1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Liang J, Kazmierczak K, Veerasammy M, Yadav S, Takeuchi L, Kanashiro-Takeuchi R, Szczesna-Cordary D. Mechanistic basis for rescuing hypertrophic cardiomyopathy with myosin regulatory light chain phosphorylation. Cytoskeleton (Hoboken) 2024. [PMID: 38494592 PMCID: PMC11405541 DOI: 10.1002/cm.21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
We investigated the impact of the phosphomimetic (Ser15 → Asp15) myosin regulatory light chain (S15D-RLC) on the Super-Relaxed (SRX) state of myosin using previously characterized transgenic (Tg) S15D-D166V rescue mice, comparing them to the Hypertrophic Cardiomyopathy (HCM) Tg-D166V model and wild-type (WT) RLC mice. In the Tg-D166V model, we observed a disruption of the SRX state, resulting in a transition from SRX to DRX (Disordered Relaxed) state, which explains the hypercontractility of D166V-mutated myosin motors. The presence of the S15D moiety in Tg-S15D-D166V mice restored the SRX/DRX balance to levels comparable to Tg-WT, thus mitigating the hypercontractile behavior associated with the HCM-D166V mutation. Additionally, we investigated the impact of delivering the S15D-RLC molecule to the hearts of Tg-D166V mice via adeno-associated virus (AAV9) and compared their condition to AAV9-empty vector-injected or non-injected Tg-D166V animals. Tg-D166V mice injected with AAV9 S15D-RLC exhibited a significantly higher proportion of myosin heads in the SRX state compared to those injected with AAV9 empty vector or left non-injected. No significant effect was observed in Tg-WT hearts treated similarly. These findings suggest that AAV9-delivered phosphomimetic S15D-RLC modality mitigates the abnormal Tg-D166V phenotype without impacting the normal function of Tg-WT hearts. Global longitudinal strain analysis supported these observations, indicating that the S15D moiety can alleviate the HCM-D166V phenotype by restoring SRX stability and the SRX ↔ DRX equilibrium.
Collapse
Affiliation(s)
- Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Melanie Veerasammy
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lauro Takeuchi
- Interdisciplinary Stem Cell Institute University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rosemeire Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Kazmierczak K, Liang J, Maura LG, Scott NK, Szczesna-Cordary D. Phosphorylation Mimetic of Myosin Regulatory Light Chain Mitigates Cardiomyopathy-Induced Myofilament Impairment in Mouse Models of RCM and DCM. Life (Basel) 2023; 13:1463. [PMID: 37511838 PMCID: PMC10381296 DOI: 10.3390/life13071463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This study focuses on mimicking constitutive phosphorylation in the N-terminus of the myosin regulatory light chain (S15D-RLC) as a rescue strategy for mutation-induced cardiac dysfunction in transgenic (Tg) models of restrictive (RCM) and dilated (DCM) cardiomyopathy caused by mutations in essential (ELC, MYL3 gene) or regulatory (RLC, MYL2 gene) light chains of myosin. Phosphomimetic S15D-RLC was reconstituted in left ventricular papillary muscle (LVPM) fibers from two mouse models of cardiomyopathy, RCM-E143K ELC and DCM-D94A RLC, along with their corresponding Tg-ELC and Tg-RLC wild-type (WT) mice. The beneficial effects of S15D-RLC in rescuing cardiac function were manifested by the S15D-RLC-induced destabilization of the super-relaxed (SRX) state that was observed in both models of cardiomyopathy. S15D-RLC promoted a shift from the SRX state to the disordered relaxed (DRX) state, increasing the number of heads readily available to interact with actin and produce force. Additionally, S15D-RLC reconstituted with fibers demonstrated significantly higher maximal isometric force per cross-section of muscle compared with reconstitution with WT-RLC protein. The effects of the phosphomimetic S15D-RLC were compared with those observed for Omecamtiv Mecarbil (OM), a myosin activator shown to bind to the catalytic site of cardiac myosin and increase myocardial contractility. A similar SRX↔DRX equilibrium shift was observed in OM-treated fibers as in S15D-RLC-reconstituted preparations. Additionally, treatment with OM resulted in significantly higher maximal pCa 4 force per cross-section of muscle fibers in both cardiomyopathy models. Our results suggest that both treatments with S15D-RLC and OM may improve the function of myosin motors and cardiac muscle contraction in RCM-ELC and DCM-RLC mice.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Luis G Maura
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Natissa K Scott
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| |
Collapse
|
4
|
Turner KL, Morris HS, Awinda PO, Fitzsimons DP, Tanner BCW. RLC phosphorylation amplifies Ca2+ sensitivity of force in myocardium from cMyBP-C knockout mice. J Gen Physiol 2023; 155:213841. [PMID: 36715675 PMCID: PMC9930131 DOI: 10.1085/jgp.202213250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/11/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the leading genetic cause of heart disease. The heart comprises several proteins that work together to properly facilitate force production and pump blood throughout the body. Cardiac myosin binding protein-C (cMyBP-C) is a thick-filament protein, and mutations in cMyBP-C are frequently linked with clinical cases of HCM. Within the sarcomere, the N-terminus of cMyBP-C likely interacts with the myosin regulatory light chain (RLC); RLC is a subunit of myosin located within the myosin neck region that modulates contractile dynamics via its phosphorylation state. Phosphorylation of RLC is thought to influence myosin head position along the thick-filament backbone, making it more favorable to bind the thin filament of actin and facilitate force production. However, little is known about how these two proteins interact. We tested the effects of RLC phosphorylation on Ca2+-regulated contractility using biomechanical assays on skinned papillary muscle strips isolated from cMyBP-C KO mice and WT mice. RLC phosphorylation increased Ca2+ sensitivity of contraction (i.e., pCa50) from 5.80 ± 0.02 to 5.95 ± 0.03 in WT strips, whereas RLC phosphorylation increased Ca2+ sensitivity of contraction from 5.86 ± 0.02 to 6.15 ± 0.03 in cMyBP-C KO strips. These data suggest that the effects of RLC phosphorylation on Ca2+ sensitivity of contraction are amplified when cMyBP-C is absent from the sarcomere. This implies that cMyBP-C and RLC act in concert to regulate contractility in healthy hearts, and mutations to these proteins that lead to HCM (or a loss of phosphorylation with disease progression) may disrupt important interactions between these thick-filament regulatory proteins.
