1
|
Yuan D, Zheng Z, Shen C, Ye J, Zhu L. Cytoprotective effects of C1s enzyme in macrophages in atherosclerosis mediated through the LRP5 and Wnt/β-catenin pathway. Mol Immunol 2024; 166:29-38. [PMID: 38218080 DOI: 10.1016/j.molimm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
C1s enzyme (active C1s) is a subunit of the complement C1 complex that cleaves low-density lipoprotein receptor-related proteins 5 and 6, leading to Wnt/β-catenin pathway activation in some cell lines. Macrophages have two major functional polarization states (the classically activated M1 state and the alternatively activated M2 state) and play an essential role in atherosclerosis. An increasing amount of evidence suggests that canonical Wnt signaling is related to macrophage polarization. In this study, we explored the cytoprotective effects of C1s enzyme in macrophages. The results show that C1s enzyme activates canonical Wnt signaling in macrophages, exacerbates macrophage M2 polarization, and inhibits M1 polarization. Moreover, C1s enzyme reduces foam cell formation and simultaneously enhances efferocytosis. This study reveals a novel function of C1s enzyme in macrophages in the context of atherosclerosis.
Collapse
Affiliation(s)
- Dong Yuan
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | | | - Cheng Shen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Ye
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Li Zhu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| |
Collapse
|
2
|
Gąsiorowski K, Brokos JB, Sochocka M, Ochnik M, Chojdak-Łukasiewicz J, Zajączkowska K, Fułek M, Leszek J. Current and Near-Future Treatment of Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1144-1157. [PMID: 34856906 PMCID: PMC9886829 DOI: 10.2174/1570159x19666211202124239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Recent findings have improved our understanding of the multifactorial nature of AD. While in early asymptomatic stages of AD, increased amyloid-β synthesis and tau hyperphosphorylation play a key role, while in the latter stages of the disease, numerous dysfunctions of homeostatic mechanisms in neurons, glial cells, and cerebrovascular endothelium determine the rate of progression of clinical symptoms. The main driving forces of advanced neurodegeneration include increased inflammatory reactions in neurons and glial cells, oxidative stress, deficiencies in neurotrophic growth and regenerative capacity of neurons, brain insulin resistance with disturbed metabolism in neurons, or reduction of the activity of the Wnt-β catenin pathway, which should integrate the homeostatic mechanisms of brain tissue. In order to more effectively inhibit the progress of neurodegeneration, combination therapies consisting of drugs that rectify several above-mentioned dysfunctions should be used. It should be noted that many widely-used drugs from various pharmacological groups, "in addition" to the main therapeutic indications, have a beneficial effect on neurodegeneration and may be introduced into clinical practice in combination therapy of AD. There is hope that complex treatment will effectively inhibit the progression of AD and turn it into a slowly progressing chronic disease. Moreover, as the mechanisms of bidirectional communication between the brain and microbiota are better understood, it is expected that these pathways will be harnessed to provide novel methods to enhance health and treat AD.
Collapse
Affiliation(s)
| | | | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Michał Fułek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland,Address correspondence to this author at the Department of Psychiatry, Wrocław Medical University, 10 Ludwika Pasteura Str., 50-367 Wrocław, Poland; Tel:+48603880572; E-mail:
| |
Collapse
|
3
|
Functional Phenotypes of Intraplaque Macrophages and Their Distinct Roles in Atherosclerosis Development and Atheroinflammation. Biomedicines 2022; 10:biomedicines10020452. [PMID: 35203661 PMCID: PMC8962399 DOI: 10.3390/biomedicines10020452] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/01/2022] Open
Abstract
Macrophages are the key inflammatory cell type involved in all stages of atherosclerosis development and progression, as demonstrated by numerous studies. Correspondingly, macrophages are currently regarded as a promising therapeutic target for the development of new treatment approaches. The macrophage population is heterogeneous and dynamic, as these cells can switch between a number of distinct functional states with pro- and anti-atherogenic activity in response to various stimuli. An atherosclerotic plaque microenvironment defined by cytokine levels, cell-to-cell interactions, lipid accumulation, hypoxia, neoangiogenesis, and intraplaque haemorrhage may guide local macrophage polarization processes within the lesion. In this review, we discuss known functional phenotypes of intraplaque macrophages and their distinct contribution to ahteroinflammation.
