1
|
Malik JA, Zafar MA, Singh S, Nanda S, Bashir H, Das DK, Lamba T, Khan MA, Kaur G, Agrewala JN. From defense to dysfunction: Autophagy's dual role in disease pathophysiology. Eur J Pharmacol 2024; 981:176856. [PMID: 39068979 DOI: 10.1016/j.ejphar.2024.176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Autophagy is a fundamental pillar of cellular resilience, indispensable for maintaining cellular health and vitality. It coordinates the meticulous breakdown of cytoplasmic macromolecules as a guardian of cell metabolism, genomic integrity, and survival. In the complex play of biological warfare, autophagy emerges as a firm defender, bravely confronting various pathogenic, infectious, and cancerous adversaries. Nevertheless, its role transcends mere defense, wielding both protective and harmful effects in the complex landscape of disease pathogenesis. From the onslaught of infectious outbreaks to the devious progression of chronic lifestyle disorders, autophagy emerges as a central protagonist, convolutedly shaping the trajectory of cellular health and disease progression. In this article, we embark on a journey into the complicated web of molecular and immunological mechanisms that govern autophagy's profound influence over disease. Our focus sharpens on dissecting the impact of various autophagy-associated proteins on the kaleidoscope of immune responses, spanning the spectrum from infectious outbreaks to chronic lifestyle ailments. Through this voyage of discovery, we unveil the vast potential of autophagy as a therapeutic linchpin, offering tantalizing prospects for targeted interventions and innovative treatment modalities that promise to transform the landscape of disease management.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India; Division of Immunology, Boston Children's Hospital Harvard Medical School Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School Boston, MA, 02115, USA
| | - Sanpreet Singh
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Hilal Bashir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Deepjyoti Kumar Das
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Gurpreet Kaur
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
2
|
Zarzycka W, Kobak KA, King CJ, Peelor FF, Miller BF, Chiao YA. Hyperactive mTORC1/4EBP1 signaling dysregulates proteostasis and accelerates cardiac aging. GeroScience 2024:10.1007/s11357-024-01368-w. [PMID: 39379739 DOI: 10.1007/s11357-024-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has a major impact on aging by regulation of proteostasis. It is well established that mTORC1 signaling is hyperactivated with aging and age-related diseases. Previous studies have shown that partial inhibition of mTOR signaling by rapamycin reverses age-related deteriorations in cardiac function and structure in old mice. However, the downstream signaling pathways involved in this protection against cardiac aging have not been established. mTORC1 phosphorylates 4E-binding protein 1 (4EBP1) to promote the initiation of cap-dependent translation. The objective of this project is to examine the role of the mTORC1/4EBP1 axis in age-related cardiac dysfunction. We used a whole-body 4EBP1 KO mouse model, which mimics a hyperactive mTORC1/4EBP1/eIF4E axis, to investigate the effects of hyperactive mTORC1/4EBP1 axis in cardiac aging. Echocardiographic measurements of middle-aged 4EBP1 KO mice show impaired diastolic function and myocardial performance compared to age-matched WT mice and these parameters are at similar levels as old WT mice, suggesting that 4EBP1 KO mice experience accelerated cardiac aging. Old 4EBP1 KO mice show further decline in systolic and diastolic function compared to middle-aged counterparts and have worse systolic and diastolic function than age-matched WT mice. Gene expression levels of heart failure markers are not different between 4EBP1 KO and WT hearts. However, ribosomal biogenesis and protein ubiquitination are significantly increased in 4EBP1 KO hearts when compared to WT controls, suggesting dysregulated proteostasis in 4EBP1 KO hearts. Together, these results show that a hyperactive mTORC1/4EBP1 axis accelerates cardiac aging, potentially by dysregulating proteostasis.
Collapse
Affiliation(s)
- Weronika Zarzycka
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kamil A Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Catherine J King
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA, Oklahoma City, OK, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Wang W, Matunis MJ. Paralogue-Specific Roles of SUMO1 and SUMO2/3 in Protein Quality Control and Associated Diseases. Cells 2023; 13:8. [PMID: 38201212 PMCID: PMC10778024 DOI: 10.3390/cells13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Small ubiquitin-related modifiers (SUMOs) function as post-translational protein modifications and regulate nearly every aspect of cellular function. While a single ubiquitin protein is expressed across eukaryotic organisms, multiple SUMO paralogues with distinct biomolecular properties have been identified in plants and vertebrates. Five SUMO paralogues have been characterized in humans, with SUMO1, SUMO2 and SUMO3 being the best studied. SUMO2 and SUMO3 share 97% protein sequence homology (and are thus referred to as SUMO2/3) but only 47% homology with SUMO1. To date, thousands of putative sumoylation substrates have been identified thanks to advanced proteomic techniques, but the identification of SUMO1- and SUMO2/3-specific modifications and their unique functions in physiology and pathology are not well understood. The SUMO2/3 paralogues play an important role in proteostasis, converging with ubiquitylation to mediate protein degradation. This function is achieved primarily through SUMO-targeted ubiquitin ligases (STUbLs), which preferentially bind and ubiquitylate poly-SUMO2/3 modified proteins. Effects of the SUMO1 paralogue on protein solubility and aggregation independent of STUbLs and proteasomal degradation have also been reported. Consistent with these functions, sumoylation is implicated in multiple human diseases associated with disturbed proteostasis, and a broad range of pathogenic proteins have been identified as SUMO1 and SUMO2/3 substrates. A better understanding of paralogue-specific functions of SUMO1 and SUMO2/3 in cellular protein quality control may therefore provide novel insights into disease pathogenesis and therapeutic innovation. This review summarizes current understandings of the roles of sumoylation in protein quality control and associated diseases, with a focus on the specific effects of SUMO1 and SUMO2/3 paralogues.
Collapse
Affiliation(s)
| | - Michael J. Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
4
|
Yu M, Jiang C, Liang J, Zhang H, Teng X, Kang L. HSP27-HSP40-HSP70-HSP90 pathway participated in molecular mechanism of selenium alleviating lead-caused oxidative damage and proteotoxicity in chicken Bursa of Fabricius. Anim Biotechnol 2023; 34:4403-4414. [PMID: 36542527 DOI: 10.1080/10495398.2022.2155175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lead (Pb), a toxic environmental pollutant, is hazardous to the health of humans and birds. Bursa of Fabricius (BF) is a unique organ of birds. Toxic substances can attack BF and induce proteotoxicity. Increased heat shock proteins (HSPs) can induce oxidative damage. Selenium (Se) can alleviate harmful substance-caused oxidative damage. This study aimed to investigate whether Pb can cause oxidative damage and proteotoxicity, as well as Se reverse Pb-caused chicken BF toxicity. A model of chickens treated with Se and Pb alone and in combination was established. BFs were collected on days 30, 60, and 90. H&E and qRT-PCR were performed to observe the microstructure and to detect HSP27, HSP40, HSP60, HSP70, and HSP90 mRNA levels, respectively, in BFs. Multivariate correlation analysis and principal component analysis were conducted to explore the correlation among the five HSPs. In our results, Pb caused BF damage and up-regulated the five HSPs at three time points, causing oxidative damage and proteotoxicity via HSP27-HSP40-HSP70-HSP90 pathway. Furthermore, Pb caused time-dependent stress on HSP27, HSP40, HSP60, and HSP70. In addition, Se relieved Pb-caused damage and up-regulation of HSPs. Taken together, we concluded that Se alleviated Pb-caused oxidative injury and proteotoxicity in chicken BFs via the HSP27-HSP40-HSP70-HSP90 pathway.
Collapse
Affiliation(s)
- Meijin Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Chunyu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiatian Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lu Kang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
5
|
Current Understanding of Systemic Amyloidosis and Underlying Disease Mechanisms. Am J Cardiol 2022; 185 Suppl 1:S2-S10. [PMID: 36549788 DOI: 10.1016/j.amjcard.2022.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
Amyloidosis is a group of diverse disorders caused by misfolded proteins that aggregate into insoluble fibrils and ultimately cause organ damage. In medical practice, amyloidosis classification is based on the amyloid precursor protein type, of which amyloid immunoglobulin light chain, amyloid transthyretin, amyloid leukocyte chemotactic factor 2, and amyloid derived from serum amyloid A protein are the most common. Distinct mechanisms appear to be predominantly operational in the pathogenesis of particular types of amyloidosis, including increased protein precursor synthesis, somatic or germ line mutations, and inherent instability in the precursor protein in its wild form. An increased supply of misfolded proteins and/or a decreased capacity of the protein quality control systems can result in an imbalance that leads to increased circulation of misfolded proteins. Although the detection of mature fibrils is the basis for diagnosis of amyloidosis, a growing body of evidence has implicated the prefibrillar species as proteotoxic and key contributors to the development of the disease.
Collapse
|
6
|
Labarrere CA, Kassab GS. Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front Nutr 2022; 9:1007816. [PMID: 36386929 PMCID: PMC9664149 DOI: 10.3389/fnut.2022.1007816] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Many local and systemic diseases especially diseases that are leading causes of death globally like chronic obstructive pulmonary disease, atherosclerosis with ischemic heart disease and stroke, cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 19 (COVID-19), involve both, (1) oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels, and (2) inflammation. The GSH tripeptide (γ- L-glutamyl-L-cysteinyl-glycine), the most abundant water-soluble non-protein thiol in the cell (1-10 mM) is fundamental for life by (a) sustaining the adequate redox cell signaling needed to maintain physiologic levels of oxidative stress fundamental to control life processes, and (b) limiting excessive oxidative stress that causes cell and tissue damage. GSH activity is facilitated by activation of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 that regulates expression of genes controlling antioxidant, inflammatory and immune system responses. GSH exists in the thiol-reduced (>98% of total GSH) and disulfide-oxidized (GSSG) forms, and the concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell. GSH depletion may play a central role in inflammatory diseases and COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of inflammatory diseases and COVID-19 and increasing GSH levels may prevent and subdue these diseases. The life value of GSH makes for a paramount research field in biology and medicine and may be key against systemic inflammation and SARS-CoV-2 infection and COVID-19 disease. In this review, we emphasize on (1) GSH depletion as a fundamental risk factor for diseases like chronic obstructive pulmonary disease and atherosclerosis (ischemic heart disease and stroke), (2) importance of oxidative stress and antioxidants in SARS-CoV-2 infection and COVID-19 disease, (3) significance of GSH to counteract persistent damaging inflammation, inflammaging and early (premature) inflammaging associated with cell and tissue damage caused by excessive oxidative stress and lack of adequate antioxidant defenses in younger individuals, and (4) new therapies that include antioxidant defenses restoration.