Collapse
Affiliation(s)
- Kyrah L Turner
- School of Molecular Biosciences & Neuroscience, Washington State University , Pullman, WA, USA
| | - Haley S Morris
- School of Molecular Biosciences & Neuroscience, Washington State University , Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology & Neuroscience, Washington State University , Pullman, WA, USA
| | - Daniel P Fitzsimons
- Department of Animal, Veterinary and Food Sciences, University of Idaho , Moscow, ID, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology & Neuroscience, Washington State University , Pullman, WA, USA
| |
Collapse
|
5
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
6
|
Kazmierczak K, Liang J, Gomez-Guevara M, Szczesna-Cordary D. Functional comparison of phosphomimetic S15D and T160D mutants of myosin regulatory light chain exchanged in cardiac muscle preparations of HCM and WT mice. Front Cardiovasc Med 2022; 9:988066. [PMID: 36204565 PMCID: PMC9530205 DOI: 10.3389/fcvm.2022.988066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022] Open
Abstract
In this study, we investigated the rescue potential of two phosphomimetic mutants of the myosin regulatory light chain (RLC, MYL2 gene), S15D, and T160D RLCs. S15D-RLC mimics phosphorylation of the established serine-15 site of the human cardiac RLC. T160D-RLC mimics the phosphorylation of threonine-160, identified by computational analysis as a high-score phosphorylation site of myosin RLC. Cardiac myosin and left ventricular papillary muscle (LVPM) fibers were isolated from a previously generated model of hypertrophic cardiomyopathy (HCM), Tg-R58Q, and Tg-wild-type (WT) mice. Muscle specimens were first depleted of endogenous RLC and then reconstituted with recombinant human cardiac S15D and T160D phosphomimetic RLCs. Preparations reconstituted with recombinant human cardiac WT-RLC and R58Q-RLC served as controls. Mouse myosins were then tested for the actin-activated myosin ATPase activity and LVPM fibers for the steady-state force development and Ca2+-sensitivity of force. The data showed that S15D-RLC significantly increased myosin ATPase activity compared with T160D-RLC or WT-RLC reconstituted preparations. The two S15D and T160D phosphomimetic RLCs were able to rescue Vmax of Tg-R58Q myosin reconstituted with recombinant R58Q-RLC, but the effect of S15D-RLC was more pronounced than T160D-RLC. Low tension observed for R58Q-RLC reconstituted LVPM from Tg-R58Q mice was equally rescued by both phosphomimetic RLCs. In the HCM Tg-R58Q myocardium, the S15D-RLC caused a shift from the super-relaxed (SRX) state to the disordered relaxed (DRX) state, and the number of heads readily available to interact with actin and produce force was increased. At the same time, T160D-RLC stabilized the SRX state at a level similar to R58Q-RLC reconstituted fibers. We report here on the functional superiority of the established S15 phospho-site of the human cardiac RLC vs. C-terminus T160-RLC, with S15D-RLC showing therapeutic potential in mitigating a non-canonical HCM behavior underlined by hypocontractile behavior of Tg-R58Q myocardium.
Collapse
|
7
|
Sitbon YH, Diaz F, Kazmierczak K, Liang J, Wangpaichitr M, Szczesna-Cordary D. Cardiomyopathic mutations in essential light chain reveal mechanisms regulating the super relaxed state of myosin. THE JOURNAL OF GENERAL PHYSIOLOGY 2021; 153:212172. [PMID: 34014247 PMCID: PMC8142263 DOI: 10.1085/jgp.202012801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
In this study, we assessed the super relaxed (SRX) state of myosin and sarcomeric protein phosphorylation in two pathological models of cardiomyopathy and in a near-physiological model of cardiac hypertrophy. The cardiomyopathy models differ in disease progression and severity and express the hypertrophic (HCM-A57G) or restrictive (RCM-E143K) mutations in the human ventricular myosin essential light chain (ELC), which is encoded by the MYL3 gene. Their effects were compared with near-physiological heart remodeling, represented by the N-terminally truncated ELC (Δ43 ELC mice), and with nonmutated human ventricular WT-ELC mice. The HCM-A57G and RCM-E143K mutations had antagonistic effects on the ATP-dependent myosin energetic states, with HCM-A57G cross-bridges fostering the disordered relaxed (DRX) state and the RCM-E143K model favoring the energy-conserving SRX state. The HCM-A57G model promoted the switch from the SRX to DRX state and showed an ∼40% increase in myosin regulatory light chain (RLC) phosphorylation compared with the RLC of normal WT-ELC myocardium. On the contrary, the RCM-E143K–associated stabilization of the SRX state was accompanied by an approximately twofold lower level of myosin RLC phosphorylation compared with the RLC of WT-ELC. Upregulation of RLC phosphorylation was also observed in Δ43 versus WT-ELC hearts, and the Δ43 myosin favored the energy-saving SRX conformation. The two disease variants also differently affected the duration of force transients, with shorter (HCM-A57G) or longer (RCM-E143K) transients measured in electrically stimulated papillary muscles from these pathological models, while no changes were displayed by Δ43 fibers. We propose that the N terminus of ELC (N-ELC), which is missing in the hearts of Δ43 mice, works as an energetic switch promoting the SRX-to-DRX transition and contributing to the regulation of myosin RLC phosphorylation in full-length ELC mice by facilitating or sterically blocking RLC phosphorylation in HCM-A57G and RCM-E143K hearts, respectively.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | | | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
8
|
Regulatory Light Chains in Cardiac Development and Disease. Int J Mol Sci 2021; 22:ijms22094351. [PMID: 33919432 PMCID: PMC8122660 DOI: 10.3390/ijms22094351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022] Open
Abstract
The role of regulatory light chains (RLCs) in cardiac muscle function has been elucidated progressively over the past decade. The RLCs are among the earliest expressed markers during cardiogenesis and persist through adulthood. Failing hearts have shown reduced RLC phosphorylation levels and that restoring baseline levels of RLC phosphorylation is necessary for generating optimal force of muscle contraction. The signalling mechanisms triggering changes in RLC phosphorylation levels during disease progression remain elusive. Uncovering this information may provide insights for better management of heart failure patients. Given the cardiac chamber-specific expression of RLC isoforms, ventricular RLCs have facilitated the identification of mature ventricular cardiomyocytes, opening up possibilities of regenerative medicine. This review consolidates the standing of RLCs in cardiac development and disease and highlights knowledge gaps and potential therapeutic advancements in targeting RLCs.