Collapse
|
4
|
Luquero A, Vilahur G, Crespo J, Badimon L, Borrell‐Pages M. Microvesicles carrying LRP5 induce macrophage polarization to an anti-inflammatory phenotype. J Cell Mol Med 2021; 25:7935-7947. [PMID: 34288375 PMCID: PMC8358886 DOI: 10.1111/jcmm.16723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Microvesicles (MV) contribute to cell-to-cell communication through their transported proteins and nucleic acids. MV, released into the extracellular space, exert paracrine regulation by modulating cellular responses after interaction with near and far target cells. MV are released at high concentrations by activated inflammatory cells. Different subtypes of human macrophages have been characterized based on surface epitopes being CD16+ macrophages associated with anti-inflammatory phenotypes. We have previously shown that low-density lipoprotein receptor-related protein 5 (LRP5), a member of the LDLR family that participates in lipid homeostasis, is expressed in macrophage CD16+ with repair and survival functions. The goal of our study was to characterize the cargo and tentative function of macrophage-derived MV, whether LRP5 is delivered into MV and whether these MV are able to induce inflammatory cell differentiation to a specific CD16- or CD16+ phenotype. We show, for the first time, that lipid-loaded macrophages release MV containing LRP5. LDL loading induces increased expression of macrophage pro-inflammatory markers and increased release of MV containing pro-inflammatory markers. Conditioning of fresh macrophages with MV released by Lrp5-silenced macrophages induced the transcription of inflammatory genes and reduced the transcription of anti-inflammatory genes. Thus, MV containing LRP5 induce anti-inflammatory phenotypes in macrophages.
Collapse
Affiliation(s)
- Aureli Luquero
- Cardiovascular Program ICCCIR‐Hospital de la Santa Creu i Sant PauIIB‐Sant PauBarcelonaSpain
| | - Gemma Vilahur
- Cardiovascular Program ICCCIR‐Hospital de la Santa Creu i Sant PauIIB‐Sant PauBarcelonaSpain
- CIBER‐CVInstituto de Salud Carlos IIIMadridSpain
| | - Javier Crespo
- Cardiovascular Program ICCCIR‐Hospital de la Santa Creu i Sant PauIIB‐Sant PauBarcelonaSpain
| | - Lina Badimon
- Cardiovascular Program ICCCIR‐Hospital de la Santa Creu i Sant PauIIB‐Sant PauBarcelonaSpain
- CIBER‐CVInstituto de Salud Carlos IIIMadridSpain
- Cardiovascular Research ChairUABBarcelonaSpain
| | - Maria Borrell‐Pages
- Cardiovascular Program ICCCIR‐Hospital de la Santa Creu i Sant PauIIB‐Sant PauBarcelonaSpain
- CIBER‐CVInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
5
|
Bowman ER, Cameron CM, Richardson B, Kulkarni M, Gabriel J, Cichon MJ, Riedl KM, Mustafa Y, Cartwright M, Snyder B, Raman SV, Zidar DA, Koletar SL, Playford MP, Mehta NN, Sieg SF, Freeman ML, Lederman MM, Cameron MJ, Funderburg NT. Macrophage maturation from blood monocytes is altered in people with HIV, and is linked to serum lipid profiles and activation indices: A model for studying atherogenic mechanisms. PLoS Pathog 2020; 16:e1008869. [PMID: 33002093 PMCID: PMC7553323 DOI: 10.1371/journal.ppat.1008869] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/13/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
People with HIV (PWH) are at increased risk for atherosclerotic cardiovascular disease (ASCVD). Proportions of vascular homing monocytes are enriched in PWH; however, little is known regarding monocyte-derived macrophages (MDMs) that may drive atherosclerosis in this population. We isolated PBMCs from people with and without HIV, and cultured these cells for 5 days in medium containing autologous serum to generate MDMs. Differential gene expression (DGE) analysis of MDMs from PWH identified broad alterations in innate immune signaling (IL-1β, TLR expression, PPAR βδ) and lipid processing (LXR/RXR, ACPP, SREBP1). Transcriptional changes aligned with the functional capabilities of these cells. Expression of activation markers and innate immune receptors (CD163, TLR4, and CD300e) was altered on MDMs from PWH, and these cells produced more TNFα, reactive oxygen species (ROS), and matrix metalloproteinases (MMPs) than did cells from people without HIV. MDMs from PWH also had greater lipid accumulation and uptake of oxidized LDL. PWH had increased serum levels of free fatty acids (FFAs) and ceramides, with enrichment of saturated FAs and a reduction in polyunsaturated FAs. Levels of lipid classes and species that are associated with CVD correlated with unique DGE signatures and altered metabolic pathway activation in MDMs from PWH. Here, we show that MDMs from PWH display a pro-atherogenic phenotype; they readily form foam cells, have