TS, UK
| | - Jan-Lukas Robertus
- Department of Pathology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Christoph A Nienaber
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Charles Street, Baltimore, MD 21218, USA
| | - Sabine Ernst
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
4
|
Syomin F, Osepyan A, Tsaturyan A. Computationally efficient model of myocardial electromechanics for multiscale simulations. PLoS One 2021; 16:e0255027. [PMID: 34293046 PMCID: PMC8297763 DOI: 10.1371/journal.pone.0255027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
A model of myocardial electromechanics is suggested. It combines modified and simplified versions of previously published models of cardiac electrophysiology, excitation-contraction coupling, and mechanics. The mechano-calcium and mechano-electrical feedbacks, including the strain-dependence of the propagation velocity of the action potential, are also accounted for. The model reproduces changes in the twitch amplitude and Ca2+-transients upon changes in muscle strain including the slow response. The model also reproduces the Bowditch effect and changes in the twitch amplitude and duration upon changes in the interstimulus interval, including accelerated relaxation at high stimulation frequency. Special efforts were taken to reduce the stiffness of the differential equations of the model. As a result, the equations can be integrated numerically with a relatively high time step making the model suitable for multiscale simulation of the human heart and allowing one to study the impact of myocardial mechanics on arrhythmias.
Collapse
Affiliation(s)
- Fyodor Syomin
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| | - Anna Osepyan
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Tsaturyan
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Santos ARMP, Jang Y, Son I, Kim J, Park Y. Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering. MICROMACHINES 2021; 12:mi12040386. [PMID: 33916254 PMCID: PMC8067203 DOI: 10.3390/mi12040386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jongseong Kim
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| | - Yongdoo Park
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| |
Collapse
|
6
|
Lawson BAJ, Oliveira RS, Berg LA, Silva PAA, Burrage K, dos Santos RW. Variability in electrophysiological properties and conducting obstacles controls re-entry risk in heterogeneous ischaemic tissue. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190341. [PMID: 32448068 PMCID: PMC7287337 DOI: 10.1098/rsta.2019.0341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 05/07/2023]
Abstract
Ischaemia, in which inadequate blood supply compromises and eventually kills regions of cardiac tissue, can cause many types of arrhythmia, some life-threatening. A significant component of this is the effects of the resulting hypoxia, and concomitant hyperklaemia and acidosis, on the electrophysiological properties of myocytes. Clinical and experimental data have also shown that regions of structural heterogeneity (fibrosis, necrosis, fibro-fatty infiltration) can act as triggers for arrhythmias under acute ischaemic conditions. Mechanistic models have successfully captured these effects in silico. However, the relative significance of these separate facets of the condition, and how sensitive arrhythmic risk is to the extents of each, is far less explored. In this work, we use partitioned Gaussian process emulation and new metrics for source-sink mismatch that rely on simulations of bifurcating cardiac fibres to interrogate a model of heterogeneous ischaemic tissue. Re-entries were most sensitive to the level of hypoxia and the fraction of non-excitable tissue. In addition, our results reveal both protective and pro-arrhythmic effects of hyperklaemia, and present the levels of hyperklaemia, hypoxia and percentage of non-excitable tissue that pose the highest arrhythmic risks. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Brodie A. J. Lawson
- ARC Centre of Excellence for Mathematical and Statistical Frontiers Queensland University of Technology, Brisbane, Australia
| | - Rafael S. Oliveira
- Department of Computer Science, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Lucas A. Berg
- Graduate Program in Computational Modelling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Pedro A. A. Silva
- Graduate Program in Computational Modelling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Kevin Burrage
- ARC Centre of Excellence for Mathematical and Statistical Frontiers Queensland University of Technology, Brisbane, Australia
- Visiting Professor, Department of Computer Science, University of Oxford, Oxford, UK
| | - Rodrigo Weber dos Santos
- Graduate Program in Computational Modelling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
7
|
Balakina-Vikulova NA, Panfilov A, Solovyova O, Katsnelson LB. Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model. J Physiol Sci 2020; 70:12. [PMID: 32070290 PMCID: PMC7028825 DOI: 10.1186/s12576-020-00741-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Experiments on animal hearts (rat, rabbit, guinea pig, etc.) have demonstrated that mechano-calcium feedback (MCF) and mechano-electric feedback (MEF) are very important for myocardial self-regulation because they adjust the cardiomyocyte contractile function to various mechanical loads and to mechanical interactions between heterogeneous myocardial segments in the ventricle walls. In in vitro experiments on these animals, MCF and MEF manifested themselves in several basic classical phenomena (e.g., load dependence, length dependence of isometric twitches, etc.), and in the respective responses of calcium transients and action potentials. However, it is extremely difficult to study simultaneously the electrical, calcium, and mechanical activities of the human heart muscle in vitro. Mathematical modeling is a useful tool for exploring these phenomena. We have developed a novel model to describe electromechanical coupling and mechano-electric feedbacks in the human cardiomyocyte. It combines the ‘ten Tusscher–Panfilov’ electrophysiological model of the human cardiomyocyte with our module of myocardium mechanical activity taken from the ‘Ekaterinburg–Oxford’ model and adjusted to human data. Using it, we simulated isometric and afterloaded twitches and effects of MCF and MEF on excitation–contraction coupling. MCF and MEF were found to affect significantly the duration of the calcium transient and action potential in the human cardiomyocyte model in response to both smaller afterloads as compared to bigger ones and various mechanical interventions applied during isometric and afterloaded twitches.