Collapse
|
9
|
Zhang J, Wang L, Kazmierczak K, Yun H, Szczesna-Cordary D, Kawai M. Hypertrophic cardiomyopathy associated E22K mutation in myosin regulatory light chain decreases calcium-activated tension and stiffness and reduces myofilament Ca 2+ sensitivity. FEBS J 2021; 288:4596-4613. [PMID: 33548158 DOI: 10.1111/febs.15753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
We investigated the mechanisms associated with E22K mutation in myosin regulatory light chain (RLC), found to cause hypertrophic cardiomyopathy (HCM) in humans and mice. Specifically, we characterized the mechanical profiles of papillary muscle fibers from transgenic mice expressing human ventricular RLC wild-type (Tg-WT) or E22K mutation (Tg-E22K). Because the two mouse models expressed different amounts of transgene, the B6SJL mouse line (NTg) was used as an additional control. Mechanical experiments were carried out on Ca2+ - and ATP-activated fibers and in rigor. Sinusoidal analysis was performed to elucidate the effect of E22K on tension and stiffness during activation/rigor, tension-pCa, and myosin cross-bridge (CB) kinetics. We found significant reductions in active tension (by 54%) and stiffness (active by 40% and rigor by 54%). A decrease in the Ca2+ sensitivity of tension (by ∆pCa ~ 0.1) was observed in Tg-E22K compared with Tg-WT fibers. The apparent (=measured) rate constant of exponential process B (2πb: force generation step) was not affected by E22K, but the apparent rate constant of exponential process C (2πc: CB detachment step) was faster in Tg-E22K compared with Tg-WT fibers. Both 2πb and 2πc were smaller in NTg than in Tg-WT fibers, suggesting a kinetic difference between the human and mouse RLC. Our results of E22K-induced reduction in myofilament stiffness and tension suggest that the main effect of this mutation was to disturb the interaction of RLC with the myosin heavy chain and impose structural abnormalities in the lever arm of myosin CB. When placed in vivo, the E22K mutation is expected to result in reduced contractility and decreased cardiac output whereby leading to HCM. SUB-DISCIPLINE Bioenergetics. DATABASE The data that support the findings of this study are available from the corresponding authors upon reasonable request. ANIMAL PROTOCOL BK20150353 (Soochow University). RESEARCH GOVERNANCE School of Nursing: Hua-Gang Hu: seuboyh@163.com; Soochow University: Chen Ge chge@suda.edu.cn.
Collapse
Affiliation(s)
- Jiajia Zhang
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | - Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | | | - Hang Yun
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | | | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa, IA, USA
| |
Collapse
|
10
|
Sitbon YH, Yadav S, Kazmierczak K, Szczesna-Cordary D. Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. J Muscle Res Cell Motil 2020; 41:313-327. [PMID: 31131433 PMCID: PMC6879809 DOI: 10.1007/s10974-019-09517-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
The activity of cardiac and skeletal muscles depends upon the ATP-coupled actin-myosin interactions to execute the power stroke and muscle contraction. The goal of this review article is to provide insight into the function of myosin II, the molecular motor of the heart and skeletal muscles, with a special focus on the role of myosin II light chain (MLC) components. Specifically, we focus on the involvement of myosin regulatory (RLC) and essential (ELC) light chains in striated muscle development, isoform appearance and their function in normal and diseased muscle. We review the consequences of isoform switching and knockout of specific MLC isoforms on cardiac and skeletal muscle function in various animal models. Finally, we discuss how dysregulation of specific RLC/ELC isoforms can lead to cardiac and skeletal muscle diseases and summarize the effects of most studied mutations leading to cardiac or skeletal myopathies.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
11
|
Wang Y, Yuan CC, Kazmierczak K, Szczesna-Cordary D, Burghardt TP. Single cardiac ventricular myosins are autonomous motors. Open Biol 2019; 8:rsob.170240. [PMID: 29669825 PMCID: PMC5936712 DOI: 10.1098/rsob.170240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/28/2018] [Indexed: 01/29/2023] Open
Abstract
Myosin transduces ATP free energy into mechanical work in muscle. Cardiac muscle has dynamically wide-ranging power demands on the motor as the muscle changes modes in a heartbeat from relaxation, via auxotonic shortening, to isometric contraction. The cardiac power output modulation mechanism is explored in vitro by assessing single cardiac myosin step-size selection versus load. Transgenic mice express human ventricular essential light chain (ELC) in wild- type (WT), or hypertrophic cardiomyopathy-linked mutant forms, A57G or E143K, in a background of mouse α-cardiac myosin heavy chain. Ensemble motility and single myosin mechanical characteristics are consistent with an A57G that impairs ELC N-terminus actin binding and an E143K that impairs lever-arm stability, while both species down-shift average step-size with increasing load. Cardiac myosin in vivo down-shifts velocity/force ratio with increasing load by changed unitary step-size selections. Here, the loaded in vitro single myosin assay indicates quantitative complementarity with the in vivo mechanism. Both have two embedded regulatory transitions, one inhibiting ADP release and a second novel mechanism inhibiting actin detachment via strain on the actin-bound ELC N-terminus. Competing regulators filter unitary step-size selection to control force-velocity modulation without myosin integration into muscle. Cardiac myosin is muscle in a molecule.