altered transcriptional profiles, and produce mediators that likely contribute to accelerated ASCVD. People with HIV (PWH) are at greater risk for developing cardiovascular disease (CVD) than the general public, but the mechanisms underlying this increased risk are poorly understood. Macrophages play key roles in the pathogenesis of atherosclerosis, and are potential targets for therapeutic intervention. Here, we investigate phenotypic and functional abnormalities in monocyte-derived macrophages (MDMs) isolated from PWH that may drive CVD risk in this population. MDMs were differentiated in the presence of autologous serum, enabling us to explore the contributions of serum components (lipids, inflammatory cytokines, microbial products) as drivers of altered MDM function. We link serum levels of inflammatory biomarkers and CVD-associated lipid species to MDM activation. Our study provides new insight into drivers of pro-atherogenic MDM phenotype in PWH, and identifies directions for future study and potential intervention strategies to mitigate CVD risk.
Collapse
Affiliation(s)
- Emily R. Bowman
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Cheryl M. Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Manjusha Kulkarni
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Janelle Gabriel
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Morgan J. Cichon
- Department of Food Science & Technology and the Nutrient & Phytochemical Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Kenneth M. Riedl
- Department of Food Science & Technology and the Nutrient & Phytochemical Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Yousef Mustafa
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael Cartwright
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brandon Snyder
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Subha V. Raman
- Department of Internal Medicine, Division of Cardiovascular Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Susan L. Koletar
- Department of Medicine, Division of Infectious Diseases, Ohio State University, Columbus, Ohio, United States of America
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Scott F. Sieg
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Michael L. Freeman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Michael M. Lederman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nicholas T. Funderburg
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
6
|
Badimon L, Luquero A, Crespo J, Peña E, Borrell-Pages M. PCSK9 and LRP5 in macrophage lipid internalization and inflammation. Cardiovasc Res 2020; 117:2054-2068. [PMID: 32991689 DOI: 10.1093/cvr/cvaa254] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 01/20/2023] Open
Abstract
AIMS Atherosclerosis, the leading cause of cardiovascular diseases, is driven by high blood cholesterol levels and chronic inflammation. Low-density lipoprotein receptors (LDLR) play a critical role in regulating blood cholesterol levels by binding to and clearing LDLs from the circulation. The disruption of the interaction between proprotein convertase subtilisin/kexin 9 (PCSK9) and LDLR reduces blood cholesterol levels. It is not well known whether other members of the LDLR superfamily may be targets of PCSK9. The aim of this work was to determine if LDLR-related protein 5 (LRP5) is a PCSK9 target and to study the role of PCSK9 and LRP5 in foam cell formation and lipid accumulation. METHODS AND RESULTS Primary cultures of human inflammatory cells (monocytes and macrophages) were silenced for LRP5 or PCSK9 and challenged with LDLs. We first show that LRP5 is needed for macrophage lipid uptake since LRP5-silenced macrophages show less intracellular CE accumulation. In macrophages, internalization of LRP5-bound LDL is already highly evident after 5 h of LDL incubation and lasts up to 24 h; however, in the absence of both LRP5 and PCSK9, there is a strong reduction of CE accumulation indicating a role for both proteins in lipid uptake. Immunoprecipitation experiments show that LRP5 forms a complex with PCSK9 in lipid-loaded macrophages. Finally, PCSK9 participates in TLR4/NFkB signalling; a decreased TLR4 protein expression levels and a decreased nuclear translocation of NFκB were detected in PCSK9 silenced cells after lipid loading, indicating a downregulation of the TLR4/NFκB pathway. CONCLUSION Our results show that both LRP5 and PCSK9 participate in lipid uptake in macrophages. In the absence of LRP5, there is a reduced release of PCSK9 indicating that LRP5 also participates in the mechanism of release of soluble PCSK9. Furthermore, PCSK9 up-regulates TLR4/NFκB favouring inflammation.