Collapse
Affiliation(s)
- Nathalie A Balakina-Vikulova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia. .,Ural Federal University, Ekaterinburg, Russia.
| | - Alexander Panfilov
- Ural Federal University, Ekaterinburg, Russia.,Ghent University, Ghent, Belgium
| | - Olga Solovyova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.,Ural Federal University, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.,Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
8
|
Trayanova NA, Doshi AN, Prakosa A. How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1477. [PMID: 31917524 DOI: 10.1002/wsbm.1477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Precision Cardiology is a targeted strategy for cardiovascular disease prevention and treatment that accounts for individual variability. Computational heart modeling is one of the novel approaches that have been developed under the umbrella of Precision Cardiology. Personalized computational modeling of patient hearts has made strides in the development of models that incorporate the individual geometry and structure of the heart as well as other patient-specific information. Of these developments, one of the potentially most impactful is the research aimed at noninvasively predicting the targets of ablation of lethal arrhythmia, ventricular tachycardia (VT), using patient-specific models. The approach has been successfully applied to patients with ischemic cardiomyopathy in proof-of-concept studies. The goal of this paper is to review the strategies for computational VT ablation guidance in ischemic cardiomyopathy patients, from model developments to the intricacies of the actual clinical application. To provide context in describing the road these computational modeling applications have undertaken, we first review the state of the art in VT ablation in the clinic, emphasizing the benefits that personalized computational prediction of ablation targets could bring to the clinical electrophysiology practice. This article is characterized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models Translational, Genomic, and Systems Medicine > Translational Medicine.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ashish N Doshi
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland
| | - Adityo Prakosa
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
9
|
Abstract
The treatment of individual patients in cardiology practice increasingly relies on advanced imaging, genetic screening and devices. As the amount of imaging and other diagnostic data increases, paralleled by the greater capacity to personalize treatment, the difficulty of using the full array of measurements of a patient to determine an optimal treatment seems also to be paradoxically increasing. Computational models are progressively addressing this issue by providing a common framework for integrating multiple data sets from individual patients. These models, which are based on physiology and physics rather than on population statistics, enable computational simulations to reveal diagnostic information that would have otherwise remained concealed and to predict treatment outcomes for individual patients. The inherent need for patient-specific models in cardiology is clear and is driving the rapid development of tools and techniques for creating personalized methods to guide pharmaceutical therapy, deployment of devices and surgical interventions.
Collapse
Affiliation(s)
- Steven A Niederer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac, France
| | - Natalia A Trayanova
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Ectopic beats arise from micro-reentries near infarct regions in simulations of a patient-specific heart model. Sci Rep 2018; 8:16392. [PMID: 30401912 PMCID: PMC6219578 DOI: 10.1038/s41598-018-34304-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023] Open
Abstract
Ectopic beats are known to be involved in the initiation of a variety of cardiac arrhythmias. Although their location may vary, ectopic excitations have been found to originate from infarct areas, regions of micro-fibrosis and other heterogeneous tissues. However, the underlying mechanisms that link ectopic foci to heterogeneous tissues have yet to be fully understood. In this work, we investigate the mechanism of micro-reentry that leads to the generation of ectopic beats near infarct areas using a patient-specific heart model. The patient-specific geometrical model of the heart, including scar and peri-infarct zones, is obtained through magnetic resonance imaging (MRI). The infarct region is composed of ischemic myocytes and non-conducting cells (fibrosis, for instance). Electrophysiology is captured using an established cardiac myocyte model of the human ventricle modified to describe ischemia. The simulation results clearly reveal that ectopic beats emerge from micro-reentries that are sustained by the heterogeneous structure of the infarct regions. Because microscopic information about the heterogeneous structure of the infarct regions is not available, Monte-Carlo simulations are used to identify the probabilities of an infarct region to behave as an ectopic focus for different levels of ischemia and different percentages of non-conducting cells. From the proposed model, it is observed that ectopic beats are generated when a percentage of non-conducting cells is near a topological metric known as the percolation threshold. Although the mechanism for micro-reentries was proposed half a century ago to be a source of ectopic beats or premature ventricular contractions during myocardial infarction, the present study is the first to reproduce this mechanism in-silico using patient-specific data.