Collapse
|
7
|
Zech ATL, Prondzynski M, Singh SR, Pietsch N, Orthey E, Alizoti E, Busch J, Madsen A, Behrens CS, Meyer-Jens M, Mearini G, Lemoine MD, Krämer E, Mosqueira D, Virdi S, Indenbirken D, Depke M, Salazar MG, Völker U, Braren I, Pu WT, Eschenhagen T, Hammer E, Schlossarek S, Carrier L. ACTN2 Mutant Causes Proteopathy in Human iPSC-Derived Cardiomyocytes. Cells 2022; 11:cells11172745. [PMID: 36078153 PMCID: PMC9454684 DOI: 10.3390/cells11172745] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variants in α-actinin-2 (ACTN2) are associated with several forms of (cardio)myopathy. We previously reported a heterozygous missense (c.740C>T) ACTN2 gene variant, associated with hypertrophic cardiomyopathy, and characterized by an electro-mechanical phenotype in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Here, we created with CRISPR/Cas9 genetic tools two heterozygous functional knock-out hiPSC lines with a second wild-type (ACTN2wt) and missense ACTN2 (ACTN2mut) allele, respectively. We evaluated their impact on cardiomyocyte structure and function, using a combination of different technologies, including immunofluorescence and live cell imaging, RNA-seq, and mass spectrometry. This study showed that ACTN2mut presents a higher percentage of multinucleation, protein aggregation, hypertrophy, myofibrillar disarray, and activation of both the ubiquitin-proteasome system and the autophagy-lysosomal pathway as compared to ACTN2wt in 2D-cultured hiPSC-CMs. Furthermore, the expression of ACTN2mut was associated with a marked reduction of sarcomere-associated protein levels in 2D-cultured hiPSC-CMs and force impairment in engineered heart tissues. In conclusion, our study highlights the activation of proteolytic systems in ACTN2mut hiPSC-CMs likely to cope with ACTN2 aggregation and therefore directs towards proteopathy as an additional cellular pathology caused by this ACTN2 variant, which may contribute to human ACTN2-associated cardiomyopathies.
Collapse
Affiliation(s)
- Antonia T. L. Zech
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Maksymilian Prondzynski
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sonia R. Singh
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Niels Pietsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ellen Orthey
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Erda Alizoti
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Josefine Busch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Alexandra Madsen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Charlotta S. Behrens
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Moritz Meyer-Jens
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Marc D. Lemoine
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center, 20246 Hamburg, Germany
| | - Elisabeth Krämer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Diogo Mosqueira
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Sanamjeet Virdi
- Heinrich-Pette-Institute, Leibniz Institute of Virology, 20246 Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich-Pette-Institute, Leibniz Institute of Virology, 20246 Hamburg, Germany
| | - Maren Depke
- Department for Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Manuela Gesell Salazar
- Department for Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Department for Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Ingke Braren
- Vector Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Elke Hammer
- Department for Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-7410-57208
| |
Collapse
|
8
|
Ren J, Wang X, Zhang Y. Editorial: New Drug Targets for Proteotoxicity in Cardiometabolic Diseases. Front Physiol 2021; 12:745296. [PMID: 34603089 PMCID: PMC8481817 DOI: 10.3389/fphys.2021.745296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Resztak JA, Wei J, Zilioli S, Sendler E, Alazizi A, Mair-meijers HE, Wu P, Slatcher RB, Zhou X, Luca F, Pique-regi R. Genetic control of the dynamic transcriptional response to immune stimuli and glucocorticoids at single cell resolution.. [PMID: 35313584 PMCID: PMC8936121 DOI: 10.1101/2021.09.30.462672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic glucocorticoids, such as dexamethasone, have been used as treatment for many immune conditions, such as asthma and more recently severe COVID-19. Single cell data can capture more fine-grained details on transcriptional variability and dynamics to gain a better understanding of the molecular underpinnings of inter-individual variation in drug response. Here, we used single cell RNA-seq to study the dynamics of the transcriptional response to glucocorticoids in activated Peripheral Blood Mononuclear Cells from 96 African American children. We employed novel statistical approaches to calculate a mean-independent measure of gene expression variability and a measure of transcriptional response pseudotime. Using these approaches, we demonstrated that glucocorticoids reverse the effects of immune stimulation on both gene expression mean and variability. Our novel measure of gene expression response dynamics, based on the diagonal linear discriminant analysis, separated individual cells by response status on the basis of their transcriptional profiles and allowed us to identify different dynamic patterns of gene expression along the response pseudotime. We identified genetic variants regulating gene expression mean and variability, including treatment-specific effects, and demonstrated widespread genetic regulation of the transcriptional dynamics of the gene expression response.
Collapse
|
10
|
Luan Y, Luan Y, Feng Q, Chen X, Ren KD, Yang Y. Emerging Role of Mitophagy in the Heart: Therapeutic Potentials to Modulate Mitophagy in Cardiac Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3259963. [PMID: 34603595 PMCID: PMC8483925 DOI: 10.1155/2021/3259963] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
The normal function of the mitochondria is crucial for most tissues especially for those that demand a high energy supply. Emerging evidence has pointed out that healthy mitochondrial function is closely associated with normal heart function. When these processes fail to repair the damaged mitochondria, cells initiate a removal process referred to as mitophagy to clear away defective mitochondria. In cardiomyocytes, mitophagy is closely associated with metabolic activity, cell differentiation, apoptosis, and other physiological processes involved in major phenotypic alterations. Mitophagy alterations may contribute to detrimental or beneficial effects in a multitude of cardiac diseases, indicating potential clinical insights after a close understanding of the mechanisms. Here, we discuss the current opinions of mitophagy in the progression of cardiac diseases, such as ischemic heart disease, diabetic cardiomyopathy, cardiac hypertrophy, heart failure, and arrhythmia, and focus on the key molecules and related pathways involved in the regulation of mitophagy. We also discuss recently reported approaches targeting mitophagy in the therapy of cardiac diseases.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Sensing, signaling and surviving mitochondrial stress. Cell Mol Life Sci 2021; 78:5925-5951. [PMID: 34228161 PMCID: PMC8316193 DOI: 10.1007/s00018-021-03887-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial fidelity is a key determinant of longevity and was found to be perturbed in a multitude of disease contexts ranging from neurodegeneration to heart failure. Tight homeostatic control of the mitochondrial proteome is a crucial aspect of mitochondrial function, which is severely complicated by the evolutionary origin and resulting peculiarities of the organelle. This is, on one hand, reflected by a range of basal quality control factors such as mitochondria-resident chaperones and proteases, that assist in import and folding of precursors as well as removal of aggregated proteins. On the other hand, stress causes the activation of several additional mechanisms that counteract any damage that may threaten mitochondrial function. Countermeasures depend on the location and intensity of the stress and on a range of factors that are equipped to sense and signal the nature of the encountered perturbation. Defective mitochondrial import activates mechanisms that combat the accumulation of precursors in the cytosol and the import pore. To resolve proteotoxic stress in the organelle interior, mitochondria depend on nuclear transcriptional programs, such as the mitochondrial unfolded protein response and the integrated stress response. If organelle damage is too severe, mitochondria signal for their own destruction in a process termed mitophagy, thereby preventing further harm to the mitochondrial network and allowing the cell to salvage their biological building blocks. Here, we provide an overview of how different types and intensities of stress activate distinct pathways aimed at preserving mitochondrial fidelity.
Collapse
|
12
|
Ranek MJ, Bhuiyan MS, Wang X. Editorial: Targeting Cardiac Proteotoxicity. Front Physiol 2021; 12:669356. [PMID: 33841192 PMCID: PMC8027103 DOI: 10.3389/fphys.2021.669356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Mark J Ranek
- Department of Medicine, Division of Cardiology, The Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
13
|
Ausoni S, Calamelli S, Saccà S, Azzarello G. How progressive cancer endangers the heart: an intriguing and underestimated problem. Cancer Metastasis Rev 2021; 39:535-552. [PMID: 32152913 DOI: 10.1007/s10555-020-09869-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since it came into being as a discipline, cardio-oncology has focused on the prevention and treatment of cardiotoxicity induced by antitumor chemotherapy and radiotherapy. Over time, it has been proved that even more detrimental is the direct effect generated by cancer cells that release pro-cachectic factors in the bloodstream. Secreted molecules target different organs at a distance, including the heart. Inflammatory and neuronal modulators released by the tumor bulk, either as free molecules or through exosomes, contribute to the pathogenesis of cardiac disease. Progressive cancer causes cachexia and severe cardiac muscle wasting accompanied by cardiomyocyte atrophy, tissue fibrosis, and several functional impairments up to heart failure. The molecular mechanisms responsible for such a cardiac muscle wasting have been partially elucidated in animal models, but minimally investigated in humans, although severe cardiac dysfunction exacerbates global cachexia and hampers efficient anti-cancer treatments. This review provides an overview of cancer-induced structural cardiac and functional damage, drawing on both clinical and scientific research. We start by looking at the pathophysiological mechanisms and evolving epidemiology and go on to discuss prevention, diagnosis, and a multimodal policy of intervention aimed at providing overall prognosis and global care for patients. Despite much interest in the cardiotoxicity of cancer therapies, the direct tumor effect on the heart remains poorly explored. There is still a lack of diagnostic criteria for the identification of the early stages of cardiac disease in cancer patients, while the possibilities that there are for effective prevention are largely underestimated. Research on innovative therapies has claimed considerable advances in preclinical studies, but none of the molecular targets suitable for clinical application has been approved for therapy. These issues are critically discussed here.