Collapse
Affiliation(s)
- Lina Badimon
- CIBER-CV, Instituto de Salud Carlos III, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain.,Cardiovascular Research ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Carrer Sant Antoni Maria Claret 165, 08025 Barcelona, Spain
| | - Aureli Luquero
- Cardiovascular Research ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Carrer Sant Antoni Maria Claret 165, 08025 Barcelona, Spain
| | - Javier Crespo
- Cardiovascular Research ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Carrer Sant Antoni Maria Claret 165, 08025 Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Carrer Sant Antoni Maria Claret 165, 08025 Barcelona, Spain
| | - Maria Borrell-Pages
- CIBER-CV, Instituto de Salud Carlos III, Spain.,Cardiovascular Research ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Carrer Sant Antoni Maria Claret 165, 08025 Barcelona, Spain
| |
Collapse
|
7
|
Malsin ES, Kim S, Lam AP, Gottardi CJ. Macrophages as a Source and Recipient of Wnt Signals. Front Immunol 2019; 10:1813. [PMID: 31417574 PMCID: PMC6685136 DOI: 10.3389/fimmu.2019.01813] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are often viewed through the lens of their core functions, but recent transcriptomic studies reveal them to be largely distinct across tissue types. While these differences appear to be shaped by their local environment, the key signals that drive these transcriptional differences remain unclear. Since Wnt signaling plays established roles in cell fate decisions, and tissue patterning during development and tissue repair after injury, we consider evidence that Wnt signals both target and are affected by macrophage functions. We propose that the Wnt gradients present in developing and adult tissues effectively shape macrophage fates and phenotypes. We also highlight evidence that macrophages, through an ability to dispatch Wnt signals, may couple tissue debridement and matrix remodeling with stem cell activation and tissue repair.
Collapse
Affiliation(s)
- Elizabeth S Malsin
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Seokjo Kim
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Anna P Lam
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Cara J Gottardi
- Department of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
9
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer's disease. Acta Biochim Biophys Sin (Shanghai) 2017; 49:853-866. [PMID: 28981597 DOI: 10.1093/abbs/gmx073] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, in which the primary etiology remains unknown. AD presents amyloid beta (Aβ) protein aggregation and neurofibrillary plaque deposits. AD shows oxidative stress and chronic inflammation. In AD, canonical Wingless-Int (Wnt)/β-catenin pathway is downregulated, whereas peroxisome proliferator-activated receptor γ (PPARγ) is increased. Downregulation of Wnt/β-catenin, through activation of glycogen synthase kinase-3β (GSK-3β) by Aβ, and inactivation of phosphatidylinositol 3-kinase/Akt signaling involve oxidative stress in AD. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid from Cannabis sativa plant. In PC12 cells, Aβ-induced tau protein hyperphosphorylation is inhibited by CBD. This inhibition is associated with a downregulation of p-GSK-3β, an inhibitor of Wnt pathway. CBD may also increase Wnt/β-catenin by stimulation of PPARγ, inhibition of Aβ and ubiquitination of amyloid precursor protein. CBD attenuates oxidative stress and diminishes mitochondrial dysfunction and reactive oxygen species generation. CBD suppresses, through activation of PPARγ, pro-inflammatory signaling and may be a potential new candidate for AD therapy.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | | | - Rémy Guillevin
- Université de Poitiers et CHU de Poitiers, DACTIM, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, Futuroscope, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Cardiometabolic diseases increasingly afflict our aging, dysmetabolic population. Complex signals regulating low-density lipoprotein receptor-related protein (LRP) and frizzled protein family members - the plasma membrane receptors for the cadre of Wnt polypeptide morphogens - contribute to the control of cardiovascular homeostasis. RECENT FINDINGS Both canonical (β-catenin-dependent) and noncanonical (β-catenin-independent) Wnt signaling programs control vascular smooth muscle (VSM) cell phenotypic modulation in cardiometabolic disease. LRP6 limits VSM proliferation, reduces arteriosclerotic transcriptional reprogramming, and preserves insulin sensitivity while LRP5 restrains foam cell formation. Adipose, skeletal muscle, macrophages, and VSM have emerged as important sources of circulating Wnt ligands that are dynamically regulated during the prediabetes-diabetes transition with cardiometabolic consequences. Platelets release Dkk1, a LRP5/LRP6 inhibitor that induces endothelial inflammation and the prosclerotic endothelial-mesenchymal transition. By contrast, inhibitory secreted frizzled-related proteins shape the Wnt signaling milieu to limit myocardial inflammation with ischemia-reperfusion injury. VSM sclerostin, an inhibitor of canonical Wnt signaling in bone, restrains remodeling that predisposes to aneurysm formation, and is downregulated in aneurysmal vessels by epigenetic methylation. SUMMARY Components of the Wnt signaling cascade represent novel targets for pharmacological intervention in cardiometabolic disease. Conversely, strategies targeting the Wnt signaling cascade for other therapeutic purposes will have cardiovascular consequences that must be delineated to establish clinically useful pharmacokinetic-pharmacodynamic relationships.
