1
|
Desouky MA, Michel HE, Elsherbiny DA, George MY. Recent pharmacological insights on abating toxic protein species burden in neurological disorders: Emphasis on 26S proteasome activation. Life Sci 2024; 359:123206. [PMID: 39489397 DOI: 10.1016/j.lfs.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Protein homeostasis (proteostasis) refers to the plethora of mechanisms that safeguard the proper folding of the newly synthesized proteins. It entails various intricately regulated cues that demolish the toxic protein species to prevent their aggregation. The ubiquitin-proteasome system (UPS) is recognized as a salient protein degradation system, with a substantial role in maintaining proteostasis. However, under certain circumstances the protein degradation capacity of the UPS is overwhelmed, leading to the accumulation of misfolded proteins. Several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis are characterized with the presence of protein aggregates and proteinopathy. Accordingly, enhancing the 26S proteasome degradation activity might delineate a pioneering approach in targeting various proteotoxic disorders. Regrettably, the exact molecular approaches that enhance the proteasomal activity are still not fully understood. Therefore, this review aimed to underscore several signaling cascades that might restore the degradation capacity of this molecular machine. In this review, we discuss the different molecular components of the UPS and how 26S proteasomes are deleteriously affected in many neurodegenerative diseases. Moreover, we summarize different signaling pathways that can be utilized to renovate the 26S proteasome functional capacity, alongside currently known druggable targets in this circuit and various classes of proteasome activators.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
2
|
Yang L, Ahammed MS, Wu P, Sternburg JO, Liu J, Wang X. Genetic blockade of the activation of 26S proteasomes by PKA is well tolerated by mice at baseline. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2024; 14:90-105. [PMID: 38764549 PMCID: PMC11101957 DOI: 10.62347/nswr6869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/17/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Proteasome activation by the cAMP-dependent protein kinase (PKA) was long suggested and recent studies using both cell cultures and genetically engineered mice have established that direct phosphorylation of RPN6/PSMD11 at Serine14 (pS14-RPN6) mediates the activation of 26S proteasomes by PKA. Genetic mimicry of pS14-RPN6 has been shown to be benign at baseline and capable of protecting against cardiac proteinopathy in mice. Here we report the results from a comprehensive baseline characterization of the Rpn6S14A mice (S14A), the first animal model of genetic blockade of the activation of 26S proteasomes by PKA. METHOD Wild type and homozygous S14A littermate mice were subjected to serial M-mode echocardiography at 1 through 7 months of age, to left ventricular (LV) catheterization via the carotid artery for assessment of LV mechanical performance, and to cardiac gravimetric analyses at 26 weeks of age. Mouse mortality and morbidity were monitored daily for up to one year. Males and females were studied in parallel. RESULTS Mice homozygous for S14A were viable and fertile and did not show discernible developmental abnormalities or increased mortality or morbidity compared with their Rpn6 wild type littermates by at least one year of age, the longest cohort observed thus far. Neither serial echocardiography nor hemodynamic assessments detected a remarkable difference in cardiac morphometry and function between S14A and wild type littermate mice. No cardiac gravimetric difference was observed. CONCLUSION The findings of the present study indicate that genetic blockade of the activation of 26S proteasomes by PKA is well tolerated by mice at baseline. Therefore, the S14A mouse provides a desirable genetic tool for further investigating the in vivo pathophysiological and pharmacological significance of pS14-RPN6.
Collapse
Affiliation(s)
- Liuqing Yang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South DakotaVermillion, SD 57069, USA
| | - Md Salim Ahammed
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South DakotaVermillion, SD 57069, USA
| | - Penglong Wu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South DakotaVermillion, SD 57069, USA
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Jack O Sternburg
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South DakotaVermillion, SD 57069, USA
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South DakotaVermillion, SD 57069, USA
| |
Collapse
|
3
|
Wang J, Li TL, Chang PF, Gao YQ, Fan JS, Zhang CH, Zhu HY. Clinical effects and mechanisms of a Chinese patent medicine, Tongxinluo capsule, as an adjuvant treatment in coronary heart disease. Heliyon 2024; 10:e27460. [PMID: 38533036 PMCID: PMC10963209 DOI: 10.1016/j.heliyon.2024.e27460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Coronary heart disease (CHD) is the leading cause of death globally, posing a serious threat to human health. However, the current treatment approaches available for CHD fall short of the ideal results. Tongxinluo (TXL) is a traditional Chinese medicine (TCM) that has been employed in the clinical treatment of cardiovascular and cerebrovascular diseases (such as angina pectoris, stroke, etc.) in China for many years and holds great potential as a prospective treatment. TXL either as a standalone treatment or in combination with interventions recommended in CHD guidelines has been shown to be effective and well tolerated in clinical trials for CHD. Drawing on the evidence from clinical trials and experimental studies, this review will focus on the cardiovascular protective properties and related mechanisms of TXL. By searching 8 Chinese and English databases, more than 4000 articles were retrieved. These articles were categorized, then read, and finally written into this review. In this review, the pharmacological properties of TXL include regulation of blood lipids, improvement of endothelial function, anti-inflammatory, antioxidant, inhibition of apoptosis and regulation of autophagy, anti-fibrosis, promotion of angiogenesis, and modulation of exosome communication. The information provided in this review will help the reader to comprehend better the insights that TCM has developed over time in practice and provide new perspectives for the treatment of CHD.
Collapse
Affiliation(s)
- Jing Wang
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, 100700, China
| | - Tian Li Li
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Pei Fen Chang
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, 100700, China
| | - Yu Qian Gao
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, 100700, China
| | - Jia Sai Fan
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, 100700, China
| | - Chen Hao Zhang
- China Academy of Chinese Medicine Science Affiliated Wangjing Hospital, Beijing, 100102, China
| | - Hai Yan Zhu
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, 100700, China
| |
Collapse
|
4
|
Yu Y, Fu Q, Li J, Zen X, Li J. E3 ubiquitin ligase COP1-mediated CEBPB ubiquitination regulates the inflammatory response of macrophages in sepsis-induced myocardial injury. Mamm Genome 2024; 35:56-67. [PMID: 37980295 DOI: 10.1007/s00335-023-10027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
CCAAT/enhancer-binding protein beta (CEBPB) has been associated with sepsis. However, its role in sepsis-induced myocardial injury (SIMI) remains ill-defined. This research was designed to illustrate the involvement of CEBPB in SIMI and its upstream modifier. The transcriptomic changes in heart biopsies of mice that had undergone polymicrobial sepsis were downloaded from the GEO dataset for KEGG enrichment analysis. CEBPB, on the TNF signaling pathway, was significantly enhanced in the myocardial tissues of mice with SIMI. Downregulation of CEBPB alleviated SIMI, as evidenced by minor myocardial injury and inflammatory manifestations. Moreover, ubiquitination modification of CEBPB by constitutive photomorphogenesis protein 1 homolog (COP1) led to the degradation of CEBPB and inhibited inflammatory responses in macrophages. Upregulation of COP1 protected against SIMI in mice overexpressing CEBPB. Collectively, our findings demonstrated that COP1 protected the heart against SIMI through the ubiquitination modification of CEBPB, which might be a novel therapeutic approach in the future.
Collapse
Affiliation(s)
- Yangzi Yu
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| | - Qiang Fu
- Department of Critical Care Medicine, Tianjin Forth Central Hospital, No. 3, Zhongshan Road, Hebei District, Tianjin, 300142, P.R. China.
| | - Jiarui Li
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| | - Xianming Zen
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| | - Jing Li
- Department of Ultrasound, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| |
Collapse
|
5
|
Extracellular vesicles DJ-1 derived from hypoxia-conditioned hMSCs alleviate cardiac hypertrophy by suppressing mitochondria dysfunction and preventing ATRAP degradation. Pharmacol Res 2023; 187:106607. [PMID: 36509316 DOI: 10.1016/j.phrs.2022.106607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND As a pathological myocardial remodeling process in a variety of cardiovascular diseases, cardiac hypertrophy still has no effective treatment. Human mesenchymal stem cells (hMSCs) derived extracellular vesicles (EVs) has been recognized as a promising treatment strategy for cardiac disease. METHODS In this study, the inhibitory effects on cardiac hypertrophy are compared between normoxia-conditioned hMSC-derived EVs (Nor-EVs) and hypoxia-conditioned hMSC-derived EVs (Hypo-EVs) in neonatal rat cardiomyocytes (NRCMs) after angiotensin II (Ang II) stimulation and in a mouse model of transverse aortic constriction (TAC). RESULTS We demonstrate that Hypo-EVs exert an increased inhibitory effect on cardiac hypertrophy compared with Nor-EVs. Parkinson disease protein 7 (PARK7/DJ-1) is identify as a differential protein between Nor-EVs and Hypo-EVs by quantitative proteomics analysis. Results show that DJ-1, which is rich in Hypo-EVs, alleviates mitochondrial dysfunction and excessive mitochondrial reactive oxygen species (mtROS) production as an antioxidant. Mechanistic studies demonstrate for the first time that DJ-1 may suppress cardiac hypertrophy by inhibiting the activity of proteasome subunit beta type 10 (PSMB10) through a direct physical interaction. This interaction can inhibit angiotensin II type 1 receptor (AT1R)-mediated signaling pathways resulting in cardiac hypertrophy through alleviating ubiquitination degradation of AT1R-associated protein (ATRAP). CONCLUSIONS When taken together, our study suggests that Hypo-EVs have significant potential as a novel therapeutic agent for the treatment of cardiac hypertrophy.