Collapse
|
11
|
Bai J, Gladding PA, Stiles MK, Fedorov VV, Zhao J. Ionic and cellular mechanisms underlying TBX5/PITX2 insufficiency-induced atrial fibrillation: Insights from mathematical models of human atrial cells. Sci Rep 2018; 8:15642. [PMID: 30353147 PMCID: PMC6199257 DOI: 10.1038/s41598-018-33958-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Transcription factors TBX5 and PITX2 involve in the regulation of gene expression of ion channels and are closely associated with atrial fibrillation (AF), the most common cardiac arrhythmia in developed countries. The exact cellular and molecular mechanisms underlying the increased susceptibility to AF in patients with TBX5/PITX2 insufficiency remain unclear. In this study, we have developed and validated a novel human left atrial cellular model (TPA) based on the ten Tusscher-Panfilov ventricular cell model to systematically investigate how electrical remodeling induced by TBX5/PITX2 insufficiency leads to AF. Using our TPA model, we have demonstrated that spontaneous diastolic depolarization observed in atrial myocytes with TBX5-deletion can be explained by altered intracellular calcium handling and suppression of inward-rectifier potassium current (IK1). Additionally, our computer simulation results shed new light on the novel cellular mechanism underlying AF by indicating that the imbalance between suppressed outward current IK1 and increased inward sodium-calcium exchanger current (INCX) resulted from SR calcium leak leads to spontaneous depolarizations. Furthermore, our simulation results suggest that these arrhythmogenic triggers can be potentially suppressed by inhibiting sarcoplasmic reticulum (SR) calcium leak and reversing remodeled IK1. More importantly, this study has clinically significant implications on the drugs used for maintaining SR calcium homeostasis, whereby drugs such as dantrolene may confer significant improvement for the treatment of AF patients with TBX5/PITX2 insufficiency.
Collapse
Affiliation(s)
- Jieyun Bai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, China.
| | - Patrick A Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | | | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, United States of America
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
Yang R, Ernst P, Song J, Liu XM, Huke S, Wang S, Zhang JJ, Zhou L. Mitochondrial-Mediated Oxidative Ca 2+/Calmodulin-Dependent Kinase II Activation Induces Early Afterdepolarizations in Guinea Pig Cardiomyocytes: An In Silico Study. J Am Heart Assoc 2018; 7:e008939. [PMID: 30371234 PMCID: PMC6201444 DOI: 10.1161/jaha.118.008939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 12/23/2022]
Abstract
Background Oxidative stress-mediated Ca2+/calmodulin-dependent protein kinase II (Ca MKII) phosphorylation of cardiac ion channels has emerged as a critical contributor to arrhythmogenesis in cardiac pathology. However, the link between mitochondrial-derived reactive oxygen species (md ROS ) and increased Ca MKII activity in the context of cardiac arrhythmias has not been fully elucidated and is difficult to establish experimentally. Methods and Results We hypothesize that pathological md ROS can cause erratic action potentials through the oxidation-dependent Ca MKII activation pathway. We further propose that Ca MKII -dependent phosphorylation of sarcolemmal slow Na+ channels alone is sufficient to elicit early afterdepolarizations. To test the hypotheses, we expanded our well-established guinea pig cardiomyocyte excitation- contraction coupling, mitochondrial energetics, and ROS - induced- ROS - release model by incorporating oxidative Ca MKII activation and Ca MKII -dependent Na+ channel phosphorylation in silico. Simulations show that md ROS mediated-Ca MKII activation elicits early afterdepolarizations by augmenting the late Na+ currents, which can be suppressed by blocking L-type Ca2+ channels or Na+/Ca2+ exchangers. Interestingly, we found that oxidative Ca MKII activation-induced early afterdepolarizations are sustained even after md ROS has returned to its physiological levels. Moreover, mitochondrial-targeting antioxidant treatment can suppress the early afterdepolarizations, but only if given in an appropriate time window. Incorporating concurrent md ROS -induced ryanodine receptors activation further exacerbates the proarrhythmogenic effect of oxidative Ca MKII activation. Conclusions We conclude that oxidative Ca MKII activation-dependent Na channel phosphorylation is a critical pathway in mitochondria-mediated cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Ruilin Yang