Collapse
Affiliation(s)
- Austin Gay
- Department of Internal Medicine-Endocrine Division, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
11
|
Duvetorp A, Olsen RS, Nyström H, Skarstedt M, Dienus O, Mrowietz U, Söderman J, Seifert O. Expression of low-density lipoprotein-related receptors 5 and 6 (LRP5/6) in psoriasis skin. Exp Dermatol 2017; 26:1033-1038. [PMID: 28418602 DOI: 10.1111/exd.13362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/17/2022]
Abstract
Low-density lipoprotein-related receptors 5 and 6 (LRP5/6) are transmembrane receptors with key functions in canonical Wnt signalling. Wnt ligands are thought to play an important role in innate immunity and psoriasis, and recent studies assigned LRP5/6 anti-inflammatory properties. The objective of this study was to investigate the expression of LRP5 and LRP6 in lesional and non-lesional skin in peripheral blood and in mononuclear cells of patients with chronic plaque type psoriasis compared with control individuals. To investigate the effect of UV-B radiation, LRP5/6 skin gene expression was analysed before and after narrowband UV-B treatment. Our results showed significantly decreased gene expression of LRP5 and LRP6 in lesional skin and in peripheral blood from patients with psoriasis compared with non-lesional skin and healthy control skin. Immunohistochemistry did not reveal differences in protein expression of LRP5/6. Narrowband UV-B treatment induced a significant increase in LRP5 and LRP6 gene expression in lesional skin. Decreased gene expression of LRP5/6 in lesional skin and upregulation after nb UV-B treatment suggest a possible role for LRP5/6 in psoriasis.
Collapse
Affiliation(s)
- Albert Duvetorp
- Division of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden
| | - Renate Slind Olsen
- Faculty of Medicine and Health Sciences, Department of Medicine and Health Sciences, Division of Drug Research, Linköping University, Linköping, Sweden.,Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Helena Nyström
- Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Marita Skarstedt
- Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Olaf Dienus
- Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Ulrich Mrowietz
- Department of Dermatology, Psoriasis-Center, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan Söderman
- Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Oliver Seifert
- Division of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden.,Faculty of Medicine and Health Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Sennello JA, Misharin AV, Flozak AS, Berdnikovs S, Cheresh P, Varga J, Kamp DW, Budinger GRS, Gottardi CJ, Lam AP. Lrp5/β-Catenin Signaling Controls Lung Macrophage Differentiation and Inhibits Resolution of Fibrosis. Am J Respir Cell Mol Biol 2017; 56:191-201. [PMID: 27668462 DOI: 10.1165/rcmb.2016-0147oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous studies established that attenuating Wnt/β-catenin signaling limits lung fibrosis in the bleomycin mouse model of this disease, but the contribution of this pathway to distinct lung cell phenotypes relevant to tissue repair and fibrosis remains incompletely understood. Using microarray analysis, we found that bleomycin-injured lungs from mice that lack the Wnt coreceptor low density lipoprotein receptor-related protein 5 (Lrp5) and exhibit reduced fibrosis showed enrichment for pathways related to extracellular matrix processing, immunity, and lymphocyte proliferation, suggesting the contribution of an immune-matrix remodeling axis relevant to fibrosis. Activation of β-catenin