Collapse
|
6
|
Wang B, Yang X, Sun X, Liu J, Fu Y, Liu B, Qiu J, Lian J, Zhou J. ATF3 in atherosclerosis: a controversial transcription factor. J Mol Med (Berl) 2022; 100:1557-1568. [PMID: 36207452 DOI: 10.1007/s00109-022-02263-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
Atherosclerosis, the pathophysiological basis of most malignant cardiovascular diseases, remains a global concern. Transcription factors play a key role in regulating cell function and disease progression in developmental signaling pathways involved in atherosclerosis. Activated transcription factor (ATF) 3 is an adaptive response gene in the ATF/cAMP response element binding (CREB) protein family that acts as a transcription suppressor or activator by forming homodimers or heterodimers with other ATF/CREB members. Appropriate ATF3 expression is vital for normal physiological cell function. Notably, ATF3 exhibits distinct roles in vascular endothelial cells, macrophages, and the liver, which will also be described in detail. This review provides a new perspective for atherosclerosis therapy by summarizing the mechanism of ATF3 in atherosclerosis, as well as the structure and pathophysiological properties of ATF3. KEY MESSAGES: • In endothelial cells, ATF3 overexpression aggravates oxidative stress and inflammation. • In macrophages and liver cells, ATF3 can act as a negative regulator of inflammation and promote cholesterol metabolism. • ATF3 can be used as a potential therapeutic factor in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Bingyu Wang
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Xi Yang
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China.,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Xinyi Sun
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Jianhui Liu
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Yin Fu
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Bingyang Liu
- Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jun Qiu
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China.,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jianqing Zhou
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China. .,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China. .,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| |
Collapse
|
7
|
Liu Y, Hu Y, Li S. Protein O-GlcNAcylation in Metabolic Modulation of Skeletal Muscle: A Bright but Long Way to Go. Metabolites 2022; 12:888. [PMID: 36295790 PMCID: PMC9610910 DOI: 10.3390/metabo12100888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 09/07/2024] Open
Abstract
O-GlcNAcylation is an atypical, dynamic and reversible O-glycosylation that is critical and abundant in metazoan. O-GlcNAcylation coordinates and receives various signaling inputs such as nutrients and stresses, thus spatiotemporally regulating the activity, stability, localization and interaction of target proteins to participate in cellular physiological functions. Our review discusses in depth the involvement of O-GlcNAcylation in the precise regulation of skeletal muscle metabolism, such as glucose homeostasis, insulin sensitivity, tricarboxylic acid cycle and mitochondrial biogenesis. The complex interaction and precise modulation of O-GlcNAcylation in these nutritional pathways of skeletal muscle also provide emerging mechanical information on how nutrients affect health, exercise and disease. Meanwhile, we explored the potential role of O-GlcNAcylation in skeletal muscle pathology and focused on its benefits in maintaining proteostasis under atrophy. In general, these understandings of O-GlcNAcylation are conducive to providing new insights into skeletal muscle (patho) physiology.
Collapse
Affiliation(s)
| | | | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
8
|
T-Type Calcium Channels: A Mixed Blessing. Int J Mol Sci 2022; 23:ijms23179894. [PMID: 36077291 PMCID: PMC9456242 DOI: 10.3390/ijms23179894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer. Almost all cancer cells express T-type calcium channels to the point that it has been considered a pharmacological target; but, as the drugs used to reduce their expression are not completely selective, several complications develop, especially within the heart. T-type calcium channels are also involved in a specific side effect of several anticancer agents, that act on microtubule transport, increase the expression of the channel, and, thus, the excitability of sensory neurons, and make the patient more sensitive to pain. This review puts into context the relevance of T-type calcium channels in cancer and in chemotherapy side effects, considering also the cardiotoxicity induced by new classes of antineoplastic molecules.
Collapse
|
9
|
Pramanik SD, Kumar Halder A, Mukherjee U, Kumar D, Dey YN, R M. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem 2022; 10:948217. [PMID: 36034650 PMCID: PMC9411967 DOI: 10.3389/fchem.2022.948217] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a role in chromatin remodeling and epigenetics. They belong to a specific category of enzymes that eliminate the acetyl part of the histones' -N-acetyl lysine, causing the histones to be wrapped compactly around DNA. Numerous biological processes rely on HDACs, including cell proliferation and differentiation, angiogenesis, metastasis, gene regulation, and transcription. Epigenetic changes, specifically increased expression and activity of HDACs, are commonly detected in cancer. As a result, HDACi could be used to develop anticancer drugs. Although preclinical outcomes with HDACs as monotherapy have been promising clinical trials have had mixed results and limited success. In both preclinical and clinical trials, however, combination therapy with different anticancer medicines has proved to have synergistic effects. Furthermore, these combinations improved efficacy, decreased tumor resistance to therapy, and decreased toxicity. In the present review, the detailed modes of action, classification of HDACs, and their correlation with different cancers like prostate, breast, and ovarian cancer were discussed. Further, the different cell signaling pathways and the structure-activity relationship and pharmaco-toxicological properties of the HDACi, and their synergistic effects with other anticancer drugs observed in recent preclinical and clinical studies used in combination therapy were discussed for prostate, breast, and ovarian cancer treatment.
Collapse
Affiliation(s)
- Siddhartha Das Pramanik
- Department of Pharmaceutical Engineering and Technology, IIT-BHU, Varanasi, Uttar Pradesh, India
| | - Amit Kumar Halder
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Ushmita Mukherjee
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Dharmendra Kumar
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, Bihar, India
| | - Yadu Nandan Dey
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI Education SDN.BHD., Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Role of Posttranslational Modifications of Proteins in Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3137329. [PMID: 35855865 PMCID: PMC9288287 DOI: 10.1155/2022/3137329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease (CVD) has become a leading cause of mortality and morbidity globally, making it an urgent concern. Although some studies have been performed on CVD, its molecular mechanism remains largely unknown for all types of CVD. However, recent in vivo and in vitro studies have successfully identified the important roles of posttranslational modifications (PTMs) in various diseases, including CVD. Protein modification, also known as PTMs, refers to the chemical modification of specific amino acid residues after protein biosynthesis, which is a key process that can influence the activity or expression level of proteins. Studies on PTMs have contributed directly to improving the therapeutic strategies for CVD. In this review, we examined recent progress on PTMs and highlighted their importance in both physiological and pathological conditions of the cardiovascular system. Overall, the findings of this review contribute to the understanding of PTMs and their potential roles in the treatment of CVD.
Collapse
|
11
|
Liu Y, Hu YJ, Fan WX, Quan X, Xu B, Li SZ. O-GlcNAcylation: The Underestimated Emerging Regulators of Skeletal Muscle Physiology. Cells 2022; 11:1789. [PMID: 35681484 PMCID: PMC9180116 DOI: 10.3390/cells11111789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
O-GlcNAcylation is a highly dynamic, reversible and atypical glycosylation that regulates the activity, biological function, stability, sublocation and interaction of target proteins. O-GlcNAcylation receives and coordinates different signal inputs as an intracellular integrator similar to the nutrient sensor and stress receptor, which target multiple substrates with spatio-temporal analysis specifically to maintain cellular homeostasis and normal physiological functions. Our review gives a brief description of O-GlcNAcylation and its only two processing enzymes and HBP flux, which will help to better understand its physiological characteristics of sensing nutrition and environmental cues. This nutritional and stress-sensitive properties of O-GlcNAcylation allow it to participate in the precise regulation of skeletal muscle metabolism. This review discusses the mechanism of O-GlcNAcylation to alleviate metabolic disorders and the controversy about the insulin resistance of skeletal muscle. The level of global O-GlcNAcylation is precisely controlled and maintained in the "optimal zone", and its abnormal changes is a potential factor in the pathogenesis of cancer, neurodegeneration, diabetes and diabetic complications. Although the essential role of O-GlcNAcylation in skeletal muscle physiology has been widely studied and recognized, it still is underestimated and overlooked. This review highlights the latest progress and potential mechanisms of O-GlcNAcylation in the regulation of skeletal muscle contraction and structural properties.