Collapse
Affiliation(s)
- Simonetta Ausoni
- Department of Biomedical Sciences, University of Padua, Padova, Italy.
| | - Sara Calamelli
- Department of Cardiology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy
| | - Salvatore Saccà
- Department of Cardiology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy
| | - Giuseppe Azzarello
- Department of Medical Oncology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy.
| |
Collapse
|
14
|
Mishra S, Dunkerly-Eyring BL, Keceli G, Ranek MJ. Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms. Front Physiol 2020; 11:593585. [PMID: 33281625 PMCID: PMC7689282 DOI: 10.3389/fphys.2020.593585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many forms of cardiac disease, including heart failure, present with inadequate protein quality control (PQC). Pathological conditions often involve impaired removal of terminally misfolded proteins. This results in the formation of large protein aggregates, which further reduce cellular viability and cardiac function. Cardiomyocytes have an intricately collaborative PQC system to minimize cellular proteotoxicity. Increased expression of chaperones or enhanced clearance of misfolded proteins either by the proteasome or lysosome has been demonstrated to attenuate disease pathogenesis, whereas reduced PQC exacerbates pathogenesis. Recent studies have revealed that phosphorylation of key proteins has a potent regulatory role, both promoting and hindering the PQC machinery. This review highlights the recent advances in phosphorylations regulating PQC, the impact in cardiac pathology, and the therapeutic opportunities presented by harnessing these modifications.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Ranek MJ, Oeing C, Sanchez-Hodge R, Kokkonen-Simon KM, Dillard D, Aslam MI, Rainer PP, Mishra S, Dunkerly-Eyring B, Holewinski RJ, Virus C, Zhang H, Mannion MM, Agrawal V, Hahn V, Lee DI, Sasaki M, Van Eyk JE, Willis MS, Page RC, Schisler JC, Kass DA. CHIP phosphorylation by protein kinase G enhances protein quality control and attenuates cardiac ischemic injury. Nat Commun 2020; 11:5237. [PMID: 33082318 PMCID: PMC7575552 DOI: 10.1038/s41467-020-18980-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Proteotoxicity from insufficient clearance of misfolded/damaged proteins underlies many diseases. Carboxyl terminus of Hsc70-interacting protein (CHIP) is an important regulator of proteostasis in many cells, having E3-ligase and chaperone functions and often directing damaged proteins towards proteasome recycling. While enhancing CHIP functionality has broad therapeutic potential, prior efforts have all relied on genetic upregulation. Here we report that CHIP-mediated protein turnover is markedly post-translationally enhanced by direct protein kinase G (PKG) phosphorylation at S20 (mouse, S19 human). This increases CHIP binding affinity to Hsc70, CHIP protein half-life, and consequent clearance of stress-induced ubiquitinated-insoluble proteins. PKG-mediated CHIP-pS20 or expressing CHIP-S20E (phosphomimetic) reduces ischemic proteo- and cytotoxicity, whereas a phospho-silenced CHIP-S20A amplifies both. In vivo, depressing PKG activity lowers CHIP-S20 phosphorylation and protein, exacerbating proteotoxicity and heart dysfunction after ischemic injury. CHIP-S20E knock-in mice better clear ubiquitinated proteins and are cardio-protected. PKG activation provides post-translational enhancement of protein quality control via CHIP.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Christian Oeing
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Rebekah Sanchez-Hodge
- Division of Cardiology, McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kristen M Kokkonen-Simon
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Danielle Dillard
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - M Imran Aslam
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Peter P Rainer
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
- Division of Cardiology, Department of Medicine, Medical University of Graz, 8036, Graz, Austria
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Brittany Dunkerly-Eyring
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Ronald J Holewinski
- Cedar Sinai Medical Center, Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, 8700 Beverly Blvd, AHSP A9229, Los Angeles, CA, 90048, USA
| | - Cornelia Virus
- Division of Cardiology, McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huaqun Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Matthew M Mannion
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Vineet Agrawal
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Virginia Hahn
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Dong I Lee
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Masayuki Sasaki
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Jennifer E Van Eyk
- Cedar Sinai Medical Center, Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, 8700 Beverly Blvd, AHSP A9229, Los Angeles, CA, 90048, USA
| | - Monte S Willis
- Division of Cardiology, McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Jonathan C Schisler
- Division of Cardiology, McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Wang X, Wang H. Priming the Proteasome to Protect against Proteotoxicity. Trends Mol Med 2020; 26:639-648. [PMID: 32589934 PMCID: PMC7321925 DOI: 10.1016/j.molmed.2020.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Increased proteotoxic stress (IPTS) resulting from the increased production or decreased removal of abnormally folded proteins is recognized as an important pathogenic factor for a large group of highly disabling and life-threatening human diseases, such as neurodegenerative disorders and many heart diseases. The proteasome is pivotal to the timely removal of abnormal proteins but its functional capacity often becomes inadequate in the disease conditions; consequently, proteasome functional insufficiency in return exacerbates IPTS. Recent research in proteasome biology reveals that the proteasome can be activated by endogenous protein kinases, making it possible to pharmacologically prime the proteasome for treating diseases with IPTS.
Collapse
Affiliation(s)
- Xuejun Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA.
| | - Hongmin Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| |
Collapse
|
17
|
Olkowski AA, Wojnarowicz C, Laarveld B. Pathophysiology and pathological remodelling associated with dilated cardiomyopathy in broiler chickens predisposed to heart pump failure. Avian Pathol 2020; 49:428-439. [PMID: 32301624 DOI: 10.1080/03079457.2020.1757620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Broiler chickens selected for rapid growth are highly susceptible to dilated cardiomyopathy (DCM). In order to elucidate the pathophysiology of DCM, the present study examines the fundamental features of pathological remodelling associated with DCM in broiler chickens using light microscopy, transmission electron microscopy (TEM), and synchrotron Fourier Transform Infrared (FTIR) micro-spectroscopy. The morphological features and FTIR spectra of the left ventricular myocardium were compared among broiler chickens affected by DCM with clinical signs of heart pump failure, apparently normal fast-growing broiler chickens showing signs of subclinical DCM (high risk of heart failure), slow-growing broiler chickens (low risk of heart failure) and Leghorn chickens (resistant to heart failure, used here as physiological reference). The findings indicate that DCM and heart pump failure in fast-growing broiler chickens are a result of a complex metabolic syndrome involving multiple catabolic pathways. Our data indicate that a good deal of DCM pathophysiology in chickens selected for rapid growth is associated with conformational changes of cardiac proteins, and pathological changes indicative of accumulation of misfolded and aggregated proteins in the affected cardiomyocytes. From TEM image analysis it is evident that the affected cardiomyocytes demonstrate significant difficulty in the disposal of damaged proteins and maintenance of proteostasis, which leads to pathological remodelling of the heart and contractile dysfunction. It appears that the underlying causes of accumulation of damaged proteins are associated with dysregulated auto phagosome and proteasome systems, which, in susceptible individuals, create a milieu conducive for the development of DCM and heart failure. RESEARCH HIGHLIGHTS The light and electron microscopy image analyses revealed degenerative changes and protein aggregates in the cardiomyocytes of chickens affected by DCM. The analyses of FTIR spectra of the myocardium revealed that DCM and heart pump failure in broiler chickens are associated with conformational changes of myocardial proteins. The morphological changes in cardiomyocytes and conformational changes in myocardial proteins architecture are integral constituents of pathophysiology of DCM in fast-growing broiler chickens.
Collapse
Affiliation(s)
- A A Olkowski
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - C Wojnarowicz
- Prairie Diagnostic Services, Veterinary Pathology, University of Saskatchewan, Saskatoon, Canada
| | - B Laarveld
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
18
|
The Role of Proteostasis in the Regulation of Cardiac Intercellular Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:279-302. [DOI: 10.1007/978-3-030-38266-7_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Xu N, Gulick J, Osinska H, Yu Y, McLendon PM, Shay-Winkler K, Robbins J, Yutzey KE. Ube2v1 Positively Regulates Protein Aggregation by Modulating Ubiquitin Proteasome System Performance Partially Through K63 Ubiquitination. Circ Res 2020; 126:907-922. [PMID: 32081062 DOI: 10.1161/circresaha.119.316444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE Compromised protein quality control can result in proteotoxic intracellular protein aggregates in the heart, leading to cardiac disease and heart failure. Defining the participants and understanding the underlying mechanisms of cardiac protein aggregation is critical for seeking therapeutic targets. We identified Ube2v1 (ubiquitin-conjugating enzyme E2 variant 1) in a genome-wide screen designed to identify novel effectors of the aggregation process. However, its role in the cardiomyocyte is undefined. OBJECTIVE To assess whether Ube2v1 regulates the protein aggregation caused by cardiomyocyte expression of a mutant αB crystallin (CryABR120G) and identify how Ube2v1 exerts its effect. METHODS AND RESULTS Neonatal rat ventricular cardiomyocytes were infected with adenoviruses expressing either wild-type CryAB (CryABWT) or CryABR120G. Subsequently, loss- and gain-of-function experiments were performed. Ube2v1 knockdown decreased aggregate accumulation caused by CryABR120G expression. Overexpressing Ube2v1 promoted aggregate formation in CryABWT and CryABR120G-expressing neonatal rat ventricular cardiomyocytes. Ubiquitin proteasome system performance was analyzed using a ubiquitin proteasome system reporter protein. Ube2v1 knockdown improved ubiquitin proteasome system performance and promoted the degradation of insoluble ubiquitinated proteins in CryABR120G cardiomyocytes but did not alter autophagic flux. Lys (K) 63-linked ubiquitination modulated by Ube2v1 expression enhanced protein aggregation and contributed to Ube2v1's function in regulating protein aggregate formation. Knocking out Ube2v1 exclusively in cardiomyocytes by using AAV9 (adeno-associated virus 9) to deliver multiplexed single guide RNAs against Ube2v1 in cardiac-specific Cas9 mice alleviated CryABR120G-induced protein aggregation, improved cardiac function, and prolonged lifespan in vivo. CONCLUSIONS Ube2v1 plays an important role in protein aggregate formation, partially by enhancing K63 ubiquitination during a proteotoxic stimulus. Inhibition of Ube2v1 decreases CryABR120G-induced aggregate formation through enhanced ubiquitin proteasome system performance rather than autophagy and may provide a novel therapeutic target to treat cardiac proteinopathies.