- Key Laboratory for Mechanism Theory and Equipment Design of Ministry of EducationTianjin UniversityTianjinChina
- Department of MedicineUniversity of Alabama at BirminghamAL
| | - Patrick Ernst
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamAL
| | - Jiajia Song
- Department of MedicineUniversity of Alabama at BirminghamAL
| | - Xiaoguang M. Liu
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamAL
| | - Sabine Huke
- Department of MedicineUniversity of Alabama at BirminghamAL
| | - Shuxin Wang
- Key Laboratory for Mechanism Theory and Equipment Design of Ministry of EducationTianjin UniversityTianjinChina
| | - Jianyi Jay Zhang
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamAL
| | - Lufang Zhou
- Department of MedicineUniversity of Alabama at BirminghamAL
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamAL
| |
Collapse
|
13
|
Experimental assessment of a myocyte-based multiscale model of cardiac contractile dysfunction. J Theor Biol 2018; 456:16-28. [PMID: 30063925 DOI: 10.1016/j.jtbi.2018.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Cardiac contractile dysfunction (CD) is a multifactorial syndrome caused by different acute or progressive diseases which hamper assessing the role of the underlying mechanisms characterizing a defined pathological condition. Mathematical modeling can help to understand the processes involved in CD and analyze their relative impact in the overall response. The aim of this study was thus to use a myocyte-based multiscale model of the circulatory system to simulate the effects of halothane, a volatile anesthetic which at high doses elicits significant acute CD both in isolated myocytes and intact animals. Ventricular chambers built using a human myocyte model were incorporated into a whole circulatory system represented by resistances and capacitances. Halothane-induced decreased sarco(endo)plasmic reticulum Ca2+ (SERCA2a) reuptake pump, transient outward K+ (Ito), Na+-Ca2+ exchanger (INCX) and L-type Ca2+ channel (ICaL) currents, together with ryanodine receptor (RyR2) increased open probability (Po) and reduced myofilament Ca2+ sensitivity, reproduced equivalent decreased action potential duration at 90% repolarization and intracellular Ca2+ concentration at the myocyte level reported in the literature. In the whole circulatory system, model reduction in mean arterial pressure, cardiac output and regional wall thickening fraction was similar to experimental results in open-chest sheep subjected to acute halothane overdose. Effective model performance indicates that the model structure could be used to study other changes in myocyte targets eliciting CD.
Collapse
|
14
|
Bai J, Wang K, Liu Y, Li Y, Liang C, Luo G, Dong S, Yuan Y, Zhang H. Computational Cardiac Modeling Reveals Mechanisms of Ventricular Arrhythmogenesis in Long QT Syndrome Type 8: CACNA1C R858H Mutation Linked to Ventricular Fibrillation. Front Physiol 2017; 8:771. [PMID: 29046645 PMCID: PMC5632762 DOI: 10.3389/fphys.2017.00771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Functional analysis of the L-type calcium channel has shown that the CACNA1C R858H mutation associated with severe QT interval prolongation may lead to ventricular fibrillation (VF). This study investigated multiple potential mechanisms by which the CACNA1C R858H mutation facilitates and perpetuates VF. The Ten Tusscher-Panfilov (TP06) human ventricular cell models incorporating the experimental data on the kinetic properties of L-type calcium channels were integrated into one-dimensional (1D) fiber, 2D sheet, and 3D ventricular models to investigate the pro-arrhythmic effects of CACNA1C mutations by quantifying changes in intracellular calcium handling, action potential profiles, action potential duration restitution (APDR) curves, dispersion of repolarization (DOR), QT interval and spiral wave dynamics. R858H “mutant” L-type calcium current (ICaL) augmented sarcoplasmic reticulum calcium content, leading to the development of afterdepolarizations at the single cell level and focal activities at the tissue level. It also produced inhomogeneous APD prolongation, causing QT prolongation and repolarization dispersion amplification, rendering R858H “mutant” tissue more vulnerable to the induction of reentry compared with other conditions. In conclusion, altered ICaL due to the CACNA1C R858H mutation increases arrhythmia risk due to afterdepolarizations and increased tissue vulnerability to unidirectional conduction block. However, the observed reentry is not due to afterdepolarizations (not present in our model), but rather to a novel blocking mechanism.