signaling was seen in lung macrophages using the β-catenin reporter mouse, Axin2+/LacZ. Analysis of lung immune cells by flow cytometry after bleomycin administration revealed that Lrp5-/- lungs contained significantly fewer Siglec Flow alveolar macrophages, a cell type previously implicated as positive effectors of fibrosis. Macrophage-specific deletion of β-catenin in CD11ccre;β-cateninflox mice did not prevent development of bleomycin-induced fibrosis but facilitated its resolution by 8 weeks. In a nonresolving model of fibrosis, intratracheal administration of asbestos in Lrp5-/- mice also did not prevent the development of fibrosis but hindered the progression of fibrosis in asbestos-treated Lrp5-/- lungs, phenocopying the findings in bleomycin-treated CD11ccre;β-cateninflox mice. Activation of β-catenin signaling using lithium chloride resulted in worsened fibrosis in wild-type mice, further supporting that the effects of loss of Lrp5 are directly mediated by Wnt/β-catenin signaling. Together, these data suggest that lung myeloid cells are responsive to Lrp5/β-catenin signaling, leading to differentiation of an alveolar macrophage subtype that antagonizes the resolution of lung fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Paul Cheresh
- 1 Division of Pulmonary and Critical Care Medicine
| | - John Varga
- 3 Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David W Kamp
- 1 Division of Pulmonary and Critical Care Medicine
| | | | | | - Anna P Lam
- 1 Division of Pulmonary and Critical Care Medicine
| |
Collapse
|
13
|
|
14
|
CD16-positive circulating monocytes and fibrotic manifestations of systemic sclerosis. Clin Rheumatol 2017; 36:1649-1654. [PMID: 28293753 DOI: 10.1007/s10067-017-3597-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/02/2017] [Indexed: 01/29/2023]
Abstract
The objective of this study is to assess the association of clinical manifestations of systemic sclerosis (SSc) with the absolute count of circulating blood monocyte subpopulations according to their membrane expression of CD16. Forty-eight consecutive patients fulfilling the 2013 ACR/EULAR classification criteria for SSc were included in this cross-sectional study. CD16+ monocyte absolute count was defined by flow cytometry and confronted to the clinical characteristics of SSc patients. Twenty-three healthy donors (HD) were randomly selected for comparison. SSc patients had an increased number of total circulating blood monocytes compared to HD (p < 0.001). The CD16- subpopulation absolute count was increased in SSc patients compared to HD (p < 0.001) but was similar in limited SSc (lSSc) and diffuse SSc (dSSc). On the contrary, the CD16+ population absolute count was increased in dSSc compared to both HD and lSSc patients (dSSc 0.071 Giga/L (±0.034) vs HD 0.039 Giga/L (±0.030), p < 0.01, and dSSc 0.071 Giga/L (±0.034) vs lSSc 0.048 Giga/L (±0.024), p < 0.05). The CD16+ monocyte subpopulation absolute count was significantly correlated with the severity of skin fibrosis evaluated by the modified Rodnan skin score (p < 0.001). The CD16+ monocyte subpopulation was also associated with pulmonary fibrosis (p < 0.05), with the severity of the restrictive ventilatory defect evaluated by total lung capacity (p < 0.05) and with the pulmonary function impairment reflected by diffusing capacity of the lungs for carbon monoxyde measures (p < 0.01). These results suggest that CD16+ monocytes are associated with the main fibrotic manifestations of SSc and their role in the pathogenesis of fibrosis in this autoimmune disorder should therefore be further considered.