Collapse
Affiliation(s)
- Na Xu
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - James Gulick
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Hanna Osinska
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Yang Yu
- Division of Developmental Biology (Y.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Patrick M McLendon
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Kritton Shay-Winkler
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Jeffrey Robbins
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Katherine E Yutzey
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| |
Collapse
|
20
|
Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K. Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury. Cells 2020; 9:cells9010214. [PMID: 31952189 PMCID: PMC7016592 DOI: 10.3390/cells9010214] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
The current standard of care for acute myocardial infarction or 'heart attack' is timely restoration of blood flow to the ischemic region of the heart. While reperfusion is essential for the salvage of ischemic myocardium, re-introduction of blood flow paradoxically kills (rather than rescues) a population of previously ischemic cardiomyocytes-a phenomenon referred to as 'lethal myocardial ischemia-reperfusion (IR) injury'. There is long-standing and exhaustive evidence that mitochondria are at the nexus of lethal IR injury. However, during the past decade, the paradigm of mitochondria as mediators of IR-induced cardiomyocyte death has been expanded to include the highly orchestrated process of mitochondrial quality control. Our aims in this review are to: (1) briefly summarize the current understanding of the pathogenesis of IR injury, and (2) incorporating landmark data from a broad spectrum of models (including immortalized cells, primary cardiomyocytes and intact hearts), provide a critical discussion of the emerging concept that mitochondrial dynamics and mitophagy (the components of mitochondrial quality control) may contribute to the pathogenesis of cardiomyocyte death in the setting of ischemia-reperfusion.
Collapse
Affiliation(s)
- Andrew R. Kulek
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anthony Anzell
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Joseph M. Wider
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-9047
| |
Collapse
|
21
|
Yang M, Li C, Zhang Y, Ren J. Interrelationship between Alzheimer's disease and cardiac dysfunction: the brain-heart continuum? Acta Biochim Biophys Sin (Shanghai) 2020; 52:1-8. [PMID: 31897470 DOI: 10.1093/abbs/gmz115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Dementia, a devastating neurological disorder commonly found in the elderly, is characterized by severe cognitive and memory impairment. Ample clinical and epidemiological evidence has depicted a close association between dementia and heart failure. While cerebral blood under perfusion and neurohormonal activation due to the dampened cardiac pump function contribute to the loss of nutrient supply and neuronal injury, Alzheimer's disease (AD), the most common type of dementia, also provokes cardiovascular function impairment, in particular impairment of diastolic function. Aggregation of amyloid-β proteins and mutations of Presenilin (PSEN) genes are believed to participate in the pathological changes in the heart although it is still debatable with regards to the pathological cue of cardiac anomalies in AD process. In consequence, reduced cerebral blood flow triggered by cardiac dysfunction further deteriorates vascular dementia and AD pathology. Patients with atrial fibrillation, heart failure, and other cardiac anomalies are at a higher risk for cognitive decline and dementia. Conclusion: Due to the increased incidence of dementia and cardiovascular diseases, the coexistence of the two will cause more threat to public health, warranting much more attention. Here, we will update recent reports on dementia, AD, and cardiovascular diseases and discuss the causal relationship between dementia and heart dysfunction.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, the Air Force Military Medical University, Xi’an 710032, China
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| |
Collapse
|
22
|
Kuster DWD, Lynch TL, Barefield DY, Sivaguru M, Kuffel G, Zilliox MJ, Lee KH, Craig R, Namakkal-Soorappan R, Sadayappan S. Altered C10 domain in cardiac myosin binding protein-C results in hypertrophic cardiomyopathy. Cardiovasc Res 2019; 115:1986-1997. [PMID: 31050699 PMCID: PMC6872972 DOI: 10.1093/cvr/cvz111] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS A 25-base pair deletion in the cardiac myosin binding protein-C (cMyBP-C) gene (MYBPC3), proposed to skip exon 33, modifies the C10 domain (cMyBP-CΔC10mut) and is associated with hypertrophic cardiomyopathy (HCM) and heart failure, affecting approximately 100 million South Asians. However, the molecular mechanisms underlying the pathogenicity of cMyBP-CΔC10mutin vivo are unknown. We hypothesized that expression of cMyBP-CΔC10mut exerts a poison polypeptide effect leading to improper assembly of cardiac sarcomeres and the development of HCM. METHODS AND RESULTS To determine whether expression of cMyBP-CΔC10mut is sufficient to cause HCM and contractile dysfunction in vivo, we generated transgenic (TG) mice having cardiac-specific protein expression of cMyBP-CΔC10mut at approximately half the level of endogenous cMyBP-C. At 12 weeks of age, significant hypertrophy was observed in TG mice expressing cMyBP-CΔC10mut (heart weight/body weight ratio: 4.43 ± 0.11 mg/g non-transgenic (NTG) vs. 5.34 ± 0.25 mg/g cMyBP-CΔC10mut, P < 0.05). Furthermore, haematoxylin and eosin, Masson's trichrome staining, as well as second-harmonic generation imaging revealed the presence of significant fibrosis and a greater relative nuclear area in cMyBP-CΔC10mut hearts compared with NTG controls. M-mode echocardiography analysis revealed hypercontractile hearts (EF: 53.4%±2.9% NTG vs. 66.4% ± 4.7% cMyBP-CΔC10mut; P < 0.05) and early diastolic dysfunction (E/E': 28.7 ± 3.7 NTG vs. 46.3 ± 8.4 cMyBP-CΔC10mut; P < 0.05), indicating the presence of an HCM phenotype. To assess whether these changes manifested at the myofilament level, contractile function of single skinned cardiomyocytes was measured. Preserved maximum force generation and increased Ca2+-sensitivity of force generation were observed in cardiomyocytes from cMyBP-CΔC10mut mice compared with NTG controls (EC50: 3.6 ± 0.02 µM NTG vs. 2.90 ± 0.01 µM cMyBP-CΔC10mut; P < 0.0001). CONCLUSION Expression of cMyBP-C protein with a modified C10 domain is sufficient to cause contractile dysfunction and HCM in vivo.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/physiopathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Models, Animal
- Fibrosis
- Gene Expression Regulation
- Gene Regulatory Networks
- Genetic Predisposition to Disease
- Mice, Transgenic
- Mutation
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Protein Domains
- Sarcomeres/genetics
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Remodeling
Collapse
Affiliation(s)
- Diederik W D Kuster
- Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Thomas L Lynch
- Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - David Y Barefield
- Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
| | - Mayandi Sivaguru
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Gina Kuffel
- Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | | | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rajasekaran Namakkal-Soorappan
- Molecular and Cellular Pathology, Department of Pathology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sakthivel Sadayappan
- Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA
| |
Collapse
|
23
|
Abstract
See Article by Ma et al
Collapse
Affiliation(s)
- Risa Mukai
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| | - Daniela Zablocki
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| | - Junichi Sadoshima
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| |
Collapse
|
24
|
Temporally Distinct Regulation of Pathways Contributing to Cardiac Proteostasis During the Acute and Recovery Phases of Sepsis. Shock 2019; 50:616-626. [PMID: 29240643 DOI: 10.1097/shk.0000000000001084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cardiac dysfunction is a common manifestation of sepsis and is associated with early increases in inflammation and decreases in myocardial protein synthesis. However, little is known regarding the molecular mechanisms regulating protein homeostasis during the recovery phase after the removal of the septic nidus. Therefore, the purpose of this study was to investigate diverse signal transduction pathways that regulate myocardial protein synthesis and degradation. METHODS Adult male C57BL/6 mice were used to identify potential mechanisms mediating the acute (24 h) effect of cecal ligation and puncture as well as long-term changes that manifest during the chronic (10 days) recovery phase. RESULTS Sepsis acutely decreased cardiac protein synthesis that was associated with reduced phosphorylation of S6K1/S6 but not 4E-BP1. Sepsis also decreased proteasome activity, although with no change in MuRF1 and atrogin-1 mRNA expression. Sepsis acutely increased apoptosis (increased caspase-3 and PARP cleavage), autophagosome formation (increased LC3B-II), and canonical inflammasome activity (increased NLRP3, TMS1, cleaved caspase-1). In contrast, during the recovery phase, independent of a difference in food consumption, global protein synthesis was increased, the early repression in proteasome activity was restored to basal levels, whereas stimulation of apoptosis, autophagosome formation, and the canonical inflammasome pathway had abated. However, during recovery there was a selective stimulation of the noncanonical inflammasome pathway as evidenced by activation of caspase-11 with cleavage of Gasdermin D. CONCLUSIONS These data demonstrate a temporally distinct homeostatic shift in the cardiac proteostatic response to acute infection and recovery.