Collapse
Affiliation(s)
- Jieyun Bai
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yashu Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Cuiping Liang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Gongning Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Suyu Dong
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yongfeng Yuan
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.,Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
15
|
Kanaporis G, Treinys R, Fischmeister R, Jurevičius J. Metabolic inhibition reduces cardiac L-type Ca2+ channel current due to acidification caused by ATP hydrolysis. PLoS One 2017; 12:e0184246. [PMID: 28859158 PMCID: PMC5578678 DOI: 10.1371/journal.pone.0184246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/21/2017] [Indexed: 01/14/2023] Open
Abstract
Metabolic stress evoked by myocardial ischemia leads to impairment of cardiac excitation and contractility. We studied the mechanisms by which metabolic inhibition affects the activity of L-type Ca2+ channels (LTCCs) in frog ventricular myocytes. Metabolic inhibition induced by the protonophore FCCP (as well as by 2,4- dinitrophenol, sodium azide or antimycin A) resulted in a dose-dependent reduction of LTCC current (ICa,L) which was more pronounced during β-adrenergic stimulation with isoprenaline. ICa,L was still reduced by metabolic inhibition even in the presence of 3 mM intracellular ATP, or when the cell was dialysed with cAMP or ATP-γ-S to induce irreversible thiophosphorylation of LTCCs, indicating that reduction in ICa,L is not due to ATP depletion and/or reduced phosphorylation of the channels. However, the effect of metabolic inhibition on ICa,L was strongly attenuated when the mitochondrial F1F0-ATP-synthase was blocked by oligomycin or when the cells were dialysed with the non-hydrolysable ATP analogue AMP-PCP. Moreover, increasing the intracellular pH buffering capacity or intracellular dialysis of the myocytes with an alkaline solution strongly attenuated the inhibitory effect of FCCP on ICa,L. Thus, our data demonstrate that metabolic inhibition leads to excessive ATP hydrolysis by the mitochondrial F1F0-ATP-synthase operating in the reverse mode and this results in intracellular acidosis causing the suppression of ICa,L. Limiting ATP break-down by F1F0-ATP-synthase and the consecutive development of intracellular acidosis might thus represent a potential therapeutic approach for maintaining a normal cardiac function during ischemia.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
16
|
Bai J, Yin R, Wang K, Zhang H. Mechanisms Underlying the Emergence of Post-acidosis Arrhythmia at the Tissue Level: A Theoretical Study. Front Physiol 2017; 8:195. [PMID: 28424631 PMCID: PMC5371659 DOI: 10.3389/fphys.2017.00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/15/2017] [Indexed: 11/17/2022] Open
Abstract
Acidosis has complex electrophysiological effects, which are associated with a high recurrence of ventricular arrhythmias. Through multi-scale cardiac computer modeling, this study investigated the mechanisms underlying the emergence of post-acidosis arrhythmia at the tissue level. In simulations, ten Tusscher-Panfilov ventricular model was modified to incorporate various data on acidosis-induced alterations of cellular electrophysiology and intercellular electrical coupling. The single cell models were incorporated into multicellular one-dimensional (1D) fiber and 2D sheet tissue models. Electrophysiological effects were quantified as changes of action potential profile, sink-source interactions of fiber tissue, and the vulnerability of tissue to the genesis of unidirectional conduction that led to initiation of re-entry. It was shown that acidosis-induced sarcoplasmic reticulum (SR) calcium load contributed to delayed afterdepolarizations (DADs) in single cells. These DADs may be synchronized to overcome the source-sink mismatch arising from intercellular electrotonic coupling, and produce a premature ventricular complex (PVC) at the tissue level. The PVC conduction can be unidirectionally blocked in the transmural ventricular wall with altered electrical heterogeneity, resulting in the genesis of re-entry. In conclusion, altered source-sink interactions and electrical heterogeneity due to acidosis-induced cellular electrophysiological alterations may increase susceptibility to post-acidosis ventricular arrhythmias.
Collapse
Affiliation(s)
- Jieyun Bai
- School of Computer Science and Technology, Harbin Institute of TechnologyHarbin, China
| | - Renli Yin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of TechnologyHarbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of TechnologyHarbin, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of TechnologyHarbin, China.,Biological Physics Group, School of Physics and Astronomy, University of ManchesterManchester, UK.,Space Institute of Southern ChinaShenzhen, China
| |
Collapse
|
17
|
Multiple H + sensors mediate the extracellular acidification-induced [Ca 2+] i elevation in cultured rat ventricular cardiomyocytes. Sci Rep 2017; 7:44951. [PMID: 28332558 PMCID: PMC5362981 DOI: 10.1038/srep44951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/16/2017] [Indexed: 02/04/2023] Open
Abstract
Acidosis has been known to cause “Ca2+ transients”, however, the mechanism is still uncertain. Here, we demonstrated that multiple H+ sensors, such as ASICs, TRPV1 and proton-sensing G protein coupled receptors (GPCRs) are involved in extracellular acidification-induced intracellular calcium ([Ca2+]i) elevation. By using calcium imaging measures, we observed that both ASIC and TRPV1 channels inhibitors suppressed the [Ca2+]i elevation induced by extracellular acidosis in cultured rat cardiac myocytes. Then, both channels mRNA and proteins were identified by RT-PCR, western blotting and immunofluorescence. ASIC-like and TRPV1-like currents were induced by extracellular acidification, suggesting that functional ASIC and TRPV1 channels jointly mediated extracellular calcium entry. Furthermore, either pre-exhaustion of sarcoplasmic reticulum (SR) Ca2+ with thapsigargin or IP3 receptor blocker 2-APB or PLC inhibitor U73122 significantly attenuated the elevation of [Ca2+]i, indicating that the intracellular Ca2+ stores and the PLC-IP3 signaling also contributed to the acidosis-induced elevation of [Ca2+]i. By using genetic and pharmacological approaches, we identified that ovarian cancer G protein-coupled receptor 1 (OGR1) might be another main component in acidosis-induced release of [Ca2+]i. These results suggest that multiple H+-sensitive receptors are involved in “Ca2+ transients” induced by acidosis in the heart.
