1
|
Lee IT, Yang CC, Lin YJ, Wu WB, Lin WN, Lee CW, Tseng HC, Tsai FJ, Hsiao LD, Yang CM. Mevastatin-Induced HO-1 Expression in Cardiac Fibroblasts: A Strategy to Combat Cardiovascular Inflammation and Fibrosis. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39431643 DOI: 10.1002/tox.24429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
Mevastatin (MVS) is known for its anti-inflammatory effects, potentially achieved by upregulating heme oxygenase-1 (HO-1), an enzyme involved in cytoprotection against oxidative injury. Nonetheless, the specific processes by which MVS stimulates HO-1 expression in human cardiac fibroblasts (HCFs) are not yet fully understood. In this study, we found that MVS treatment increased HO-1 mRNA and protein levels in HCFs. This induction was inhibited by pretreatment with specific inhibitors of p38 MAPK, JNK1/2, and FoxO1, and by siRNAs targeting NOX2, p47phox, p38, JNK1, FoxO1, Keap1, and Nrf2. MVS also triggered ROS generation and activated JNK1/2 and p38 MAPK, both attenuated by NADPH oxidase or ROS inhibitors. Additionally, MVS promoted the phosphorylation of FoxO1 and Nrf2, which was suppressed by p38 MAPK or JNK1/2 inhibitor. Furthermore, MVS inhibited TNF-α-induced NF-κB activation and vascular cell adhesion molecule-1 (VCAM-1) expression via the HO-1/CO pathway in HCFs. In summary, the induction of HO-1 expression in HCFs by MVS is mediated through two primary signaling pathways: NADPH oxidase/ROS/p38 MAPK, and JNK1/2/FoxO1 and Nrf2. This research illuminates the underlying processes through which MVS exerts its anti-inflammatory effects by modulating HO-1 in cardiac fibroblasts.
Collapse
Affiliation(s)
- I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Jyun Lin
- Institute of Translational Medicine and new Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hui-Ching Tseng
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
2
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
3
|
Feng X, Yin D, Fang T, Zhao C, Yue J, Zhu E, Cheng Z. Fowl adenovirus serotype 4 (FAdV-4) infection induces inflammatory responses in chicken embryonic cardiac fibroblasts via PI3K/Akt and IκBα/NF-κB signaling pathways. Res Vet Sci 2024; 176:105349. [PMID: 38968647 DOI: 10.1016/j.rvsc.2024.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the main pathogen of the acute infectious disease hepatitis-hydropericardium syndrome (HHS). Previous studies have focused on the mechanisms of FAdV-4 caused liver injury, while studies revealing potential mechanisms of inflammatory injury in FAdV-4-infected chicken cardiac cells remain scare. Here we found that FAdV-4 successfully infected chicken embryonic cardiac fibroblasts (CECF) cells in vitro and significantly upregulated production of inflammatory cytokines including IL-1β, IL-6, IL-8, and TNF-α, suggesting induction of a strong inflammatory response. Mechanistically, FAdV-4 infection increased expression of phosphorylated Akt in a time-dependent manner, while phosphorylation of Akt and production of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α were greatly reduced in FAdV-4-infected CECF cells after treatment with LY294002, a potent inhibitor of PI3K, indicating that the inflammatory response induced by FAdV-4 infection is mediated by the PI3K/Akt signaling pathway. Furthermore, FAdV-4 infection increased expression of phosphorylated IκBα, a recognized indicator of NF-κB activation, and treatment with the BAY11-7082, a selective IκBα phosphorylation and NF-κB inhibitor, significantly reduced IκBα phosphorylation and inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) production in FAdV-4-infected CECF cells, suggesting a critical role of IκBα/NF-κB signaling in FAdV-4-induced inflammatory responses in CECF cells. Taken together, our results suggest that FAdV-4 infection induces inflammatory responses through activation of PI3K/Akt and IκBα/NF-κB signaling pathways in CECF cells. These results reveal potential mechanisms of inflammatory damage in chicken cardiac cells caused by FAdV-4 infection, which sheds new insight into clarification of the pathogenic mechanism of FAdV-4 infection and development of new strategies for HHS prevention and control.
Collapse
Affiliation(s)
- Xiaoao Feng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Dejing Yin
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Tian Fang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Chao Zhao
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Jun Yue
- Animal Disease Prevention and Control Center of Guizhou Province, Guiyang 550001, PR China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
4
|
Lv B, Yang L, Gao Y, Li G. Epoxyeicosatrienoic Acids Attenuate LPS-Induced NIH/3T3 Cell Fibrosis through the A 2AR and PI3K/Akt Signaling Pathways. Bull Exp Biol Med 2024; 177:185-189. [PMID: 39090469 DOI: 10.1007/s10517-024-06153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 08/04/2024]
Abstract
Inflammation plays a crucial role in progression of fibrosis. Epoxyeicosatrienoic acids (EET) have multiple protective effects in different diseases, but their ability to inhibit the development of LPS-induced fibrosis remains unknown. The potential therapeutic effects of 11,12-EET were studied in in vitro model of LPS-induced fibrosis. Mouse embryonic fibroblast cells NIH/3T3 were pre-incubated with 1 μM 11,12-EET and/or a structural analogue and selective EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid before exposing to LPS. The effect of EET was evaluated by the protein and mRNA expression of NF-κB, collagens I and III, and α-smooth muscle actin by Western blotting and quantitative reverse transcription PCR, respectively. LPS provoked inflammation and fibrosis-like changes accompanied by elevated expression of NF-κB and collagens in NIH/3T3 cells. We also studied the effects of 11,12-EET on the A2AR and PI3K/Akt signaling pathways in intact and LPS-treated NIH/3T3 cells. 11,12-EET prevented inflammation and fibrosis-like changes through up-regulation of A2AR and PI3K/Akt signaling pathways. Our findings demonstrate the potential antifibrotic effects of 11,12-EET, which can be natural antagonists of tissue fibrosis.
Collapse
Affiliation(s)
- B Lv
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - L Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Y Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - G Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Mao Q, Zhang X, Yang J, Kong Q, Cheng H, Yu W, Cao X, Li Y, Li C, Liu L, Ding Z. HSPA12A acts as a scaffolding protein to inhibit cardiac fibroblast activation and cardiac fibrosis. J Adv Res 2024:S2090-1232(24)00025-0. [PMID: 38219869 DOI: 10.1016/j.jare.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
INTRODUCTION Cardiac fibrosis is the main driver for adverse remodeling and progressive functional decline in nearly all types of heart disease including myocardial infarction (MI). The activation of cardiac fibroblasts (CF) into myofibroblasts is responsible for cardiac fibrosis. Unfortunately, no ideal approach for controlling CF activation currently exists. OBJECTIVES This study investigated the role of Heat shock protein A12A (HSPA12A), an atypical member of the HSP70 family, in CF activation and MI-induced cardiac fibrosis. METHODS Primary CF and Hspa12a knockout mice were used in the experiments. CF activation was indicated by the upregulation of myofibroblast characters including alpha-Smooth muscle actin (αSMA), Collagen, and Fibronectin. Cardiac fibrosis was illustrated by Masson's trichrome and picrosirius staining. Cardiac function was examined using echocardiography. Glycolytic activity was indicated by levels of extracellular lactate and the related protein expression. Protein stability was examined following cycloheximide and MG132 treatment. Protein-protein interaction was examined by immunoprecipitation-immunoblotting analysis. RESULTS HSPA12A displayed a high expression level in quiescent CF but showed a decreased expression in activated CF, while ablation of HSPA12A in mice promoted CF activation and cardiac fibrosis following MI. HSPA12A overexpression inhibited the activation of primary CF through inhibiting glycolysis, while HSPA12A knockdown showed the opposite effects. Moreover, HSPA12A upregulated the protein expression of transcription factor p53, by which mediated the HSPA12A-induced inhibition of glycolysis and CF activation. Mechanistically, this action of HSPA12A was achieved by acting as a scaffolding protein to bind p53 and ubiquitin specific protease 10 (USP10), thereby promoting the USP10-mediated p53 protein stability and the p53-medicated glycolysis inhibition. CONCLUSION The present study provided clear evidence that HSPA12A is a novel endogenous inhibitor of CF activation and cardiac fibrosis. Targeting HSPA12A in CF could represent a promising strategy for the management of cardiac fibrosis in patients.
Collapse
Affiliation(s)
- Qian Mao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinna Yang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Cheng
- Department of Anesthesiology, The First Affiliated Hospital with Wannan Medical College, Wuhu, China
| | - Wansu Yu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Chuanfu Li
- Departments of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
6
|
Sheikhzadeh F, Khajehnasiri N, Khalaj-Kondori M, Ramouz A, Sadeghian R. Wnt1 gene expression in the heart left ventricle as a response to the various durations of the intensive exercise: An experimental study. Endocr Regul 2024; 58:168-173. [PMID: 39121475 DOI: 10.2478/enr-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Objective. Myocardial fibrosis is a devastating condition causing millions of deaths yearly. Several factors, such as aging, cause myocardial fibrosis. The Wnt/β-catenin pathway is one of the critical intracellular signaling for the development of cardiac fibrosis. Molecular and cellular mechanism of myocardial fibrosis induced by intensive exercise is not well-understood. The current study evaluates the effects of short- and long-term intensive exercise on the Wnt1 gene expression in a heart left ventricle in an animal model. Methods. Twenty-one male Wistar rats (mean weight 250±50 g) were divided into three groups (n=7): 1) control group (C); 2) short-term regular intensive exercise group (S-RIE, high-intensity exercise for one month six days weekly for 60 min with speed of 35 m/min), and 3) long-term regular intensive exercise group (L-RIE, high-intensity exercise for six months six days daily for 60 min with speed of 35 m/min). The heart left ventricle was isolated at the end of the experiment, and the relative gene expression of the Wnt1 gene was measured by the Real-Time PCR. Results. The L-RIE group showed a significant increase in the Wnt1 expression compared to the S-RIE and the control group. Although no difference was observed in the Wnt1 mRNA level in the S-RIE group compared to the control group, Wnt1 mRNA level increased in the L-RIE group compared to the S-RIE group. Conclusion. The exercise duration was of a great importance in the Wnt1 gene expression. Regular intensive exercise may be involved in the formation of the myocardial fibrosis by increasing the expression of the Wnt1 gene.