Collapse
Affiliation(s)
| | | | | | | | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| |
Collapse
|
12
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Landim-Vieira M, Childers MC, Wacker AL, Garcia MR, He H, Singh R, Brundage EA, Johnston JR, Whitson BA, Chase PB, Janssen PML, Regnier M, Biesiadecki BJ, Pinto JR, Parvatiyar MS. Post-translational modification patterns on β-myosin heavy chain are altered in ischemic and nonischemic human hearts. eLife 2022; 11:74919. [PMID: 35502901 PMCID: PMC9122498 DOI: 10.7554/elife.74919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/01/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation and acetylation of sarcomeric proteins are important for fine-tuning myocardial contractility. Here, we used bottom-up proteomics and label-free quantification to identify novel post-translational modifications (PTMs) on β-myosin heavy chain (β-MHC) in normal and failing human heart tissues. We report six acetylated lysines and two phosphorylated residues: K34-Ac, K58-Ac, S210-P, K213-Ac, T215-P, K429-Ac, K951-Ac, and K1195-Ac. K951-Ac was significantly reduced in both ischemic and nonischemic failing hearts compared to nondiseased hearts. Molecular dynamics (MD) simulations show that K951-Ac may impact stability of thick filament tail interactions and ultimately myosin head positioning. K58-Ac altered the solvent-exposed SH3 domain surface - known for protein-protein interactions - but did not appreciably change motor domain conformation or dynamics under conditions studied. Together, K213-Ac/T215-P altered loop 1's structure and dynamics - known to regulate ADP-release, ATPase activity, and sliding velocity. Our study suggests that β-MHC acetylation levels may be influenced more by the PTM location than the type of heart disease since less protected acetylation sites are reduced in both heart failure groups. Additionally, these PTMs have potential to modulate interactions between β-MHC and other regulatory sarcomeric proteins, ADP-release rate of myosin, flexibility of the S2 region, and cardiac myofilament contractility in normal and failing hearts.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Matthew C Childers
- Department of Bioengineering, College of Medicine, University of WashingtonSeattleUnited States
| | - Amanda L Wacker
- Department of Nutrition and Integrative Physiology, The Florida State UniversityTallahasseeUnited States
| | - Michelle Rodriquez Garcia
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States,Translational Science Laboratory, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Rakesh Singh
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States,Translational Science Laboratory, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Bryan A Whitson
- Department of Surgery, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - P Bryant Chase
- Department of Biological Science, The Florida State UniversityTallahasseeUnited States
| | - Paul ML Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Michael Regnier
- Department of Bioengineering, College of Medicine, University of WashingtonSeattleUnited States
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Michelle S Parvatiyar
- Department of Nutrition and Integrative Physiology, The Florida State UniversityTallahasseeUnited States
| |
Collapse
|
14
|
Dai X, Zhang T, Hua D. Ubiquitination and SUMOylation: protein homeostasis control over cancer. Epigenomics 2021; 14:43-58. [PMID: 34875856 DOI: 10.2217/epi-2021-0371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination and SUMOylation are two essential components of the ubiquitination proteasome system playing fundamental roles in protein homeostasis maintenance and signal transduction, perturbation of which is associated with tumorigenesis. By comparing the mechanisms of ubiquitination and SUMOylation, assessing their crosstalk, reviewing their differential associations with cancer and identifying unaddressed yet important questions that may lead the field trend, this review sheds light on the similarities and differences of ubiquitination and SUMOylation toward the improved harnessing of both post-translational modification machineries, as well as forecasts novel onco-therapeutic opportunities through cell homeostasis control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Tongxin Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Dong Hua
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China.,Wuxi People's Hospital, Wuxi, 214023, China.,Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
15
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Račková L, Csekes E. Proteasome Biology: Chemistry and Bioengineering Insights. Polymers (Basel) 2020; 12:E2909. [PMID: 33291646 PMCID: PMC7761984 DOI: 10.3390/polym12122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Proteasomal degradation provides the crucial machinery for maintaining cellular proteostasis. The biological origins of modulation or impairment of the function of proteasomal complexes may include changes in gene expression of their subunits, ubiquitin mutation, or indirect mechanisms arising from the overall impairment of proteostasis. However, changes in the physico-chemical characteristics of the cellular environment might also meaningfully contribute to altered performance. This review summarizes the effects of physicochemical factors in the cell, such as pH, temperature fluctuations, and reactions with the products of oxidative metabolism, on the function of the proteasome. Furthermore, evidence of the direct interaction of proteasomal complexes with protein aggregates is compared against the knowledge obtained from immobilization biotechnologies. In this regard, factors such as the structures of the natural polymeric scaffolds in the cells, their content of reactive groups or the sequestration of metal ions, and processes at the interface, are discussed here with regard to their influences on proteasomal function.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
17
|
Mei ZL, Wang HB, Hu YH, Xiong L. CSN6 aggravates Ang II-induced cardiomyocyte hypertrophy via inhibiting SIRT2. Exp Cell Res 2020; 396:112245. [DOI: 10.1016/j.yexcr.2020.112245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
|
18
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
19
|
Wang X, Wang H. Priming the Proteasome to Protect against Proteotoxicity. Trends Mol Med 2020; 26:639-648. [PMID: 32589934 PMCID: PMC7321925 DOI: 10.1016/j.molmed.2020.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Increased proteotoxic stress (IPTS) resulting from the increased production or decreased removal of abnormally folded proteins is recognized as an important pathogenic factor for a large group of highly disabling and life-threatening human diseases, such as neurodegenerative disorders and many heart diseases. The proteasome is pivotal to the timely removal of abnormal proteins but its functional capacity often becomes inadequate in the disease conditions; consequently, proteasome functional insufficiency in return exacerbates IPTS. Recent research in proteasome biology reveals that the proteasome can be activated by endogenous protein kinases, making it possible to pharmacologically prime the proteasome for treating diseases with IPTS.
Collapse
Affiliation(s)
- Xuejun Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA.
| | - Hongmin Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| |
Collapse
|
20
|
Binesh A, Devaraj Sivasitambaram N, Halagowder D. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis. J Biochem Mol Toxicol 2020; 34:e22442. [PMID: 31926051 DOI: 10.1002/jbt.22442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/22/2019] [Accepted: 12/17/2019] [Indexed: 11/05/2022]
Abstract
Antibiotics are essential in many life-threatening diseases. On the other hand, improper use of antibiotics can be disastrous. Cell morphological changes were observed in the ciprofloxacin-treated cells starting at 48 hours. Changes in cell morphology were continuously observed up to 14 days, which showed gradual morphological changes from monocyte to plaque-like cells at day 12, and foam cell, which is an intermediate stage in atherosclerosis was observed at day 8, which was confirmed with Oil Red O staining. Flow cytometry data revealed that oxidized LDL (oxyLDL)-induced cells showed 60.16% of CD64 (proinflammatory macrophage markers) and no expression of CD23 (anti-inflammatory macrophage markers), whereas ciprofloxacin-treated cells expressed 67.97% of CD64 and 13.78% of CD23. Chemokine antibody array analysis revealed that ciprofloxacin exposed cells showed a proinflammatory role (ENA78, Eotaxin1, Eotaxin2, IP-10, MIG, MIP-3β, SDF-1β, TECK, CXCL16, and Fractalkine). Liquid chromatography with tandem mass spectrometry (LC-MS/MS) revealed that myristic acid was incorporated into a protein with 68 kDa molecular mass in exposing oxyLDL-induced monocytes with ciprofloxacin, which could be a reason for the observed foam cells and in vitro plaque formation. As myristic acid primes atherosclerosis, it is better to limit the intake of antibiotics like ciprofloxacin for common illness, specifically the high-risk patients, which may contribute to atherosclerosis.