Collapse
|
18
|
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) has emerged as key enzyme in many cardiac pathologies, especially heart failure (HF), myocardial infarction and cardiomyopathies, thus leading to contractile dysfunction and malignant arrhythmias. While many pathways leading to CaMKII activation have been elucidated in recent years, hardly any clinically viable compounds affecting CaMKII activity have progressed from basic in vitro science to in vivo studies. This review focuses on recent advances in anti-arrhythmic strategies involving CaMKII. Specifically, both inhibition of CaMKII itself to prevent arrhythmias, as well as anti-arrhythmic approaches affecting CaMKII activity via alterations in signaling cascades upstream and downstream of CaMKII will be discussed.
Collapse
Affiliation(s)
- Julian Mustroph
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Stefan Neef
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Lars S Maier
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany.
| |
Collapse
|
19
|
Kosta S, Negroni J, Lascano E, Dauby PC. Multiscale model of the human cardiovascular system: Description of heart failure and comparison of contractility indices. Math Biosci 2016; 284:71-79. [PMID: 27283921 DOI: 10.1016/j.mbs.2016.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 01/17/2023]
Abstract
A multiscale model of the cardiovascular system is presented. Hemodynamics is described by a lumped parameter model, while heart contraction is described at the cellular scale. An electrophysiological model and a mechanical model were coupled and adjusted so that the pressure and volume of both ventricles are linked to the force and length of a half-sarcomere. Particular attention was paid to the extreme values of the sarcomere length, which must keep physiological values. This model is able to reproduce healthy behavior, preload variations experiments, and ventricular failure. It also allows to compare the relevance of standard cardiac contractility indices. This study shows that the theoretical gold standard for assessing cardiac contractility, namely the end-systolic elastance, is actually load-dependent and therefore not a reliable index of cardiac contractility.
Collapse
Affiliation(s)
- S Kosta
- GIGA - In Silico Medicine, University of Liege, Liege, Belgium.
| | - J Negroni
- Department of Comparative Cellular and Molecular Biology, Favaloro University, Buenos Aires, Argentina
| | - E Lascano
- Department of Comparative Cellular and Molecular Biology, Favaloro University, Buenos Aires, Argentina
| | - P C Dauby
- GIGA - In Silico Medicine, University of Liege, Liege, Belgium.
| |
Collapse
|
20
|
Mazzocchi G, Sommese L, Palomeque J, Felice JI, Di Carlo MN, Fainstein D, Gonzalez P, Contreras P, Skapura D, McCauley MD, Lascano EC, Negroni JA, Kranias EG, Wehrens XHT, Valverde CA, Mattiazzi A. Phospholamban ablation rescues the enhanced propensity to arrhythmias of mice with CaMKII-constitutive phosphorylation of RyR2 at site S2814. J Physiol 2016; 594:3005-30. [PMID: 26695843 DOI: 10.1113/jp271622] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Mice with Ca(2+) -calmodulin-dependent protein kinase (CaMKII) constitutive pseudo-phosphorylation of the ryanodine receptor RyR2 at Ser2814 (S2814D(+/+) mice) exhibit a higher open probability of RyR2, higher sarcoplasmic reticulum (SR) Ca(2+) leak in diastole and increased propensity to arrhythmias under stress conditions. We generated phospholamban (PLN)-deficient S2814D(+/+) knock-in mice by crossing two colonies, S2814D(+/+) and PLNKO mice, to test the hypothesis that PLN ablation can prevent the propensity to arrhythmias of S2814D(+/+) mice. PLN ablation partially rescues the altered intracellular Ca(2+) dynamics of S2814D(+/+) hearts and myocytes, but enhances SR Ca(2+) sparks and leak on confocal microscopy. PLN ablation diminishes ventricular arrhythmias promoted by CaMKII phosphorylation of S2814 on RyR2. PLN ablation aborts the arrhythmogenic SR Ca(2+) waves of S2814D(+/+) and transforms them into non-propagating events. A mathematical human myocyte model replicates these results and predicts the increase in SR Ca(2+) uptake required to prevent the arrhythmias induced by a CaMKII-dependent leaky RyR2. ABSTRACT Mice with constitutive pseudo-phosphorylation at Ser2814-RyR2 (S2814D(+/+) ) have increased propensity to arrhythmias under β-adrenergic stress conditions. Although abnormal Ca(2+) release from the sarcoplasmic reticulum (SR) has been linked to arrhythmogenesis, the role played by SR Ca(2+) uptake remains controversial. We tested the hypothesis that an increase in SR Ca(2+) uptake is able to rescue the increased arrhythmia propensity of S2814D(+/+) mice. We generated phospholamban (PLN)-deficient/S2814D(+/+) knock-in mice by crossing two colonies, S2814D(+/+) and PLNKO mice (SD(+/+) /KO). SD(+/+) /KO myocytes exhibited both increased SR Ca(2+) uptake seen in PLN knock-out (PLNKO) myocytes and diminished SR