Collapse
|
25
|
Tomin T, Schittmayer M, Honeder S, Heininger C, Birner-Gruenberger R. Irreversible oxidative post-translational modifications in heart disease. Expert Rev Proteomics 2019; 16:681-693. [PMID: 31361162 PMCID: PMC6816499 DOI: 10.1080/14789450.2019.1645602] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Development of specific biomarkers aiding early diagnosis of heart failure is an ongoing challenge. Biomarkers commonly used in clinical routine usually act as readouts of an already existing acute condition rather than disease initiation. Functional decline of cardiac muscle is greatly aggravated by increased oxidative stress and damage of proteins. Oxidative post-translational modifications occur already at early stages of tissue damage and are thus regarded as potential up-coming disease markers. Areas covered: Clinical practice regarding commonly used biomarkers for heart disease is briefly summarized. The types of oxidative post-translational modification in cardiac pathologies are discussed with a special focus on available quantitative techniques and characteristics of individual modifications with regard to their stability and analytical accessibility. As irreversible oxidative modifications trigger protein degradation pathways or cause protein aggregation, both influencing biomarker abundance, a chapter is dedicated to their regulation in the heart.
Collapse
Affiliation(s)
- Tamara Tomin
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz , Graz , Austria.,Omics Center Graz, BioTechMed-Graz , Graz , Austria.,Institute of Chemical Technologies and Analytics, Vienna University of Technology , Vienna , Austria
| | - Matthias Schittmayer
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz , Graz , Austria.,Omics Center Graz, BioTechMed-Graz , Graz , Austria.,Institute of Chemical Technologies and Analytics, Vienna University of Technology , Vienna , Austria
| | - Sophie Honeder
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz , Graz , Austria.,Omics Center Graz, BioTechMed-Graz , Graz , Austria
| | - Christoph Heininger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz , Graz , Austria.,Omics Center Graz, BioTechMed-Graz , Graz , Austria
| | - Ruth Birner-Gruenberger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz , Graz , Austria.,Omics Center Graz, BioTechMed-Graz , Graz , Austria.,Institute of Chemical Technologies and Analytics, Vienna University of Technology , Vienna , Austria
| |
Collapse
|
26
|
Pan B, Lewno MT, Wu P, Wang X. Highly Dynamic Changes in the Activity and Regulation of Macroautophagy in Hearts Subjected to Increased Proteotoxic Stress. Front Physiol 2019; 10:758. [PMID: 31297061 PMCID: PMC6606963 DOI: 10.3389/fphys.2019.00758] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 12/04/2022] Open
Abstract
Macroautophagy (referred to as autophagy hereafter) plays an important role in the quality control of cellular proteins and organelles. Transcription Factor EB (TFEB) globally activates the expression of genes in the autophagic-lysosomal pathway (ALP) to replenish lysosomes and ALP machineries. We previously reported that myocardial TFEB signaling was impaired in advanced cardiac proteinopathy; however, myocardial ALP status and TFEB activity at earlier stages of cardiac proteinopathy remain uncharacterized. Here a stable line of CryABR120G transgenic (R120G) and non-transgenic (NTG) littermate mice with cardiomyocyte-restricted overexpression of CryABR120G were used at 1, 3, and 6 months of age. At 1 month when no cardiac phenotypes other than aberrant protein aggregation are discernible, R120G mice displayed a 5-fold increase in myocardial LC3-II flux. Interestingly, the LC3-II flux increase co-existed with increases in mTOR complex 1 (mTORC1) activities as well as cytoplasmic, but not nuclear, TFEB proteins. This increase in cytoplasmic TFEB proteins occurred without any discernible alteration in TFEB activity as reflected by unchanged mRNA levels of representative TFEB target genes (Mcoln1, M6pr, Sqstm1, Vps18, and Uvrag). At 3 months of age when hypertrophy and diastolic malfunction start to develop, the LC3-II flux remained significantly increased but to a lesser degree (2-fold) than at 1 month. The LC3-II flux increase was associated with decreased mTORC1 activities and with increased nuclear TFEB proteins and TFEB activities. At 6 months of age when congestive heart failure is apparent in R120G mice, both LC3-II flux and TFEB activities were severely suppressed, while mTORC1 activity increased. We conclude that changes in both autophagy and TFEB signaling are highly dynamic during the progression of cardiac proteinopathy. Increases in autophagy occur before increases in TFEB activities but both increase in the compensatory stage of cardiac proteinopathy. Once congestive heart failure develops, both autophagy and TFEB signaling become impaired. Our results suggest that TFEB signaling is regulated by both mTORC1-dependent and -independent mechanisms in hearts subjected to increased proteotoxic stress. For therapeutic exploration, it will be important to test the effect of TFEB stimulation at the early, intermediate, and late stages of cardiac proteinopathy.
Collapse
Affiliation(s)
- Bo Pan
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States
| | - Megan T Lewno
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States
| | - Penglong Wu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States.,Department of Pathophysiology, College of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
27
|
Zech ATL, Singh SR, Schlossarek S, Carrier L. Autophagy in cardiomyopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118432. [PMID: 30831130 DOI: 10.1016/j.bbamcr.2019.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
Abstract
Autophagy (greek auto: self; phagein: eating) is a highly conserved process within eukaryotes that degrades long-lived proteins and organelles within lysosomes. Its accurate and constant operation in basal conditions ensures cellular homeostasis by degrading damaged cellular components and thereby acting not only as a quality control but as well as an energy supplier. An increasing body of evidence indicates a major role of autophagy in the regulation of cardiac homeostasis and function. In this review, we describe the different forms of mammalian autophagy, their regulations and monitoring with a specific emphasis on the heart. Furthermore, we address the role of autophagy in several forms of cardiomyopathy and the options for therapy.
Collapse
Affiliation(s)
- Antonia T L Zech
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Hamburg, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sonia R Singh
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Hamburg, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Hamburg, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
28
|
Lamin B is a target for selective nuclear PQC by BAG3: implication for nuclear envelopathies. Cell Death Dis 2019; 10:23. [PMID: 30631036 PMCID: PMC6328609 DOI: 10.1038/s41419-018-1255-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022]
Abstract
Nuclear envelopathies are recognized genetic disorders affecting individuals with mutations in their genes encoding members of the lamin family of nuclear envelope proteins that are responsible for maintaining the architectural structure of the nucleus. Irregularity in shape and size of the nuclei, nuclear membrane rupture, and appearance of micronuclei in the cytoplasm are among the pathological features of the syndrome. Here, we demonstrate that Bcl2-associated anthanogene-3 (BAG3), a stress-induced co-chaperone protein that by association with heat-shock protein 70 (HSP70) participates in regulation of autophagy, plays a critical role in the integrity of the nuclear membrane in cardiomyocytes. Cells subjected to proteotoxic stress or BAG3 downregulation show perinuclear accumulation of the aberrant ubiquitinated proteins that are often associated with the appearance of misshapen, enlarged, and elongated nuclei. There were dense accumulations of lamin B in the perinuclear area and distribution of lamin B-positive micronuclei in the cytoplasmic space, indicative of nuclear envelope rupture. Overexpression of BAG3 in cells under proteotoxic stress ameliorated pathological nuclear morphology and reduced cytoplasmic distribution of the micronuclei particles. Subcellular co-localization and co-immunoprecipitation demonstrated interaction of lamin B with the BAG domain of BAG3 and HSP70, suggesting the importance of BAG3 in the selective clearance of a surplus of aggregated lamin B that is generated during stress conditions. Our findings define a novel role for BAG3 in nuclear protein quality control and suggest an alternative pathogenetic pathway that contributes to the development of nuclear envelopathies.
Collapse
|
29
|
Oliveira AN, Hood DA. Effect of Tim23 knockdown in vivo on mitochondrial protein import and retrograde signaling to the UPR mt in muscle. Am J Physiol Cell Physiol 2018; 315:C516-C526. [PMID: 29949403 DOI: 10.1152/ajpcell.00275.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mitochondrial unfolded protein response (UPRmt) is a protein quality control mechanism that strives to achieve proteostasis in the face of misfolded proteins. Because of the reliance of mitochondria on both the nuclear and mitochondrial genomes, a perturbation of the coordination of these genomes results in a mitonuclear imbalance in which holoenzymes are unable to assume mature stoichiometry and thereby activates the UPRmt. Thus, we sought to perturb this genomic coordination by using a systemic antisense oligonucleotide (in vivo morpholino) targeted to translocase of the inner membrane channel subunit 23 (Tim23), the major channel of the inner membrane. This resulted in a 40% reduction in Tim23 protein content, a 32% decrease in matrix-destined protein import, and a trend to elevate reactive oxygen species (ROS) emission under maximal respiration conditions. This import defect activated the C/EBP homologous protein (CHOP) branch of the UPRmt, as evident from increases in caseinolytic mitochondrial matrix peptidase proteolytic subunit (ClpP) and chaperonin 10 (cpn10) but not the activating transcription factor 5 (ATF5) arm. Thus, in the face of proteotoxic stress, CHOP and ATF5 could be activated independently to regain proteostasis. Our second aim was to investigate the role of proteolytically derived peptides in mediating retrograde signaling. Peptides released from the mitochondrion following basal proteolysis were isolated and incubated with import reactions. Dose- and time-dependent effect of peptides on protein import was observed. Our data suggest that mitochondrial proteolytic byproducts exert an inhibitory effect on protein import, possibly to reduce excessive protein import as a potential negative feedback mechanism. The inhibition of import into the organelle also serves a retrograde function, possibly via ROS emission, to modify nuclear gene expression and ultimately improve folding capacity.