Collapse
Affiliation(s)
- Ambika Binesh
- Department of Basic Sciences - Biotechnology, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, OMR Campus, Chennai, Tamil Nadu, India
| | | | - Devaraj Halagowder
- Department of Zoology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
Zhang N, Zhang Y, Wu B, You S, Sun Y. Role of WW domain E3 ubiquitin protein ligase 2 in modulating ubiquitination and Degradation of Septin4 in oxidative stress endothelial injury. Redox Biol 2020; 30:101419. [PMID: 31924572 PMCID: PMC6951091 DOI: 10.1016/j.redox.2019.101419] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress-associated endothelial injury is the initial event and major cause of multiple cardiovascular diseases such as atherosclerosis and hypertensive angiopathy. A protein homeostasis imbalance is a critical cause of endothelial injury, and homologous to E6AP C-terminus (HECT)-type E3 ubiquitin ligases are the core factors controlling protein homeostasis. Although HECT-type E3 ubiquitin ligases are involved in the regulation of cardiac development and diseases, their roles in endothelial injury remain largely unknown. This study aimed to identify which HECT-type E3 ubiquitin ligase is involved in endothelial injury and clarify the mechanisms at molecular, cellular, and organism levels. We revealed a novel role of the HECT-type E3 ubiquitin ligase WWP2 in regulating endothelial injury and vascular remodeling after endothelial injury. Endothelial/myeloid-specific WWP2 knockout in mice significantly aggravated angiotensin II/oxidative stress-induced endothelial injury and vascular remodeling after endothelial injury. The same results were obtained from in vitro experiments. Mechanistically, the endothelial injury factor Septin4 was identified as a novel physiological substrate of WWP2. In addition, WWP2 interacted with the GTPase domain of Septin4, ubiquitinating Septin4-K174 to degrade Septin4 through the ubiquitin-proteasome system, which inhibited the Septin4-PARP1 endothelial damage complex. These results identified the first endothelial injury-associated physiological pathway regulated by HECT-type E3 ubiquitin ligases in vivo as well as a unique proteolytic mechanism through which WWP2 controls endothelial injury and vascular remodeling after endothelial injury. These findings might provide a novel treatment strategy for oxidative stress-associated atherosclerosis and hypertensive vascular diseases.
Collapse
Affiliation(s)
- Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Boquan Wu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
22
|
Olmedo I, Pino G, Riquelme JA, Aranguiz P, Díaz MC, López-Crisosto C, Lavandero S, Donoso P, Pedrozo Z, Sánchez G. Inhibition of the proteasome preserves Mitofusin-2 and mitochondrial integrity, protecting cardiomyocytes during ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165659. [PMID: 31891806 DOI: 10.1016/j.bbadis.2019.165659] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
Cardiomyocyte loss is the main cause of myocardial dysfunction following an ischemia-reperfusion (IR) injury. Mitochondrial dysfunction and altered mitochondrial network dynamics play central roles in cardiomyocyte death. Proteasome inhibition is cardioprotective in the setting of IR; however, the mechanisms underlying this protection are not well-understood. Several proteins that regulate mitochondrial dynamics and energy metabolism, including Mitofusin-2 (Mfn2), are degraded by the proteasome. The aim of this study was to evaluate whether proteasome inhibition can protect cardiomyocytes from IR damage by maintaining Mfn2 levels and preserving mitochondrial network integrity. Using ex vivo Langendorff-perfused rat hearts and in vitro neonatal rat ventricular myocytes, we showed that the proteasome inhibitor MG132 reduced IR-induced cardiomyocyte death. Moreover, MG132 preserved mitochondrial mass, prevented mitochondrial network fragmentation, and abolished IR-induced reductions in Mfn2 levels in heart tissue and cultured cardiomyocytes. Interestingly, Mfn2 overexpression also prevented cardiomyocyte death. This effect was apparently specific to Mfn2, as overexpression of Miro1, another protein implicated in mitochondrial dynamics, did not confer the same protection. Our results suggest that proteasome inhibition protects cardiomyocytes from IR damage. This effect could be partly mediated by preservation of Mfn2 and therefore mitochondrial integrity.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Gonzalo Pino
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380492, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile 8380492, Chile
| | - Pablo Aranguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Viña del Mar 2520000, Chile
| | - Magda C Díaz
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380492, Chile; Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Pontificia Universidad Javeriana de Cali, Colombia
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380492, Chile; Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago de Chile 7680201, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | - Paulina Donoso
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Zully Pedrozo
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380492, Chile.
| | - Gina Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile.
| |
Collapse
|
23
|
Cao HJ, Fang J, Zhang YL, Zou LX, Han X, Yang J, Yan X, Li PB, Wang HX, Guo SB, Li HH. Genetic ablation and pharmacological inhibition of immunosubunit β5i attenuates cardiac remodeling in deoxycorticosterone-acetate (DOCA)-salt hypertensive mice. J Mol Cell Cardiol 2019; 137:34-45. [PMID: 31629736 DOI: 10.1016/j.yjmcc.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 01/04/2023]
Abstract
Hypertensive cardiac remodeling is a major cause of heart failure. The immunoproteasome is an inducible form of the proteasome and its catalytic subunit β5i (also named LMP7) is involved in angiotensin II-induced atrial fibrillation; however, its role in deoxycorticosterone-acetate (DOCA)-salt-induced cardiac remodeling remains unclear. C57BL/6 J wild-type (WT) and β5i knockout (β5i KO) mice were subjected to uninephrectomy (sham) and DOCA-salt treatment for three weeks. Cardiac function, fibrosis, and inflammation were evaluated by echocardiography and histological analysis. Protein and gene expression levels were analyzed by quantitative real-time PCR and immunoblotting. Our results showed that after 21 days of DOCA-salt treatment, β5i expression and chymotrypsin-like activity were the most significantly increased factors in the heart compared with the sham control. Moreover, DOCA-salt-induced elevation of blood pressure, adverse cardiac function, chamber and myocyte hypertrophy, interstitial fibrosis, oxidative stress, and inflammation were markedly attenuated in β5i KO mice. These findings were verified in β5i inhibitor PR-957-treated mice. Moreover, blocking of PTEN (the gene of phosphate and tensin homolog deleted on chromosome ten) markedly attenuated the inhibitory effect of β5i knockout on DOCA-salt-induced cardiac remodeling. Mechanistically, DOCA-salt stress upregulated the expression of β5i, which promoted the degradation of PTEN and the activation of downstream signals (AKT/mTOR, TGF-β1/Smad2/3, NOX, and NF-κB), which ultimately led to cardiac hypertrophic remodeling. This study provides new evidence of the critical role of β5i in DOCA-salt-induced cardiac remodeling through the regulation of PTEN stability, and indicates that the inhibition of β5i may be a promising therapeutic target for the treatment of hypertensive heart diseases.
Collapse
Affiliation(s)
- Hua-Jun Cao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Jiao Fang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Yun-Long Zhang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Lei-Xin Zou
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Xiao Han
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Jie Yang
- School of Public Health, Dalian Medical University, Dalian 116004, China
| | - Xiao Yan
- School of Public Health, Dalian Medical University, Dalian 116004, China
| | - Pang-Bo Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hong-Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shu-Bin Guo
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China.
| |
Collapse
|
24
|
Li J, Johnson JA, Su H. Ubiquitin and Ubiquitin-like proteins in cardiac disease and protection. Curr Drug Targets 2019; 19:989-1002. [PMID: 26648080 DOI: 10.2174/1389450117666151209114608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/01/2015] [Indexed: 01/10/2023]
Abstract
Post-translational modification represents an important mechanism to regulate protein function in cardiac cells. Ubiquitin (Ub) and ubiquitin-like proteins (UBLs) are a family of protein modifiers that share a certain extent of sequence and structure similarity. Conjugation of Ub or UBLs to target proteins is dynamically regulated by a set of UBL-specific enzymes and modulates the physical and physiological properties of protein substrates. Ub and UBLs control a strikingly wide spectrum of cellular processes and not surprisingly are involved in the development of multiple human diseases including cardiac diseases. Further identification of novel UBL targets will expand our understanding of the functional diversity of UBL pathways in physiology and pathology. Here we review recent findings on the mechanisms, proteome and functions of a subset of UBLs and highlight their potential impacts on the development and progression of various forms of cardiac diseases.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - John A Johnson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
25
|
Chen J, Luo Y, Wang S, Zhu H, Li D. Roles and mechanisms of SUMOylation on key proteins in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 134:154-164. [PMID: 31344368 DOI: 10.1016/j.yjmcc.2019.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury has a great influence on the prognosis of patients with acute coronary occlusion. The underlying mechanisms of MI/R injury are complex. While the incidence of MI/R injury is increasing every year, the existing therapies are not satisfactory. Recently, small ubiquitin-related modifier (SUMO), which is a post-translational modification and involved in many cell processes, was found to play remarkable roles in MI/R injury. Several proteins that can be SUMOylated were found to interfere with different mechanisms of MI/R injury. Sarcoplasmic reticulum Ca2+ ATPase pump SUMOylation alleviated calcium overload. Among the histone deacetylase (HDAC) members, SUMOylation of HDAC4 reduced reactive oxygen species generation, whereas Sirt1 played protective roles in the SUMOylated form. Dynamic-related protein 1 modified by different SUMO proteins exerted opposite effects on the function of mitochondria. SUMOylation of hypoxia-inducible factors was fundamental in oxygen homeostasis, while eukaryotic elongation factor 2 SUMOylation induced cardiomyocyte apoptosis. The impact of other SUMOylation substrates in MI/R injury remains unclear. Here we reviewed how these SUMOylated proteins alleviated or exacerbated myocardial impairments by effecting the MI/R injury mechanisms. This may suggest methods for relieving MI/R injury in clinical practice and provide a reference for further study of SUMOylation in MI/R injury.