Collapse
Affiliation(s)
- Farzam Sheikhzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Nazli Khajehnasiri
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Ramouz
- General, Visceral and Transplant Surgery Department, Universitat, Klinikum Heidelberg, Heidelberg, Germany
| | - Reihaneh Sadeghian
- Clinical Research Development Unit, Shahid Bahonar Hospital, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Billur D, Olgar Y, Durak A, Yozgat AH, Unay S, Tuncay E, Turan B. An increase in intercellular crosstalk and electrotonic coupling between cardiomyocytes and nonmyocytes reshapes the electrical conduction in the metabolic heart characterized by short QT intervals in ECGs. Cell Biochem Funct 2023; 41:1526-1542. [PMID: 38014767 DOI: 10.1002/cbf.3893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Cardiac conduction abnormalities are disorders in metabolic syndrome (MetS), however, their mechanisms are unknown. Although ventricular arrhythmia reflects the changes in QT-interval of electrocardiograms associated with the changes in cardiomyocyte action potential durations (APDs), recent studies emphasize role of intercellular crosstalk between cardiomyocytes and nonmyocytes via passive (electrotonic)-conduction. Therefore, considering the possible increase in intercellular interactions of nonmyocytes with cardiomyocytes, we hypothesized an early-cardiac-remodeling characterized by short QT-interval via contributions and modulations of changes by nonmyocytes to the ventricular APs in an early-stage MetS hearts. Following the feeding of 8-week-old rats with a high-sucrose diet (32%; MetS rats) and validation of insulin resistance, there was a significant increase in heart rate and changes in the electrical characteristics of the hearts, especially a shortening in action potential (AP) duration of the papillary muscles. The patch-clamp analysis of ventricular cardiomyocytes showed an increase in the Na+ -channel currents while there were decreases in l-type Ca2+ -channel (LTCC) currents with unchanged K+ -channel currents. There was an increase in the phosphorylated form of connexin 43 (pCx43), mostly with lateral localization on sarcolemma, while its unphosphorylated form (Cx43) exhibited a high degree of localization within intercalated discs. A high-level positively-stained α-SMA and CD68 cells were prominently localized and distributed in interfibrillar spaces of the heart, implying the possible contributions of myofibroblasts and macrophages to both shortened APDs and abnormal electrical conduction in MetS hearts. Our data propose a previously unrecognized pathway for SQT induction in the heart. This pathway includes not only the contribution of short ventricular-APDs via ionic mechanisms but also increasing contributions of the electrotonic-cardiomyocyte depolarization, spontaneous electrical activity-associated fast heterogeneous impulse conduction in the heart via increased interactions and relocations between cardiomyocytes and nonmyocytes, which may be an explanation for the development of an SQT in early-cardiac-remodeling.
Collapse
Affiliation(s)
- Deniz Billur
- Departments of Histology-Embryology, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Yusuf Olgar
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Aysegul Durak
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ayse Hande Yozgat
- Departments of Histology-Embryology, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Simge Unay
- Departments of Biophysics, Lokman Hekim University Faculty of Medicine, Ankara, Türkiye
| | - Erkan Tuncay
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Belma Turan
- Departments of Biophysics, Lokman Hekim University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
8
|
Yi L, Zhu T, Qu X, Buayiximu K, Feng S, Zhu Z, Ni J, Du R, Zhu J, Wang X, Ding F, Zhang R, Quan W, Yan X. Predictive value of early left ventricular end-diastolic volume changes for late left ventricular remodeling after ST-elevation myocardial infarction. Cardiol J 2023; 31:451-460. [PMID: 37772349 PMCID: PMC11229814 DOI: 10.5603/cj.90492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/14/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUD Left ventricular remodeling (LVR) is a major predictor of adverse outcomes in patients with acute ST-elevation myocardial infarction (STEMI). This study aimed to prospectively evaluate LVR in patients with STEMI who were successfully treated with primary percutaneous coronary intervention (PCI) and examine the relationship between early left ventricular dilation and late LVR. METHODS Overall 301 consecutive patients with STEMI who underwent primary PCI were included. Serial echocardiography was performed on the first day after PCI, on the day of discharge, at 1 month, and 6 months after discharge. RESULTS Left ventricular remodeling occurred in 57 (18.9%) patients during follow-up. Left ventricular end-diastolic volume (LVEDV) reduced from day 1 postoperative to discharge in the LVR group compared with that in the non-LVR (n-LVR) group. The rates of change in LVEDV (ΔLVEDV%) were -5.24 ± 16.02% and 5.05 ± 16.92%, respectively (p < 0.001). LVEDV increased in patients with LVR compared with n-LVR at 1-month and 6-month follow-ups (ΔLVEDV% 13.05 ± 14.89% vs. -1.9 ± 12.03%; 26.46 ± 14.05% vs. -3.42 ± 10.77%, p < 0.001). Receiver operating characteristic analysis showed that early changes in LVEDV, including ΔLVEDV% at discharge and 1-month postoperative, predicted late LVR with an area under the curve value of 0.80 (95% confidence interval 0.74-0.87, p < 0.0001). CONCLUSIONS Decreased LVEDV at discharge and increased LVEDV at 1-month follow-up were both associated with late LVR at 6-month. Comprehensive and early monitoring of LVEDV changes may help to predict LVR.
Collapse
Affiliation(s)
- Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianqi Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuezheng Qu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keremu Buayiximu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Feng
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwei Ni
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingzhou Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqun Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Tsuru H, Yoshihara C, Suginobe H, Matsumoto M, Ishii Y, Narita J, Ishii R, Wang R, Ueyama A, Ueda K, Hirose M, Hashimoto K, Nagano H, Tanaka R, Okajima T, Ozono K, Ishida H. Pathogenic Roles of Cardiac Fibroblasts in Pediatric Dilated Cardiomyopathy. J Am Heart Assoc 2023; 12:e029676. [PMID: 37345811 PMCID: PMC10356057 DOI: 10.1161/jaha.123.029676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
Background Dilated cardiomyopathy (DCM) is a major cause of heart failure in children. Despite intensive genetic analyses, pathogenic gene variants have not been identified in most patients with DCM, which suggests that cardiomyocytes are not solely responsible for DCM. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. They have several roles in maintaining cardiac function; however, the pathological role of CFs in DCM remains unknown. Methods and Results Four primary cultured CF cell lines were established from pediatric patients with DCM and compared with 3 CF lines from healthy controls. There were no significant differences in cellular proliferation, adhesion, migration, apoptosis, or myofibroblast activation between DCM CFs compared with healthy CFs. Atomic force microscopy revealed that cellular stiffness, fluidity, and viscosity were not significantly changed in DCM CFs. However, when DCM CFs were cocultured with healthy cardiomyocytes, they deteriorated the contractile and diastolic functions of cardiomyocytes. RNA sequencing revealed markedly different comprehensive gene expression profiles in DCM CFs compared with healthy CFs. Several humoral factors and the extracellular matrix were significantly upregulated or downregulated in DCM CFs. The pathway analysis revealed that extracellular matrix receptor interactions, focal adhesion signaling, Hippo signaling, and transforming growth factor-β signaling pathways were significantly affected in DCM CFs. In contrast, single-cell RNA sequencing revealed that there was no specific subpopulation in the DCM CFs that contributed to the alterations in gene expression. Conclusions Although cellular physiological behavior was not altered in DCM CFs, they deteriorated the contractile and diastolic functions of healthy cardiomyocytes through humoral factors and direct cell-cell contact.
Collapse
Affiliation(s)
- Hirofumi Tsuru
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
- Department of PediatricsNiigata University School of MedicineNiigataJapan
| | - Chika Yoshihara
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hidehiro Suginobe
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Mizuki Matsumoto
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Yoichiro Ishii
- Department of Pediatric CardiologyOsaka Medical Center for Maternal and Child HealthOsakaJapan
| | - Jun Narita
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Ryo Ishii
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Renjie Wang
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Atsuko Ueyama
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Kazutoshi Ueda
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Masaki Hirose
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuhisa Hashimoto
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hiroki Nagano
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Ryosuke Tanaka
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Takaharu Okajima
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Keiichi Ozono
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hidekazu Ishida
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
10
|
Xi T, Wang R, Pi D, Ouyang J, Yang J. The p53/miR-29a-3p axis mediates the antifibrotic effect of leonurine on angiotensin II-stimulated rat cardiac fibroblasts. Exp Cell Res 2023; 426:113556. [PMID: 36933858 DOI: 10.1016/j.yexcr.2023.113556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Overactivation of cardiac fibroblasts (CFs) is one of the main causes of myocardial fibrosis (MF), and inhibition of CF activation is a crucial strategy for MF therapy. A previous study by our group demonstrated that leonurine (LE) effectively inhibits collagen synthesis and myofibroblast generation originated from CFs, and eventually mitigates the progression of MF (where miR-29a-3p is likely to be a vital mediator). However, the underlying mechanisms involved in this process remain unknown. Thus, the present study aimed to investigate the precise role of miR-29a-3p in LE-treated CFs, and to elucidate the pharmacological effects of LE on MF. Neonatal rat CFs were isolated and stimulated by angiotensin II (Ang II) to mimic the pathological process of MF in vitro. The results show that LE distinctly inhibits collagen synthesis, as well as the proliferation, differentiation and migration of CFs, all of which could be induced by Ang II. In addition, LE promotes apoptosis in CFs under Ang II stimulation. During this process, the down-regulated expressions of miR-29a-3p and p53 are partly restored by LE. Either knockdown of miR-29a-3p or inhibition of p53 by PFT-α (a p53 inhibitor) blocks the antifibrotic effect of LE. Notably, PFT-α suppresses miR-29a-3p levels in CFs under both normal and Ang II-treated conditions. Furthermore, ChIP analysis confirmed that p53 is bound to the promoter region of miR-29a-3p, and directly regulates its expression. Overall, our study demonstrates that LE upregulates p53 and miR-29a-3p expression, and subsequently inhibits CF overactivation, suggesting that the p53/miR-29a-3p axis may play a crucial role in mediating the antifibrotic effect of LE against MF.
Collapse
Affiliation(s)
- Tianlan Xi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ruiyu Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Nicolini G, Balzan S, Forini F. Activated fibroblasts in cardiac and cancer fibrosis: An overview of analogies and new potential therapeutic options. Life Sci 2023; 321:121575. [PMID: 36933828 DOI: 10.1016/j.lfs.2023.121575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Heart disease and cancer are two major causes of morbidity and mortality in the industrialized countries, and their increasingly recognized connections are shifting the focus from single disease studies to an interdisciplinary approach. Fibroblast-mediated intercellular crosstalk is critically involved in the evolution of both pathologies. In healthy myocardium and in non-cancerous conditions, resident fibroblasts are the main cell source for synthesis of the extracellular matrix (ECM) and important sentinels of tissue integrity. In the setting of myocardial disease or cancer, quiescent fibroblasts activate, respectively, into myofibroblasts (myoFbs) and cancer-associated fibroblasts (CAFs), characterized by increased production of contractile proteins, and by a highly proliferative and secretory phenotype. Although the initial activation of myoFbs/CAFs is an adaptive process to repair the damaged tissue, massive deposition of ECM proteins leads to maladaptive cardiac or cancer fibrosis, a recognized marker of adverse outcome. A better understanding of the key mechanisms orchestrating fibroblast hyperactivity may help developing innovative therapeutic options to restrain myocardial or tumor stiffness and improve patient prognosis. Albeit still unappreciated, the dynamic transition of myocardial and tumor fibroblasts into myoFbs and CAFs shares several common triggers and signaling pathways relevant to TGF-β dependent cascade, metabolic reprogramming, mechanotransduction, secretory properties, and epigenetic regulation, which might lay the foundation for future antifibrotic intervention. Therefore, the aim of this review is to highlight emerging analogies in the molecular signature underlying myoFbs and CAFs activation with the purpose of identifying novel prognostic/diagnostic biomarkers, and to elucidate the potential of drug repositioning strategies to mitigate cardiac/cancer fibrosis.