Collapse
|
15
|
Towler DA. "Osteotropic" Wnt/LRP Signals: High-Wire Artists in a Balancing Act Regulating Aortic Structure and Function. Arterioscler Thromb Vasc Biol 2017; 37:392-395. [PMID: 28228445 PMCID: PMC5324723 DOI: 10.1161/atvbaha.116.308915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dwight A Towler
- From the Department of Internal Medicine, Endocrine Division, UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
16
|
Borrell-Pages M, Vilahur G, Romero JC, Casaní L, Bejar MT, Badimon L. LRP5/canonical Wnt signalling and healing of ischemic myocardium. Basic Res Cardiol 2016; 111:67. [PMID: 27704249 DOI: 10.1007/s00395-016-0585-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
LRP5 (low-density lipoprotein receptor-related protein 5) activates canonical Wnt signalling. LRP5 plays multiple roles including regulation of lipoprotein and cholesterol homeostasis as well as innate immunity cell function. However, it is not known whether LRP5 has a role in the myocardium. The aim of this study was to investigate LRP5 and Wnt signalling in myocardial remodelling after acute myocardial infarction (MI). Wnt protein levels were determined in a hypercholesterolemic porcine model of MI, in Lrp5 -/- C57Bl6 mice, in cultured cardiomyocytes and in human explanted hearts with previous MI episodes. 21 days post-MI, there was upregulation of LRP5 in the ischemic myocardium of hypercholesterolemic pigs as well as an upregulated expression of proteins of the Wnt pathway. We demonstrate via overexpression and silencing experiments that LRP5 induces Wnt pathway activation in isolated cardiomyocytes. Hypoxia and lipid-loading induced the expression of Wnt proteins, whereas this effect is blocked in LRP5-silenced cardiomyocytes. To characterize the function of the LRP5-Wnt axis upregulation in the heart, we induced MI in wild-type and Lrp5 -/- mice. Lrp5 -/- mice had significantly larger infarcts than Wt mice, indicating a protective role of LRP5 in injured myocardium. The LRP5 upregulation in post-MI hearts seen in pigs and mice was also evident in human hearts as dyslipidemic patients with previous episodes of ischemia have higher expression of LRP5 and Wnt-signalling genes than non-ischemic dilated hearts. We demonstrate an upregulation of LRP5 and the Wnt signalling pathway that it is a prosurvival healing response of cardiomyocytes upon injury.
Collapse
Affiliation(s)
- M Borrell-Pages
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, C/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - G Vilahur
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, C/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - J C Romero
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, C/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - L Casaní
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, C/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - M T Bejar
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, C/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - L Badimon
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, C/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain. .,Cardiovascular Research Chair, UAB-Fundación Jesús Serra, Barcelona, Spain.
| |
Collapse
|
17
|
Escate R, Padro T, Borrell-Pages M, Suades R, Aledo R, Mata P, Badimon L. Macrophages of genetically characterized familial hypercholesterolaemia patients show up-regulation of LDL-receptor-related proteins. J Cell Mol Med 2016; 21:487-499. [PMID: 27680891 PMCID: PMC5323824 DOI: 10.1111/jcmm.12993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is a major risk for premature coronary heart disease due to severe long‐life exposure to high LDL levels. Accumulation of LDL in the vascular wall triggers atherosclerosis with activation of the innate immunity system. Here, we have investigated (i) gene expression of LDLR and LRPs in peripheral blood cells (PBLs) and in differentiated macrophages of young FH‐patients; and (ii) whether macrophage from FH patients have a differential response when exposed to high levels of atherogenic LDL. PBLs in young heterozygous genetically characterized FH patients have higher expression of LRP5 and LRP6 than age‐matched healthy controls or patients with secondary hypercholesterolaemia. LRP1 levels were similar among groups. In monocyte‐derived macrophages (MACs), LRP5 and LRP1 transcript levels did not differ between FHs and controls in resting conditions, but when exposed to agLDL, FH‐MAC showed a highly significant up‐regulation of LRP5, while LRP1 was unaffected. PBL and MAC cells from FH patients had significantly lower LDLR expression than control cells, independently of the lipid‐lowering therapy. Furthermore, exposure of FH‐MAC to agLDL resulted in a reduced expression of CD163, scavenger receptor with anti‐inflammatory and atheroprotective properties. In summary, our results show for first time that LRPs, active lipid‐internalizing receptors, are up‐regulated in innate immunity cells of young FH patients that have functional LDLR mutations. Additionally, their reduced CD163 expression indicates less atheroprotection. Both mechanisms may play a synergic effect on the onset of premature atherosclerosis in FH patients.
Collapse
Affiliation(s)
- Rafael Escate
- Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | | | - Rosa Suades
- Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Rosa Aledo
- Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| |
Collapse
|
18
|
Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci 2016; 158:78-88. [PMID: 27370940 DOI: 10.1016/j.lfs.2016.06.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023]
Abstract
The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.
Collapse
Affiliation(s)
- Rosaliana Libro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
19
|
LRP5: A novel anti-inflammatory macrophage marker that positively regulates migration and phagocytosis. J Mol Cell Cardiol 2016; 91:61-2. [DOI: 10.1016/j.yjmcc.2015.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 12/26/2022]
|