Collapse
Affiliation(s)
- Yihua Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Chen-Ching Yuan
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Katarzyna Kazmierczak
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Danuta Szczesna-Cordary
- Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Thomas P Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA .,Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN 55905, USA
| |
Collapse
|
12
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
13
|
Yadav S, Sitbon YH, Kazmierczak K, Szczesna-Cordary D. Hereditary heart disease: pathophysiology, clinical presentation, and animal models of HCM, RCM, and DCM associated with mutations in cardiac myosin light chains. Pflugers Arch 2019; 471:683-699. [PMID: 30706179 DOI: 10.1007/s00424-019-02257-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Genetic cardiomyopathies, a group of cardiovascular disorders based on ventricular morphology and function, are among the leading causes of morbidity and mortality worldwide. Such genetically driven forms of hypertrophic (HCM), dilated (DCM), and restrictive (RCM) cardiomyopathies are chronic, debilitating diseases that result from biomechanical defects in cardiac muscle contraction and frequently progress to heart failure (HF). Locus and allelic heterogeneity, as well as clinical variability combined with genetic and phenotypic overlap between different cardiomyopathies, have challenged proper clinical prognosis and provided an incentive for identification of pathogenic variants. This review attempts to provide an overview of inherited cardiomyopathies with a focus on their genetic etiology in myosin regulatory (RLC) and essential (ELC) light chains, which are EF-hand protein family members with important structural and regulatory roles. From the clinical discovery of cardiomyopathy-linked light chain mutations in patients to an array of exploratory studies in animals, and reconstituted and recombinant systems, we have summarized the current state of knowledge on light chain mutations and how they induce physiological disease states via biochemical and biomechanical alterations at the molecular, tissue, and organ levels. Cardiac myosin RLC phosphorylation and the N-terminus ELC have been discussed as two important emerging modalities with important implications in the regulation of myosin motor function, and thus cardiac performance. A comprehensive understanding of such triggers is absolutely necessary for the development of target-specific rescue strategies to ameliorate or reverse the effects of myosin light chain-related inherited cardiomyopathies.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Restrictive/etiology
- Cardiomyopathy, Restrictive/genetics
- Cardiomyopathy, Restrictive/pathology
- Disease Models, Animal
- Humans
- Mutation
- Myosin Light Chains/genetics
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.
| |
Collapse
|
14
|
Breithaupt JJ, Pulcastro HC, Awinda PO, DeWitt DC, Tanner BCW. Regulatory light chain phosphorylation augments length-dependent contraction in PTU-treated rats. J Gen Physiol 2018; 151:66-76. [PMID: 30523115 PMCID: PMC6314387 DOI: 10.1085/jgp.201812158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Contraction of cardiac muscle is regulated by sarcomere length and proteins that comprise the sarcomeric filaments. Breithaupt et al. find that phosphorylation of myosin regulatory light chain augments length-dependent activation of contraction when β-cardiac myosin heavy chain predominates. Force production by actin–myosin cross-bridges in cardiac muscle is regulated by thin-filament proteins and sarcomere length (SL) throughout the heartbeat. Prior work has shown that myosin regulatory light chain (RLC), which binds to the neck of myosin heavy chain, increases cardiac contractility when phosphorylated. We recently showed that cross-bridge kinetics slow with increasing SLs, and that RLC phosphorylation amplifies this effect, using skinned rat myocardial strips predominantly composed of the faster α-cardiac myosin heavy chain isoform. In the present study, to assess how RLC phosphorylation influences length-dependent myosin function as myosin motor speed varies, we used a propylthiouracil (PTU) diet to induce >95% expression of the slower β-myosin heavy chain isoform in rat cardiac ventricles. We measured the effect of RLC phosphorylation on Ca2+-activated isometric contraction and myosin cross-bridge kinetics (via stochastic length perturbation analysis) in skinned rat papillary muscle strips at 1.9- and 2.2-µm SL. Maximum tension and Ca2+ sensitivity increased with SL, and RLC phosphorylation augmented this response at 2.2-µm SL. Subtle increases in viscoelastic myocardial stiffness occurred with RLC phosphorylation at 2.2-µm SL, but not at 1.9-µm SL, thereby suggesting that RLC phosphorylation increases β-myosin heavy chain binding or stiffness at longer SLs. The cross-bridge detachment rate slowed as SL increased, providing a potential mechanism for prolonged cross-bridge attachment to augment length-dependent activation of contraction at longer SLs. Length-dependent slowing of β-myosin heavy chain detachment rate was not affected by RLC phosphorylation. Together with our previous studies, these data suggest that both α- and β-myosin heavy chain isoforms show a length-dependent activation response and prolonged myosin attachment as SL increases in rat myocardial strips, and that RLC phosphorylation augments length-dependent activation at longer SLs. In comparing cardiac isoforms, however, we found that β-myosin heavy chain consistently showed greater length-dependent sensitivity than α-myosin heavy chain. Our work suggests that RLC phosphorylation is a vital contributor to the regulation of myocardial contractility in both cardiac myosin heavy chain isoforms.