Collapse
Affiliation(s)
| | - Silvana Balzan
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Forini
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
12
|
Chang A, Tam J, Agrawal DK, Liu HH, Varadarajan P, Pai R, Thankam FG. Synthetic Fibroblasts: Terra Incognita in Cardiac Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1235-1241. [PMID: 35535856 DOI: 10.1089/ten.teb.2022.0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease, a major risk factor for myocardial infarction (MI), occurs when the blood vessels supplying oxygen-rich blood to the heart become partially or fully occluded by lipid-rich plaques, resulting in myocardial cell death, remodeling, and scarring. In addition, MI occurs as result of lipid-rich plaque rupture, resulting in thrombosis and vessel occlusion. Cardiac fibroblasts (CFs) and CF-derived growth factors are crucial post-MI in myocardial remodeling. Information regarding the regenerative phenotypes of CFs is scarce; however, regenerative CFs are translationally relevant in myocardial regeneration following MI. The emerging technologies in regenerative cardiology offer cutting-edge translational opportunities, including synthetic cells. In this review, we critically reviewed the current knowledge and the ongoing research efforts on application of synthetic cells for improving cardiac regeneration post-MI. Impact statement Synthetic cells offer tremendous regenerative potential in otherwise deleterious cardiac remodeling postmyocardial infarction. Understanding the role of fibroblasts in cardiac healing and the therapeutic applications of synthetic cells would open a multitude of novel cardiac regenerative approaches. The novel concept of synthetic fibroblasts that emulate native cardiac fibroblasts can provide an effective solution in cardiac healing.
Collapse
Affiliation(s)
- Albert Chang
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Jonathan Tam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Huinan Hannah Liu
- Department of Bioengineering, University of California, Riverside, California, USA
| | - Padmini Varadarajan
- Department of Cardiology, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Ramdas Pai
- Department of Cardiology, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
13
|
Wang R, Guo T, Li J. Mechanisms of Peritoneal Mesothelial Cells in Peritoneal Adhesion. Biomolecules 2022; 12:biom12101498. [PMID: 36291710 PMCID: PMC9599397 DOI: 10.3390/biom12101498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A peritoneal adhesion (PA) is a fibrotic tissue connecting the abdominal or visceral organs to the peritoneum. The formation of PAs can induce a variety of clinical diseases. However, there is currently no effective strategy for the prevention and treatment of PAs. Damage to peritoneal mesothelial cells (PMCs) is believed to cause PAs by promoting inflammation, fibrin deposition, and fibrosis formation. In the early stages of PA formation, PMCs undergo mesothelial–mesenchymal transition and have the ability to produce an extracellular matrix. The PMCs may transdifferentiate into myofibroblasts and accelerate the formation of PAs. Therefore, the aim of this review was to understand the mechanism of action of PMCs in PAs, and to offer a theoretical foundation for the treatment and prevention of PAs.
Collapse
Affiliation(s)
- Ruipeng Wang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Junliang Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
14
|
Matsumoto M, Tsuru H, Suginobe H, Narita J, Ishii R, Hirose M, Hashimoto K, Wang R, Yoshihara C, Ueyama A, Tanaka R, Ozono K, Okajima T, Ishida H. Atomic force microscopy identifies the alteration of rheological properties of the cardiac fibroblasts in idiopathic restrictive cardiomyopathy. PLoS One 2022; 17:e0275296. [PMID: 36174041 PMCID: PMC9522286 DOI: 10.1371/journal.pone.0275296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Restrictive cardiomyopathy (RCM) is a rare disease characterized by increased ventricular stiffness and preserved ventricular contraction. Various sarcomere gene variants are known to cause RCM; however, more than a half of patients do not harbor such pathogenic variants. We recently demonstrated that cardiac fibroblasts (CFs) play important roles in inhibiting the diastolic function of cardiomyocytes via humoral factors and direct cell–cell contact regardless of sarcomere gene mutations. However, the mechanical properties of CFs that are crucial for intercellular communication and the cardiomyocyte microenvironment remain less understood. In this study, we evaluated the rheological properties of CFs derived from pediatric patients with RCM and healthy control CFs via atomic force microscopy. Then, we estimated the cellular modulus scale factor related to the cell stiffness, fluidity, and Newtonian viscosity of single cells based on the single power-law rheology model and analyzed the comprehensive gene expression profiles via RNA-sequencing. RCM-derived CFs showed significantly higher stiffness and viscosity and lower fluidity compared to healthy control CFs. Furthermore, RNA-sequencing revealed that the signaling pathways associated with cytoskeleton elements were affected in RCM CFs; specifically, cytoskeletal actin-associated genes (ACTN1, ACTA2, and PALLD) were highly expressed in RCM CFs, whereas several tubulin genes (TUBB3, TUBB, TUBA1C, and TUBA1B) were down-regulated. These results implies that the signaling pathways associated with cytoskeletal elements alter the rheological properties of RCM CFs, particularly those related to CF–cardiomyocyte interactions, thereby leading to diastolic cardiac dysfunction in RCM.
Collapse
Affiliation(s)
- Mizuki Matsumoto
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hirofumi Tsuru
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Niigata University School of Medicine, Niigata, Japan
| | - Hidehiro Suginobe
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Narita
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryo Ishii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaki Hirose
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhisa Hashimoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Renjie Wang
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chika Yoshihara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuko Ueyama
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryosuke Tanaka
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- * E-mail: (HI); (TO)
| | - Hidekazu Ishida
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- * E-mail: (HI); (TO)
| |
Collapse
|
15
|
Jia Q, Yang R, Mehmood S, Li Y. Epigallocatechin-3-gallate attenuates myocardial fibrosis in diabetic rats by activating autophagy. Exp Biol Med (Maywood) 2022; 247:1591-1600. [PMID: 35833541 PMCID: PMC9554167 DOI: 10.1177/15353702221110646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) possesses anti-fibrotic potential in diverse tissues; however, the molecular mechanisms underlying the impacts of EGCG on diabetes-induced myocardial fibrosis remain unclear. This present study aimed to unravel the anti-fibrotic effects of EGCG on the heart in type 2 diabetic rats and investigate its molecular mechanisms. Rats were randomly assigned to the following four groups: Normal (NOR), diabetic cardiomyopathy (DCM), DCM + 40 mg/kg EGCG, and DCM + 80 mg/kg EGCG groups. After 8 weeks of EGCG treatment, fasting blood glucose, left ventricular hemodynamic indices, heart index, and myocardial injury-related parameters were measured. Hematoxylin and eosin staining and Sirius Red staining were used to evaluate myocardial pathological alterations and collagen accumulation. The contents of myocardial hydroxyproline, collagen-I, collagen-III, transforming growth factor (TGF)-β1, matrix metalloprotease (MMP)-2, and MMP-9 were measured. The gene expression levels of myocardial TGF-β1, MMP-2, and MMP-9 were detected. Autophagic regulators, including adenosine 5'-monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), and autophagic markers, including microtubule-associated protein-1 light chain 3 and Beclin1 were estimated. The results indicated that diabetes significantly decreased cardiac contractile function and aggravated myocardial hypertrophy and injury. Furthermore, diabetes repressed the activation of autophagy in myocardial tissue and promoted cardiac fibrosis. Following ingestion with different doses of EGCG, myocardial contractile dysfunction, hypertrophy and injury were ameliorated; myocardial autophagy was activated, and myocardial fibrosis was alleviated in the EGCG treatment groups. In conclusion, these findings suggested that EGCG could attenuate cardiac fibrosis in type 2 diabetic rats, and its underlying mechanisms associated with activation of autophagy via modulation of the AMPK/mTOR pathway and then repression of the TGF-β/MMPs pathway.
Collapse
Affiliation(s)
- Qiang Jia
- Department of Physiology, Bengbu Medical College, Bengbu 233030, Anhui, China,Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Rui Yang
- School of Life Sciences, Hefei Normal University, Hefei 230601, Anhui, China,Rui Yang.
| | - Shomaila Mehmood
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Li
- Clinical College, Bengbu Medical College, Bengbu 233030, Anhui, China
| |
Collapse
|
16
|
Huang J, Zhang K, Du R, Liu W, Zhang H, Tian T, Wang Y, Wang G, Yin T. The Janus-faced role of Piezo1 in cardiovascular health under mechanical stimulation. Genes Dis 2022. [PMID: 37492728 PMCID: PMC10363580 DOI: 10.1016/j.gendis.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
In recent years, cardiovascular health problems are becoming more and more serious. At the same time, mechanical stimulation closely relates to cardiovascular health. In this context, Piezo1, which is very sensitive to mechanical stimulation, has attracted our attention. Here, we review the critical significance of Piezo1 in mechanical stimulation of endothelial cells, NO production, lipid metabolism, DNA damage protection, the development of new blood vessels and maturation, narrowing of blood vessels, blood pressure regulation, vascular permeability, insulin sensitivity, and maintenance of red blood cell function. Besides, Piezo1 may participate in the occurrence and development of atherosclerosis, diabetes, hypertension, and other cardiovascular diseases. It is worth noting that Piezo1 has dual effects on maintaining cardiovascular health. On the one hand, the function of Piezo1 is necessary to maintain cardiovascular health; on the other hand, under some extreme mechanical stimulation, the overexpression of Piezo1 may bring adverse factors such as inflammation. Therefore, this review discusses the Janus-faced role of Piezo1 in maintaining cardiovascular health and puts forward new ideas to provide references for gene therapy or nanoagents targeting Piezo1.