Collapse
Affiliation(s)
- Jingwen Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yuanyuan Luo
- Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, PR China
| | - Shuai Wang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Hong Zhu
- Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, PR China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
26
|
Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond. Int J Mol Sci 2019; 20:ijms20143379. [PMID: 31295808 PMCID: PMC6678303 DOI: 10.3390/ijms20143379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Proteasome inhibitors have been actively tested as potential anticancer drugs and in the treatment of inflammatory and autoimmune diseases. Unfortunately, cells adapt to survive in the presence of proteasome inhibitors activating a variety of cell responses that explain why these therapies have not fulfilled their expected results. In addition, all proteasome inhibitors tested and approved by the FDA have caused a variety of side effects in humans. Here, we describe the different types of proteasome complexes found within cells and the variety of regulators proteins that can modulate their activities, including those that are upregulated in the context of inflammatory processes. We also summarize the adaptive cellular responses activated during proteasome inhibition with special emphasis on the activation of the Autophagic-Lysosomal Pathway (ALP), proteaphagy, p62/SQSTM1 enriched-inclusion bodies, and proteasome biogenesis dependent on Nrf1 and Nrf2 transcription factors. Moreover, we discuss the role of IRE1 and PERK sensors in ALP activation during ER stress and the involvement of two deubiquitinases, Rpn11 and USP14, in these processes. Finally, we discuss the aspects that should be currently considered in the development of novel strategies that use proteasome activity as a therapeutic target for the treatment of human diseases.
Collapse
|
27
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
28
|
Kim HT, Collins GA, Goldberg AL. Measurement of the Multiple Activities of 26S Proteasomes. Methods Mol Biol 2019; 1844:289-308. [PMID: 30242717 DOI: 10.1007/978-1-4939-8706-1_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because proteasomes catalyze most of the protein degradation in mammalian cells, and their functioning is essential for cellular homeostasis, proteasome structure, biochemical mechanisms, and regulation in normal and disease states are now widely studied and are of major importance. In addition, inhibitors of the proteasome's peptidase activity have proven to be very valuable as research tools and in the treatment of hematologic malignancies, and a number of newer pharmacological agents that alter proteasome function are being developed. The rapid degradation of ubiquitinated proteins by the 26S proteasome involves multiple enzymatic and non-enzymatic steps, including the binding of ubiquitinated substrates to the 19S particle (Subheading 3.2), opening the gated substrate entry channel into the 20S particle (Subheading 3.3), disassembly of the Ub chain (Subheading 3.4), ATP hydrolysis (Subheading 3.5), substrate unfolding and translocation, and proteolysis within the 20S particle (Subheadings 3.3 and 3.7). Assaying each of these processes is important if we are to fully understand the physiological regulation of proteasome function and the effects of disease or drugs. Here, we describe several methods that we have found useful to measure many of these individual activities using purified proteasomes. Studies using these approaches have already provided valuable new insights into the effects of post-synthetic modifications to 26S subunits, the physiological regulation of the ubiquitin-proteasome system, and the impairment of proteasome activity in neurodegenerative disease. These advances would not have been possible if only the standard assays of peptidase activity were used.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Specific Modification of Aged Proteasomes Revealed by Tag-Exchangeable Knock-In Mice. Mol Cell Biol 2018; 39:MCB.00426-18. [PMID: 30348842 DOI: 10.1128/mcb.00426-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/10/2018] [Indexed: 01/02/2023] Open
Abstract
The proteasome is the proteolytic machinery at the center of regulated intracellular protein degradation and participates in various cellular processes. Maintaining the quality of the proteasome is therefore important for proper cell function. It is unclear, however, how proteasomes change over time and how aged proteasomes are disposed. Here, we show that the proteasome undergoes specific biochemical alterations as it ages. We generated Rpn11-Flag/enhanced green fluorescent protein (EGFP) tag-exchangeable knock-in mice and established a method for selective purification of old proteasomes in terms of their molecular age at the time after synthesis. The half-life of proteasomes in mouse embryonic fibroblasts isolated from these knock-in mice was about 16 h. Using this tool, we found increased association of Txnl1, Usp14, and actin with the proteasome and specific phosphorylation of Rpn3 at Ser 6 in 3-day-old proteasomes. We also identified CSNK2A2 encoding the catalytic α' subunit of casein kinase II (CK2α') as a responsible gene that regulates the phosphorylation and turnover of old proteasomes. These findings will provide a basis for understanding the mechanism of molecular aging of the proteasome.
Collapse
|
30
|
Heckmann MB, Doroudgar S, Katus HA, Lehmann LH. Cardiovascular adverse events in multiple myeloma patients. J Thorac Dis 2018; 10:S4296-S4305. [PMID: 30701098 PMCID: PMC6328391 DOI: 10.21037/jtd.2018.09.87] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is a malignant disease, caused by an uncontrolled clonal proliferation of a specific group of white blood cells, the plasma cells. Clinical manifestations include bone pain due to osteolysis, hypercalcemia, anemia, and renal insufficiency. Proteasome inhibitors have substantially improved survival of patients suffering from multiple myeloma, providing an efficient treatment option mainly for relapsed and refractory multiple myeloma. Although constituting one substance class, bortezomib, carfilzomib, and ixazomib differ greatly regarding their non-hematologic side effects. This article reviews the clinical and preclinical data on approved proteasome inhibitors in an attempt to decipher the underlying pathomechanisms related to cardiovascular adverse events seen in clinical trials.
Collapse
Affiliation(s)
- Markus B. Heckmann
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Xie YP, Lai S, Lin QY, Xie X, Liao JW, Wang HX, Tian C, Li HH. CDC20 regulates cardiac hypertrophy via targeting LC3-dependent autophagy. Am J Cancer Res 2018; 8:5995-6007. [PMID: 30613277 PMCID: PMC6299438 DOI: 10.7150/thno.27706] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Rationale: Sustained cardiac hypertrophy often leads to heart failure (HF). Understanding the regulation of cardiomyocyte growth is crucial for the treatment of adverse ventricular remodeling and HF. Cell division cycle 20 (CDC20) is an anaphase-promoting complex activator that is essential for cell division and tumorigenesis, but the role of CDC20 in cardiac hypertrophy is unknown. We aimed to test whether CDC20 participates in the regulation of pathological cardiac hypertrophy and investigate the underlying mechanism in vitro and in vivo. Methods: Male C57BL/6 mice were administered a recombinant adeno-associated virus serotype 9 (rAAV9) vector expressing CDC20 or a siRNA targeting CDC20 and their respective controls by tail intravenous injection. Results: Microarray analysis showed that CDC20 was significantly upregulated in the heart after angiotensin II infusion. Knockdown of CDC20 in cardiomyocytes and in the heart reduced cardiac hypertrophy upon agonist stimulation or transverse aortic constriction (TAC). Conversely, enforced expression of CDC20 in cardiomyocytes and in the heart aggravated the hypertrophic response. Furthermore, we found that CDC20 directly targeted LC3, a key regulator of autophagy, and promoted LC3 ubiquitination and degradation by the proteasome, which inhibited autophagy leading to hypertrophy. Moreover, knockdown of LC3 or inhibition of autophagy attenuated Ang II-induced cardiomyocyte hypertrophy after deletion of CDC20 in vitro. Conclusions: Our study reveals a novel cardiac hypertrophy regulatory mechanism that involves CDC20, LC3 and autophagy, and suggests that CDC20 could be a new therapeutic target for patients with hypertrophic heart diseases.