Collapse
Affiliation(s)
- Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - David C DeWitt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
15
|
Kampourakis T, Ponnam S, Irving M. Hypertrophic cardiomyopathy mutation R58Q in the myosin regulatory light chain perturbs thick filament-based regulation in cardiac muscle. J Mol Cell Cardiol 2018; 117:72-81. [PMID: 29452157 PMCID: PMC5883317 DOI: 10.1016/j.yjmcc.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 01/25/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently linked to mutations in the protein components of the myosin-containing thick filaments leading to contractile dysfunction and ultimately heart failure. However, the molecular structure-function relationships that underlie these pathological effects remain largely obscure. Here we chose an example mutation (R58Q) in the myosin regulatory light chain (RLC) that is associated with a severe HCM phenotype and combined the results from a wide range of in vitro and in situ structural and functional studies on isolated protein components, myofibrils and ventricular trabeculae to create an extensive map of structure-function relationships. The results can be understood in terms of a unifying hypothesis that illuminates both the effects of the mutation and physiological signaling pathways. R58Q promotes an OFF state of the thick filaments that reduces the number of myosin head domains that are available for actin interaction and ATP utilization. Moreover this mutation uncouples two aspects of length-dependent activation (LDA), the cellular basis of the Frank-Starling relation that couples cardiac output to venous return; R58Q reduces maximum calcium-activated force with no significant effect on myofilament calcium sensitivity. Finally, phosphorylation of R58Q-RLC to levels that may be relevant both physiologically and pathologically restores the regulatory state of the thick filament and the effect of sarcomere length on maximum calcium-activated force and thick filament structure, as well as increasing calcium sensitivity. We conclude that perturbation of thick filament-based regulation may be a common mechanism in the etiology of missense mutation-associated HCM, and that this signaling pathway offers a promising target for the development of novel therapeutics. R58Q mutation in RLC (R58Q-RLC) promotes the myosin filament OFF state. R58Q-RLC reduces active force and perturbs length dependent activation (LDA). Phosphorylation of R58Q-RLC restores myosin filament regulation and LDA. Myosin filament regulation is a target for the development of heart failure drugs.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom.
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
16
|
Tobita T, Nomura S, Morita H, Ko T, Fujita T, Toko H, Uto K, Hagiwara N, Aburatani H, Komuro I. Identification of MYLK3 mutations in familial dilated cardiomyopathy. Sci Rep 2017; 7:17495. [PMID: 29235529 PMCID: PMC5727479 DOI: 10.1038/s41598-017-17769-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a primary cause of heart failure, life-threatening arrhythmias, and cardiac death. Pathogenic mutations have been identified at the loci of more than 50 genes in approximately 50% of DCM cases, while the etiologies of the remainder have yet to be determined. In this study, we applied whole exome sequencing in combination with segregation analysis to one pedigree with familial DCM, and identified a read-through mutation (c.2459 A > C; p.*820Sext*19) in the myosin light chain kinase 3 gene (MYLK3). We then conducted MYLK3 gene screening of 15 DCM patients (7 familial and 8 sporadic) who were negative for mutation screening of the previously-reported cardiomyopathy-causing genes, and identified another case with a MYLK3 frameshift mutation (c.1879_1885del; p.L627fs*41). In vitro experiments and immunohistochemistry suggested that the MYLK3 mutations identified in this study result in markedly reduced levels of protein expression and myosin light chain 2 phosphorylation. This is the first report that MYLK3 mutations can cause DCM in humans. The clinical phenotypes of DCM patients were consistent with MYLK3 loss-of-function mouse and zebrafish models in which cardiac enlargement and heart failure are observed. Our findings highlight an essential role for cardiac myosin light chain kinase in the human heart.
Collapse
Affiliation(s)
- Takashige Tobita
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takanori Fujita
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Haruhiro Toko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenta Uto
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
17
|
Burghardt TP, Sun X, Wang Y, Ajtai K. Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift. PLoS One 2017; 12:e0174690. [PMID: 28423017 PMCID: PMC5396871 DOI: 10.1371/journal.pone.0174690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/12/2017] [Indexed: 11/18/2022] Open
Abstract
Myosin motors in cardiac ventriculum convert ATP free energy to the work of moving blood volume under pressure. The actin bound motor cyclically rotates its lever-arm/light-chain complex linking motor generated torque to the myosin filament backbone and translating actin against resisting force. Previous research showed that the unloaded in vitro motor is described with high precision by single molecule mechanical characteristics including unitary step-sizes of approximately 3, 5, and 8 nm and their relative step-frequencies of approximately 13, 50, and 37%. The 3 and 8 nm unitary step-sizes are dependent on myosin essential light chain (ELC) N-terminus actin binding. Step-size and step-frequency quantitation specifies in vitro motor function including duty-ratio, power, and strain sensitivity metrics. In vivo, motors integrated into the muscle sarcomere form the more complex and hierarchically functioning muscle machine. The goal of the research reported here is to measure single myosin step-size and step-frequency in vivo to assess how tissue integration impacts motor function. A photoactivatable GFP tags the ventriculum myosin lever-arm/light-chain complex in the beating heart of a live zebrafish embryo. Detected single GFP emission reports time-resolved myosin lever-arm orientation interpreted as step-size and step-frequency providing single myosin mechanical characteristics over the active cycle. Following step-frequency of cardiac ventriculum myosin transitioning from low to high force in relaxed to auxotonic to isometric contraction phases indicates that the imposition of resisting force during contraction causes the motor to down-shift to the 3 nm step-size accounting for >80% of all the steps in the near-isometric phase. At peak force, the ATP initiated actomyosin dissociation is the predominant strain inhibited transition in the native myosin contraction cycle. The proposed model for motor down-shifting and strain sensing involves ELC N-terminus actin binding. Overall, the approach is a unique bottom-up single molecule mechanical characterization of a hierarchically functional native muscle myosin.
Collapse
Affiliation(s)
- Thomas P. Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| | - Xiaojing Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| | - Yihua Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| | - Katalin Ajtai
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| |
Collapse
|
18
|
Wang Y, Burghardt TP. In vitro actin motility velocity varies linearly with the number of myosin impellers. Arch Biochem Biophys 2017; 618:1-8. [PMID: 28131772 DOI: 10.1016/j.abb.2017.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
Abstract
Cardiac myosin is the motor powering the heart. It moves actin with 3 step-size varieties generated by torque from the myosin heavy chain lever-arm rotation under the influence of myosin essential light chain whose N-terminal extension binds actin. Proposed mechanisms adapting myosin mechanochemical characteristics on the fly sometimes involve modulation of step-size selection probability via motor strain sensitivity. Strain following the power stroke, hypothetically imposed by the finite actin detachment rate 1/ton, is shown to have no effect on unloaded velocity when multiple myosins are simultaneously strongly actin bound in an in vitro motility assay. Actin filaments slide ∼2 native step-sizes while more than 1 myosin strongly binds actin probably ruling out an actin detachment limited model for imposing strain. It suggests that single myosin estimates for ton are too large, not applicable to the ensemble situation, or both. Parallel motility data quantitation involving instantaneous particle velocities (frame velocity) and actin filament track averaged velocities (track velocity) give an estimate of the random walk step-size, δ. Comparing δ for slow and fast motility components suggests the higher speed component has cardiac myosin upshifting to longer steps. Variable step-size characteristics imply cardiac myosin maintains a velocity dynamic range not involving strain.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, United States
| | - T P Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN 55905, United States.