Collapse
|
17
|
Gao F, Chen Z, Zhou L, Xiao X, Wang L, Liu X, Wang C, Guo Q. Preparation, characterization and in vitro study of bellidifolin nano-micelles. RSC Adv 2022; 12:21982-21989. [PMID: 36043071 PMCID: PMC9364364 DOI: 10.1039/d2ra02779h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
Bellidifolin (BEL), a xanthone compound, has significant therapeutic effectiveness in cardiac diseases such as arrhythmias. However, BEL is limited in clinical applications by its hydrophobicity. In this work, we used BEL as the active pharmaceutical ingredient (API), and polyethylene glycol 15-hydroxy stearate (Kolliphor HS15) as the carrier to prepare BEL nano-micelles by a solvent-volatilization method. According to an analysis by differential scanning calorimetry (DSC), BEL was successfully encapsulated in HS15 as BEL nano-micelles with a 90% encapsulation rate, and particle size was 12.60 ± 0.074 nm in the shape of a sphere and electric potential was −4.76 ± 4.47 mV with good stability and sustained release characteristics. In addition, compared with free drugs, these nano-micelles can increase cellular uptake capacity, inhibit the proliferation of human cardiac fibroblasts, and down-regulate the expression of Smad-2, α-SMA, Collagen I, and Collagen III proteins in myocardial cells to improve myocardial fibrosis. In conclusion, the BEL nano-micelles can provide a new way for the theoretical basis for the clinical application of anti-cardiac fibrosis. Bellidifolin (BEL), a xanthone compound, has significant therapeutic effectiveness in cardiac diseases such as arrhythmias.![]()
Collapse
Affiliation(s)
- Fan Gao
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| | - Ziyue Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine Tianjin 301617 People's Republic of China
| | - Li Zhou
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| | - Xuefeng Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine Tianjin 301617 People's Republic of China
| | - Lin Wang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Tianjin 300301 People's Republic of China
| | - Xingchao Liu
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| | - Chenggang Wang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Tianjin 300301 People's Republic of China
| | - Qiuhong Guo
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Cardiovascular diseases are the leading cause of death worldwide, largely due to the limited regenerative capacity of the adult human heart. In contrast, teleost zebrafish hearts possess natural regeneration capacity by proliferation of pre-existing cardiomyocytes after injury. Hearts of mice can regenerate if injured in a few days after birth, which coincides with the transient capacity for cardiomyocyte proliferation. This review tends to elaborate the roles and mechanisms of Wnt/β-catenin signaling in heart development and regeneration in mammals and non-mammalian vertebrates. RECENT FINDINGS Studies in zebrafish, mice, and human embryonic stem cells demonstrate the binary effect for Wnt/β-catenin signaling during heart development. Both Wnts and Wnt antagonists are induced in multiple cell types during cardiac development and injury repair. In this review, we summarize composites of the Wnt signaling pathway and their different action routes, followed by the discussion of their involvements in cardiac specification, proliferation, and patterning. We provide overviews about canonical and non-canonical Wnt activity during heart homeostasis, remodeling, and regeneration. Wnt/β-catenin signaling exhibits biphasic and antagonistic effects on cardiac specification and differentiation depending on the stage of embryogenesis. Inhibition of Wnt signaling is beneficial for cardiac wound healing and functional recovery after injury. Understanding of the roles and mechanisms of Wnt signaling pathway in injured animal hearts will contribute to the development of potential therapeutics for human diseased hearts.
Collapse
Affiliation(s)
- Dongliang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
19
|
Signaling Pathways Associated with Chronic Wound Progression: A Systems Biology Approach. Antioxidants (Basel) 2022; 11:antiox11081506. [PMID: 36009225 PMCID: PMC9404828 DOI: 10.3390/antiox11081506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Previously we have shown that several oxidative stress-driven pathways in cutaneous chronic wounds are dysregulated in the first 48 h post-wounding. Here, we performed an RNASeq analysis of tissues collected up to day 20 after wounding, when we have determined full chronicity is established. Weighted Gene Correlation Network Analysis was performed in R segregating the genes into 14 modules. Genes in the modules significantly correlated (p < 0.05) to early and full chronicity were used for pathway analysis using pathfindR. In early chronicity, we observed enrichment of several pathways. Dysregulation of Ephrin/Eph signaling leads to growth cone collapse and impairs neuronal regeneration. Adra2b and Adra2a overexpression in early and full chronicity, respectively, decreased cAMP production and impaired re-epithelialization and granulation tissue formation. Several pathways involving a Smooth-muscle-actin (Acta1) were also enriched with Acta1 overexpression contributing to impaired angiogenesis. During full chronicity, the ‘JAK-STAT’ pathway was suppressed undermining host defenses against infection. Wnt signaling was also suppressed, impairing re-epithelialization and granulation tissue formation. Biomarkers of cancer such as overexpression of SDC1 and constitutive activation of ErbB2/HER2 were also identified. In conclusion, we show that during progression to full chronicity, numerous signaling pathways are dysregulated, including some related to carcinogenesis, suggesting that chronic wounds behave much like cancer. Experimental verification in vivo could identify candidates for treatment of chronic wounds.
Collapse
|
20
|
Firouzi F, Echeagaray O, Esquer C, Gude NA, Sussman MA. 'Youthful' phenotype of c-Kit + cardiac fibroblasts. Cell Mol Life Sci 2022; 79:424. [PMID: 35841449 PMCID: PMC10544823 DOI: 10.1007/s00018-022-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cardiac fibroblast (CF) population heterogeneity and plasticity present a challenge for categorization of biological and functional properties. Distinct molecular markers and associated signaling pathways provide valuable insight for CF biology and interventional strategies to influence injury response and aging-associated remodeling. Receptor tyrosine kinase c-Kit mediates cell survival, proliferation, migration, and is activated by pathological injury. However, the biological significance of c-Kit within CF population has not been addressed. An inducible reporter mouse detects c-Kit promoter activation with Enhanced Green Fluorescent Protein (EGFP) expression in cardiac cells. Coincidence of EGFP and c-Kit with the DDR2 fibroblast marker was confirmed using flow cytometry and immunohistochemistry. Subsequently, CFs expressing DDR2 with or without c-Kit was isolated and characterized. A subset of DDR2+ CFs also express c-Kit with coincidence in ~ 8% of total cardiac interstitial cells (CICs). Aging is associated with decreased number of c-Kit expressing DDR2+ CFs, whereas pathological injury induces c-Kit and DDR2 as well as the frequency of coincident expression in CICs. scRNA-Seq profiling reveals the transcriptome of c-Kit expressing CFs as cells with transitional phenotype. Cultured cardiac DDR2+ fibroblasts that are c-Kit+ exhibit morphological and functional characteristics consistent with youthful phenotypes compared to c-Kit- cells. Mechanistically, c-Kit expression correlates with signaling implicated in proliferation and cell migration, including phospho-ERK and pro-caspase 3. The phenotype of c-kit+ on DDR2+ CFs correlates with multiple characteristics of 'youthful' cells. To our knowledge, this represents the first evaluation of c-Kit biology within DDR2+ CF population and provides a fundamental basis for future studies to influence myocardial biology, response to pathological injury and physiological aging.
Collapse
Affiliation(s)
- Fareheh Firouzi
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Oscar Echeagaray
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Carolina Esquer
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Natalie A Gude
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mark A Sussman
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
21
|
Huang X, Lin X, Wang L, Xie Y, Que Y, Li S, Hu P, Tong X. Substitution of SERCA2 Cys 674 aggravates cardiac fibrosis by promoting the transformation of cardiac fibroblasts to cardiac myofibroblasts. Biochem Pharmacol 2022; 203:115164. [PMID: 35809651 DOI: 10.1016/j.bcp.2022.115164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is vital to maintain intracellular calcium homeostasis, and its redox Cys674 (C674) is the key to regulating activity. Our goal was to investigate whether the redox state of SERCA2 C674 is critical for cardiac fibrosis and the mechanisms involved. Heterozygous SERCA2 C674S knock-in (SKI) mice, in which half of C674 was substituted by serine, were used to mimic the partial loss of the reactive C674 thiol in pathological conditions. In cardiac fibroblasts, the substitution of C674 thiol increased Ca2+ levels in cytoplasm and mitochondria, and intracellular ROS levels, and activated calcineurin/nuclear factor of activated T-lymphocytes (NFAT) pathway, increased the protein expression of profibrotic factors TGF beta 1 (TGF-β1), alpha smooth muscle actin, collagen I and collagen III, and promoted the transformation of cardiac fibroblasts to cardiac myofibroblasts, which could be reversed by calcineurin/NFAT inhibitor, SERCA2 agonist, or ROS scavenger. Activation of SERCA2 or scavenging ROS is beneficial to alleviate cardiac fibrosis caused by the substitution of C674. In conclusion, the partial loss of the reactive C674 thiol in the SERCA2 exacerbates cardiac fibrosis by activating the calcineurin/NFAT/TGF-β1 pathway to promote the transformation of cardiac fibroblasts to cardiac myofibroblasts, which highlights the importance of C674 redox state in maintaining the homeostasis of cardiac fibroblasts. SERCA2 is a potential therapeutic target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Xiaoyang Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaojuan Lin
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Langtao Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yufei Xie
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yumei Que
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
22
|
Wang Y, Yu M, Hao K, Lei W, Tang M, Hu S. Cardiomyocyte Maturation-the Road is not Obstructed. Stem Cell Rev Rep 2022; 18:2966-2981. [PMID: 35788883 DOI: 10.1007/s12015-022-10407-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent one of the most promising ways to treat cardiovascular diseases. High-purity cardiomyocytes (CM) from different cell sources could be obtained at present. However, the immature nature of these cardiomyocytes hinders its further clinical application. From immature to mature state, it involves structural, functional, and metabolic changes in cardiomyocytes. Generally, two types of culturing (2D and 3D) systems have been reported to induce cardiomyocyte maturation. 2D culture mainly achieves the maturation of cardiomyocytes through long-term culture, co-culture, supplementation of small molecule compounds, and the application of biophysical cues. The combined use of biomaterial's surface topography and biophysical cues also facilitates the maturation of cardiomyocytes. Cardiomyocyte maturation is a complex process involving many signaling pathways, and current methods fail to fully reproduce this process. Therefore, analyzing the signaling pathway network related to the maturation and producing hPSC-CMs with adult-like phenotype is a challenge. In this review, we summarized the structural and functional differences between hPSC-CMs and mature cardiomyocytes, and introduced various methods to induce cardiomyocyte maturation.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Kaili Hao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Mingliang Tang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
23
|
Omatsu-Kanbe M, Fukunaga R, Mi X, Matsuura H. Atypically Shaped Cardiomyocytes (ACMs): The Identification, Characterization and New Insights into a Subpopulation of Cardiomyocytes. Biomolecules 2022; 12:biom12070896. [PMID: 35883452 PMCID: PMC9313223 DOI: 10.3390/biom12070896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
In the adult mammalian heart, no data have yet shown the existence of cardiomyocyte-differentiable stem cells that can be used to practically repair the injured myocardium. Atypically shaped cardiomyocytes (ACMs) are found in cultures of the cardiomyocyte-removed fraction obtained from cardiac ventricles from neonatal to aged mice. ACMs are thought to be a subpopulation of cardiomyocytes or immature cardiomyocytes, most closely resembling cardiomyocytes due to their spontaneous beating, well-organized sarcomere and the expression of cardiac-specific proteins, including some fetal cardiac gene proteins. In this review, we focus on the characteristics of ACMs compared with ventricular myocytes and discuss whether these cells can be substitutes for damaged cardiomyocytes. ACMs reside in the interstitial spaces among ventricular myocytes and survive under severely hypoxic conditions fatal to ventricular myocytes. ACMs have not been observed to divide or proliferate, similar to cardiomyocytes, but they maintain their ability to fuse with each other. Thus, it is worthwhile to understand the role of ACMs and especially how these cells perform cell fusion or function independently in vivo. It may aid in the development of new approaches to cell therapy to protect the injured heart or the clarification of the pathogenesis underlying arrhythmia in the injured heart.