Collapse
|
32
|
Gao Y, Zhao Y, Yuan A, Xu L, Huang X, Su Y, Gao L, Ji Q, Pu J, He B. Effects of farnesoid-X-receptor SUMOylation mutation on myocardial ischemia/reperfusion injury in mice. Exp Cell Res 2018; 371:301-310. [PMID: 30098335 DOI: 10.1016/j.yexcr.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury induces excessive cellular apoptosis and contributes significantly to final infarct size. We previously demonstrated that a nuclear receptor, Farnesoid X receptor (FXR), plays a crucial role in mediating myocardial apoptosis. The FXR functions are regulated by post translational modifications (PTM). However, whether the proapoptotic effect of FXR in MI/R injury is regulated by PTM remains unclear. Here, we aimed to study the effect of SUMOylation, a PTM involved in the pathogenesis of MI/R injury per se, on the proapoptotic effect of FXR in MI/R injury. We observed that FXR could be SUMOylated in heart tissues, and FXR SUMOylation levels were downregulated in ischemia reperfused myocardium. By overexpression of SUMOylation-defective FXR mutant, it was demonstrated that decreased SUMOylation augmented the detrimental effect of FXR, via activation of mitochondrial apoptosis pathway and autophagy dysfunction in MI/R injury. Further mechanistic studies suggested that decreased SUMOylation levels increased the transcription activity of FXR, and the subsequently upregulated FXR target gene SHP mediated the proapoptotic effects of FXR. Taken together, we provided the first evidence that the cardiac effects of FXR could be regulated by SUMOylation, and that manipulating FXR SUMOylation levels may hold therapeutic promise for constraining MI/R injury.
Collapse
Affiliation(s)
- Yi Gao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yichao Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ancai Yuan
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Longwei Xu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, China
| | - Yuanyuan Su
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lingchen Gao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qingqi Ji
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Ben He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
33
|
Bustamante HA, González AE, Cerda-Troncoso C, Shaughnessy R, Otth C, Soza A, Burgos PV. Interplay Between the Autophagy-Lysosomal Pathway and the Ubiquitin-Proteasome System: A Target for Therapeutic Development in Alzheimer's Disease. Front Cell Neurosci 2018; 12:126. [PMID: 29867359 PMCID: PMC5954036 DOI: 10.3389/fncel.2018.00126] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of age-related dementia leading to severe irreversible cognitive decline and massive neurodegeneration. While therapeutic approaches for managing symptoms are available, AD currently has no cure. AD associates with a progressive decline of the two major catabolic pathways of eukaryotic cells—the autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS)—that contributes to the accumulation of harmful molecules implicated in synaptic plasticity and long-term memory impairment. One protein recently highlighted as the earliest initiator of these disturbances is the amyloid precursor protein (APP) intracellular C-terminal membrane fragment β (CTFβ), a key toxic agent with deleterious effects on neuronal function that has become an important pathogenic factor for AD and a potential biomarker for AD patients. This review focuses on the involvement of regulatory molecules and specific post-translational modifications (PTMs) that operate in the UPS and ALP to control a single proteostasis network to achieve protein balance. We discuss how these aspects can contribute to the development of novel strategies to strengthen the balance of key pathogenic proteins associated with AD.
Collapse
Affiliation(s)
- Hianara A Bustamante
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Alexis E González
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| | - Cristobal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ronan Shaughnessy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola Otth
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia V Burgos
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Chen Y, Zhang Y, Guo X. Proteasome dysregulation in human cancer: implications for clinical therapies. Cancer Metastasis Rev 2018; 36:703-716. [PMID: 29039081 DOI: 10.1007/s10555-017-9704-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells show heightened dependency on the proteasome for their survival, growth, and spread. Proteasome dysregulation is therefore commonly selected in favor of the development of many types of cancer. The vast abnormalities in a cancer cell, on top of the complexity of the proteasome itself, have enabled a plethora of mechanisms gearing the proteasome to the oncogenic process. Here, we use selected examples to highlight some general mechanisms underlying proteasome dysregulation in cancer, including copy number variations, transcriptional control, epigenetic regulation, and post-translational modifications. Research in this field has greatly advanced our understanding of proteasome regulation and will shed new light on proteasome-based combination therapies for cancer treatment.
Collapse
Affiliation(s)
- Yulin Chen
- Life Sciences Institute of Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Yanan Zhang
- Life Sciences Institute of Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Xing Guo
- Life Sciences Institute of Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
| |
Collapse
|
35
|
Ivanov SM, Cawley A, Huber RG, Bond PJ, Warwicker J. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold. PLoS One 2017; 12:e0185928. [PMID: 29016650 PMCID: PMC5634604 DOI: 10.1371/journal.pone.0185928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/21/2017] [Indexed: 12/05/2022] Open
Abstract
An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.
Collapse
Affiliation(s)
- Stefan M. Ivanov
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Andrew Cawley
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Roland G. Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, Singapore
| | - Peter J. Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jim Warwicker
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Regulating protein breakdown through proteasome phosphorylation. Biochem J 2017; 474:3355-3371. [PMID: 28947610 DOI: 10.1042/bcj20160809] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
Abstract
The ubiquitin proteasome system degrades the great majority of proteins in mammalian cells. Countless studies have described how ubiquitination promotes the selective degradation of different cell proteins. However, there is a small but the growing literature that protein half-lives can also be regulated by post-translational modifications of the 26S proteasome. The present study reviews the ability of several kinases to alter proteasome function through subunit phosphorylation. For example, PKA (protein kinase A) and DYRK2 (dual-specificity tyrosine-regulated kinase 2) stimulate the proteasome's ability to degrade ubiquitinated proteins, peptides, and adenosine triphosphate, while one kinase, ASK1 (apoptosis signal-regulating kinase 1), inhibits proteasome function during apoptosis. Proteasome phosphorylation is likely to be important in regulating protein degradation because it occurs downstream from many hormones and neurotransmitters, in conditions that raise cyclic adenosine monophosphate or cyclic guanosine monophosphate levels, after calcium influx following synaptic depolarization, and during phases of the cell cycle. Beyond its physiological importance, pharmacological manipulation of proteasome phosphorylation has the potential to combat various diseases. Inhibitors of phosphodiesterases by activating PKA or PKG (protein kinase G) can stimulate proteasomal degradation of misfolded proteins that cause neurodegenerative or myocardial diseases and even reduce the associated pathology in mouse models. These observations are promising since in many proteotoxic diseases, aggregation-prone proteins impair proteasome function, and disrupt protein homeostasis. Conversely, preventing subunit phosphorylation by DYRK2 slows cell cycle progression and tumor growth. However, further research is essential to determine how phosphorylation of different subunits by these (or other) kinases alters the properties of this complex molecular machine and thus influence protein degradation rates.
Collapse
|
37
|
Inceoglu B, Bettaieb A, Haj FG, Gomes AV, Hammock BD. Modulation of mitochondrial dysfunction and endoplasmic reticulum stress are key mechanisms for the wide-ranging actions of epoxy fatty acids and soluble epoxide hydrolase inhibitors. Prostaglandins Other Lipid Mediat 2017; 133:68-78. [PMID: 28847566 DOI: 10.1016/j.prostaglandins.2017.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022]
Abstract
The arachidonic acid cascade is arguably the most widely known biologic regulatory pathway. Decades after the seminal discoveries involving its cyclooxygenase and lipoxygenase branches, studies of this cascade remain an active area of research. The third and less widely known branch, the cytochrome P450 pathway leads to highly active oxygenated lipid mediators, epoxy fatty acids (EpFAs) and hydroxyeicosatetraenoic acids (HETEs), which are of similar potency to prostanoids and leukotrienes. Unlike the COX and LOX branches, no pharmaceuticals currently are marketed targeting the P450 branch. However, data support therapeutic benefits from modulating these regulatory lipid mediators. This is being approached by stabilizing or mimicking the EpFAs or even by altering the diet. These approaches lead to predominantly beneficial effects on a wide range of apparently unrelated states resulting in an enigma of how this small group of natural chemical mediators can have such diverse effects. EpFAs are degraded by soluble epoxide hydrolase (sEH) and stabilized by inhibiting this enzyme. In this review, we focus on interconnected aspects of reported mechanisms of action of EpFAs and inhibitors of soluble epoxide hydrolase (sEHI). The sEHI and EpFAs are commonly reported to maintain homeostasis under pathological conditions while remaining neutral under normal physiological conditions. Here we provide a conceptual framework for the unique and broad range of biological activities ascribed to epoxy fatty acids. We argue that their mechanism of action pivots on their ability to prevent mitochondrial dysfunction, to reduce subsequent ROS formation and to block resulting cellular signaling cascades, primarily the endoplasmic reticulum stress. By stabilizing the mitochondrial - ROS - ER stress axis, the range of activity of EpFAs and sEHI display an overlap with the disease conditions including diabetes, fibrosis, chronic pain, cardiovascular and neurodegenerative diseases, for which the above outlined mechanisms play key roles.