Collapse
Affiliation(s)
- Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| |
Collapse
|
30
|
Glazier AA, Hafeez N, Mellacheruvu D, Basrur V, Nesvizhskii AI, Lee LM, Shao H, Tang V, Yob JM, Gestwicki JE, Helms AS, Day SM. HSC70 is a chaperone for wild-type and mutant cardiac myosin binding protein C. JCI Insight 2018; 3:99319. [PMID: 29875314 PMCID: PMC6124431 DOI: 10.1172/jci.insight.99319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 11/17/2022] Open
Abstract
Cardiac myosin binding protein C (MYBPC3) is the most commonly mutated gene associated with hypertrophic cardiomyopathy (HCM). Haploinsufficiency of full-length MYBPC3 and disruption of proteostasis have both been proposed as central to HCM disease pathogenesis. Discriminating the relative contributions of these 2 mechanisms requires fundamental knowledge of how turnover of WT and mutant MYBPC3 proteins is regulated. We expressed several disease-causing mutations in MYBPC3 in primary neonatal rat ventricular cardiomyocytes. In contrast to WT MYBPC3, mutant proteins showed reduced expression and failed to localize to the sarcomere. In an unbiased coimmunoprecipitation/mass spectrometry screen, we identified HSP70-family chaperones as interactors of both WT and mutant MYBPC3. Heat shock cognate 70 kDa (HSC70) was the most abundant chaperone interactor. Knockdown of HSC70 significantly slowed degradation of both WT and mutant MYBPC3, while pharmacologic activation of HSC70 and HSP70 accelerated degradation. HSC70 was expressed in discrete striations in the sarcomere. Expression of mutant MYBPC3 did not affect HSC70 localization, nor did it induce a protein folding stress response or ubiquitin proteasome dysfunction. Together these data suggest that WT and mutant MYBPC3 proteins are clients for HSC70, and that the HSC70 chaperone system plays a major role in regulating MYBPC3 protein turnover.
Collapse
Affiliation(s)
| | | | | | | | | | - Lap Man Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | - Vi Tang
- Department of Molecular and Integrative Physiology
| | | | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | | | - Sharlene M. Day
- Department of Molecular and Integrative Physiology
- Department of Internal Medicine
| |
Collapse
|
31
|
Kowalski K, Marciniak P, Rosiński G, Rychlik L. Toxic activity and protein identification from the parotoid gland secretion of the common toad Bufo bufo. Comp Biochem Physiol C Toxicol Pharmacol 2018; 205:43-52. [PMID: 29382576 DOI: 10.1016/j.cbpc.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/05/2023]
Abstract
Anuran toxins released from the skin glands are involved in defence against predators and microorganisms. Secretion from parotoid macroglands of bufonid toads is a rich source of bioactive compounds with the cytotoxic, cardiotoxic and hemolytic activity. Bufadienolides are considered the most toxic components of the toad poison, whereas the protein properties are largely unknown. In the present work, we analysed the cardio-, myo-, and neurotropic activity of extract and the selected proteins from Bufo bufo parotoids in in vitro physiological bioassays carried out on two standard model organisms: beetles and frogs. Our results demonstrate a strong cardioactivity of B. bufo gland extract. The toad poison stimulates (by 16%) the contractility of the insect heart and displays the cardioinhibitory effect on the frog heartbeat frequency (a 27% decrease), coupled with an irreversible cardiac arrest. The gland extract also exhibits significant myotropic properties (a 10% decrease in the muscle contraction force), whereas its neuroactivity remains low (a 4% decrease in the nerve conduction velocity). Among identified peptides present in the B. bufo parotoid extract are serine proteases, muscle creatine kinase, phospholipid hydroperoxide glutathione peroxidase, cytotoxic T-lymphocyte protein, etc. Some proteins contribute to the cardioinhibitory effect. Certain compounds display the paralytic (myo- and neurotropic) properties. As the toad gland extract exhibits a strong cardiotoxic activity, we conclude that the poison is a potent agent capable of slaying a predator. Our results also provide the guides for the use of toad poison-peptides in therapeutics and new drug development.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań 61-614, Poland.
| | - Paweł Marciniak
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań 61-614, Poland.
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań 61-614, Poland.
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań 61-614, Poland.
| |
Collapse
|
32
|
The MTM1-UBQLN2-HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle. Nat Cell Biol 2018; 20:198-210. [PMID: 29358706 DOI: 10.1038/s41556-017-0024-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
The ubiquitin proteasome system and autophagy are major protein turnover mechanisms in muscle cells, which ensure stemness and muscle fibre maintenance. Muscle cells contain a high proportion of cytoskeletal proteins, which are prone to misfolding and aggregation; pathological processes that are observed in several neuromuscular diseases called proteinopathies. Despite advances in deciphering the mechanisms underlying misfolding and aggregation, little is known about how muscle cells manage cytoskeletal degradation. Here, we describe a process by which muscle cells degrade the misfolded intermediate filament proteins desmin and vimentin by the proteasome. This relies on the MTM1-UBQLN2 complex to recognize and guide these misfolded proteins to the proteasome and occurs prior to aggregate formation. Thus, our data highlight a safeguarding function of the MTM1-UBQLN2 complex that ensures cytoskeletal integrity to avoid proteotoxic aggregate formation.
Collapse
|
33
|
McLendon PM, Davis G, Gulick J, Singh SR, Xu N, Salomonis N, Molkentin JD, Robbins J. An Unbiased High-Throughput Screen to Identify Novel Effectors That Impact on Cardiomyocyte Aggregate Levels. Circ Res 2017; 121:604-616. [PMID: 28655832 DOI: 10.1161/circresaha.117.310945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022]
Abstract
RATIONALE Postmitotic cells, such as cardiomyocytes, seem to be particularly susceptible to proteotoxic stimuli, and large, proteinaceous deposits are characteristic of the desmin-related cardiomyopathies and crystallin cardiomyopathic diseases. Increased activity of protein clearance pathways in the cardiomyocyte, such as proteasomal degradation and autophagy, has proven to be beneficial in maintaining cellular and cardiac function in the face of multiple proteotoxic insults, holding open the possibility of targeting these processes for the development of effective therapeutics. OBJECTIVE Here, we undertake an unbiased, total genome screen for RNA transcripts and their protein products that affect aggregate accumulations in the cardiomyocytes. METHODS AND RESULTS Primary mouse cardiomyocytes that accumulate aggregates as a result of a mutant CryAB (αB-crystallin) causative for human desmin-related cardiomyopathy were used for a total genome-wide screen to identify gene products that affected aggregate formation. We infected cardiomyocytes using a short hairpin RNA lentivirus library in which the mouse genome was represented. The screen identified multiple candidates in many cell signaling pathways that were able to mediate significant decreases in aggregate levels. CONCLUSIONS Subsequent validation of one of these candidates, Jak1 (Janus kinase 1), a tyrosine kinase of the nonreceptor type, confirmed the usefulness of this approach in identifying previously unsuspected players in proteotoxic processes.
Collapse
Affiliation(s)
- Patrick M McLendon
- From the Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, OH (P.M.M., G.D., J.G., S.R.S., N.X., J.D.M., J.R.); Division of Biomedical Informatics, Cincinnati Children's Hospital, OH (N.S.); and UES, Inc, Dayton, OH (P.M.M.)
| | - Gregory Davis
- From the Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, OH (P.M.M., G.D., J.G., S.R.S., N.X., J.D.M., J.R.); Division of Biomedical Informatics, Cincinnati Children's Hospital, OH (N.S.); and UES, Inc, Dayton, OH (P.M.M.)
| | - James Gulick
- From the Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, OH (P.M.M., G.D., J.G., S.R.S., N.X., J.D.M., J.R.); Division of Biomedical Informatics, Cincinnati Children's Hospital, OH (N.S.); and UES, Inc, Dayton, OH (P.M.M.)
| | - Sonia R Singh
- From the Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, OH (P.M.M., G.D., J.G., S.R.S., N.X., J.D.M., J.R.); Division of Biomedical Informatics, Cincinnati Children's Hospital, OH (N.S.); and UES, Inc, Dayton, OH (P.M.M.)
| | - Na Xu
- From the Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, OH (P.M.M., G.D., J.G., S.R.S., N.X., J.D.M., J.R.); Division of Biomedical Informatics, Cincinnati Children's Hospital, OH (N.S.); and UES, Inc, Dayton, OH (P.M.M.)
| | - Nathan Salomonis
- From the Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, OH (P.M.M., G.D., J.G., S.R.S., N.X., J.D.M., J.R.); Division of Biomedical Informatics, Cincinnati Children's Hospital, OH (N.S.); and UES, Inc, Dayton, OH (P.M.M.)
| | - Jeffery D Molkentin
- From the Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, OH (P.M.M., G.D., J.G., S.R.S., N.X., J.D.M., J.R.); Division of Biomedical Informatics, Cincinnati Children's Hospital, OH (N.S.); and UES, Inc, Dayton, OH (P.M.M.)
| | - Jeffrey Robbins
- From the Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, OH (P.M.M., G.D., J.G., S.R.S., N.X., J.D.M., J.R.); Division of Biomedical Informatics, Cincinnati Children's Hospital, OH (N.S.); and UES, Inc, Dayton, OH (P.M.M.).
| |
Collapse
|
34
|
Jensen BC, Willis MS. The Head and the Heart. J Am Coll Cardiol 2016; 68:2408-2411. [DOI: 10.1016/j.jacc.2016.09.934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023]
|
35
|
Da Silva-Ferrada E, Ribeiro-Rodrigues TM, Rodríguez MS, Girão H. Proteostasis and SUMO in the heart. Int J Biochem Cell Biol 2016; 79:443-450. [PMID: 27662810 DOI: 10.1016/j.biocel.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022]
Abstract
Heart proteostasis relies on a complex and integrated network of molecular processes surveilling organ performance under physiological and pathological conditions. For this purpose, cardiac cells depend on the correct function of their proteolytic systems, such as the ubiquitin-proteasome system (UPS), autophagy and the calpain system. Recently, the role of protein SUMOylation (an ubiquitin-like modification), has emerged as important modulator of cardiac proteostasis, which will be the focus of this review.