Collapse
|
24
|
Shang M, Hu Y, Cao H, Lin Q, Yi N, Zhang J, Gu Y, Yang Y, He S, Lu M, Peng L, Li L. Concordant and Heterogeneity of Single-Cell Transcriptome in Cardiac Development of Human and Mouse. Front Genet 2022; 13:892766. [PMID: 35832197 PMCID: PMC9271823 DOI: 10.3389/fgene.2022.892766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
Normal heart development is vital for maintaining its function, and the development process is involved in complex interactions between different cell lineages. How mammalian hearts develop differently is still not fully understood. In this study, we identified several major types of cardiac cells, including cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), ECs/FBs, epicardial cells (EPs), and immune cells (macrophage/monocyte cluster, MACs/MONOs), based on single-cell transcriptome data from embryonic hearts of both human and mouse. Then, species-shared and species-specific marker genes were determined in the same cell type between the two species, and the genes with consistent and different expression patterns were also selected by constructing the developmental trajectories. Through a comparison of the development stage similarity of CMs, FBs, and ECs/FBs between humans and mice, it is revealed that CMs at e9.5 and e10.5 of mice are most similar to those of humans at 7 W and 9 W, respectively. Mouse FBs at e10.5, e13.5, and e14.5 are correspondingly more like the same human cells at 6, 7, and 9 W. Moreover, the e9.5-ECs/FBs of mice are most similar to that of humans at 10W. These results provide a resource for understudying cardiac cell types and the crucial markers able to trace developmental trajectories among the species, which is beneficial for finding suitable mouse models to detect human cardiac physiology and related diseases.
Collapse
Affiliation(s)
- Mengyue Shang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Huaming Cao
- Department of Cardiology, Shanghai Shibei Hospital, Shanghai, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Na Yi
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Junfang Zhang
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yanqiong Gu
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yujie Yang
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Siyu He
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Min Lu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Luying Peng, ; Li Li,
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Luying Peng, ; Li Li,
| |
Collapse
|
25
|
Younes R, LeBlanc CA, Hiram R. Evidence of Failed Resolution Mechanisms in Arrhythmogenic Inflammation, Fibrosis and Right Heart Disease. Biomolecules 2022; 12:biom12050720. [PMID: 35625647 PMCID: PMC9138906 DOI: 10.3390/biom12050720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a complex program of active processes characterized by the well-orchestrated succession of an initiation and a resolution phase aiming to promote homeostasis. When the resolution of inflammation fails, the tissue undergoes an unresolved inflammatory status which, if it remains uncontrolled, can lead to chronic inflammatory disorders due to aggravation of structural damages, development of a fibrous area, and loss of function. Various human conditions show a typical unresolved inflammatory profile. Inflammatory diseases include cancer, neurodegenerative disease, asthma, right heart disease, atherosclerosis, myocardial infarction, or atrial fibrillation. New evidence has started to emerge on the role, including pro-resolution involvement of chemical mediators in the acute phase of inflammation. Although flourishing knowledge is available about the role of specialized pro-resolving mediators in neurodegenerative diseases, atherosclerosis, obesity, or hepatic fibrosis, little is known about their efficacy to combat inflammation-associated arrhythmogenic cardiac disorders. It has been shown that resolvins, including RvD1, RvE1, or Mar1, are bioactive mediators of resolution. Resolvins can stop neutrophil activation and infiltration, stimulate monocytes polarization into anti-inflammatory-M2-macrophages, and activate macrophage phagocytosis of inflammation-debris and neutrophils to promote efferocytosis and clearance. This review aims to discuss the paradigm of failed-resolution mechanisms (FRM) potentially promoting arrhythmogenicity in right heart disease-induced inflammatory status.
Collapse
Affiliation(s)
- Rim Younes
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Charles-Alexandre LeBlanc
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Roddy Hiram
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-376-3330 (ext. 5015)
| |
Collapse
|
26
|
Varzideh F, Kansakar U, Donkor K, Wilson S, Jankauskas SS, Mone P, Wang X, Lombardi A, Santulli G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front Cardiovasc Med 2022; 9:863238. [PMID: 35498051 PMCID: PMC9043126 DOI: 10.3389/fcvm.2022.863238] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 01/12/2023] Open
Abstract
After an ischemic injury, the heart undergoes a complex process of structural and functional remodeling that involves several steps, including inflammatory and fibrotic responses. In this review, we are focusing on the contribution of microRNAs in the regulation of inflammation and fibrosis after myocardial infarction. We summarize the most updated studies exploring the interactions between microRNAs and key regulators of inflammation and fibroblast activation and we discuss the recent discoveries, including clinical applications, in these rapidly advancing fields.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Urna Kansakar
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Kwame Donkor
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Scott Wilson
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Stanislovas S. Jankauskas
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Pasquale Mone
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Xujun Wang
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
- *Correspondence: Gaetano Santulli,
| |
Collapse
|
27
|
Yu K, Zhou L, Wang Y, Yu C, Wang Z, Liu H, Wei H, Han L, Cheng J, Wang F, Wang DW, Zhao C. Mechanisms and Therapeutic Strategies of Viral Myocarditis Targeting Autophagy. Front Pharmacol 2022; 13:843103. [PMID: 35479306 PMCID: PMC9035591 DOI: 10.3389/fphar.2022.843103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Viral myocarditis is caused by infection with viruses or bacteria, including coxsackievirus B3 (CVB3), and is characterized by acute or chronic inflammatory responses in the heart. The mortality associated with severe viral myocarditis is considerable. In some patients, viral myocarditis may develop into dilated cardiomyopathy or heart failure. Autophagy is involved in a wide range of physiological processes, including viral infection and replication. In the present review, we focus on the responses of cardiac tissues, cardiomyocytes, and cardiac fibroblasts to CVB3 infection. Subsequently, the effects of altered autophagy on the development of viral myocarditis are discussed. Finally, this review also examined and assessed the use of several popular autophagy modulating drugs, such as metformin, resveratrol, rapamycin, wortmannin, and 3-methyladenine, as alternative treatment strategies for viral myocarditis.
Collapse
Affiliation(s)
- Kun Yu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhou
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinhui Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jia Cheng
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxia Zhao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chunxia Zhao,
| |
Collapse
|
28
|
5,8-Dihydroxy-4 , 7-dimethoxyflavone Attenuates TNF-α-Induced Expression of Vascular Cell Adhesion Molecule-1 through EGFR/PKCα/PI3K/Akt/Sp1-Dependent Induction of Heme Oxygenase-1 in Human Cardiac Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1372958. [PMID: 35281466 PMCID: PMC8916851 DOI: 10.1155/2022/1372958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Recently, we found that 5,8-dihydroxy-4
,7-dimethoxyflavone (DDF) upregulated the expression of heme oxygenase (HO)-1 via p38 mitogen-activated protein kinase/nuclear factor-erythroid factor 2-related factor 2 (MAPK/Nrf2) pathway in human cardiac fibroblasts (HCFs). However, the alternative processes by which DDF induces the upregulation of HO-1 expression are unknown. Activation of epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and protein kinase C (PKC)α may initiate specificity protein (Sp)1 activity, which has been reported to induce expression of antioxidant molecules. Thus, we explored whether these components are engaged in DDF-induced HO-1 upregulation in HCFs. Western blotting, promoter-reporter analyses, and real-time polymerase chain reactions were adopted to measure HO-1 and vascular cell adhesion molecule (VCAM)-1 expressions in HCFs. Respective small interfering (si)RNAs and pharmacological inhibitors were employed to investigate the signaling components engaged in DDF-induced HO-1 upregulation. The chromatin immunoprecipitation assay was conducted to detect the binding interaction of Sp1 and antioxidant response elements (ARE) on the promoter of HO-1. An adhesion assay of THP-1 monocyte was undertaken to examine the functional effect of HO-1 on tumor necrosis factor (TNF)-α-induced VCAM-1 expression. DDF stimulated the EGFR/PKCα/PI3K/Akt pathway leading to activation of Sp1 in HCFs. The roles of these protein kinases in HO-1 induction were ensured by transfection with their respective siRNAs. Chromatin immunoprecipitation assays revealed the interaction between Sp1 and the binding site of proximal ARE on the HO-1 promoter, which was abolished by glutathione, AG1478, Gö6976, LY294002, or mithramycin A. HO-1 expression enhanced by DDF abolished the monocyte adherence to HCFs and VCAM-1 expression induced by TNF-α. Pretreatment with an inhibitor of HO-1: zinc protoporphyrin IX reversed these inhibitory effects of HO-1. We concluded that DDF-induced HO-1 expression was mediated via an EGFR/PKCα/PI3K/Akt-dependent Sp1 pathway and attenuated the responses of inflammation in HCFs.
Collapse
|
29
|
Hong JH, Zhang HG. Transcription Factors Involved in the Development and Prognosis of Cardiac Remodeling. Front Pharmacol 2022; 13:828549. [PMID: 35185581 PMCID: PMC8849252 DOI: 10.3389/fphar.2022.828549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
To compensate increasing workload, heart must work harder with structural changes, indicated by increasing size and changing shape, causing cardiac remodeling. However, pathological and unlimited compensated cardiac remodeling will ultimately lead to decompensation and heart failure. In the past decade, numerous studies have explored many signaling pathways involved in cardiac remodeling, but the complete mechanism of cardiac remodeling is still unrecognized, which hinders effective treatment and drug development. As gene transcriptional regulators, transcription factors control multiple cellular activities and play a critical role in cardiac remodeling. This review summarizes the regulation of fetal gene reprogramming, energy metabolism, apoptosis, autophagy in cardiomyocytes and myofibroblast activation of cardiac fibroblasts by transcription factors, with an emphasis on their potential roles in the development and prognosis of cardiac remodeling.