| |
Collapse
|
19
|
Pseudophosphorylation of cardiac myosin regulatory light chain: a promising new tool for treatment of cardiomyopathy. Biophys Rev 2017; 9:57-64. [PMID: 28510043 DOI: 10.1007/s12551-017-0248-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Many genetic mutations in sarcomeric proteins, including the cardiac myosin regulatory light chain (RLC) encoded by the MYL2 gene, have been implicated in familial cardiomyopathies. Yet, the molecular mechanisms by which these mutant proteins regulate cardiac muscle mechanics in health and disease remain poorly understood. Evidence has been accumulating that RLC phosphorylation has an influential role in striated muscle contraction and, in addition to the conventional modulation via Ca2+ binding to troponin C, it can regulate cardiac muscle function. In this review, we focus on RLC mutations that have been reported to cause cardiomyopathy phenotypes via compromised RLC phosphorylation and elaborate on pseudo-phosphorylation rescue mechanisms. This new methodology has been discussed as an emerging exploratory tool to understand the role of phosphorylation as well as a genetic modality to prevent/rescue cardiomyopathy phenotypes. Finally, we summarize structural effects post-phosphorylation, a phenomenon that leads to an ordered shift in the myosin S1 and RLC conformational equilibrium between two distinct states.
Collapse
|
20
|
Gregorich ZR, Peng Y, Cai W, Jin Y, Wei L, Chen AJ, McKiernan SH, Aiken JM, Moss RL, Diffee GM, Ge Y. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction. J Proteome Res 2016; 15:2706-16. [PMID: 27362462 PMCID: PMC4975644 DOI: 10.1021/acs.jproteome.6b00244] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Yutong Jin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706
| | - Liming Wei
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Albert J. Chen
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Susan H. McKiernan
- Department of Kinesiology, University of Wisconsin-Madison, 2000 Observatory Dr., Madison, WI, 53705
| | - Judd M. Aiken
- Departments of Agriculture, Food, and Nutritional Sciences, University of Alberta-Edmonton, Edmonton, AB, Canada
| | - Richard L. Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- UW Cardiovascular Research Center, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, 2000 Observatory Dr., Madison, WI, 53705
- UW Cardiovascular Research Center, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- UW Cardiovascular Research Center, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| |
Collapse
|
21
|
Burghardt TP, Ajtai K, Sun X, Takubo N, Wang Y. In vivo myosin step-size from zebrafish skeletal muscle. Open Biol 2016; 6:rsob.160075. [PMID: 27249818 PMCID: PMC4892436 DOI: 10.1098/rsob.160075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
Muscle myosins transduce ATP free energy into actin displacement to power contraction. In vivo, myosin side chains are modified post-translationally under native conditions, potentially impacting function. Single myosin detection provides the ‘bottom-up’ myosin characterization probing basic mechanisms without ambiguities inherent to ensemble observation. Macroscopic muscle physiological experimentation provides the definitive ‘top-down’ phenotype characterizations that are the concerns in translational medicine. In vivo single myosin detection in muscle from zebrafish embryo models for human muscle fulfils ambitions for both bottom-up and top-down experimentation. A photoactivatable green fluorescent protein (GFP)-tagged myosin light chain expressed in transgenic zebrafish skeletal muscle specifically modifies the myosin lever-arm. Strychnine induces the simultaneous contraction of the bilateral tail muscles in a live embryo, causing them to be isometric while active. Highly inclined thin illumination excites the GFP tag of single lever-arms and its super-resolution orientation is measured from an active isometric muscle over a time sequence covering many transduction cycles. Consecutive frame lever-arm angular displacement converts to step-size by its product with the estimated lever-arm length. About 17% of the active myosin steps that fall between 2 and 7 nm are implicated as powerstrokes because they are beyond displacements detected from either relaxed or ATP-depleted (rigor) muscle.
Collapse
Affiliation(s)
- Thomas P Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Katalin Ajtai
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Xiaojing Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Naoko Takubo
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Yihua Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proc Natl Acad Sci U S A 2016; 113:E3039-47. [PMID: 27162358 DOI: 10.1073/pnas.1602776113] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.
Collapse
|
23
|
Pulcastro HC, Awinda PO, Breithaupt JJ, Tanner BCW. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium. Arch Biochem Biophys 2016; 601:56-68. [PMID: 26763941 DOI: 10.1016/j.abb.2015.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 11/19/2022]
Abstract
Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles.
Collapse
Affiliation(s)
- Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA.