Collapse
Affiliation(s)
- Bora Inceoglu
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States.
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996-0840, United States; Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840, United States.
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, CA 95616, United States; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
38
|
Gilda JE, Gomes AV. Proteasome dysfunction in cardiomyopathies. J Physiol 2017; 595:4051-4071. [PMID: 28181243 DOI: 10.1113/jp273607] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in removing unwanted intracellular proteins and is involved in protein quality control, signalling and cell death. Because the heart is subject to continuous metabolic and mechanical stress, the proteasome plays a particularly important role in the heart, and proteasome dysfunction has been suggested as a causative factor in cardiac dysfunction. Proteasome impairment has been detected in cardiomyopathies, heart failure, myocardial ischaemia, and hypertrophy. Proteasome inhibition is also sufficient to cause cardiac dysfunction in healthy pigs, and patients using a proteasome inhibitor for cancer therapy have a higher incidence of heart failure. In this Topical Review we discuss the experimental data which suggest UPS dysfunction is a common feature of cardiomyopathies, with an emphasis on hypertrophic cardiomyopathy caused by sarcomeric mutations. We also propose potential mechanisms by which cardiomyopathy-causing mutations may lead to proteasome impairment, such as altered calcium handling and increased oxidative stress due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behaviour, University of California, Davis, CA, 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behaviour, University of California, Davis, CA, 95616, USA.,Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
39
|
Guo X, Huang X, Chen MJ. Reversible phosphorylation of the 26S proteasome. Protein Cell 2017; 8:255-272. [PMID: 28258412 PMCID: PMC5359188 DOI: 10.1007/s13238-017-0382-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/26/2017] [Indexed: 01/09/2023] Open
Abstract
The 26S proteasome at the center of the ubiquitin-proteasome system (UPS) is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.
Collapse
Affiliation(s)
- Xing Guo
- The Life Sciences Institute of Zhejiang University, Hangzhou, 310058, China.
| | - Xiuliang Huang
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mark J Chen
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| |
Collapse
|
40
|
Kovács J, Poór P, Kaschani F, Chandrasekar B, Hong TN, Misas-Villamil JC, Xin BT, Kaiser M, Overkleeft HS, Tari I, van der Hoorn RAL. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:107. [PMID: 28217134 PMCID: PMC5289967 DOI: 10.3389/fpls.2017.00107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/18/2017] [Indexed: 05/20/2023]
Abstract
The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.
Collapse
Affiliation(s)
- Judit Kovács
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Farnusch Kaschani
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Tram N. Hong
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Johana C. Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of CologneCologne, Germany
| | - Bo T. Xin
- Leiden Institute of Chemistry, Leiden UniversityLeiden, Netherlands
| | - Markus Kaiser
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | | | - Irma Tari
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Renier A. L. van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
41
|
Im E, Chung KC. Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases. BMB Rep 2017; 49:459-73. [PMID: 27312603 PMCID: PMC5227139 DOI: 10.5483/bmbrep.2016.49.9.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs. [BMB Reports 2016; 49(9): 459-473]
Collapse
Affiliation(s)
- Eunju Im
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
42
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
43
|
Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy. J Mol Cell Cardiol 2016; 102:53-60. [PMID: 27913284 DOI: 10.1016/j.yjmcc.2016.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy is a major risk factor in diabetic patients but its pathogenesis remains poorly understood. The ubiquitin-proteasome system (UPS) facilitates protein quality control by degrading unnecessary and damaged proteins in eukaryotic cells, and dysfunction of UPS is implicated in various cardiac diseases. However, the overall functional status of the UPS and its pathophysiological role in diabetic cardiomyopathy have not been determined. METHODS AND RESULTS Type I diabetes was induced in wild-type and transgenic mice expressing a UPS functional reporter (GFPdgn) by injections of streptozotocin (STZ). STZ-induced diabetes progressively impaired cardiac UPS function as evidenced by the accumulation of GFPdgn proteins beginning two weeks after diabetes induction, and by a buildup of total and lysine (K) 48-linked polyubiquitinated proteins in the heart. To examine the functional role of the UPS in diabetic cardiomyopathy, cardiac overexpression of PA28α (PA28αOE) was used to enhance proteasome function in diabetic mouse hearts. PA28αOE diabetic mice displayed exhibited restoration of cardiac UPS function, as demonstrated by the diminished accumulation of GFPdgn and polyubiquitinated proteins. Moreover, PA28αOE diabetic mice exhibited reduced myocardial collagen deposition, decreased cardiomyocyte apoptosis, and improved cardiac systolic and diastolic function. CONCLUSION Impairment of cardiac UPS function is an early event in STZ-induced diabetes. Overexpression of PA28α attenuates diabetes-induced proteotoxic stress and cardiomyopathy, suggesting a potential therapeutic role for enhancement of cardiac proteasome function in this disorder.
Collapse
|
44
|
Jiang W, Sheng C, Gu X, Liu D, Yao C, Gao S, Chen S, Huang Y, Huang W, Fang M. Suppression of Rac1 Signaling by Influenza A Virus NS1 Facilitates Viral Replication. Sci Rep 2016; 6:35041. [PMID: 27869202 PMCID: PMC5116764 DOI: 10.1038/srep35041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022] Open
Abstract
Influenza A virus (IAV) is a major human pathogen with the potential to become pandemic. IAV contains only eight RNA segments; thus, the virus must fully exploit the host cellular machinery to facilitate its own replication. In an effort to comprehensively characterize the host machinery taken over by IAV in mammalian cells, we generated stable A549 cell lines with over-expression of the viral non-structural protein (NS1) to investigate the potential host factors that might be modulated by the NS1 protein. We found that the viral NS1 protein directly interacted with cellular Rac1 and facilitated viral replication. Further research revealed that NS1 down-regulated Rac1 activity via post-translational modifications. Therefore, our results demonstrated that IAV blocked Rac1-mediated host cell signal transduction through the NS1 protein to facilitate its own replication. Our findings provide a novel insight into the mechanism of IAV replication and indicate new avenues for the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunjie Sheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Yao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijuan Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Key Laboratory of Tumor Targeted Drug in Guangdong Province, Guangzhou Double Bioproducts Co., Ltd., Guangzhou, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Mayor T, Sharon M, Glickman MH. Tuning the proteasome to brighten the end of the journey. Am J Physiol Cell Physiol 2016; 311:C793-C804. [PMID: 27605452 DOI: 10.1152/ajpcell.00198.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023]
Abstract
Degradation by the proteasome is the fate for a large portion of cellular proteins, and it plays a major role in maintaining protein homeostasis, as well as in regulating many cellular processes like cell cycle progression. A decrease in proteasome activity has been linked to aging and several age-related neurodegenerative pathologies and highlights the importance of the ubiquitin proteasome system regulation. While the proteasome has been traditionally viewed as a constitutive element of proteolysis, major studies have highlighted how different regulatory mechanisms can impact its activity. Importantly, alterations of proteasomal activity may have major impacts for its function and in therapeutics. On one hand, increasing proteasome activity could be beneficial to prevent the age-related downfall of protein homeostasis, whereas inhibiting or reducing its activity can prevent the proliferation of cancer cells.
Collapse
Affiliation(s)
- Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada;
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; and
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
46
|
Sanchez G, Berrios D, Olmedo I, Pezoa J, Riquelme JA, Montecinos L, Pedrozo Z, Donoso P. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death. PLoS One 2016; 11:e0161068. [PMID: 27529620 PMCID: PMC4986934 DOI: 10.1371/journal.pone.0161068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/29/2016] [Indexed: 01/02/2023] Open
Abstract
Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion.