Collapse
|
30
|
Park J, Choi JK, Choi DH, Lee KE, Park YS. Optimization of skeletal muscle-derived fibroblast isolation and purification without the preplating method. Cell Tissue Bank 2022; 23:557-568. [DOI: 10.1007/s10561-021-09989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
|
31
|
Edlinger C, Paar V, Kheder SH, Krizanic F, Lalou E, Boxhammer E, Butter C, Dworok V, Bannehr M, Hoppe UC, Kopp K, Lichtenauer M. Endothelialization and Inflammatory Reactions After Intracardiac Device Implantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:1-22. [DOI: 10.1007/5584_2022_712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Wen ZJ, Xin H, Wang YC, Liu HW, Gao YY, Zhang YF. Emerging roles of circRNAs in the pathological process of myocardial infarction. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:828-848. [PMID: 34729251 PMCID: PMC8536508 DOI: 10.1016/j.omtn.2021.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is defined as cardiomyocyte death in a clinical context consistent with ischemic insult. MI remains one of the leading causes of morbidity and mortality worldwide. Although there are a number of effective clinical methods for the diagnosis and treatment of MI, further investigation of novel biomarkers and molecular therapeutic targets is required. Circular RNAs (circRNAs), novel non-coding RNAs, have been reported to function mainly by acting as microRNA (miRNA) sponges or binding to RNA-binding proteins (RBPs). The circRNA-miRNA-mRNA (protein) regulatory pathway regulates gene expression and affects the pathological mechanisms of various diseases. Undoubtedly, a more comprehensive understanding of the relationship between MI and circRNA will lay the foundation for the development of circRNA-based diagnostic and therapeutic strategies for MI. Therefore, this review summarizes the pathophysiological process of MI and various approaches to measure circRNA levels in MI patients, tissues, and cells; highlights the significance of circRNAs in the regulation MI pathogenesis and development; and provides potential clinical insight for the diagnosis, prognosis, and treatment of MI.
Collapse
Affiliation(s)
- Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong-Chen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hao-Wen Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan-Yan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
33
|
Hopes and Hurdles of Employing Mesenchymal Stromal Cells in the Treatment of Cardiac Fibrosis. Int J Mol Sci 2021; 22:ijms222313000. [PMID: 34884805 PMCID: PMC8657815 DOI: 10.3390/ijms222313000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/04/2022] Open
Abstract
Excessive cardiac fibrosis plays a crucial role in almost all types of heart disease. Generally, cardiac fibrosis is a scarring process triggered in response to stress, injury, or aging and is characterized by the accumulation of activated myofibroblasts that deposit high levels of extracellular matrix proteins in the myocardium. While it is beneficial for cardiac repair in the short term, it can also result in pathological remodeling, tissue stiffening, and cardiac dysfunction, contributing to the progression of heart failure, arrhythmia, and sudden cardiac death. Despite its high prevalence, there is a lack of effective and safe therapies that specifically target myofibroblasts to inhibit or even reverse pathological cardiac fibrosis. In the past few decades, cell therapy has been under continuous evaluation as a potential treatment strategy, and several studies have shown that transplantation of mesenchymal stromal cells (MSCs) can reduce cardiac fibrosis and improve heart function. Mechanistically, it is believed that the heart benefits from MSC therapy by stimulating innate anti-fibrotic and regenerative reactions. The mechanisms of action include paracrine signaling and cell-to-cell interactions. In this review, we provide an overview of the anti-fibrotic properties of MSCs and approaches to enhance them and discuss future directions of MSCs for the treatment of cardiac fibrosis.
Collapse
|
34
|
Hobby ARH, Berretta RM, Eaton DM, Kubo H, Feldsott E, Yang Y, Headrick AL, Koch KA, Rubino M, Kurian J, Khan M, Tan Y, Mohsin S, Gallucci S, McKinsey TA, Houser SR. Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. Am J Physiol Heart Circ Physiol 2021; 321:H684-H701. [PMID: 34415185 PMCID: PMC8794230 DOI: 10.1152/ajpheart.00304.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Acute damage to the heart, as in the case of myocardial infarction (MI), triggers a robust inflammatory response to the sterile injury that is part of a complex and highly organized wound-healing process. Cortical bone stem cell (CBSC) therapy after MI has been shown to reduce adverse structural and functional remodeling of the heart after MI in both mouse and swine models. The basis for these CBSC treatment effects on wound healing are unknown. The present experiments show that CBSCs secrete paracrine factors known to have immunomodulatory properties, most notably macrophage colony-stimulating factor (M-CSF) and transforming growth factor-β, but not IL-4. CBSC therapy increased the number of galectin-3+ macrophages, CD4+ T cells, and fibroblasts in the heart while decreasing apoptosis in an in vivo swine model of MI. Macrophages treated with CBSC medium in vitro polarized to a proreparative phenotype are characterized by increased CD206 expression, increased efferocytic ability, increased IL-10, TGF-β, and IL-1RA secretion, and increased mitochondrial respiration. Next generation sequencing revealed a transcriptome significantly different from M2a or M2c macrophage phenotypes. Paracrine factors from CBSC-treated macrophages increased proliferation, decreased α-smooth muscle actin expression, and decreased contraction by fibroblasts in vitro. These data support the idea that CBSCs are modulating the immune response to MI to favor cardiac repair through a unique macrophage polarization that ultimately reduces cell death and alters fibroblast populations that may result in smaller scar size and preserved cardiac geometry and function.NEW & NOTEWORTHY Cortical bone stem cell (CBSC) therapy after myocardial infarction alters the inflammatory response to cardiac injury. We found that cortical bone stem cell therapy induces a unique macrophage phenotype in vitro and can modulate macrophage/fibroblast cross talk.
Collapse
Affiliation(s)
- Alexander R H Hobby
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Remus M Berretta
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Deborah M Eaton
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Hajime Kubo
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Eric Feldsott
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Yijun Yang
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Alaina L Headrick
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Keith A Koch
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marcello Rubino
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Justin Kurian
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Mohsin Khan
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Genomic Facility, Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sadia Mohsin
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pharmacology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Stefania Gallucci
- Department of Microbiology & Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Steven R Houser
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Napiwocki B, Stempien A, Lang D, Kruepke R, Kim G, Zhang J, Eckhardt L, Glukhov A, Kamp T, Crone W. Micropattern platform promotes extracellular matrix remodeling by human PSC-derived cardiac fibroblasts and enhances contractility of co-cultured cardiomyocytes. Physiol Rep 2021; 9:e15045. [PMID: 34617673 PMCID: PMC8496154 DOI: 10.14814/phy2.15045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023] Open
Abstract
In native heart tissue, cardiac fibroblasts provide the structural framework of extracellular matrix (ECM) while also influencing the electrical and mechanical properties of cardiomyocytes. Recent advances in the field of stem cell differentiation have led to the availability of human pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) in addition to cardiomyocytes (iPSC-CMs). Here we use a novel 2D in vitro micropatterned platform that provides control over ECM geometry and substrate stiffness. When cultured alone on soft micropatterned substrates, iPSC-CFs are confined to the micropatterned features and remodel the ECM into anisotropic fibers. Similar remodeling and ECM production occurs when cultured with iPSC-CMs in a co-culture model. In addition to modifications in the ECM, our results show that iPSC-CFs influence iPSC-CM function with accelerated Ca2+ transient rise-up time and greater contractile strains in the co-culture conditions compared to when iPSC-CMs are cultured alone. These combined observations highlight the important role cardiac fibroblasts play in vivo and the need for co-culture models like the one presented here to provide more representative in vitro cardiac constructs.
Collapse
Affiliation(s)
- B.N. Napiwocki
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - A. Stempien
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - D. Lang
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - R.A. Kruepke
- Engineering Mechanics ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - G. Kim
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - J. Zhang
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - L.L. Eckhardt
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - A.V. Glukhov
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - T.J. Kamp
- Department of MedicineDivision of Cardiovascular MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Cell and Regenerative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - W.C. Crone
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Engineering Mechanics ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Engineering PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
36
|
Non-Viral Gene Delivery Systems for Treatment of Myocardial Infarction: Targeting Strategies and Cardiac Cell Modulation. Pharmaceutics 2021; 13:pharmaceutics13091520. [PMID: 34575595 PMCID: PMC8465433 DOI: 10.3390/pharmaceutics13091520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality worldwide. Conventional therapies involving surgery or pharmacological strategies have shown limited therapeutic effects due to a lack of cardiac tissue repair. Gene therapy has opened an avenue for the treatment of cardiac diseases through manipulating the underlying gene mechanics. Several gene therapies for cardiac diseases have been assessed in clinical trials, while the clinical translation greatly depends on the delivery technologies. Non-viral vectors are attracting much attention due to their safety and facile production compared to viral vectors. In this review, we discuss the recent progress of non-viral gene therapies for the treatment of cardiovascular diseases, with a particular focus on myocardial infarction (MI). Through a summary of delivery strategies with which to target cardiac tissue and different cardiac cells for MI treatment, this review aims to inspire new insights into the design/exploitation of non-viral delivery systems for gene cargos to promote cardiac repair/regeneration.
Collapse
|
37
|
Laser Technology for the Formation of Bioelectronic Nanocomposites Based on Single-Walled Carbon Nanotubes and Proteins with Different Structures, Electrical Conductivity and Biocompatibility. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A laser technology for creating nanocomposites from alternating layers of albumin/collagen proteins with two types of single-walled carbon nanotubes (SWCNT) at concentrations of 0.001 and 0.01 wt.% was proposed. For this purpose, a setup with a diode laser (810 nm) and feedback system for controlling the temperature of the area affected by the radiation was developed. Raman spectroscopy was used to determine a decrease in the defectiveness of SWCNT with an increase in their concentration in the nanocomposite due to the formation of branched 3D networks with covalent bonds between nanotubes. It was revealed that adhesion of proteins to branched 3D networks from SWCNT occurred. The specific electrical conductivity of nanocomposites based on large SWCNT nanotubes was 3.2 and 4.3 S/m compared to that for nanocomposites based on small SWCNT with the same concentrations—1.1 and 1.8 S/m. An increase in the concentration and size of nanotubes provides higher porosity of nanocomposites. For small SWCNT-based nanocomposites, a significant number of mesopores up to 50 nm in size and the largest specific surface area and specific pore volume were found. Nanocomposites with small SWCNT (0.001 wt.%) provided the best cardiac fibroblast viability. Such technology can be potentially used to create bioelectronic components or scaffolds for heart tissue engineering.