| |
Collapse
|
24
|
Wang Y, Ajtai K, Kazmierczak K, Szczesna-Cordary D, Burghardt TP. N-Terminus of Cardiac Myosin Essential Light Chain Modulates Myosin Step-Size. Biochemistry 2015; 55:186-98. [PMID: 26671638 DOI: 10.1021/acs.biochem.5b00817] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscle myosin cyclically hydrolyzes ATP to translate actin. Ventricular cardiac myosin (βmys) moves actin with three distinct unitary step-sizes resulting from its lever-arm rotation and with step-frequencies that are modulated in a myosin regulation mechanism. The lever-arm associated essential light chain (vELC) binds actin by its 43 residue N-terminal extension. Unitary steps were proposed to involve the vELC N-terminal extension with the 8 nm step engaging the vELC/actin bond facilitating an extra ∼19 degrees of lever-arm rotation while the predominant 5 nm step forgoes vELC/actin binding. A minor 3 nm step is the unlikely conversion of the completed 5 to the 8 nm step. This hypothesis was tested using a 17 residue N-terminal truncated vELC in porcine βmys (Δ17βmys) and a 43 residue N-terminal truncated human vELC expressed in transgenic mouse heart (Δ43αmys). Step-size and step-frequency were measured using the Qdot motility assay. Both Δ17βmys and Δ43αmys had significantly increased 5 nm step-frequency and coincident loss in the 8 nm step-frequency compared to native proteins suggesting the vELC/actin interaction drives step-size preference. Step-size and step-frequency probability densities depend on the relative fraction of truncated vELC and relate linearly to pure myosin species concentrations in a mixture containing native vELC homodimer, two truncated vELCs in the modified homodimer, and one native and one truncated vELC in the heterodimer. Step-size and step-frequency, measured for native homodimer and at two or more known relative fractions of truncated vELC, are surmised for each pure species by using a new analytical method.
Collapse
Affiliation(s)
| | | | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , Miami, Florida 33136, United States
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , Miami, Florida 33136, United States
| | | |
Collapse
|
25
|
Burghardt TP, Sun X, Wang Y, Ajtai K. In vitro and in vivo single myosin step-sizes in striated muscle. J Muscle Res Cell Motil 2015; 36:463-77. [PMID: 26728749 PMCID: PMC4764389 DOI: 10.1007/s10974-015-9440-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Myosin in muscle transduces ATP free energy into the mechanical work of moving actin. It has a motor domain transducer containing ATP and actin binding sites, and, mechanical elements coupling motor impulse to the myosin filament backbone providing transduction/mechanical-coupling. The mechanical coupler is a lever-arm stabilized by bound essential and regulatory light chains. The lever-arm rotates cyclically to impel bound filamentous actin. Linear actin displacement due to lever-arm rotation is the myosin step-size. A high-throughput quantum dot labeled actin in vitro motility assay (Qdot assay) measures motor step-size in the context of an ensemble of actomyosin interactions. The ensemble context imposes a constant velocity constraint for myosins interacting with one actin filament. In a cardiac myosin producing multiple step-sizes, a "second characterization" is step-frequency that adjusts longer step-size to lower frequency maintaining a linear actin velocity identical to that from a shorter step-size and higher frequency actomyosin cycle. The step-frequency characteristic involves and integrates myosin enzyme kinetics, mechanical strain, and other ensemble affected characteristics. The high-throughput Qdot assay suits a new paradigm calling for wide surveillance of the vast number of disease or aging relevant myosin isoforms that contrasts with the alternative model calling for exhaustive research on a tiny subset myosin forms. The zebrafish embryo assay (Z assay) performs single myosin step-size and step-frequency assaying in vivo combining single myosin mechanical and whole muscle physiological characterizations in one model organism. The Qdot and Z assays cover "bottom-up" and "top-down" assaying of myosin characteristics.
Collapse
Affiliation(s)
- Thomas P Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN, 55905, USA.
| | - Xiaojing Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN, 55905, USA
| | - Yihua Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN, 55905, USA
| | - Katalin Ajtai
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN, 55905, USA
| |
Collapse
|
26
|
Karabina A, Kazmierczak K, Szczesna-Cordary D, Moore JR. Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load. Arch Biochem Biophys 2015; 580:14-21. [PMID: 26116789 PMCID: PMC4790447 DOI: 10.1016/j.abb.2015.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/27/2015] [Accepted: 06/21/2015] [Indexed: 12/15/2022]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin's ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an α-actinin frictional load. Porcine cardiac β-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31-41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level.
Collapse
Affiliation(s)
- Anastasia Karabina
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
27
|
Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proc Natl Acad Sci U S A 2015; 112:E4138-46. [PMID: 26124132 DOI: 10.1073/pnas.1505819112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 → Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. We hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In support of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca(2+) sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.
Collapse
|
28
|
Schwan J, Campbell SG. Prospects for In Vitro Myofilament Maturation in Stem Cell-Derived Cardiac Myocytes. Biomark Insights 2015; 10:91-103. [PMID: 26085788 PMCID: PMC4463797 DOI: 10.4137/bmi.s23912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocytes derived from human stem cells are quickly becoming mainstays of cardiac regenerative medicine, in vitro disease modeling, and drug screening. Their suitability for such roles may seem obvious, but assessments of their contractile behavior suggest that they have not achieved a completely mature cardiac muscle phenotype. This could be explained in part by an incomplete transition from fetal to adult myofilament protein isoform expression. In this commentary, we review evidence that supports this hypothesis and discuss prospects for ultimately generating engineered heart tissue specimens that behave similarly to adult human myocardium. We suggest approaches to better characterize myofilament maturation level in these in vitro systems, and illustrate how new computational models could be used to better understand complex relationships between muscle contraction, myofilament protein isoform expression, and maturation.