Collapse
Affiliation(s)
- Elisa Da Silva-Ferrada
- Institute for Biomedical Imaging and Life Sciences (IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Institute for Biomedical Imaging and Life Sciences (IBILI) (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Institute for Biomedical Imaging and Life Sciences (IBILI) (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Manuel S Rodríguez
- Institut des Technologies Avancées en Sciences du Vivant (ITAV), Université de Toulouse, CNRS, UPS, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, France
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Institute for Biomedical Imaging and Life Sciences (IBILI) (CNC.IBILI), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
36
|
Abstract
Viral myocarditis remains a prominent infectious-inflammatory disease for patients throughout the lifespan. The condition presents several challenges including varied modes of clinical presentation, a range of timepoints when patients come to attention, a diversity of approaches to diagnosis, a spectrum of clinical courses, and unsettled perspectives on therapeutics in different patient settings and in the face of different viral pathogens. In this review, we examine current knowledge about viral heart disease and especially provide information on evolving understanding of mechanisms of disease and efforts by investigators to identify and evaluate potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Gabriel Fung
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Ye Qiu
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Decheng Yang
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce McManus
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
37
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
38
|
Glembotski CC. Breaking down the COP9 Signalsome in the heart: how inactivating a protein ubiquitin ligase increases protein ubiquitylation and protects the heart. Circ Res 2016; 117:914-6. [PMID: 26541679 DOI: 10.1161/circresaha.115.307644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci 2016; 17:ijms17020187. [PMID: 26840306 PMCID: PMC4783921 DOI: 10.3390/ijms17020187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Orchestrated protein synthesis and degradation is fundamental for proper cell function. In muscle, impairment of proteostasis often leads to severe cellular defects finally interfering with contractile function. Here, we analyze for the first time the role of Atrogin-1, a muscle-specific E3 ubiquitin ligase known to be involved in the regulation of protein degradation via the ubiquitin proteasome and the autophagy/lysosome systems, in the in vivo model system zebrafish (Danio rerio). We found that targeted inactivation of zebrafish Atrogin-1 leads to progressive impairment of heart and skeletal muscle function and disruption of muscle structure without affecting early cardiogenesis and skeletal muscle development. Autophagy is severely impaired in Atrogin-1-deficient zebrafish embryos resulting in the disturbance of the cytoarchitecture of cardiomyocytes and skeletal muscle cells. These observations are consistent with molecular and ultrastructural findings in an Atrogin-1 knockout mouse and demonstrate that the zebrafish is a suitable vertebrate model to study the molecular mechanisms of Atrogin-1-mediated autophagic muscle pathologies and to screen for novel therapeutically active substances in high-throughput in vivo small compound screens (SCS).
Collapse
Affiliation(s)
- Anja Bühler
- Molecular Cardiology, University of Ulm, 89081 Ulm, Germany.
| | | | - Tiziana Bummer
- Molecular Cardiology, University of Ulm, 89081 Ulm, Germany.
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany.
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35129 Padova, Italy.
| | - Steffen Just
- Molecular Cardiology, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
40
|
Yao C, Behring JB, Shao D, Sverdlov AL, Whelan SA, Elezaby A, Yin X, Siwik DA, Seta F, Costello CE, Cohen RA, Matsui R, Colucci WS, McComb ME, Bachschmid MM. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins. PLoS One 2015; 10:e0144025. [PMID: 26642319 PMCID: PMC4671598 DOI: 10.1371/journal.pone.0144025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/26/2015] [Indexed: 01/02/2023] Open
Abstract
Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.
Collapse
Affiliation(s)
- Chunxiang Yao
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jessica B. Behring
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Di Shao
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Aaron L. Sverdlov
- Myocardial Biology Unit, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Stephen A. Whelan
- Cardiovascular Proteomics Center, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Aly Elezaby
- Myocardial Biology Unit, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Xiaoyan Yin
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Deborah A. Siwik
- Myocardial Biology Unit, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Cardiovascular Proteomics Center, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Richard A. Cohen
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Reiko Matsui
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Wilson S. Colucci
- Myocardial Biology Unit, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Mark E. McComb
- Cardiovascular Proteomics Center, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (MMB); (MEM)
| | - Markus M. Bachschmid
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (MMB); (MEM)
| |
Collapse
|
41
|
Jarvis JC. The Relationship Between Activity Pattern and Muscle Adaptation in Skeletal Muscle. Artif Organs 2015; 39:863-7. [DOI: 10.1111/aor.12622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jonathan C. Jarvis
- School of Sport and Exercise Science; Liverpool John Moores University; Liverpool UK
| |
Collapse
|
42
|
Li J, Ma W, Li H, Hou N, Wang X, Kim IM, Li F, Su H. NEDD8 Ultimate Buster 1 Long (NUB1L) Protein Suppresses Atypical Neddylation and Promotes the Proteasomal Degradation of Misfolded Proteins. J Biol Chem 2015; 290:23850-62. [PMID: 26260793 DOI: 10.1074/jbc.m115.664375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/06/2022] Open
Abstract
Neddylation is a posttranslational modification that controls diverse biological processes by covalently conjugating the ubiquitin-like protein NEDD8 to specific targets. Neddylation is commonly mediated by NEDD8-specific enzymes (typical neddylation) and, sometimes, by ubiquitin enzymes (atypical neddylation). Although typical neddylation is known to regulate protein function in many ways, the regulatory mechanisms and biological consequence of atypical neddylation remain largely unexplored. Here we report that NEDD8 conjugates were accumulated in the diseased hearts from mouse models and human patients. Proteotoxic stresses induced typical and atypical neddylation in cardiomyocytes. Loss of NUB1L exaggerated atypical neddylation, whereas NUB1L overexpression repressed atypical neddylation through promoting the degradation of NEDD8. Activation of atypical neddylation accumulated a surrogate misfolded protein, GFPu. In contrast, suppression of atypical neddylation by NUB1L overexpression enhanced GFPu degradation. Moreover, NUB1L depletion accumulated a cardiomyopathy-linked misfolded protein, CryAB(R120G), whereas NUB1L overexpression promoted its degradation through suppressing neddylation of ubiquitinated proteins in cardiomyocytes. Consequently, NUB1L protected cells from proteotoxic stress-induced cell injury. In summary, these data indicate that NUB1L suppresses atypical neddylation and promotes the degradation of misfolded proteins by the proteasome. Our findings also suggest that induction of NUB1L could potentially become a novel therapeutic strategy for diseases with increased proteotoxic stress.
Collapse
Affiliation(s)
- Jie Li
- From the Vascular Biology Center and
| | - Wenxia Ma
- From the Vascular Biology Center and
| | | | - Ning Hou
- the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Xuejun Wang
- the Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota 57069
| | | | - Faqian Li
- the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Huabo Su
- From the Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912,
| |
Collapse
|
43
|
Doroudgar S, Völkers M, Thuerauf DJ, Khan M, Mohsin S, Respress JL, Wang W, Gude N, Müller OJ, Wehrens XHT, Sussman MA, Glembotski CC. Hrd1 and ER-Associated Protein Degradation, ERAD, are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes. Circ Res 2015; 117:536-46. [PMID: 26137860 DOI: 10.1161/circresaha.115.306993] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (Hrd1) is an endoplasmic reticulum (ER)-transmembrane E3 ubiquitin ligase that has been studied in yeast, where it contributes to ER protein quality control by ER-associated degradation (ERAD) of misfolded proteins that accumulate during ER stress. Neither Hrd1 nor ERAD has been studied in the heart, or in cardiac myocytes, where protein quality control is critical for proper heart function. OBJECTIVE The objective of this study were to elucidate roles for Hrd1 in ER stress, ERAD, and viability in cultured cardiac myocytes and in the mouse heart, in vivo. METHODS AND RESULTS The effects of small interfering RNA-mediated Hrd1 knockdown were examined in cultured neonatal rat ventricular myocytes. The effects of adeno-associated virus-mediated Hrd1 knockdown and overexpression were examined in the hearts of mice subjected to pressure overload-induced pathological cardiac hypertrophy, which challenges protein-folding capacity. In cardiac myocytes, the ER stressors, thapsigargin and tunicamycin increased ERAD, as well as adaptive ER stress proteins, and minimally affected cell death. However, when Hrd1 was knocked down, thapsigargin and tunicamycin dramatically decreased ERAD, while increasing maladaptive ER stress proteins and cell death. In vivo, Hrd1 knockdown exacerbated cardiac dysfunction and increased apoptosis and cardiac hypertrophy, whereas Hrd1 overexpression preserved cardiac function and decreased apoptosis and attenuated cardiac hypertrophy in the hearts of mice subjected to pressure overload. CONCLUSIONS Hrd1 and ERAD are essential components of the adaptive ER stress response in cardiac myocytes. Hrd1 contributes to preserving heart structure and function in a mouse model of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shirin Doroudgar
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Mirko Völkers
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Donna J Thuerauf
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Mohsin Khan
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Sadia Mohsin
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Jonathan L Respress
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Wei Wang
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Natalie Gude
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Oliver J Müller
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Xander H T Wehrens
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Mark A Sussman
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Christopher C Glembotski
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.).
| |
Collapse
|
44
|
Benveniste O, Stenzel W, Hilton-Jones D, Sandri M, Boyer O, van Engelen BGM. Amyloid deposits and inflammatory infiltrates in sporadic inclusion body myositis: the inflammatory egg comes before the degenerative chicken. Acta Neuropathol 2015; 129:611-24. [PMID: 25579751 PMCID: PMC4405277 DOI: 10.1007/s00401-015-1384-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/27/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is the most frequently acquired myopathy in patients over 50 years of age. It is imperative that neurologists and rheumatologists recognize this disorder which may, through clinical and pathological similarities, mimic other myopathies, especially polymyositis. Whereas polymyositis responds to immunosuppressant drug therapy, sIBM responds poorly, if at all. Controversy reigns as to whether sIBM is primarily an inflammatory or a degenerative myopathy, the distinction being vitally important in terms of directing research for effective specific therapies. We review here the pros and the cons for the respective hypotheses. A possible scenario, which our experience leads us to favour, is that sIBM may start with inflammation within muscle. The rush of leukocytes attracted by chemokines and cytokines may induce fibre injury and HLA-I overexpression. If the protein degradation systems are overloaded (possibly due to genetic predisposition, particular HLA-I subtypes or ageing), amyloid and other protein deposits may appear within muscle fibres, reinforcing the myopathic process in a vicious circle.