Ca(2+) load (relative to PLNKO), a characteristic of S2814D(+/+) myocytes. Ventricular arrhythmias evoked by catecholaminergic challenge (caffeine/adrenaline) in S2814D(+/+) mice in vivo or programmed electric stimulation and high extracellular Ca(2+) in S2814D(+) /(-) hearts ex vivo were significantly diminished by PLN ablation. At the myocyte level, PLN ablation converted the arrhythmogenic Ca(2+) waves evoked by high extracellular Ca(2+) provocation in S2814D(+/+) mice into non-propagated Ca(2+) mini-waves on confocal microscopy. Myocyte Ca(2+) waves, typical of S2814D(+/+) mice, could be evoked in SD(+/+) /KO cells by partially inhibiting SERCA2a. A mathematical human myocyte model replicated these results and allowed for predicting the increase in SR Ca(2+) uptake required to prevent the arrhythmias induced by a Ca(2+) -calmodulin-dependent protein kinase (CaMKII)-dependent leaky RyR2. Our results demonstrate that increasing SR Ca(2+) uptake by PLN ablation can prevent the arrhythmic events triggered by SR Ca(2+) leak due to CaMKII-dependent phosphorylation of the RyR2-S2814 site and underscore the benefits of increasing SERCA2a activity on SR Ca(2+) -triggered arrhythmias.
Collapse
Affiliation(s)
- G Mazzocchi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs Médicas, UNLP, La Plata, Argentina
| | - L Sommese
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs Médicas, UNLP, La Plata, Argentina
| | - J Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs Médicas, UNLP, La Plata, Argentina
| | - J I Felice
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs Médicas, UNLP, La Plata, Argentina
| | - M N Di Carlo
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs Médicas, UNLP, La Plata, Argentina
| | - D Fainstein
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs Médicas, UNLP, La Plata, Argentina
| | - P Gonzalez
- Cátedra de Patología, Facultad de Cs Médicas, UNLP, La Plata, Argentina
| | - P Contreras
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - D Skapura
- Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), and Pediatrics, Baylor College of Medicine, Cardiovascular Research Institute, Houston, TX, 77030, USA
| | - M D McCauley
- Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), and Pediatrics, Baylor College of Medicine, Cardiovascular Research Institute, Houston, TX, 77030, USA
| | - E C Lascano
- Departamento de Biología Comparada, Celular y Molecular, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Argentina
| | - J A Negroni
- Departamento de Biología Comparada, Celular y Molecular, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Argentina
| | - E G Kranias
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267
| | - X H T Wehrens
- Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), and Pediatrics, Baylor College of Medicine, Cardiovascular Research Institute, Houston, TX, 77030, USA
| | - C A Valverde
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs Médicas, UNLP, La Plata, Argentina
| | - A Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs Médicas, UNLP, La Plata, Argentina
| |
Collapse
|
21
|
Yao J, Qin X, Zhu J, Sheng H. Dyrk1A-ASF-CaMKIIδ Signaling Is Involved in Valsartan Inhibition of Cardiac Hypertrophy in Renovascular Hypertensive Rats. Cardiology 2015; 133:198-204. [PMID: 26619200 DOI: 10.1159/000441695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES It is known that the expression, activity and alternative splicing of Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) are dysregulated in the cardiac remodeling process. Recently, we found a further signaling pathway, by which dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) regulates the alternative splicing of CaMKIIδ via the alternative splicing factor (ASF), i.e., Dyrk1A-ASF-CaMKIIδ. In this study, we aimed to investigate whether Dyrk1A-ASF-CaMKIIδ signaling was involved in valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats. METHODS Rats were subjected to two kidney-one clip (2K1C) surgery and then treated with valsartan (30 mg/kg/day) for 8 weeks. Hypertrophic parameter analysis was then performed. Western blot analysis was used to determine the protein expression of Dyrk1A and ASF and RT-PCR was used to analyze the alternative splicing of CaMKIIδ in the left ventricular (LV) sample. RESULTS Valsartan attenuated cardiac hypertrophy in 2K1C rats but without impairment of cardiac systolic function. Increased protein expression of Dyrk1A and decreased protein expression of ASF were observed in the LV sample of 2K1C rats. Treatment of 2K1C rats with valsartan reversed the changes in Dyrk1A and ASF expression in the LV sample. Valsartan adjusted the 2K1C-induced imbalance in alternative splicing of CaMKIIδ by upregulating the mRNA expression of CaMKIIδC and downregulating the mRNA expression of CaMKIIδA and CaMKIIδB. CONCLUSIONS Valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats was mediated, at least partly, by Dyrk1A-ASF-CaMKIIδ signaling.