Collapse
|
38
|
Mannino G, Russo C, Maugeri G, Musumeci G, Vicario N, Tibullo D, Giuffrida R, Parenti R, Lo Furno D. Adult stem cell niches for tissue homeostasis. J Cell Physiol 2021; 237:239-257. [PMID: 34435361 PMCID: PMC9291197 DOI: 10.1002/jcp.30562] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
Adult stem cells are fundamental to maintain tissue homeostasis, growth, and regeneration. They reside in specialized environments called niches. Following activating signals, they proliferate and differentiate into functional cells that are able to preserve tissue physiology, either to guarantee normal turnover or to counteract tissue damage caused by injury or disease. Multiple interactions occur within the niche between stem cell‐intrinsic factors, supporting cells, the extracellular matrix, and signaling pathways. Altogether, these interactions govern cell fate, preserving the stem cell pool, and regulating stem cell proliferation and differentiation. Based on their response to body needs, tissues can be largely classified into three main categories: tissues that even in normal conditions are characterized by an impressive turnover to replace rapidly exhausting cells (blood, epidermis, or intestinal epithelium); tissues that normally require only a basal cell replacement, though able to efficiently respond to increased tissue needs, injury, or disease (skeletal muscle); tissues that are equipped with less powerful stem cell niches, whose repairing ability is not able to overcome severe damage (heart or nervous tissue). The purpose of this review is to describe the main characteristics of stem cell niches in these different tissues, highlighting the various components influencing stem cell activity. Although much has been done, more work is needed to further increase our knowledge of niche interactions. This would be important not only to shed light on this fundamental chapter of human physiology but also to help the development of cell‐based strategies for clinical therapeutic applications, especially when other approaches fail.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
39
|
Yeganeh A, Alibhai FJ, Tobin SW, Lim F, Wu J, Li S, Weisel RD, Li RK. Age-related defects in autophagy alter the secretion of paracrine factors from bone marrow mononuclear cells. Aging (Albany NY) 2021; 13:14687-14708. [PMID: 34088884 PMCID: PMC8221303 DOI: 10.18632/aging.203127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023]
Abstract
Bone marrow mononuclear cell therapy improves cardiac repair after myocardial infarction (MI), in-part through signaling to resident cardiac cells, such as fibroblasts, which regulate scar formation. The efficacy of cell therapy declines with age, as aging of both donor and recipient cells decreases repair responses. Autophagy regulates the microenvironment by both extracellular vesicle (EV)-dependent and independent secretion pathways. We hypothesized that age-related autophagy changes in bone marrow cells (BMCs) alter paracrine signaling, contributing to lower cell therapy efficacy. Here, we demonstrate that young Sca-1+ BMCs exhibited a higher LC3II/LC3I ratio compared to old Sca-1+ BMCs, which was accentuated when BMCs were cultured under hypoxia. To examine the effect on paracrine signaling, old cardiac fibroblasts were cultured with conditioned medium (CM) from young and old Sca-1+ BMCs. Young, but not old CM, enhanced fibroblast proliferation, migration, and differentiation, plus reduced senescence. These beneficial effects were lost when autophagy or EV secretion in BMCs was blocked pharmacologically, or by siRNA knockdown of Atg7. Therefore, both EV-dependent and -independent paracrine signaling from young BMCs is responsible for paracrine stimulation of old cardiac fibroblasts. In vivo, bone marrow chimerism of old mice with young BMCs increased the number of LC3b+ cells in the heart compared to old mice reconstituted with old BMCs. These data suggest that the deterioration of autophagy with aging negatively impacts the paracrine effects of BMCs, and provide mechanistic insight into the age-related decline in cell therapy efficacy that could be targeted to improve the function of old donor cells.
Collapse
Affiliation(s)
- Azadeh Yeganeh
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Faisal J. Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Stephanie W. Tobin
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Fievel Lim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Shuhong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Richard D. Weisel
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Driscoll K, Cruz AD, Butcher JT. Inflammatory and Biomechanical Drivers of Endothelial-Interstitial Interactions in Calcific Aortic Valve Disease. Circ Res 2021; 128:1344-1370. [PMID: 33914601 DOI: 10.1161/circresaha.121.318011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcific aortic valve disease is dramatically increasing in global burden, yet no therapy exists outside of prosthetic replacement. The increasing proportion of younger and more active patients mandates alternative therapies. Studies suggest a window of opportunity for biologically based diagnostics and therapeutics to alleviate or delay calcific aortic valve disease progression. Advancement, however, has been hampered by limited understanding of the complex mechanisms driving calcific aortic valve disease initiation and progression towards clinically relevant interventions.
Collapse
Affiliation(s)
| | - Alexander D Cruz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca NY
| | | |
Collapse
|
41
|
Tsuru H, Ishida H, Narita J, Ishii R, Suginobe H, Ishii Y, Wang R, Kogaki S, Taira M, Ueno T, Miyashita Y, Kioka H, Asano Y, Sawa Y, Ozono K. Cardiac Fibroblasts Play Pathogenic Roles in Idiopathic Restrictive Cardiomyopathy. Circ J 2021; 85:677-686. [PMID: 33583869 DOI: 10.1253/circj.cj-20-1008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) is characterized by impaired ventricular relaxation. Although several mutations were reported in some patients, no mutations were identified in cardiomyocyte expressing genes of other patients, indicating that pathological mechanisms underlying RCM could not be determined by cardiomyocytes only. Cardiac fibroblasts (CFs) are a major cell population in the heart; however, the pathological roles of CFs in cardiomyopathy are not fully understood. METHODS AND RESULTS This study established 4 primary culture lines of CFs from RCM patients and analyzed their cellular physiology, the effects on the contraction and relaxation ability of healthy cardiomyocytes under co-culture with CFs, and RNA sequencing. Three of four patients hadTNNI3mutations. There were no significant alterations in cell proliferation, apoptosis, migration, activation, and attachment. However, when CFs from RCM patients were co-cultured with healthy cardiomyocytes, the relaxation velocity of cardiomyocytes was significantly impaired both under direct and indirect co-culture conditions. RNA sequencing revealed that gene expression profiles of CFs in RCM were clearly distinct from healthy CFs. The differential expression gene analysis identified that several extracellular matrix components and cytokine expressions were dysregulated in CFs from RCM patients. CONCLUSIONS The comprehensive gene expression patterns were altered in RCM-derived CFs, which deteriorated the relaxation ability of cardiomyocytes. The specific changes in extracellular matrix composition and cytokine secretion from CFs might affect pathological behavior of cardiomyocytes in RCM.
Collapse
Affiliation(s)
- Hirofumi Tsuru
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Hidekazu Ishida
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Jun Narita
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Ryo Ishii
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Hidehiro Suginobe
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Yoichiro Ishii
- Department of Pediatric Cardiology, Osaka Women's and Children's Hospital
| | - Renjie Wang
- Department of Pediatrics, Osaka University Graduate School of Medicine
| | - Shigetoyo Kogaki
- Department of Pediatrics, Osaka University Graduate School of Medicine
- Department of Pediatrics and Neonatology, Osaka General Medical Center
| | - Masaki Taira
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yohei Miyashita
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Hidetaka Kioka
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Yoshihiro Asano
- Department of Cardiology, Osaka University Graduate School of Medicine
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine
| |
Collapse
|
42
|
Godbout E, Son DO, Hume S, Boo S, Sarrazy V, Clément S, Kapus A, Wehrle-Haller B, Bruckner-Tuderman L, Has C, Hinz B. Kindlin-2 Mediates Mechanical Activation of Cardiac Myofibroblasts. Cells 2020; 9:cells9122702. [PMID: 33348602 PMCID: PMC7766948 DOI: 10.3390/cells9122702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
We identify the focal adhesion protein kindlin-2 as player in a novel mechanotransduction pathway that controls profibrotic cardiac fibroblast to myofibroblast activation. Kindlin-2 is co-upregulated with the myofibroblast marker α-smooth muscle actin (α-SMA) in fibrotic rat hearts and in human cardiac fibroblasts exposed to fibrosis-stiff culture substrates and pro-fibrotic TGF-β1. Stressing fibroblasts using ferromagnetic microbeads, stretchable silicone membranes, and cell contraction agonists all result in kindlin-2 translocation to the nucleus. Overexpression of full-length kindlin-2 but not of kindlin-2 missing a putative nuclear localization sequence (∆NLS kindlin-2) results in increased α-SMA promoter activity. Downregulating kindlin-2 with siRNA leads to decreased myofibroblast contraction and reduced α-SMA expression, which is dependent on CC(A/T)-rich GG(CArG) box elements in the α-SMA promoter. Lost myofibroblast features under kindlin-2 knockdown are rescued with wild-type but not ∆NLS kindlin-2, indicating that myofibroblast control by kindlin-2 requires its nuclear translocation. Because kindlin-2 can act as a mechanotransducer regulating the transcription of α-SMA, it is a potential target to interfere with myofibroblast activation in tissue fibrosis.
Collapse
Affiliation(s)
- Elena Godbout
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Stephanie Hume
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Vincent Sarrazy
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Sophie Clément
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, 1211 Geneva 4, Switzerland;
| | - Andras Kapus
- Keenan Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, 1211 Geneva 4, Switzerland;
| | - Leena Bruckner-Tuderman
- Medical Center and Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (L.B.-T.); (C.H.)
| | - Cristina Has
- Medical Center and Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (L.B.-T.); (C.H.)
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
- Correspondence: ; Tel.: +1-416-978-8728
| |
Collapse
|
43
|
Bolivar S, Espitia-Corredor JA, Olivares-Silva F, Valenzuela P, Humeres C, Anfossi R, Castro E, Vivar R, Salas-Hernández A, Pardo-Jiménez V, Díaz-Araya G. In cardiac fibroblasts, interferon-beta attenuates differentiation, collagen synthesis, and TGF-β1-induced collagen gel contraction. Cytokine 2020; 138:155359. [PMID: 33160814 DOI: 10.1016/j.cyto.2020.155359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Cardiac fibroblasts (CF) play a key role in the homeostasis of the extracellular matrix in cardiac tissue and are newly recognized as inflammatory supporter cells. Besides, CF-to-Cardiac myofibroblast differentiation is commanded by TGF-b, through SMAD signaling pathways, and these last cells are strongly implicated in cardiac fibrosis. In the heart IFN-β is produced by CF; however, the role of IFN-β, STAT proteins, and STAT-homo or heterodimers in the regulation of CF function with or without a fibrotic environment is unknown. CF were isolated from hearts of adult rats, and by western blot analysis we studied STAT1, STAT2, and STAT3 phosphorylation and through specific siRNA against these proteins we analyzed their role in CF functions such as differentiation (α-SMA expression); and pro-collagen type-I synthesis and secretion expression levels; collagen gels contraction and CF migration. In cultured adult rats CF, IFN-β increases phosphorylation of STAT1, STAT2, and STAT3. Both STAT1 and STAT2 were involved in decreasing α-SMA and CF migration induced by TGF-β1. Also, IFN-β through STAT1 regulated pro-collagen type-I protein expression levels, and collagen gels contraction induced by TGF-β1. STAT3 was not involved in any effects of IFN-β studied. In conclusion, IFN-β through STAT1 and STAT2 shows antifibrotic effects on CF TGF-β1-treated, whereas STAT3 did not participate in such effect.
Collapse
Affiliation(s)
- S Bolivar
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - J A Espitia-Corredor
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - F Olivares-Silva
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - P Valenzuela
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - C Humeres
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - R Anfossi
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - E Castro
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - R Vivar
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - A Salas-Hernández
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - V Pardo-Jiménez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - G Díaz-Araya
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
44
|
Tian X, Sun C, Wang X, Ma K, Chang Y, Guo Z, Si J. ANO1 regulates cardiac fibrosis via ATI-mediated MAPK pathway. Cell Calcium 2020; 92:102306. [PMID: 33075549 DOI: 10.1016/j.ceca.2020.102306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Cardiac fibrosis is associated with most of heart diseases, but its molecular mechanism remains unclear. Anoctamin-1 (ANO1), a calcium-activated chloride channels (CaCCs) protein, plays a critical role in various pathophysiological processes. In the current study, we identified ANO1 expression in myocardial infarction (MI) model of rat and verified the role of ANO1 in cardiac fibrosis using transcriptomics combined with RNAi assays. we found that ANO1 expression was increased during the first two weeks, and decreased in the third week after MI. Fluorescence double labeling showed that ANO1 was mainly expressed in cardiac fibroblasts (CFs) and displayed an increased expression in CFs with proliferation tendency. The proliferation and secretion of CFs were markedly inhibited by knockdown of ANO1. RNA-Seq showed that most of the downregulation genes were related to the proliferation of CFs and cardiac fibrosis. After ANO1 knockdown, the expressions of angiotensin II type 1 receptor (AT1R) and cell nuclear proliferation antigen were markedly reduced, and the phosphorylation levels of MEK and ERK1/2 was decreased significantly, indicating that ANO1 regulate cardiac fibrosis through ATIR-mediated MAPK signaling pathway. These findings would be useful for the development of therapeutic strategies targeting ANO1 to treat and prevent cardiac fibrosis.