Collapse
Affiliation(s)
- Gina Sanchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Berrios
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Javier Pezoa
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Luis Montecinos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Paulina Donoso
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
47
|
Cai Z, Ding Y, Zhang M, Lu Q, Wu S, Zhu H, Song P, Zou MH. Ablation of Adenosine Monophosphate-Activated Protein Kinase α1 in Vascular Smooth Muscle Cells Promotes Diet-Induced Atherosclerotic Calcification In Vivo. Circ Res 2016; 119:422-33. [PMID: 27256105 DOI: 10.1161/circresaha.116.308301] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/02/2016] [Indexed: 12/27/2022]
Abstract
RATIONALE Atherosclerotic calcification is highly linked with plaque rapture. How calcification is regulated is poorly characterized. OBJECTIVE We sought to determine the contributions of AMP-activated protein kinase (AMPK) in atherosclerotic calcification. METHODS AND RESULTS Aortic calcification was evaluated in aortic roots and brachiocephalic arteries of atherosclerotic prone ApoE(-/-) mice or in mice with dual deficiencies of ApoE and AMPKα isoforms in whole body (ApoE(-/-)/AMPKα1(-/-) and ApoE(-/-)/AMPKα2(-/-)) or vascular smooth muscle cell (VSMC)-specific or macrophage-specific knockout of AMPKα1 fed with Western diet for 24 weeks. Genetic deficiency of AMPKα1 but not of AMPKα2 promoted atherosclerotic calcification and the expression of Runx2 (Runt-related transcription factor). Conversely, chronic administration of metformin, which activated AMPK, markedly reduced atherosclerotic calcification and Runx2 expression in ApoE(-/-) mice but had less effects in ApoE(-/-)/AMPKα1(-/-) mice. Furthermore, VSMC-specific but not macrophage-specific ablation of AMPKα1 promoted aortic calcification in vivo. Ablation of AMPKα1 in VSMC prevented Runx2 from proteasome degradation in parallel with aberrant osteoblastic differentiation of VSMC, whereas AMPK activation promoted Runx2 post-translational modification by small ubiquitin-like modifier (SUMO, SUMOylation), which is associated with its instability. Mechanically, we found that AMPKα1 directly phosphorylated protein inhibitor of activated STAT-1 (PIAS1), the SUMO E3-ligase of Runx2, at serine 510, to promote its SUMO E3-ligase activity. Finally, mutation of protein inhibitor of activated STAT-1 at serine 510 suppressed metformin-induced Runx2 SUMOylation and subsequently prevented metformin's effect on reducing oxidized low-density lipoprotein-triggered Runx2 expression in VSMC. CONCLUSIONS AMPKα1 phosphorylated protein inhibitor of activated STAT-1 to promote Runx2 SUMOylation and subsequently lead to its instability. AMPKα1 deficiency in VSMC increased Runx2 expression and promoted atherosclerotic calcification in vivo.
Collapse
Affiliation(s)
- Zhejun Cai
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Y.D., Q.L., S.W., H.Z., P.S., M.-H.Z.); Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (Z.C.); and Department of Medicine, University of Oklahoma Health Sciences Center (M.Z.)
| | - Ye Ding
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Y.D., Q.L., S.W., H.Z., P.S., M.-H.Z.); Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (Z.C.); and Department of Medicine, University of Oklahoma Health Sciences Center (M.Z.)
| | - Miao Zhang
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Y.D., Q.L., S.W., H.Z., P.S., M.-H.Z.); Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (Z.C.); and Department of Medicine, University of Oklahoma Health Sciences Center (M.Z.)
| | - Qiulun Lu
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Y.D., Q.L., S.W., H.Z., P.S., M.-H.Z.); Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (Z.C.); and Department of Medicine, University of Oklahoma Health Sciences Center (M.Z.)
| | - Shengnan Wu
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Y.D., Q.L., S.W., H.Z., P.S., M.-H.Z.); Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (Z.C.); and Department of Medicine, University of Oklahoma Health Sciences Center (M.Z.)
| | - Huaiping Zhu
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Y.D., Q.L., S.W., H.Z., P.S., M.-H.Z.); Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (Z.C.); and Department of Medicine, University of Oklahoma Health Sciences Center (M.Z.)
| | - Ping Song
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Y.D., Q.L., S.W., H.Z., P.S., M.-H.Z.); Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (Z.C.); and Department of Medicine, University of Oklahoma Health Sciences Center (M.Z.)
| | - Ming-Hui Zou
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Z.C., Y.D., Q.L., S.W., H.Z., P.S., M.-H.Z.); Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (Z.C.); and Department of Medicine, University of Oklahoma Health Sciences Center (M.Z.).
| |
Collapse
|
48
|
Gupta MK, McLendon PM, Gulick J, James J, Khalili K, Robbins J. UBC9-Mediated Sumoylation Favorably Impacts Cardiac Function in Compromised Hearts. Circ Res 2016; 118:1894-905. [PMID: 27142163 DOI: 10.1161/circresaha.115.308268] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/03/2016] [Indexed: 12/25/2022]
Abstract
RATIONALE SUMOylation plays an important role in cardiac function and can be protective against cardiac stress. Recent studies show that SUMOylation is an integral part of the ubiquitin proteasome system, and expression of the small ubiquitin-like modifier (SUMO) E2 enzyme UBC9 improves cardiac protein quality control. However, the precise role of SUMOylation on other protein degradation pathways, particularly autophagy, remains undefined in the heart. OBJECTIVE To determine whether SUMOylation affects cardiac autophagy and whether this effect is protective in a mouse model of proteotoxic cardiac stress. METHODS AND RESULTS We modulated expression of UBC9, a SUMO E2 ligase, using gain- and loss-of-function in neonatal rat ventricular cardiomyocytes. UBC9 expression seemed to directly alter autophagic flux. To confirm this effect in vivo, we generated transgenic mice overexpressing UBC9 in cardiomyocytes. These mice have an increased level of SUMOylation at baseline and, in confirmation of the data obtained from neonatal rat ventricular cardiomyocytes, demonstrated increased autophagy, suggesting that increased UBC9-mediated SUMOylation is sufficient to upregulate cardiac autophagy. Finally, we tested the protective role of SUMOylation-mediated autophagy by expressing UBC9 in a model of cardiac proteotoxicity, induced by cardiomyocyte-specific expression of a mutant α-B-crystallin, mutant CryAB (CryAB(R120G)), which shows impaired autophagy. UBC9 overexpression reduced aggregate formation, decreased fibrosis, reduced hypertrophy, and improved cardiac function and survival. CONCLUSIONS The data showed that increased UBC9-mediated SUMOylation is sufficient to induce relatively high levels of autophagy and may represent a novel strategy for increasing autophagic flux and ameliorating morbidity in proteotoxic cardiac disease.
Collapse
Affiliation(s)
- Manish K Gupta
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.)
| | - Patrick M McLendon
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.)
| | - James Gulick
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.)
| | - Jeanne James
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.)
| | - Kamel Khalili
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.)
| | - Jeffrey Robbins
- From the Department of Neuroscience, Temple University, Philadelphia, PA (M.K.G., K.K.); and Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH (P.M.M., J.G., J.J, J.R.).
| |
Collapse
|
49
|
Ghosh R, Hwang SM, Cui Z, Gilda JE, Gomes AV. Different effects of the nonsteroidal anti-inflammatory drugs meclofenamate sodium and naproxen sodium on proteasome activity in cardiac cells. J Mol Cell Cardiol 2016; 94:131-144. [PMID: 27049794 DOI: 10.1016/j.yjmcc.2016.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/10/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
The use of nonsteroidal anti-inflammatory drugs (NSAIDs) like meclofenamate sodium (MS), used to reduce pain, has been associated with an increased risk of cardiovascular disease (CVD). Naproxen (NAP), another NSAID, is not associated with increased risk of CVD. The molecular mechanism(s) by which NSAIDs induce CVD is unknown. We investigated the effects of MS and NAP on protein homeostasis and cardiotoxicity in rat cardiac H9c2 cells and murine neonatal cardiomyocytes. MS, but not NAP, significantly inhibited proteasome activity and reduced cardiac cell viability at pharmacological levels found in humans. Although proteasome subunit gene and protein expression were unaffected by NSAIDs, MS treated cell lysates showed higher 20S proteasome content, while purified proteasomes from MS treated cells had lower proteasome activity and higher levels of oxidized subunits than proteasomes from control cells. Addition of exogenous proteasome to MS treated cells improved cell viability. Both MS and NAP increased ROS production, but the rate of ROS production was greater in MS than in NAP treated cells. The ROS production is likely from mitochondria, as MS inhibited mitochondrial Complexes I and III, major sources of ROS, while NAP inhibited Complex I. MS also impaired mitochondrial membrane potential while NAP did not. Antioxidants were able to prevent the reduced cell viability caused by MS treatment. These results suggest that NSAIDs induce cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction and may explain why some NSAIDs should not be given to patients for long periods.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Soyun M Hwang
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Ziyou Cui
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
50
|
Berthiaume J, Kirk J, Ranek M, Lyon R, Sheikh F, Jensen B, Hoit B, Butany J, Tolend M, Rao V, Willis M. Pathophysiology of Heart Failure and an Overview of Therapies. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|