Collapse
Affiliation(s)
- Jian Yao
- Department of Cardiology, the Affiliated Hospital of Nantong University, Nantong, PR China
| | | | | | | |
Collapse
|
22
|
Negroni JA, Morotti S, Lascano EC, Gomes AV, Grandi E, Puglisi JL, Bers DM. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model. J Mol Cell Cardiol 2015; 81:162-75. [PMID: 25724724 DOI: 10.1016/j.yjmcc.2015.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/10/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca(2+) transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca(2+) handling, Ca(2+), K(+) and Cl(-) currents, and Na(+)/K(+)-ATPase properties was included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca(2+) sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca(2+) transient amplitude and kinetics. It also replicated the behavior of force-Ca(2+), release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca(2+) channels or phospholamban limited Ca(2+) transients and contractile responses in parallel, while blocking phospholemman and K(+) channel (IKs) effects enhanced Ca(2+) and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca(2+) (due to greater Ca(2+) buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca(2+) transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa and XBcy have greater impact on isometric and isotonic contraction, respectively.
Collapse
Affiliation(s)
- Jorge A Negroni
- Department of Comparative, Cellular and Molecular Biology, Universidad Favaloro, Buenos Aires, Argentina.
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, CA, USA
| | - Elena C Lascano
- Department of Comparative, Cellular and Molecular Biology, Universidad Favaloro, Buenos Aires, Argentina
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, CA, USA
| | - José L Puglisi
- Department of Pharmacology, University of California Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, CA, USA.
| |
Collapse
|
23
|
Glynn P, Unudurthi SD, Hund TJ. Mathematical modeling of physiological systems: an essential tool for discovery. Life Sci 2014; 111:1-5. [PMID: 25064823 DOI: 10.1016/j.lfs.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?"
Collapse
Affiliation(s)
- Patric Glynn
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Onal B, Unudurthi SD, Hund TJ. Modeling CaMKII in cardiac physiology: from molecule to tissue. Front Pharmacol 2014; 5:9. [PMID: 24550832 PMCID: PMC3912431 DOI: 10.3389/fphar.2014.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/16/2014] [Indexed: 12/02/2022] Open
Abstract
Post-translational modification of membrane proteins (e.g., ion channels, receptors) by protein kinases is an essential mechanism for control of excitable cell function. Importantly, loss of temporal and/or spatial control of ion channel post-translational modification is common in congenital and acquired forms of cardiac disease and arrhythmia. The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates a number of diverse cellular functions in heart, including excitation-contraction coupling, gene transcription, and apoptosis. Dysregulation of CaMKII signaling has been implicated in human and animal models of disease. Understanding of CaMKII function has been advanced by mathematical modeling approaches well-suited to the study of complex biological systems. Early kinetic models of CaMKII function in the brain characterized this holoenzyme as a bistable molecular switch capable of storing information over a long period of time. Models of CaMKII activity have been incorporated into models of the cell and tissue (particularly in the heart) to predict the role of CaMKII in regulating organ function. Disease models that incorporate CaMKII overexpression clearly demonstrate a link between its excessive activity and arrhythmias associated with congenital and acquired heart disease. This review aims at discussing systems biology approaches that have been applied to analyze CaMKII signaling from the single molecule to intact cardiac tissue. In particular, efforts to use computational biology to provide new insight into cardiac disease mechanisms are emphasized.
Collapse
Affiliation(s)
- Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA
| | - Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA ; Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|