Collapse
Affiliation(s)
- Olivier Benveniste
- Département de Médecine Interne et Immunologie Clinique, Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Université Pierre et Marie Curie, Inserm, U974, DHU I2B, Paris, France,
| | | | | | | | | | | |
Collapse
|
45
|
Increased clearance of reactive aldehydes and damaged proteins in hypertension-induced compensated cardiac hypertrophy: impact of exercise training. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:464195. [PMID: 25954323 PMCID: PMC4411445 DOI: 10.1155/2015/464195] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 02/07/2023]
Abstract
Background. We previously reported that exercise training (ET) facilitates the clearance of damaged proteins in heart failure. Here, we characterized the impact of ET on cardiac protein quality control during compensated ventricular hypertrophy in spontaneously hypertensive rats (SHR). Methods and Results. SHR were randomly assigned into sedentary and swimming-trained groups. Sedentary SHR displayed cardiac hypertrophy with preserved ventricular function compared to normotensive rats, characterizing a compensated cardiac hypertrophy. Hypertensive rats presented signs of cardiac oxidative stress, depicted by increased lipid peroxidation. However, these changes were not followed by accumulation of lipid peroxidation-generated reactive aldehydes and damaged proteins. This scenario was explained, at least in part, by the increased catalytic activity of both aldehyde dehydrogenase 2 (ALDH2) and proteasome. Of interest, ET exacerbated cardiac hypertrophy, improved ventricular function, induced resting bradycardia, and decreased blood pressure in SHR. These changes were accompanied by reduced cardiac oxidative stress and a consequent decrease in ALDH2 and proteasome activities, without affecting small chaperones levels and apoptosis in SHR. Conclusion. Increased cardiac ALDH2 and proteasomal activities counteract the deleterious effect of excessive oxidative stress in hypertension-induced compensated cardiac hypertrophy in rats. ET has a positive effect in reducing cardiac oxidative stress without affecting protein quality control.
Collapse
|
46
|
Del Monte F, Agnetti G. Protein post-translational modifications and misfolding: new concepts in heart failure. Proteomics Clin Appl 2015; 8:534-42. [PMID: 24946239 DOI: 10.1002/prca.201400037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/20/2014] [Accepted: 06/11/2014] [Indexed: 11/09/2022]
Abstract
A new concept in the field of heart-failure (HF) research points to a role of misfolded proteins, forming preamyloid oligomers (PAOs), in cardiac toxicity. This is largely based on few studies reporting the presence of PAOs, similar to those observed in neurodegenerative diseases, in experimental and human HF. As the majority of proteinopathies are sporadic in nature, protein post-translational modifications (PTMs) likely play a major role in this growing class of diseases. In fact, PTMs are known regulators of protein folding and of the formation of amyloid species in well-established proteinopathies. Proteomics has been instrumental in identifying both chemical and enzymatic PTMs, with a potential impact on protein mis-/folding. Here we provide the basics on how proteins fold along with a few examples of PTMs known to modulate protein misfolding and aggregation, with particular focus on the heart. Due to its innovative content and the growing awareness of the toxicity of misfolded proteins, an "Alzheimer's theory of HF" is timely. Moreover, the continuous innovations in proteomic technologies will help pinpoint PTMs that could contribute to the process. This nuptial between biology and technology could greatly assist in identifying biomarkers with increased specificity as well as more effective therapies.
Collapse
Affiliation(s)
- Federica Del Monte
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
47
|
Ren J, Zhang Y. Emerging potential of therapeutic targeting of autophagy and protein quality control in the management of cardiometabolic diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1852:185-7. [DOI: 10.1016/j.bbadis.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Drews O, Taegtmeyer H. Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid Redox Signal 2014; 21:2322-43. [PMID: 25133688 PMCID: PMC4241867 DOI: 10.1089/ars.2013.5823] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Novel therapeutic strategies to treat heart failure are greatly needed. The ubiquitin-proteasome system (UPS) affects the structure and function of cardiac cells through targeted degradation of signaling and structural proteins. This review discusses both beneficial and detrimental consequences of modulating the UPS in the heart. RECENT ADVANCES Proteasome inhibitors were first used to test the role of the UPS in cardiac disease phenotypes, indicating therapeutic potential. In early cardiac remodeling and pathological hypertrophy with increased proteasome activities, proteasome inhibition prevented or restricted disease progression and contractile dysfunction. Conversely, enhancing proteasome activities by genetic manipulation, pharmacological intervention, or ischemic preconditioning also improved the outcome of cardiomyopathies and infarcted hearts with impaired cardiac and UPS function, which is, at least in part, caused by oxidative damage. CRITICAL ISSUES An understanding of the UPS status and the underlying mechanisms for its potential deregulation in cardiac disease is critical for targeted interventions. Several studies indicate that type and stage of cardiac disease influence the dynamics of UPS regulation in a nonlinear and multifactorial manner. Proteasome inhibitors targeting all proteasome complexes are associated with cardiotoxicity in humans. Furthermore, the type and dosage of proteasome inhibitor impact the pathogenesis in nonuniform ways. FUTURE DIRECTIONS Systematic analysis and targeting of individual UPS components with established and innovative tools will unravel and discriminate regulatory mechanisms that contribute to and protect against the progression of cardiac disease. Integrating this knowledge in drug design may reduce adverse effects on the heart as observed in patients treated with proteasome inhibitors against noncardiac diseases, especially cancer.
Collapse
Affiliation(s)
- Oliver Drews
- 1 Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology , Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
49
|
Gupta MK, Gulick J, Liu R, Wang X, Molkentin JD, Robbins J. Sumo E2 enzyme UBC9 is required for efficient protein quality control in cardiomyocytes. Circ Res 2014; 115:721-9. [PMID: 25097219 DOI: 10.1161/circresaha.115.304760] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Impairment of proteasomal function is pathogenic in several cardiac proteinopathies and can eventually lead to heart failure. Loss of proteasomal activity often results in the accumulation of large protein aggregates. The ubiquitin proteasome system (UPS) is primarily responsible for cellular protein degradation, and although the role of ubiquitination in this process is well studied, the function of an ancillary post-translational modification, SUMOylation, in protein quality control is not fully understood. OBJECTIVE To determine the role of ubiquitin-conjugating enzyme 9 (UBC9), a small ubiquitin-like modifier-conjugating enzyme, in cardiomyocyte protein quality control. METHODS AND RESULTS Gain- and loss-of-function approaches were used to determine the importance of UBC9. Overexpression of UBC9 enhanced UPS function in cardiomyocytes, whereas knockdown of UBC9 by small interfering RNA caused significant accumulations of aggregated protein. UPS function and relative activity was analyzed using a UPS reporter protein consisting of a short degron, CL1, fused to the COOH-terminus of green fluorescent protein (GFPu). Subsequently, the effects of UBC9 on UPS function were tested in a proteotoxic model of desmin-related cardiomyopathy, caused by cardiomyocyte-specific expression of a mutated αB crystallin, CryAB(R120G). CryAB(R120G) expression leads to aggregate formation and decreased proteasomal function. Coinfection of UBC9-adenovirus with CryAB(R120G) virus reduced the proteotoxic sequelae, decreasing overall aggregate concentrations. Conversely, knockdown of UBC9 significantly decreased UPS function in the model and resulted in increased aggregate levels. CONCLUSIONS UBC9 plays a significant role in cardiomyocyte protein quality control, and its activity can be exploited to reduce toxic levels of misfolded or aggregated proteins in cardiomyopathy.
Collapse
Affiliation(s)
- Manish K Gupta
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - James Gulick
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Ruijie Liu
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Xuejun Wang
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Jeffery D Molkentin
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.)
| | - Jeffrey Robbins
- From the Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, OH (M.K.G., J.G., R.L., J.D.M., J.R.); and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (X.W.).
| |
Collapse
|
50
|
Wang C, Wang X. The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim Biophys Acta Mol Basis Dis 2014; 1852:188-94. [PMID: 25092168 DOI: 10.1016/j.bbadis.2014.07.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/07/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Proteotoxicity refers to the detrimental effects of damaged/misfolded proteins on the cell. Cardiac muscle is particularly susceptible to proteotoxicity because sustained and severe proteotoxic stress leads to cell death and the cardiac muscle has very limited self-renewal capacity. The ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway (ALP) are two major pathways responsible for degradation of most cellular proteins. Alterations of UPS and ALP functions are associated with the accumulation of proteotoxic species in the heart, a key pathological feature of common forms of heart disease including idiopathic, ischemic, and pressure-overloaded cardiomyopathies and a large subset of congestive heart failure. Emerging evidence suggests that proteasome inhibition or impairment activates autophagy and conversely, acute ALP inhibition may sometimes increase intrinsic proteasome peptidase activities but chronic ALP inhibition hinders UPS performance in ubiquitinated protein degradation. The exact molecular basis on which the two degradative pathways interact remains largely undefined. Here we review current understanding of the roles of the UPS and autophagy in the control of cardiac proteotoxicity, with a specific focus on the crosstalk between the two pathways. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Changhua Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| |
Collapse
|