Collapse
Affiliation(s)
- Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China; Department of Physiology, Medical College of Shihezi University, Shihezi, People's Republic of China
| | - Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Ketao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, People's Republic of China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China.
| | - Junqiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, People's Republic of China.
| |
Collapse
|
45
|
Harnessing Mechanosensation in Next Generation Cardiovascular Tissue Engineering. Biomolecules 2020; 10:biom10101419. [PMID: 33036467 PMCID: PMC7599461 DOI: 10.3390/biom10101419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
The ability of the cells to sense mechanical cues is an integral component of ”social” cell behavior inside tissues with a complex architecture. Through ”mechanosensation” cells are in fact able to decrypt motion, geometries and physical information of surrounding cells and extracellular matrices by activating intracellular pathways converging onto gene expression circuitries controlling cell and tissue homeostasis. Additionally, only recently cell mechanosensation has been integrated systematically as a crucial element in tissue pathophysiology. In the present review, we highlight some of the current efforts to assess the relevance of mechanical sensing into pathology modeling and manufacturing criteria for a next generation of cardiovascular tissue implants.
Collapse
|
46
|
Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res 2020; 127:427-447. [PMID: 32673537 DOI: 10.1161/circresaha.120.316958] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis is mediated by the activation of resident cardiac fibroblasts, which differentiate into myofibroblasts in response to injury or stress. Although myofibroblast formation is a physiological response to acute injury, such as myocardial infarction, myofibroblast persistence, as occurs in heart failure, contributes to maladaptive remodeling and progressive functional decline. Although traditional pathways of activation, such as TGFβ (transforming growth factor β) and AngII (angiotensin II), have been well characterized, less understood are the alterations in mitochondrial function and cellular metabolism that are necessary to initiate and sustain myofibroblast formation and function. In this review, we highlight recent reports detailing the mitochondrial and metabolic mechanisms that contribute to myofibroblast differentiation, persistence, and function with the hope of identifying novel therapeutic targets to treat, and potentially reverse, tissue organ fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Michael P Lazaropoulos
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - John W Elrod
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
47
|
Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev 2020; 60:101063. [PMID: 32272170 DOI: 10.1016/j.arr.2020.101063] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final hallmark of pathological remodeling, which is a major contributor to the pathogenesis of various chronic diseases and aging-related organ failure to fully control chronic wound-healing and restoring tissue function. The process of fibrosis is involved in the pathogenesis of the kidney, lung, liver, heart and other tissue disorders. Wnt is a highly conserved signaling in the aberrant wound repair and fibrogenesis, and sustained Wnt activation is correlated with the pathogenesis of fibrosis. In particular, mounting evidence has revealed that Wnt signaling played important roles in cell fate determination, proliferation and cell polarity establishment. The expression and distribution of Wnt signaling in different tissues vary with age, and these changes have key effects on maintaining tissue homeostasis. In this review, we first describe the major constituents of the Wnt signaling and their regulation functions. Subsequently, we summarize the dysregulation of Wnt signaling in aging-related fibrotic tissues such as kidney, liver, lung and cardiac fibrosis, followed by a detailed discussion of its involvement in organ fibrosis. In addition, the crosstalk between Wnt signaling and other pathways has the potential to profoundly add to the complexity of organ fibrosis. Increasing studies have demonstrated that a number of Wnt inhibitors had the potential role against tissue fibrosis, specifically in kidney fibrosis and the implications of Wnt signaling in aging-related diseases. Therefore, targeting Wnt signaling might be a novel and promising therapeutic strategy against aging-related tissue fibrosis.
Collapse
|
48
|
Ji J, Liu Z, Hong X, Liu Z, Gao J, Liu J. Protective effects of rolipram on endotoxic cardiac dysfunction via inhibition of the inflammatory response in cardiac fibroblasts. BMC Cardiovasc Disord 2020; 20:242. [PMID: 32448150 PMCID: PMC7247226 DOI: 10.1186/s12872-020-01529-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiac fibroblasts, regarded as the immunomodulatory hub of the heart, have been thought to play an important role during sepsis-induced cardiomyopathy (SIC). However, the detailed molecular mechanism and targeted therapies for SIC are still lacking. Therefore, we sought to investigate the likely protective effects of rolipram, an anti-inflammatory drug, on lipopolysaccharide (LPS)-stimulated inflammatory responses in cardiac fibroblasts and on cardiac dysfunction in endotoxic mice. METHOD Cardiac fibroblasts were isolated and stimulated with 1 μg/ml LPS for 6 h, and 10 μmol/l rolipram was administered for 1 h before LPS stimulation. mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in fibroblasts and their protein concentrations in supernatant were measured with real-time PCR (rt-PCR) and enzyme-linked immunosorbent assay, respectively. The expression of dual specificity phosphatase 1 (DUSP1), an endogenous negative regulator that inactivates MAPK-mediated inflammatory pathways, was also measured by rt-PCR and western blotting. DUSP1-targeted small interfering RNA (siRNA) was used to examine the specific role of DUSP1. To evaluate the role of rolipram in vivo, an endotoxic mouse model was established by intraperitoneal injection of 15 mg/kg LPS, and 10 mg/kg rolipram was intraperitoneally injected 1 h before LPS injection. mRNA and protein levels of inflammatory cytokines and DUSP1 in heart, inflammatory cell infiltration and cardiac function were all examined at 6 h after LPS injection. RESULTS The results showed that LPS could increase the expression and secretion of inflammatory cytokines and decrease the transcription and expression of DUSP1 in cardiac fibroblasts. However, rolipram pretreatment significantly reversed the LPS-induced downregulation of DUSP1 and inhibited LPS-induced upregulation and secretion of TNF-α and IL-6 but not IL-1β. Moreover, DUSP1-targeted siRNA experiments indicated that the protective effect of rolipram on inflammatory response was specific dependent on DUSP1 expression. Moreover, rolipram could further reduce inflammatory cell infiltration scores as shown by pathological analysis and increase the ejection fraction (EF) detected with echocardiography in the hearts of endotoxic mice. CONCLUSIONS Rolipram could improve endotoxin-induced cardiac dysfunction by upregulating DUSP1 expression to inhibit the inflammatory response in cardiac fibroblasts, which may be a potential treatment for SIC.
Collapse
Affiliation(s)
- Jingjing Ji
- Guangdong Provincial Key Laboratory of Proteomics; School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Zhifeng Liu
- Guangdong Provincial Key Laboratory of Proteomics; School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China.
- Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China.
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, 510515, China.
| | - Xinxin Hong
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zheying Liu
- Guangdong Provincial Key Laboratory of Proteomics; School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Jinghua Gao
- Guangdong Provincial Key Laboratory of Proteomics; School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics; School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
49
|
Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4105382. [PMID: 32064023 PMCID: PMC6998763 DOI: 10.1155/2020/4105382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Harmful, stressful conditions or events in the cardiovascular system result in cellular damage, inflammation, and fibrosis. Currently, there is no targeted therapy for myocardial fibrosis, which is highly associated with a large number of cardiovascular diseases and can lead to fatal heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter similar to nitric oxide and carbon monoxide. H2S is involved in the suppression of oxidative stress, inflammation, and cellular death in the cardiovascular system. The level of H2S in the body can be boosted by stimulating its synthesis or supplying it exogenously with a simple H2S donor with a rapid- or slow-releasing mode, an organosulfur compound, or a hybrid with known drugs (e.g., aspirin). Hypertension, myocardial infarction, and inflammation are exaggerated when H2S is reduced. In addition, the exogenous delivery of H2S mitigates myocardial fibrosis caused by various pathological conditions, such as a myocardial infarct, hypertension, diabetes, or excessive β-adrenergic stimulation, via its involvement in a variety of signaling pathways. Numerous experimental findings suggest that H2S may work as a potential alternative for the management of myocardial fibrosis. In this review, the antifibrosis role of H2S is briefly addressed in order to gain insight into the development of novel strategies for the treatment of myocardial fibrosis.
Collapse
|
50
|
Yu Y, Sun J, Wang R, Liu J, Wang P, Wang C. Curcumin Management of Myocardial Fibrosis and its Mechanisms of Action: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1675-1710. [PMID: 31786946 DOI: 10.1142/s0192415x19500861] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial fibrosis is implicated as a leading risk factor for heart failure, arrhythmia, and sudden death after cardiac injury, as the excessive interstitial extracellular matrix impedes heart contraction and electrical conduction. Complicated mechanisms involving oxidative stress, pro-inflammatory cytokines, chemokine families, NLRP3 inflammasomes, growth factors, and non-coding RNAs participate in cardiac fibrogenesis and make it difficult to designate specific and effective therapies. Oriental herbs have been popular for thousands of years in the health care of Asian residents, due to their multi-targeted, multi-faceted approaches and their multi-functional effects in fighting difficult and complicated diseases, including cardiovascular disorders such as myocardial fibrosis. Curcumin, a natural polyphenol and yellow pigment obtained from the spice turmeric, was found to have strong anti-oxidant and anti-inflammatory properties. Increasing evidence has shown that curcumin can be used to prevent and treat myocardial fibrosis, when the myocardium suffers pathological pro-fibrotic changes in vivo and in vitro. The present review focuses on recent studies elucidating the mechanisms of curcumin in treating different pathologic conditions, including ischemia, hypoxia/reoxygenation, pressure or volume overload, and hyperglycemia or high-fat-induced cardiac fibrosis. Novel analogs such as C66, B2BrBC, Y20, and J17 have been designed to maximize the therapeutic potentials of curcumin. These optimized curcumin analogs with improved bioavailability and pharmacokinetic profiles need to be clinically verified before curcumin could be recommended for the treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Yonghui Yu
- Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Jinghui Sun
- Graduate School of China Academy of Chinese Medical Science, Beijing 100700, P. R. China
| | - Ru Wang
- Graduate School of China Academy of Chinese Medical Science, Beijing 100700, P. R. China
| | - Jiangang Liu
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| | - Peili Wang
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| | - Chenglong Wang
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| |
Collapse
|