Collapse
Affiliation(s)
- Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
29
|
Kampourakis T, Irving M. Phosphorylation of myosin regulatory light chain controls myosin head conformation in cardiac muscle. J Mol Cell Cardiol 2015; 85:199-206. [PMID: 26057075 PMCID: PMC4535163 DOI: 10.1016/j.yjmcc.2015.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022]
Abstract
The effect of phosphorylation on the conformation of the regulatory light chain (cRLC) region of myosin in ventricular trabeculae from rat heart was determined by polarized fluorescence from thiophosphorylated cRLCs labelled with bifunctional sulforhodamine (BSR). Less than 5% of cRLCs were endogenously phosphorylated in this preparation, and similarly low values of basal cRLC phosphorylation were measured in fresh intact ventricle from both rat and mouse hearts. BSR-labelled cRLCs were thiophosphorylated by a recombinant fragment of human cardiac myosin light chain kinase, which was shown to phosphorylate cRLCs specifically at serine 15 in a calcium- and calmodulin-dependent manner, both in vitro and in situ. The BSR-cRLCs were exchanged into demembranated trabeculae, and polarized fluorescence intensities measured for each BSR-cRLC in relaxation, active isometric contraction and rigor were combined with RLC crystal structures to calculate the orientation distribution of the C-lobe of the cRLC in each state. Only two of the four C-lobe orientation populations seen during relaxation and active isometric contraction in the unphosphorylated state were present after cRLC phosphorylation. Thus cRLC phosphorylation alters the equilibrium between defined conformations of the cRLC regions of the myosin heads, rather than simply disordering the heads as assumed previously. cRLC phosphorylation also changes the orientation of the cRLC C-lobe in rigor conditions, showing that the orientation of this part of the myosin head is determined by its interaction with the thick filament even when the head is strongly bound to actin. These results suggest that cRLC phosphorylation controls the contractility of the heart by modulating the interaction of the cRLC region of the myosin heads with the thick filament backbone. The orientation of the phosphorylated cRLC was measured by polarized fluorescence. Phosphorylated myosin heads are not disordered on the level of the cRLC region. cRLC phosphorylation induces a new conformational state of myosin. cRLC phosphorylation controls contractility at the myosin head–backbone interface.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom.
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
30
|
Huang W, Liang J, Yuan CC, Kazmierczak K, Zhou Z, Morales A, McBride KL, Fitzgerald-Butt SM, Hershberger RE, Szczesna-Cordary D. Novel familial dilated cardiomyopathy mutation in MYL2 affects the structure and function of myosin regulatory light chain. FEBS J 2015; 282:2379-93. [PMID: 25825243 DOI: 10.1111/febs.13286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/27/2015] [Accepted: 03/26/2015] [Indexed: 01/16/2023]
Abstract
Dilated cardiomyopathy (DCM) is a disease of the myocardium characterized by left ventricular dilatation and diminished contractile function. Here we describe a novel DCM mutation in the myosin regulatory light chain (RLC), in which aspartic acid at position 94 is replaced by alanine (D94A). The mutation was identified by exome sequencing of three adult first-degree relatives who met formal criteria for idiopathic DCM. To obtain insight into the functional significance of this pathogenic MYL2 variant, we cloned and purified the human ventricular RLC wild-type (WT) and D94A mutant proteins, and performed in vitro experiments using RLC-mutant or WT-reconstituted porcine cardiac preparations. The mutation induced a reduction in the α-helical content of the RLC, and imposed intra-molecular rearrangements. The phosphorylation of RLC by Ca²⁺/calmodulin-activated myosin light chain kinase was not affected by D94A. The mutation was seen to impair binding of RLC to the myosin heavy chain, and its incorporation into RLC-depleted porcine myosin. The actin-activated ATPase activity of mutant-reconstituted porcine cardiac myosin was significantly higher compared with ATPase of wild-type. No changes in the myofibrillar ATPase-pCa relationship were observed in wild-type- or D94A-reconstituted preparations. Measurements of contractile force showed a slightly reduced maximal tension per cross-section of muscle, with no change in the calcium sensitivity of force in D94A-reconstituted skinned porcine papillary muscle strips compared with wild-type. Our data indicate that subtle structural rearrangements in the RLC molecule, followed by its impaired interaction with the myosin heavy chain, may trigger functional abnormalities contributing to the DCM phenotype.
Collapse
Affiliation(s)
- Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiqun Zhou
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ana Morales
- Division of Human Genetics, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Kim L McBride
- Department of Pediatrics Ohio State University, Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sara M Fitzgerald-Butt
- Department of Pediatrics Ohio State University, Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ray E Hershberger
- Division of Human Genetics, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
31
|
Chang AN, Battiprolu PK, Cowley PM, Chen G, Gerard RD, Pinto JR, Hill JA, Baker AJ, Kamm KE, Stull JT. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo. J Biol Chem 2015; 290:10703-16. [PMID: 25733667 DOI: 10.1074/jbc.m115.642165] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/03/2023] Open
Abstract
In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.
Collapse
Affiliation(s)
| | | | - Patrick M Cowley
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | - Robert D Gerard
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jose R Pinto
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Joseph A Hill
- Internal Medicine (Cardiology), and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anthony J Baker
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | | |
Collapse
|
32
|
Wang Y, Ajtai K, Burghardt TP. Analytical comparison of natural and pharmaceutical ventricular myosin activators. Biochemistry 2014; 53:5298-306. [PMID: 25068717 PMCID: PMC4139156 DOI: 10.1021/bi500730t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Ventricular myosin (βMys) is
the motor protein in cardiac
muscle generating force using ATP hydrolysis free energy to translate
actin. In the cardiac muscle sarcomere, myosin and actin filaments
interact cyclically and undergo rapid relative translation facilitated
by the low duty cycle motor. It contrasts with high duty cycle processive
myosins for which persistent actin association is the priority. The
only pharmaceutical βMys activator, omecamtive mecarbil (OM),
upregulates cardiac contractility in vivo and is
undergoing testing for heart failure therapy. In vitro βMys step-size, motility velocity, and actin-activated myosin
ATPase were measured to determine duty cycle in the absence and presence
of OM. A new parameter, the relative step-frequency, was introduced
and measured to characterize βMys motility due to the involvement
of its three unitary step-sizes. Step-size and relative step-frequency
were measured using the Qdot assay. OM decreases motility velocity
10-fold without affecting step-size, indicating a large increase in
duty cycle converting βMys to a near processive myosin. The
OM conversion dramatically increases force and modestly increases
power over the native βMys. Contrasting motility modification
due to OM with that from the natural myosin activator, specific βMys
phosphorylation, provides insight into their respective activation
mechanisms and indicates the boilerplate screening characteristics
desired for pharmaceutical βMys activators. New analytics introduced
here for the fast and efficient Qdot motility assay create a promising
method for high-throughput screening of motor proteins and their modulators.
Collapse
Affiliation(s)
- Yihua Wang
- Department of Biochemistry and Molecular Biology and ‡Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester , Rochester, Minnesota 55905, United States
| | | | | |
Collapse
|